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A PARABOLIC EQUATION OF THE KPP TYPE IN HIGHER
DIMENSIONS*

JEAN-FRAN(OIS MALLORDYt AND JEAN-MICHEL ROQUEJOFFRE$

Abstract. The aim of this paper is to study the long-time behaviour of the solutions of a
semilinear parabolic equation in an infinite cylinder, which generalises a well-known one-dimensional
model that was first investigated by Kolmogorov, Petrovskii, and Piskunov (KPP).

It is shown that the asymptotic behaviour of the solutions strongly depends on the asymptotic
behaviour of the initial datum at the ends of the cylinder. In particular, the equation admits a
continuum of travelling wave solutions, each of them stable with regard to adequate perturbations.
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1. Introduction. This paper is concerned with the large-time behaviour of the
solutions of a class of semilinear parabolic equations in an infinite multidimensional
cylinder. Namely, denoting by E the cylinder E (x, y) E w, w being a bounded
regular domain in N-1, we consider the following problem:

Ou Au + o(y)Ou g(u) in ,
(7))" Ou O on

u(t O) uo inE,

Here u denotes the outward unit normal on 0E, a(y) is a given continuous function
on , and g is a given source term satisfying g(0) g(1) 0 with g > 0 in (0, 1), and
g’(0) > 0 > g’(1). The initial datum u0 is assumed to take its values in (0, 1).

Under the above assumptions, (T’) has a unique global classical solution, den)ted
by S(t)uo. These assumptions will always be understood to hold in the rest of the
paper.

Our aim is to understand how the asymptotics of u, for large t, depend on the
initial datum u0. Indeed, (7) admits travelling wave solutions of speed c >_ c,, for
some c, depending on the source term g, and it is expected that each travelling wave
is stable in some sense.

Such problems have a wide range of applications, such as population dynamics
or combustion; quite a few authors have already contributed to the study of the
one-dimensional problem

ut u g(u), u(-c, t) O, u(+oc, t) 1.

The first paper dealing with the subject is the celebrated article by Kolmogorov
Petrovskii, and Piskunov [13]. The source term which is taken into account in their
paper is g(u) u(1 -u) and S(t)H--H being the Heaviside step function--is shown
to converge, in some weak sense, towards the travelling front with speed c,.

Subsequent work was then done by Aronson and Weinberger [2], where, in par-
ticular, the set of c’s such that u(x- ct, t) goes to 0 (respectively, 1) as t -- +c is
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characterised. Local exponential stability results were proved by Sattinger [19] for the
waves with speed c > c, in weighted spaces; quite recently, Kirchgssner [12] reached
local algebraic stability for the waves with speed c,. In [10], Hagan investigated
fully nonlinear equations of the form ut f(u, ux, ux), with f satisfying suitable
assumptions.

Finally, let us mention the work of Uchiyama [21], which covers all the previously
mentioned aspects, and which provides a classification of every possible asymptotic
behaviour.

In the multidimensional framework, Aronson and Weinberger [3] investigated the
unsteady problem in N, with a -_-- 0. They obtained "hair-trigger effect" type results,
i.e., a nonnegative initial datum with even a small compact support that evolves into
a solution that tends to 1 on every compact subset.

Our purpose is to extend to (P) some of these results. In particular, we will fully
generalise [2], [19], and the global stability results of [21] for the waves with speed
c > c,. To do this, we will rely heavily on the results of Berestycki and Nirenberg [8].

The paper is organised as follows. In 2, we recall the existence, uniqueness, and
qualitative properties results for the travelling wave solutions (7)). In 3 and 4, we
investigate (7)) with a source term g such that g(s)/s is decreasing in s. Such a g
will be called a KPP source term, and we will see in 3 and 4 that this additional
assumption allows us to produce shorter and more elegant proofs. Section 5 is devoted
to exponential local stability results, and no KPP assumption is made unless otherwise
stated. Finally, 6 is devoted to the extension of the results of 4 when g is no longer
a KPP source term.

2. Travelling waves. All the material in this section comes from the work of
Berestycki and Nirenberg [8]. Therefore no proof will be given, apart from the last
exponential behaviour result.

When we look for travelling waves solutions of the form u(x, y, t) (x + ct, y),
we have to deal with the elliptic problem

-A + (c(y)+c)Ox= g() in E,(E)" 0=0 on0E.

We set

+ e
Ac -A + (y)Ox.

The resolution of problem (E) requires the study of the linearised problem around
0, which is presented below.

The linearised problem. Here we are interested in finding positive solutions to the
problem

-Az + (y)Oz g’(O)z in E,(EL) Oz 0 on 0F.

It is easy to see that z ex(y), with > 0 on w, is a solution of (EL) if and
only if

(- +() ’(0)),

where #I(B) represents the first eigenvalue of the operator B defined on w with a
Neumann condition on the boundary.
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LEMMA 2.1. Let m e Kt and #l(t) #I(-A + t(y) + m), then the function
t #l(t) satisfies the following:

1. #1 is Lipschitz with coefficient I111,
2. 1 (0) m,
3. 1 is concave,
4. Pl is differentiable and (0)= L 3(y)dy,
5. m+ t(inf 3) 1 (t) m + t(sup 3).

We call A a principal eigenvalue (p.e.) if I(A) A2. An immediate
consequence of the lemma is the following theorem (remember m -g’(0) < 0).

THEOREM 2.2. There exists co such that
c < co there is no positive p.e.
c co there is exactly one positive p.e.
c > co there are exactly two positive p.e.

Notation: we call A the smallest positive principal eigenvalue associated to c > c0
and A0 the positive principal eigenvalue associated to c0. We will also use the notation

A (u for "usual") instead of A, and then A (a for "accidental") will be the other

Solutions of Problem (E).
THEOREM 2.3. There exists c* >_ co such that the problem-+ ((v) + )o () i ,(E) 0 0 ,HOE.

with (-cx, y) 0, (+x, y) 1 uniformly on , has a solution if and only if
c >_ c*. Furthermore the solution is unique (up to the x translations), and increasing
in x, more precisely, Ox > 0 on E.

Notation: we call c the solution associated to c normalised by the condition

supye c(0, y) 1/2. If we now impose (-(x, y) 1, (+(x, y) 0 uniformly on
O, we will have solutions if and only if c <_ c**, for a real c** < c*, this is obvious
by changing x into -x. We call these decreasing solutions. We call /k00 the A0
obtained when considering -a(y) instead of a(y) in the linearised problem.

We end this paragraph by examining the asymptotic behaviour of as Ixl +.
LEMMA 2.4.

If c > c* we have, near-cx, and uniformly in y E ,
(x, ) -_(), 0(x,) _-_();

furthermore, if c* > Co, we have the same at c c*.

Ifcc* we have near +(x, and uniformly in y ,
1 (x, ) -/+(), o(x, ) +-++(),

where e-X_(y) is a positive solution of the linearised problem around 0 (EL) with
/k_ > O, and e-+x+(y) is a positive solution of the linearised problem around 1,
with A+ > O.

In the case c > c*, we can be more precise.
LEMMA 2.5. Let c > c*, then the exponential behaviour of c near-cx is given

by ikc, the smallest principal eigenvalue, i.e.,

(x,)~()ax--,
where c is a positive eigenfunction associated to )c.
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Proof. By the sliding method, as in [7]. Set Co(x, y)
and assume that A_ > A. Then we have

lim

(this follows from Theorem 4.1 in [8]). Moreover,

9(.)- ()

consider the problem

(1{ 0 a+()o ()
Ou O on0E,
u(t O) uo inE,

in E,

where u0 decays faster than any travelling front at one or both ends of the cylinder.
We recall that, in this section, g is assumed to be a KPP source term.

3.1. Decay at only one end.
THEOREM 3.1.

If Uo(x,y) o(e) as x --oc for every A < *, then for each c > c* we
have u(x ct, y, t) 0 when t +cx uniformly on each (-cx, a]
If lim inf__,+ u0 > 0, then for each c < c* we have u(x ct, y, t) - 1 when
t -- +c uniformly on each [a, +oc) &.

If we now consider a u0 that satisfies both conditions of Theorem 3.1, we can

obviously define

(t) sup{x e//; u(x, y, t) <_ 1/2, Vy e w}

for sufficiently large values of t. We then have the next corollary.
COROLLARY 3.2. Under the conditions of Theorem 3.1, (t)/t -- -c* as t --
We first prove the first part of the theorem, which is much easier. Set v(x, y, t)

u(x ct, y, t) so that Otv + dv g(v); assume c > c*. Let c’ e (c*, c) and eX(y)
a positive solution of the linearised problem Otv + A,v gl(0)v, with the Neumann
boundary condition (such a solution exists since c > c*). Using the condition at
we know x0 such that

x < x0 0(x, ) < ()

so, for some large M, no(x, y) < eX(+M)p(y) on E; now just apply the maximum

principle to see that v(x,y,t) < e(x+M-(’-c*)t)9(y) on E, t >_ 0, wich yields the
first assertion of Theorem 3.1.

Before proving the second part of the theorem, we need a lemma.
LEMMA 3.3. Let f be a61 function such that f(0) f(1) 0, f’(0) > 0 >

f’(1), and f > 0 on (0, 1); we suppose that u satisfies Otu + Acu f(u) in E with

-a(. ) + ( + (u))G(. ) + (c* ).
(c- *)0. > 0.

We choose a translate of . (still denoted by .), such that . >_ , and such
that the two functions coincide somewhere. The maximum principle and the Hopf
boundary lemma yield . c, which is a contradiction. []

3. Long-time behaviour with rapidly decreasing initial data. Here we
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Neumann boundary conditions, and lim inft_+ u(x, y, t) >_ 5 > 0 uniformly on each
[a, +oc) &, then u(x, y, t) 1 when t --, +oc uniformly on each [a, +oc)

Proof. There exists a sequence tn --* +oc such that t >_ tn, u(t) >_ h where

5/2 ifx>-n,hn(X’Y)= 0 ifx < -n,

we denote by hn(x, y, t) the solution of

Oth+Ach=f(h) inE,
O,h O on0E,
h(t=O) h inE.

By the maximum principle, we have u(t + tn) >_ hn(t) t >_ O. As n increases, h
increases, and so hn (t) increases too (another consequence of the maximum principle).
Since hn(t)is bounded by 1, we have h(x, y, t) --, h(x, y, t) as n --, +oc. Using
classical parabolic estimates, we get hn - h, Othn --, Otho, Oxh -, Oxh, and
Ahn - Ah, uniformly on each I-a, +a] co [1/T, T]. This shows Oth + Achc
f(h) with the Neumann boundary condition. Meanwhile h(x, y, t O) >_ 5/2 > O.
Obviously, ha(x, y, t) - 1 uniformly on E as t

We conclude that hn(x,y,t) -* I uniformly on each I-a, +a] co as n and t
but with h(t) increasing in x (maximum principle), the convergence is in fact uniform
on each I-a, +oc) cO. By remembering u(t + t) >_ hn(t), Vt >_ 0, we have our
lemma.

Now we prove the second assertion in Theorem 3.1; first, we suppose that g is

concave. Set g 0 outside of [0, 1]. For > 0, consider the following problem, with
unknown (u, c)"

-At + (a(y) + c)Oxu g(u) in E,
(E) Gu 0 on 0E,

u(-oc, y) -e and u(+oc, y) 1.

Setting w (u + e)/(1 + e), we see that (E) is equivalent to

-Aw + (a(y) + c)Ow g(w) in E,
(E)" O,w 0 on 0E,

w(-oc, y) 0 and w(+oc, y) 1,

where we have set g(s) g((1 + e)s e)/(1 + e). Using the concavity of g, we find
that g increases as e decreases. Now, we just do as Berestycki and Nirenberg did
when they proved that the existence of c* (see [8]); this yields that for a given e > 0,
there is exactly one solution (u, c) to problem (E) (defined modulo x translations);
this solution is increasing in x and c increases to c* as e decreases to 0.

Let 6 > 0 such that liminfx__,+ > 5; set g(s) 5g(s/5) for s E/R. Still using
the concavity of g, we get g5 _< g, Y5 E (0, 1]. Consider the problem

-Av + (a(y) + c)Ov g(v) in E,
(E,) Ov 0 on

v(-oc, y) -e and v(+oc, y) 6.

Setting v 5u, we see that problem (E,5) is equivalent to problem (E/5) (defined
above); let us call (v,5, c,5) the solution of problem (E,5); we still have that c,5
increases to c* as e decreases to 0.
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Let c < c*. Let e > 0 such that c < c, < c*; we now consider u the solution of

{ + +
Ovu O on0E,
u(t O) uo inE,

and we set z(x, y, t) ve,6(x + (c,5 c)t, y). We have

-Az + (a(y) + c)Oxz gb(z) <_ g(z) in E,
Ovz O on0E,
z(x, y, t 0) _< u0(x, y) in E up to some x translation,

which implies z(x, y, t) <_ u(x, y, t), Vt >_ 0, V(x, y) E E. This yields lim inft-+o u(x, y, t)
>_ 5 uniformly on each I-a, +oc) x &. An application of Lemma 3.3 ends the proof,
in the case where g is KPP and concave.

The result is still available when g is KPP but not concave: for r/ > 0, set
c* (g’(0) 7) the critical speed obtained when replacing g’(0) by g’(0) r/. Choose
some small r/> 0 such that c < c*(g’(O) 7) < c*; choose g as a KPP and concave
function smaller than g satisfying g(0) g’(0)- r/. Now just replace g by gv in

(E,5)" this provides a subsolution with the same properties as z and completes the
proof of the second part of Theorem 3.1.

3.2. Initial data with compact support.
THEOREM 3.4. We suppose that uo satisfies u0(x,y) o(e

uniformly in y for each A < A* and u0(x, y) o(e-x) as x - +oc, uniformly in y
for each # < A**, then u satisfies uniformly on every compact of E.

1. u(x ct, y, t) 0 when t +oc if c [c**, c*],
2. u(x ct, y, t) --, 1 when t --, +oc if c e (c**, c*).

The first assertion follows directly from Theorem 3.1. As a first step to the
second assertion, we prove the following lemma, which was obtained independently
by Lachand-Robert [14] in a different context.

LEMMA 3.5. There exists c’ < c* such that Vc
C2(, dT) with Re() > 0 in if; which satisfies

+
0= 0 on Ow.

o’ o in w,

Proof. Remember that for A , cwe denote by #1 (-A + A3,) the first eigen-
value of the operator -A + A(a(y) + c*); the eigenspace associated in L2(w) is one-
dimensional. The family of operators -A + A(a(y) + c*) depends analytically on A,
in the sense of Kato (see [16]). From the Kato-Rellich theorem, 3V a neighbourhood
of A* in d7 such that there exists a simple eigenvalue/1 (-A + A3,) continuing #1 on
all V analytically; there also exists a family of eigenfunctions in L2(w), analytic
in A.

Let us study the zeros of F(A) /51 (-A + A3.) + A(c- c*) ,2 g’(0). F
is analytic and converges locally uniformly to F. as c -- c*, A* being a zero of
F, the Rouch theorem yields the existence, in a neighbourhood of c*, of a family
A such that F(A) 0 and A A* as c c*. We then have, for c near c*:
/51(-A + A3.) + A(c- c*) Ac2 g’(0) 0; setting , we get

-A + (A(a(y) + c) A2 g’(0)) 0 in w,
0 0 onOw.
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Notice that c - c* as c --. c*, in L2(w). Writing the equation satisfied by
and using classical elliptic estimates, we get

as c --, c*. Without loss of generality, we can assume that c* is real and positive on

(since the eigenspace associated to A* is generated by a real positive function). We
have that Re() -- c. in L(w), so Re() > 0 for c near c*. Now we need only
prove that for c E/R, with c < c* near enough, it is impossible to have Ac E ; if it
were possible, we could write #1 (-A + (a(y) + c) g’(0)) A2; but c < c* means
that this never happens for A (see the definition of c*). The lemma is proved
with A A and . Cl

Now we prove Theorem 3.4. Let e0 > 0 such that c** < c* -e0. Let c5 the c*
obtained when replacing g’ (0) by g’ (0)- 6, for some 5 > 0, in the principal eigenvalue
problem. It is not difficult to see that c5 increases to c* as 6 decreases to 0. So,
for 5 small enough, c* -e0 < c < c*. We apply the lemma with f(0) -6 instead
of g’(O) and c5 instead of c*. This provides, for c < c5 near c5, (, ) such that

o :=Re(exga(Y)) is a real-valued solution of

-o + (() + )Oo (’(o) )o
0o=0 on0E.

Since Re(p) > 0 in ,and A e (U\, there exist two functions in CI()), xl(y)
and x2(y), such that

Vy e ,, xl(y) < x2(y) and O(Xl(y), y) o(x2(y), y) 0,

V e , Vx e (x(),x.()), o(x, ) > 0.

Set D {(x,y) E;xl(y) < x < x2(y)}. Since g is C1, there exists > 0 such that
Vs e (0, rI), (g’(0)- 5)s < g(s); so, without loss of generality, we can assume that

0 _< r/on D, which implies

-Ao + (a(y) + c)cOxo (g’(0) 5)o <_ g(o) in D.

Now we follow the idea of Aronson and Weinberger in [2].
problem:

Solve the following

Otw-Aw+(a(y)+c)Ow=g(w) inE,
Ow O on0E,
w(t O) o in D, and O inE-D.

Then w(x, y, t) >_ 90(x, y) in D, Vt >_ 0 (apply the maximum principle in D, taking
into account the Neumann condition on OD VI 0E and the Dirichlet condition on
OD gl E). Considering the function re(x, y, t) w(x, y, t + h) w(x, y, t) for h > 0,
we see that m is positive Vt _> 0 (maximum principle again), and so w is increasing
in t. Then there exists a limit function w(x, y) to which w(x, y,t) converges as
t -- +oc. Using classical parabolic estimates and Ascoli theorem, we get the uniform
convergence on every compact subset of , as well as for the derivatives Ow, Otw,
and Aw. This implies

--Awo + (a(y) + c)Ow g(w) in E
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with Neumann boundary conditions.
An argument similar to that of [5], Theorem 1 shows that w has to go to a

constant limit as Ixl - +c, which can only be 0 or 1. But from the theory of
Berestycki and Nirenberg, it follows that w is monotonic; since c E (c**, c*), it must
be 0 or 1 identically, so it is 1 identically. To sum up, we have just constructed
a function with compact support, with arbitrarily small supremum norm, and such
that the solution of the corresponding Cauchy problem goes to 1 uniformly on every
compact subset of E. Applying the maximum principle, we generalize this result to
any u0 having compact support.

Now proceed similarly with u(-x, y, t); we finally get that u(x- ct, y, t) 1 for
some real c E (c**, c*) arbitrarily near c**. The second assertion in Theorem 3.4 is
then proved for reals c (c**, c** + e)t2 (c* -, c*) with any small e > 0. The general
result follows from an application of the maximum principle as in Theorem 4.7; see

NB: For the proof of the second assertion in Theorem 3.4, we needn’t suppose
that g(s)/s decreases.

4. Global stability of waves. In this section, we show that the travelling waves
are stable in some sense, and give criteria for the creation of travelling fronts, as t
grows to infinity.

In order to emphasize the main ideas, we first investigate particular cases, then
generalize. Recall that g is still assumed to be a KPP term.

LEMMA 4.1. Let c :t and (y) a(y) + c. Consider two solutions u and v of.

O z- +  (y)O z g(z)
O,z O on OE.

Also suppose that u(t O) <_ v(t 0), with values in [0, 1] and that there exists

xo :t such that u(x, y, O) v(x, y, 0), Vx <_ xo, Vy w; then

0 <_ v(t -u(t) <_ Ce*[-(c-c*)t] for some real C.

Proof. The left-hand side follows from the maximum principle. For the right-hand
side, we write for some w,

(0 + Ac)(v u) g’(w)(v u) <_ g’(O)(v u)

since v- u >_ 0 and g is a KPP source term; then let then e**(y) be a positive
exponential solution of

+ +
with the Neumann boundary condition on 0E; then h(x,y,t) e*[-(-c*)t]*(y)
satisfies (Or + A g’(O))h 0 with the same boundary condition; we then choose a
constant A such that v(0)- u(0) _< Ah(0); the result then’follows from the maximum
principle.

THEOREM 4.2. Let c > c*, (y) c(y) + c, and consider u(t) the solution of the
problem

0-
(Pc) Ou 0 on

u(t O) uo in E,
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where no, with values in [0, 1], satisfies

no(x, y) Co(x, y) uniformly on Kv when x -- -oc,

then

u(x, y, t) -- Co(x, y) when t +c, uniformly on (-oo, a] aE.

Proof. Let a E/l and e > 0. Set := Let 5 > 0 .such that

I(x,y) (x- 5, y)l < e/2 on E

since (x, y) ecxc(y) as x -oc, with Ac > 0 and > 0 on ,we have

5(x, y) := (x 5, y) e-ch(x, y) when x --
so _uo inf(uo, 5) satisfies _uo _< 5 and _Uo(x,y 5(x,y) Vx _< xo (for some real
xo); we denote by _u the solution of the Cauchy problem with _u(0) _no, and apply
Lemma 4.1, which yields

0 _< u(t) _< Ce*[(x-(-*)].

Similar considerations on to "-sup(no, -5) provide

0 <_ (t)-- _< Ce*[-(-*)t].

Now we just have to apply the maximum principle

5_ CeX*[x-(c-c*)t] <_ u_(t) <_ u(t) <_ ft(t) <_ -5 + CeX*[x-(c-c*)t]

Under an additional hypothesis, we now obtain uniform convergence in the whole
cylinder.

THEORE 4.3. Let c > c*, (y) a(y) + c, and consider u(t) the solution of the
problem

0 ZX + (() + )0 ()
(Pc) Ou 0 on OE,

u(t O) uo in E,

with uo (taking its values in [0, 1]) satisfying. o(x, ) (x, ) ilon i a - -2. lim inf_+ uo > 0 uniformly in w, then

sup [(x, , t) (x, )1 ---’ o s t ---, +o.

We will make use of the following lemma. These kinds of sub- and supersolutions
results have been widely used in one space dimension; see [10] and [21].

LEMMA 4.4. Let c > c* and eo E (0, 1), then s,K > 0 such that (x,y,t)
h(t)(x-m(t), y) satisfies Ot+gc-g() <_ 0 on E, Vt >_ O, with h(t) 1-eoe-st
and re(t) K(1 e-st).

Proof. Let u (0, 1) such that Ve0 (0, 1), T > 0 satisfying

(1- )g(u)- g((1- e)u) <_ -Tu, Vu e [u, 1], W e [0, col
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(such an ul exists as soon as g’(0) > 0 > g’(1)).
Set N[] Ore + Ace g(), and (x, y, t) c(x re(t), y); we compute

N[] seoe-St hsKOx + hg() g(h).

There exists Xo such that Vx Zo, Vy w, (x, y) u, so if x re(t) Xo, we
have hg()- g(h) -Teoe-t and then g[] e-t(s- T)e0; choosing s T,
we have N[] 0; if x m(t) Xo, notice that there exists a constant C > 0 such
that 0/ C, because of the asymptotic behaviour of as x -. Write

N[] seoe-t hsCKe-t + g() g(h),

N[] _< e-St(seo hsCK + C’eo).

Now choose K (s + C’)eo/(1 eo)sC, which yields N[] _< 0 as well.
Here is the proof of Theorem 4.3. In the case where uo(x,y) > 0 in E, the

hypothesis guarantees there exists some h0 E (0, 1) and some Xo E /R, satisfying
hoc(X x0, y) _< u0(x, y) in E. Apply Lemma 4.4 with e0 1 ho. Then (x, y, t)
u(x,y,t), Vt >_ 0; this, together with Theorem 4.2, proves that the convergence is
uniform on E.

If we do not assume u0(x, y) > 0 in E, we still have, by the maximum principle,
that u(x, y, to) > 0 as soon as to > 0. Notice that condition 1 is preserved at all posi-
tive times (use the same arguments as in the proof of Theorem 4.2); condition 2 is in
fact also preserved: just compare uo to some Ca and the increasing function ho(x, y),
which is 0 if x < M and e if x > M+1; solve the corresponding Cauchy problem, which
gives some h(x, y, t) increasing in x, so that obviously lim infx_+ h(x, y, t) > 0, for
each positive t.

Both conditions being preserved,we use the semigroup property and prove Theo-
rem 4.3 in the general case.

Now we give a more powerful version of this result.
THEOREM 4.5. Let c > c*, (y) a(y)+ c, and consider u(t) the solution of the

problem

+ +
(Pc) Ou 0 on

u(t O) uo in E,

in E,

with uo (taking its values in [0, 1]) satisfying
1. no(x, y) a(y)ec uniformly on w as x --, -oc, where a(y) is continuous

and not identically zero;
2. lim inf uo > 0 uniformly on w,

then

3xo e such that sup
(x,y)e

First, let us state a lemma.
LEMMA 4.6. Let u be a solution of (7)), with c > c*; suppose u(x, y, O) satisfies

the first condition in Theorem 4.5. Let (y, t) be the solution of

+
0 0 on
(y, 0) a(y),
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then

u(x, y, t) (y, t)ecx as x --+ -oo, Vt > O, uniformly in w.

Proof. Set u(x, y, t) eXcXv(x, y, t). Notice that v(x, y, t) is bounded on every
[0, T]. To prove it, notice that the hypothesis on u0 implies the existence of a wave

c and a real x0 such that (u0- c)(x, y) < 0 for all x < x0; then apply Lemma 4.1:

u(x, y, t) < (x, y) + Ce*[x-(-*)t] Vt > 0

SO

v(t) < e-Xcx(x,y) + Ce(x’-)-*(c-’)t

since A < A*, this yields an upper bound for v(t) on i- x w, Vt E [0, T], whereas
v(t) is clearly bounded on i+ x w (remember that u < 1).

For E/R, set w(x, y, t) v(x, y, t)- 0(y, t) and write the partial differential
equation satisfied by w:

Lw := Otw Aw + (y)Oxw + (A(y) 2c g’(O))w e-cXg(eZv) g’(0)v,

with g being C2, we can write g(s) g’(O)s+(s2/2)g"(rs), so ILwl <_ Ke-xe2v2,
but we know that v is bounded on each [0, T], therefore

ILwl < K(T)e Vt e [0, T].

Let M be real, and h(x, t) e)cx+Mt; choose T > 0. We have Lh (M + 2(A/(y)-
Ac2) g’(0))h, so for some large enough M > 0, we have

Lh >_ K(T)h- K(T)ec+Mt >_ K(T)e.
If 0 > 1, we have w(x, y, 0) < 0 for x < x(O) (a real depending on 0), and since

w(x, y, 0) is bounded in E, we get w(x, y, O) < Nh(x, 0) for N large enough. The
maximum principle then implies

w(x, y, t) < Nh(x, t) Vt e [0, T],

v(x, y, t) < O(y, t) + NeAx+Mt.

Meanwhile, a(y) being nonnegative and not identically zero, we know that (y, t) >
e(T) > 0 for all t e [1/T,T], so

v(x, y, t) < (0 + N(T)e)(y, t) Vt [1/T, T],

then limsup__(v(x,y,t)/(y,t)) <_ O, uniformly in w [1/T,T]; the same treat-
ment for 0 < 1 provides liminfx__(v(x,y,t)/(y,t)) >_ O, uniformly in w [1/T,T],
which ends the proof of Lemma 4.6.

We keep the notation of Lemma 4.6 for the proof of Theorem 4.5: Consider the
operator T -A + (c(y) 2 g’(0)), with Neumann boundary condition; T
is self-adjoint with 0 as first eigenvalue; then it is classical to see that, in L2(w),
(y, t) (y), as t --, +co, where (y) is the only positive eigenfunction satisfying

fa f 2.
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Once again, we use the classical parabolic estimates to prove that the convergence
happens in L(w).

Let > 0, so there exists to such that t >_ to, (1- )(y) < (y, t) < (1 + )(y).
Let c and the travelling waves, with speed c, satisfying c (1- e)(y)e
and (1 + e)(y)e as x - -c. We apply Theorem 4.3 with initial data
inf{c(x, y); u(x, y, to)} and sup{(x, y); u(x, y, to)}; u(x, y, t) stays between the so-
lutions of the corresponding Catchy problems (maximum principle), but these con-
verge uniformly on to and , respectively. Just notice now that
is arbitrarily small when is. This proves Theorem 4.5.

Keeping the notation of Theorem 4.5, we denote by the only travelling front
such that (x, y) ecc(y) as x -- -c. We have an explicit expression for x0"

x0= Log a-Log 2

Our last result concerns the creation of fronts at both ends of the cylinder.
THEOREM 4.7. Let u(x, y, t) be a solution of (7)); suppose there exist E (0, A*)

and (0, A**) satisfying

to(x, y) a(y)e near eo uniformly in w,
to(x, y) b(y)e- near + eo uniformly in w

for some continuous, nonidentically zero a(y) and b(y); then if we denote by c and c’
the wave speeds associated to and , respectively, with c < c** < c* < c, we have

sup It(x, y, t) inf{c(X + ct, y), (x + c’t, Y)}I --* 0
(,y)e

as t --- +c.
Proof. Using Lemma 4.6, and proceeding as in the proof of Theorem 4.5, we have

that u(x ct, y, t) (x, y), uniformly on each (-c, a] w and u(x c’t, y, t)
,(x, y), uniformly on each [a, +c) w.

Let e > 0; there exist X and X2 such that (x, y) >_ (1 -e), Vx _> X1, Vy w,
and ,(x,y) k (1--e), Vx <_ X2, Vy w. Set D {(x,y,t)/X-ct < x < X2-c’t};
choose some large to satisfying t k to ==a u(X1 ct, y, t) k (X1, y) e k 1 2e and
u(X2 c’t, y, t) >_ c,(X2, y) e k 1 2e. Set g(s) ms(1 2 s) with m small
enough to have g. _< g; we are going to apply the maximum principle on Dg{t k to}:
Let h(t) satisfy h g(h) and h(0) inf{1 2e;infDa{t=to} u(x,y, to)}; now write

(0 + A)(u- h) g(u) g(h) >_ g(u) g(h).

Considering the boundary conditions, this shows that u(t) >_ h(t + to) in DF {t t0}
Therefore, there exists tl such that Vt k tl, u(x, y, t) k 1 3e in D. This ends

the proof of Theorem 4.7.

5. Local stability in weighted spaces. In this section, we adopt another point
of view, based upon the spectral analysis of operator A in a suitable weighted space.
This kind of analysis appeared for the first time in the work of Sattinger [19], with a
KPP source term. This section generalises [19]; furthermore, we show how to improve
very easily the uniform convergence results of the last section in the case of a KPP
source term, when the initial datum has a suitable behaviour as x -, +c. The
general case is more intricate and is presented in the next section.
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5.1. Framework. We linearise problem (Pc) near c by setting u0 c + v0
and u(t) c + v(t), Vt > 0, with c > c* fixed once and for all. We obtain

Otu + Act g(u) # Otv + Acv g(c + v)

Set n Ac- g’(c) and f(v) g(c + v)- g(c)- vg’(c), which leads to the
formulation

Otv+Lv=f(v) inE,
Ov O on0E,
v(0) v0.

Choice of a space. Set/37 =/3 + r (/ denotes the average of/3); for 0
sufficiently close to/3, the following problem

-A- g’(O) + Afl A2 in w,(Ev) 0.o 0 on

admits exactly two positive principal eigenvalues; we denote by r r(]) the smallest
one, and consider an associated eigenfunction , which is positive on w.

Remark 1. r > Ac and r(r) "N Ac as r/z/3.
Let F E C(/iR) such that 0 <_ F < 1, F 0 on (-oo,0] and F 1 on [1,

let

set

wl(x,y) (1 F(x))erXb(y) + F(x + 1) and w(x,y) 1/w(x,y)

x { e c0(z); e c0(r)},

where C0() is the set of all bounded uniformly continuous functions on , which
tend to 0 as [x -+ oo, uniformly on &.

We equip X with the norm [lu]lx [Iwul]oo, so that

M" Z --+ C(),

it + Wit

is an isometric isomorphism between (X, [[.[Ix) and (C(),
Remark 2. Oxc q X This is clear from the behaviour of
Transformation of operator L. To the operator L defined on X, we associate
MLM- defined in C(), in other words Vv E C() smooth, v wL(v/w);

recall that L -A + fl(y)Ox g’(c), therefore we get L

-a + B(x, ).W + C(x, ),

where

B(x, v).W Z()Ox+ .Vv
w

and

c(.,, ) IVwl 0xW
w w2 w
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Thanks to our choice for w, we get that B(x, y) is bounded, and

]" r( r) + g’(0) g’(c) for x < -1,C(x, Y) I -g’(c) for x > 1.

Set 7(x) r(- 7)(1- F(x))- g’(1)F(x + 1); notice that inf, 7 > 0 and that
IV(x, y)--(x)l- 0 as Ixl--, cx, uniformly on &; set

+ B(x,  ).Vv + 7(x)v,

[C(x,

write , + and L S + T with S M-IM and T M-IM; finally, define
the domains

D(L) M-I(D()) {uEXN
LEMMA 5.1. D(L) is dense, in X.

5.2. Spectral properties of L.
LEMMA 5.2. L is sectorial in X, more precisely Sa < O, /o > O, and c [0, )

such that
1. a(L) (the spectrum of L in X) is contained in the cone

Ca, {z e C IArg(z a)l < }.

2. If e a(L) and Re(A) < 70, then is an eigenvalue for L.
The proof is similar to the one given in [17, Thm. 4.1].
THEOREM 5.3. If A is an eigenvalue for L in X, then either 0 or Re(A) > 0.
Proof. It is nearly the proof of Theorem 1 in [6], and in fact much simpler since

there is nothing to prove as x -.
Let u X such that Lu u; differentiating Ac g() yields L(/)x) 0;

with u being in X, we immediately have

u -- 0 when x --, -x;

the only point is to prove the same as x --, +c. Indeed, if we denote by A+ the
exponent which rules the behaviour of at +x, and then if Re(A) _< 0 and A 0,
there exists e > 0 such that lu(x,y)l <_ e-(++)x in E. (See Lemmas 5.1, 5.2, 5.3,
and 5.6 in [6].)

Finally, the maximum principle applied to the functioa Re(e-tu(x,y))/Oc
shows that we have u 0.

PROPOSITION 5.4. L D(L) ---, X is one-to-one.
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Proof. Let u E D(L) such that Lu 0; from [7] and Lemma 2.5, there exist a_,
c+, such that

U

U

Cx (+ as x--. +oo.

Now proceed as in [17], Proposition 3.4: This yields (u/x) =constant. Now since
u is supposed to decay faster than , u 0.

Remark 3. This proves that Lu O, u Co() implies that u is proportional to

5.3. Conclusion: Local stability and exponential convergence.
PROPOSITION 5.5. L is a sectorial operator in X with spectrum a(L) contained

in a cone Ca,a with a > 0 and [0, ).
In particular, Re(a(n)) > a > 0.
This is an obvious consequence of the above paragraph.
THEOREM 5.6. > O, p > O, and M 0 such that, ff Vox p/2M, then

the problem

dv/dt + Lv f(v) Vt > 0
v(O) vo

admits exactly one solution v dCned on (0, +) and satisfying ]]v(t)]x 2Me-t]vo]x.
Proof. Just use Theorem 5.1.1 in [11].
Now we may use the global stability theorems of 4 to get an exponential global

stability result. Assume for simplicity that g is concave.
PROPOSITION 5.7. Let uo be uniformly continuous in E such that uo(x,y)

(x, y)(1 + O(ex)) as x -, for some positive real r, and liminf+ u0 > 0.
Then

lu(t) 110 _< Ke-t,

where K and are two positive real numbers.
Proof. Let w(x, y) be a positive exponential solution of

+ ,Oxw g’(O)w in E,
Ow O on0E,

with close enough to/3 so that

w(x, y)/e(c+r)x --, +oo as x -- -oo.

We have

(--A + 0)( + C) () + vCO + ’(O)C
> () + ’(0)C > ( + C),

for each constant C (here we have used the concavity of g). Symmetrically, we have

(-a + 0)( c) 9() c0 ’(o)c_
g() g’(O)Cw

_
g( Cw).
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We infer from the maximum principle that, for C large enough, the following inequal-
ities hold:

Cw < u(t) < + Cw.

Now we use the global stability theorem and then we are in a position to apply the
local exponential stability theorem. [:]

6. Extensions to non-KPP source terms. We drop here the KPP assump-
tion. The global stability results for the fast waves--i.e., c > c.Nare the same as in
the preceeding sections, but the proofs are more technical and appeal to some ideas
presented in [18]. New stability results are derived when an additional assumption is
made on g.

6.1. Global stability for rapid waves. We want to prove a result similar to
Theorem 4.5; let us recall it.

THEOREM 6.1. Let c > c*, (y) a(y) + c, and consider u(t) the solution of
problem

Otu-Au+(a(y)+c)Oxu=g(u) inE,
(Pc) Ou 0 on

u(t O) uo in E,

with uo (taking its values in [0, 1]) satisfying
1. Uo(x,y) a(y)ecx uniformly on w as x -c, where a(y) is continuous

and not identically zero;
2. lim inf__.+ u0 > 0 uniformly on w, then

Sx0 e such that sup

We need only prove this when a(y) c(y) and no(x, y) (y)ec(1 +O(er)).
To see this, one may proceed as in [18, Lemma 2.3]; this is the way we will follow.

Before we start the proofs, notice that, just as in the proof of Theorem 4.5, we
can obtain an explicit expression for the asymptotic shift x0.

Let F E C() such that 0 <_ F _< 1, F 0 on (-cx,0] and F 1 on [1, +x).
LEMMA 6.2. There exist three positive real M, qo,and s, such that

u(x, y, t) <_ (x + M, y) + qoe-tr(x + M).

Proof. Just as in [18, Lemma 5.1].
Next we need an even sharper control on the decay of the solution u(x, y, t) as

X--+

LEMMA 6.3. Vr > r, 3C > 0 such that, Vt >_ O,

I(x, , t) (x, )1 < c(+’).

Proof. Let 6 and x0 such that
g’(0) < 5;
the equation #(-A +- 2 ) 0 admits solutions; let w(x, y) be a

corresponding exponential solution;
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V(x, y, t) e (-cx, x0] x w x +, we have

t)) <

Set v u- c. The function w is an upper solution for the equation on v. So, for
C large enough, we have Cw >_ u c. The same method works if we look for a
subsolution; just consider - u. [:]

PROPOSITION 6.4. There exist three positive real numbers M, qo,and s, such that

u(x, y, t) >_ (x M, y) qoe-st.

Proof. Let e > 0 such that the ball with radius e and center (in the norm
1 + e-(c+r/2)x), be in the attraction domain of . Choose to > 0 such that Vt >_ to,
limx__+ u(x,y,t) _> 1- e/2. We can construct U_o(x,y satisfying the following
properties:

_to(X, y) Co(x, y)(1 + e2rx/3(1 + 0(1))) for x <_ -M;
lim infx--.+o _u0(x, y) >_ 1 e/2;
sup(,y)e [_u0(x, y) (x, y)].(1 + e-(c+r/2)) _< e.

The solution of the Catchy problem, with initial datum _u0(x- M, y), will converge
exponentially to (x- M, y). Moreover, for large enough M, U_o(X y) <_ to(x, y).

Now we prove Theorem 6.1. Let

-{uoeUC(E);u0/, lim u0 (x, y) >_ 5,

and luo(x, y) (x, Y)I <- Ce()+2r/3)x},
where UC is the set of bounded uniformly continuous functions. Also set

C5, {u0 E X; S(t)uo -. in the weighted norm 1 + e-(+/2)x}.
It is clear from the local stability theorems that C5, is open in Xs,r; in order to prove
that it is also closed, we state the following proposition.

PROPOSITION 6.5. Let Ulo Xs,r. There exists o such that, for every < o,

w20 e II  0-  011x , _<
sup (1 + e-cx/2)[S(t)ulO S(t)u2o[ <_ Ce.

(x,v)e

Proof. Just do as in [18, Prop. 5.3]. The proof involves the construction of
upper and lower solutions, and the use of parabolic Harnack inequlities "up to the
boundary."

COROLLARY 6.6. If Uo Xs,r, then S(t)uo converges towards c.
To end the proof of the theorem, just notice that it is always possible to find

_u0 X, and t0 X,,,, such that

6.2. Stability of the wave with speed c*. Here we suppose that c* > co.
Since the results that are stated can be proved by almost the same methods as in
the above sections, we will only give the main lines of the proofs, leaving it to the
interested reader to check the details.

We first show that the case c* > Co is indeed a possible one, and proceed as in as
Berestycki and Nirenberg in [8]. We multiply by 0 the equality

_/x + +
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and we integrate on E, which yields

+ ()((y) [Ox]2dxdy
E

where G(s) f g(a)dcr; the multiplication by 1 - yields

(c*+ < a >) > - IV12dxdy,
E

(* + supc) >_ Ivl( + supc)dze

G(1) that is to sayso we get (c* + sup c) >_ i-

c*>-wG(l)-supa.
Now remember that c0(g’(0)) --. 0 as g’(0) --. 0; then we just have to choose
small and G(1) large enough.

As for the asymptotic behaviour of c* as x --. -c, we have to take into account
the case when c. decays at the usual rate, and the case when . decays at the
accidental rate.

Case 1. If bc* decreases at the usual rate, all the results for rapid waves are
still available for .. We leave it to the interested reader to check the analogue of
Theorem 6.1 for c..

Case 2. If c. decreases at the accidental rate, we get the same results as in the
"ignition temperature" case: Local stability in weighted spaces with small exponents,
and convergence to travelling waves for initial data that are increasing in x (see [18]).
Namely, the weight functions that are suitable in this case are not sufficient to kill
the translation invariance. Here is the precise result.

THEOREM 6.7. Let u(t) be the solution of

o + (() + ,)o ()
(P. Ou O on

u(t O) uo in E.

Assume moreover that the initial datum uo satisfies
1. to(x, y) O(erx) as x -- -c, with r > 0;
2. lim infx_,+ u0 > 0 uniformly on w.

Then the following is true.
1. If uo has the form to(x, y) . (x, y) + evo(x, y) (with vo decaying as e as

x -oc), then for o > 0 small enough there exists /() E C1(-o, o) and

sup It(x, y, t) (x + ’),(), Y)I O(e-t) as t
(,y)

2. If uo takes its values in (0, 1) is increasing in the x direction then 3xo
and w > 0 such that

I(x, , t) (x + xo, )1 o(-t) as t -- +c.
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Proof. Point 1 may be proved by the same method as in 5 as far as the linear
stability is concerned. Nonlinear stability results are then proved in weighted spaces
with exponents < Aac. therefore one must go through all the steps of the proof of
Theorem 1 in [17].

Let us now give the main lines of the proof of 2. Let Xr,5 and Cr,5 be defined as
in the above subsection; we want to prove that Cr,5 is closed in X,5. One way to do
it is as follows.

1. Prove an inequality of the type

c. (x M, y) qe-t <_ u(x, y, t) <_ . (x + M, y) + q2e-t.

This may be done as in Proposition 6.4.
2. Prove a uniform estimate as in Proposition 6.5.
Remark 4. This method yields an extension to the second author’s Theorem 1.2

in [18] to initial data having an arbitrary exponential decay as x -c.
Remark 5. The assumption c. > co is less artificial than it seems to be. Indeed,

in combustion theory, in the framework of large activation energies, the so-called ZFK
source term satisfies this assumption; see [4]. As such, the corresponding model should
share many features with the "ignition temperature" model, investigated in [18]. This
is exactly what we have just proved.
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remarks.

REFERENCES

[1] S. AGMON, A. DOUGLIS, AND L. NIRENBERG, Estimates near the boundary .for solutions
of elliptic partial differential equations satisfying general boundary conditions, Comm.
Pure Appl. Math., 16 (1959), pp. 623-727; 17 (1964), pp. 35-92.

[2] D. G. ARONSON AND H. F. WEINBERGER Nonlinear diffusion in population genetics, com-
bustion and nerve propagation, in Partial Differential Equations and Related Topics,
Lecture Notes in Math. 446, Springer-Verlag, New York, 1975, pp. 5-49.

[3] , Multidimensional diffusion arising in population genetics, Adv. Math., 30 (1978),
pp. 33-58.

[4] g. BERESTYCKI AND B. LARROUTUROU, Quelques aspects mathematiques de la propagation
des flammes prdmdlangdes, in Nonlinear Partial Differential Equations and Their Ap-
plications, Collge de France Seminar, 10, Brezis and Lions, eds., Pitman-Longman,
Harlow, UK, 1990.

[5] g. BERESTYCKI, B. LARROUTUROU, AND P. L. LIONS, Multidimensional travelling wave so-lutions of a flame propagation model, Arch. Rational Mech. Anal., 111 (1990), pp 33-49.
[6] H. BERESTYCKI, B. LARROUTUROU, J. M. ROQUEJOFFRE, Stability of travelling fronts in a

model for flame propagation, part 1: linear stability, Arch. Rational Mech. Anal., 117
(1992), pp. 97-117.

[7] H. BERESTYCKI AND L. NIRENBERG, Some qualitative properties of solutions of semilinear
equations in cylindrical domains, in Analysis et Cetera, Rabinowitz and Zehnder, eds.,
Academic Press, New York, 1990, pp. 115-164.

[8] Travelling fronts in cylinders, to appear.
[9] A. FRIEDMAN, Partial differential equations of parabolic type, Prentice-HM1, Englewood

Cliffs, NJ, 1964.
[10] P. S. HAGAN, Travelling wave and multiple travelling wave solutions of parabolic equations,

SIAM J. Math. Anal, 13 (1992), pp. 717-738.



20 JEAN-FRAN(OIS MALLORDY AND JEAN-MICHEL ROQUEJOFFRE

[11] D. HENRY, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Math.,
Springer-Verlag, New York, 1981.

[12] K. KIRCHG)SSNER, On the nonlinear dynamics of travelling fronts, J. Differential Equations,
to appear.

[13] A. N. KOLMOGOROV, I. G. PETROVSKII, AND N. S. PISKUNOV, A study of the equation
of diffusion with increase in the quantity of matter and its application to a biological
problem, Bjul. Moskovskogo Gos. Univ., 17 (1937), pp. 1-26.

[14] T. LACHAND-ROBERT, to appear.
[15] A. PAZY, Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer-Verlag, New York, 1983.
[16] M. REED AND B. SIMON, Methods of Modern Mathematical Physics, Academic Press, New

York, 1972-1979.
[17] J. M. ROQUEJOFFRE, Stability of travelling fronts in a model for flame propagation, part 2:

nonlinear stability, Arch. Rational Mech. Anal., 117 (1992), pp. 119-153.
[18] , Convergence to travelling waves for solutions of a class of semilinear parabolic equa-

tions, CMAP internal report 236; J. Differential Equations, to appear.
[19] D. H. SATTINGER, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22

[20] n. B. STEWART, Generation of analytic semigroups by strongly elliptic operators under gen-
eral boundary conditions, Trans. Amer. Math. Soc., 259 (1980), pp. 299-310.

[21] K. UCHIYAMA, The behavior of solutions of some nonlinear diffusion equations for large
time, J. Math. Kyoto Univ., 18-3 (1978), pp. 453-508.



SIAM J. MATH. ANAL.
Vol. 26, No. 1, pp. 21-34, January 1995

() 1995 Society for Industrial and Applied Mathematics
OO2

SLOW MOTION IN ONE-DIMENSIONAL CAHN-MORRAL
SYSTEMS*
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Abstract. In this paper one-dimensional Cahn-Morral systems, which are the multicomponent
analogues of the Cahn-Hilliard model for phase separation and coarsening in binary mixtures, are
studied. In particular, there is an examination of solutions that start with initial data close to the
preferred phases except at finitely many transition points where the data has sharp transition layers,
and it is shown that such solutions may evolve exponentially slowly, i.e., if e is the interaction length
then there exists a constant C such that in exp(C/e) units of time the change in such a solution
is o(1). This corresponds to extremely slow coarsening of a multicomponent mixture after it has
undergone fine-grained decomposition.

Key words. Cahn-Hilliard equation, phase separation, transition layers, metastability
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1. Introduction. One of the leading continuum models for the dynamics of
phase separation and coarsening in a binary mixture is the Cahn-Hilliard equation,
which in the one-dimensional case can be written as

(1.1) ut (-2Uxx + W’(u))xx, x e (0, 1),
ux uxxx 0, x E {0, 1}.

Here W represents the bulk free energy density as a function of the concentration
u of one of the two components of the mixture. (If, as is typically assumed, the
total concentration of the mixture is a constant then the concentration of the second
is determined by the concentration of the first.) The parameter represents an
interaction length and is assumed to be a small positive constant. This equation
was derived in [8] based on the free energy functional of van der Waals [29]

(1.2) $[u]-_- W(u) + -lul2 dx.

We will usually work with the scaled energy E[u] =_ e-l$[u]. Also, we will write

Ee[u; a, b] when the integral is over the interval [a, b] instead of [0, 1].
In the early 1970s, Cahn and Morral [24] and DeFontaine [13], [14] initiated the

study of systems of partial differential equations that model the phase separation of
mixtures of three or more components in essentially the same way that the Cahn-
Hilliard equation models the separation of binary mixtures. (See Eyre [20] for a
comprehensive survey of these systems.) If the domain is again taken to be [0, 1],
then, after a change of variables, such systems can be written in the form

(1.3) ut (-2ux + DW(u)), x e (0, 1),
u uxz 0, x {0, 1},

where u is now an n-vector (for a mixture with n + 1 components), and W maps
(W) C R into R. Again, $ defined by (1.2) represents the total free energy
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the mixture, and it is easy to check that it provides a Lyapunov functional for (1.3).
Note, also, that the mass f u dx of a solution is conserved.

We will make the following assumptions on W.
D(W) is open, convex, and connected;
W _> 0 throughout its domain, and W has only finitely many zeros, call

them {Zl, z2,..., Zm}, (corresponding to the preferred homogeneous staies, or phases,
of the system);

W is Ca on D(W) and has a continuous extension to its closure D(W);
the Hessian D2W is positive definite at each zero of W, and W is bounded

away from 0 outside of each neighborhood of these points.
Additionally, we need to require that W increases as the boundary OD(W) of the

domain is approached. The precise assumption we shall make is the following:
For each point in OD(W), there is a closed, convex set S c D(W) \ such

that we have the following.
1. W is nonzero on f, the connected component of D(W) \ S containing ;
2. the function that maps each point of Rn to its nearest point in S satisfies

W((u)) <_ W(u) for all u ft.
This assumption is trivially satisfied when D(W) R. It also holds whenever

W is C on D(W), OD(W) is a locally compact, oriented hypersurface of class C2, and
the (exterior) normal derivative of W is positive. (See, e.g., [21].) However, we state
the assumption in this general way because some of the most important examples
of D(W) do not have smooth boundaries. For example, Eyre [20] and Elliott and
Luekhaus [18] study situations where D(W) is a convex polytope and W satisfies the
assumptions given above.

Note that any constant is an equilibrium solution to (1.3). A linear analysis of the
equation about an unstable constant equilibrium suggests that typical solutions that
start near such a constant undergo fine-grained decomposition with a characteristic
length scale that is O(e). (See [22] for a precise mathematical formulation and rigorous
verification of this heuristic concept in the two-component ease.) This fine-grained
decomposition of initially homogeneous mixtures has also been frequently observed in
physical experiments [7], [9]. In this paper we investigate the way solutions evolve after
this initial stage of decomposition. We, therefore, confine our attention to solutions
to (1.3) with initial data u(x, O) Uo(X) close to the zeros of W through most of the
domain, with sharp transition layers, or interfaces, separating the intervals where u
is nearly constant.

Consider when n 1 (i.e., the original Cahn-Hilliard equation (1.1)), the case for
which the most work has been done. Carr, Gurtin, and Slemrod [10] showed that all
of the local minimizers of Es with any specified mass are monotone, so, in general, we
would expect that the fine-grained structure of u would coarsen as t oe. Numerical
work by Elliott and French [17] indicates that this evolution occurs very slowly. (Such
slowly evolving states are sometimes said to be dynamically metastable.) Bronsard and
Hilhorst [5] have shown that, in a certain space, this evolution occurs at a rate that
is O(ek) for any power k. Using completely different techniques, Alikakos, Bates, and
Fusco [1] constructed a portion of the unstable manifold of a two-layer equilibrium that
intersects a small neighborhood of a monotone equilibrium and showed that the speed
of the flow along this connecting orbit, measured in the H-1 norm, is O(exp(-C/e))
for some constant C. Recently, Bates and Xun [4] have found exponentially slow
motion for the multilayer states of (1.1) by combining the methods of [1] with those
used by Carr and Pego [11] to study reaction-diffusion equations.
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The results that we present here are similar to those of Bates and Xun in that
we also obtain exponentially slow motion, but the methods we use are much simpler,
and they are valid not only for the two-component Cahn-Hilliard equation (1.1) but
for the multicomponent Cahn-Morral system (1.3), as well. It should be mentioned,
however, that our results for the two-component two-layer case are weaker than those
of Alikakos, Bates, and Fusco, in the sense that we do not explicitly construct het-
eroclinic orbits. We deal only with the speed of motion and say nothing about the
geometric structure of the attractor.

In this paper, we apply the elementary yet powerful approach introduced by
Bronsard and Kohn [6] in their study of slow motion for reaction-diffusion equations.
The improvement from superpolynomial to exponential speed is made possible by
incorporating some ideas of Alikakos and McKinney [2] about the profile of constrained
minimizers of (1.2). Use is also made of techniques of Sternberg [27] for describing
the nature of globally stable steady-state solutions of (1.3) in the limit as e -+ 0.

In 2 we present a lower bound on the energy of any function that is sufficiently
close to a given simple function whose range is a subset of W-l({0}). This result
amounts to an error estimate for a convergence result of Baldo [3]. In 3 we show
how this estimate yields our main result on slow evolution of solutions with transition
layers. As in [6], the only information used about the time-dependent partial differ-
ential equation is the time rate of change of the energy along a solution path in phase
space. Finally, in 4 we consider what the main result implies about the motion of
the transition layers themselves.

The questions of existence and regularity of solutions for (1.1) and (1.3) have
been extensively studied, and different authors have obtained various conditions on
W that ensure global existence of solutions [15], [16], [18]-[20], [25], [26], [28], [30].
Rather than restricting ourselves to one particular set of such conditions, we shall
simply assume that W is such that for sufficiently smooth initial data with range in
(W) there exists a global solution that is in C(R+; H2(0, 1))Cl L2 (O, T; H4 (O, 1)).
Given that global solutions exist, our goal is to provide some information about how
some of them evolve.

2. Error estimates. Fix v: [0, 1] --+ w-l({0}) having (exactly) N jumps lo-
cated at {Xl,X2,... ,XN} C (0, 1). Fix r so small that B(xk, r) C [0, 1] for each k,
and

B(x , r) B(xe, 0

whenever k - g. (Here and below, B(x, r) represents the open ball of radius r centered
at x in the relevant space.) Let ,j be the minimum of the eigenvalues of D2W(zj),
and let

A min{Ay zy e w-x({0})}.
For any function z on [0, 1] we write 5(x) =_ f z(s)ds. We are interested in

solutions corresponding to initial data u(x, O) to(x) such that 0 is close to in
the L norm. To the discontinuous function v we assign an asymptotic energy

N

E0[v] E (v(xk r), v(xk + r)),
k--1

where

(1, 2)de____f inf {J[z]’z e AC([O, 1I;TP(W)),z(O)- 1, z(1)= 2},
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and

/oJ[z] de___f v/W(z(8))Iz’(8)[ ds.

It is easy to check that is a metric on the domain of W. Also, note that Young’s
inequality and a change of variable imply that

E[z; a, b] >_ (z(a), z(b)).

LEMMA 2.1. Let C be any’positive constant less than rx/. Then there are
constants C1, > 0 (depending only on W, v and C) such that, for e sufficiently
small,

I(x) (x)l == Ee[?] E0[v] C1 exp(-C/e).dx

Proof. Let K be a compact set in the domain of W containing W-l({0}) in its
interior, and set sup{llD3W(C)ll C K}. Choose / > 0 and D1 SO small that
C <_ (r- )v/2A np and that B(zj,p) is contained in K for each zj E W-I({0}).
Choose p2 so small that

inf {(,2) zj E W-I({0}),I B(zj,pl),2 B(zj,P2)}
> sup {(Zj,2)’Zj e w-l({0}),2 e B(zj,p2)},

and Izj ze > 2p2 if zj and ze are different zeros of W.
Let

F(p2) inf{(l, 2) :zjl, zj. e w-l({0}), zjl 7 zj2

(2.1) 1 e B(zjl,P2 ), 1(42 zj2) (zj. zj)l <_ p2lzj zjl}.

By our assumptions about W, F(p2) > 0, so there exists M N such that MF(p2) >
Eo[v]. Pick such an M, and set 5 2p2/(5M2).

Now assume that f I(x)- (x)ldx <_ 5, and let us focus our attention on

B(xk, r), a neighborhood of one of the transition points of v. For convenience, let

v+ v(xk + r) and v_ v(xk- r). Suppose lu- v >_ p2 throughout (xk,xk + ),
and let IM be an open subinterval of (xk, xk + /) of width /M. If we assume without
loss of generality that E[u] <_ Eo[v] then for e sufficiently small there must be some
& e IM such that u(&) e B(zj,, P2) for some zj e w-l({0}). (Otherwise the rescaled
bulk free energy would be too high.) If

zjl v+(" Iz ,
>

throughout IM then it is not hard to check that we would have

//Ig(x) (x)l dx >_ (g(x) (x))
l.zjM M

which is a contradiction. Hence,

dx > 5,

zj v+
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somewhere on IM. But then the rescaled energy on IM must be no less than F(p2).
Partitioning (xk, xk +) into M equal intervals of width /M and using the preceding
result, we have E[u; xk, xk + ] >_ ME(p2) > E0[v], contrary to assumption. Hence,
there is some r+ E (0, ) such that

I(x + /) v/l < p2.

Similarly, there is some r_ E (0, ) such that

Next, consider the unique minimizer z [xk + r+, Xk + r] --. an of the functional
E[z; xk + r+, Xk + r] subject to the boundary condition

z( + +) (x + +).

If the range of z is not contained in B(v+, Pl) then

E[z;x + r+,x + r] >_ inf{(z(xk + r+), ) B(v+,pl)}
(.) > (z(x + +), +),

by the choice of/)2 and the choice of r+.
Suppose, on the other hand, that the range of z is contained in B(v+, Pl). Then

the Euler-Lagrange equation for z is

z"(x) e-2DW(z(x)), x e (xk + r+,xk + r),
(.) z(x) (x + +), x x + +,

z’(x) 0, x x + r.

If we define (x) -Iz(x) v+l 2 then ’ 2(z v+). z’ and

2
(z v+). DW(z)(2.4) "- 2(Iz’l 2 + (z v+). z") _> -Now Taylor’s theorem and the choice of pl imply that

(2.5) DW(z) D2W(v+)(z v+) + R,

where JR[ <_ ne;Iz- v+l/2. Substituting (2.5)into (2.4) gives

I /1
2
(z- v+). D2W(v+)(z v+) -"> -2A 2> lz- v+l

> lz v+

#2

where # C/(r ).
Thus, satisfies

"(x)- (,/)(x) > o,
(x) (x + +) v+ ]:,

’(x) 0,

ntpl ]z V+l 2

2

x (x + r+, x + r),
X =Xk+r+,
X--Xk+r.
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Following Alikakos and McKinney [2], we compare to the solution of

"(x) (l)(x) o, x e (x + +,x + 1,
(x) I(x + +1 v+l, x x + +,

’(x) 0, x x + ,
which can be explicitly calculated to be

(x) lu(x + +) v+
cosh [(#le)(r r+)]

cos, [g(x-ix, +r>>].
By the maximum principle, (x) _< (x), so, in particular,

(x + r) <

Consequently,

(.6)

lu(x + r+ v+ le
cosh [(#/e)(r r+)] <- 2p2 exp

Iz(x + ) v+l < p2v/exp(-Cl(2e)).

Because W is quadratic at v+, (2.6) implies that, for some constant C1,

E[z; + +,x + ] > (z(x + +),z(x + r))
> (z(x + +), +) (+, z(x + ))
>_ (z(xk + r+), v+) (Cl/(2N)) exp(-C/e).

Combining (2.2) and (2.7), we see that the constrained minimizer of the proposed
variational problem satisfies

Ee[z;xk + r+,xk + r] >_ (Z(Xk + r+),v+) (C/(2N))exp(-C/e).

But the restriction of u to [xk +r+,Xk +r] is an admissable function, so it must satisfy
the same estimate

Ee[u;xk + r+,Xk + r] >_ (U(Xk + r+),v+) (C/(2N))exp(-C/e).

A similar estimate holds for the energy of u on the interval [xk r, xk r_]. Hence,

E[; x , + ] E[;x ,x _] + E[; _,x + +]
+ E [u; x + r+, x + r]

_> (v_, u(xk r_)) (Cll(2N)) exp(-C/s)
+ ((x _), (x + +))
+ (u(xk + r+), v+) (C1/(2N))exp(-C/e)

>_ c/)(v(xk r), V(Xk + r)) (C1/N)exp(-C/).

Assembling all of our estimates,

N

Ee[u] >_ E E[u; xk r, xk + r] >_ E0[v]- C1 exp(-C/),
k--1

as was claimed.
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3. Slow evolution. In this section we will consider a family of solutions ue (x, t)
to (1.3), parametrized by the corresponding interaction length s.

LEMMA 3.1. Suppose that C < rx/ and the initial data u satisfies

I) (x) (x)l dx <
-2

and

for some function g and for all small, where 5 is as in Lemma 2.1. Then

{ }lim sup I (x, t) t) (x) dx O.
e---O O<_t<_min{g(e),exp(C/e) }

Proof. First note that the scaled total energy E[ue(.,t)] of the solution of a
Cahn-MorrM system is nonincreasing in t, since

d
Ee[ue(" t)] g-1 [DW(ue) u + 2u ut dx

dt

/oo [(DW(ue) 2 e).] x-- Igl

Integrating this equation over t (0, T) gives

TI(a. [gl- [(., rll - 1 eet.

Next, sume that satisfies the conditions of the lemma and that T is small
enough that

Then

T oo t[ dx dt <_ /2

It}(X) (x,T)l <_ /2,dx

so by the triangle inequality,

0011te(x,T)
(x)l dx <_

Applying, Lemma 2.1 to (.,T) gives E[u(.,T)] E0[v] C exp(-C/). In com-
bination with (3.2), this yields

T ,, dx dt (E[u] E[u(.,T)])

(3.3) Ce + exp(-C/e)
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assuming, without loss of generality, that C1 >_ 1.
Using HSlder’s inequality and (3.3) we have

Hence,

+ exp(-C/e)

(3.4) T _> g- + exp(

Now suppos that

jo I1 dx dt >_ 12.

Then we can choose T such that foT f Itl dx dt= 5/2. For this choice of T, equation
(3.4) yields

T> >
4Cle [-) + exp(-C/e)] 8C1

min {g(), exp(C/a)}.

Then (3.3) implies that

52 min{g(s)’exp(C/e)}/(8Cle)

00 I12 dx dt

_
g- + exp(-C/e)

If, on the other hand, f fo Itl dxdt < 5/2, then (3.3) must hold for every T;
therefore, (3.5) is also true for this case.

Using HSlder’s inequality and (3.5) we see that for < 52/(8C)

sup It (x, t) t(x)l dx
O<t<min{g(),exp(C/)

jmin{g(e)’exp(C/e) jol It dx dt

min{g(),exp(C/s)}l )1/2min {g(e), exp(C/) } ]2 dx dt

1])1/2
min {g(e), exp(C/e)} Cle + exp(-C/e)

Letting e -- 0 we get (3.1).
The strength of estimate (3.1) in Lemma 3.1 depends on the efficiency of the tram

sition layers in the initial data. In Theorem 3.3 below, we show that, in a neighborhood
of the step function v, there exist initial data that smooth out the discontinuities of
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v in an efficient enough manner that the corresponding solutions of (1.3) evolve in an
exponentially slow way. Before we present this theorem, we shall state and prove a
technical lemma about the existence and regularity of minimizing geodesics for the
degenerate Riemannian metric .

LEMMA 3.2. (1) For any two zeros zi and zj ofT, there is a Lipschitz continuous
path from z to z, pararnetrized by a multiple of Euclidean arclength, that realizes
the distance (z, z); i.e., (z,z)= J[’)/j].

(2) There exists a positive constant C2 such that I/ij(y) z > C2y for y suffi-
ciently small, and I’j (Y) zjl > C2(1 y) for y sufficiently near 1.

Proof. Recall that outside of a neighborhood of its zeros W is bounded away from
0; therefore, it is possible to find a bounded set B C 79(W) such that if -(0) z,
-y(1) z, and J[] <_ (zi, zj) + 1 then the image of 3’ is contained in B. Extend W
continuously to B, and consider the problem of minimizing J[’] over all satisfying
these boundary conditions and having images contained in B. Now, J[7] is a para-
metric integral, and it is known that this new minimization problem has an AC global
minimizer 3’ij [12]. The parameter of this minimizer can be chosen to be proportional
to arclength, and then /ij will be Lipschitz continuous.

We claim that -i([0, 1]) is contained in 79(W). Suppose it is not. Then there
exists some y E (0, 1) such that ")/ij(y) OZ)(W). By the assumptions on W, there
is a closed, convex set S c 79(W) \ /j(y) such that W is nonzero on the connected
component [2 of 79(W) \ S containing 3’y (Y), and the function that maps each point
of Rn to its nearest point in S satisfies W(q(u)) <_ W(u) for all u in ft. Consider the
modified path 9j from z to zj defined by

q(/ij (Y)) if "7 (Y) e f,
"iy(Y) otherwise.

Note that q is Lipschitz continuous with Lipschitz constant 1. Because of this and
the fact that S separates Ft from the rest of 79(W), ij is Lipschitz continuous. It is
also easy to check that J[/j] < J[/j]. This contradicts the optimality of 3’j; hence,
the claim holds. This verifies that (z, zj) J[’j].

We now prove the estimate on 7ij near z; the estimate near zy can be derived
v defined bysimilarly. Again, we consider a modification of "j, this time the path

, { + if0<_y_<,
otherwise.

The optimality of ij implies that

v

V/ I/j(ri) zil ds.

Because D2W(zi) is positive definite, there are positive constants M1 and M2 such
that

MllU- zil <_ 4W(u) <_ [2[u- zi[

in a small neighborhood of z. Using this in (3.6), we find that

lTij(s) zl ds
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for some constant M3. Applying a variant of Gronwall’s inequality [23] we obtain the
desired estimate.

THEOREM 3.3. Given > O, there exist constants C, > 0 and a family of initial
conditions {u) 0 <_ <_ } of (1.3) satisfying homogeneous Neumann boundary
conditions and the estimate

-2

such that the corresponding solutions u of (1.3) satisfy

lim sup Is (z, t) (x)l dz O.
e---o o_<t_<exp(C/s)

Proof. Lemma 3.2 shows that to each discontinuity xk of v there corresponds
an optimal path connecting V(Xk- r) to V(Xk + r). Note that it suffices to prove
the present theorem under the assumption that none of these optimal paths passes
through any zero of W (except at the endpoints of the path), since if the assumption
is not satisfied then v can be perturbed slightly to create a new step function that
does satisfy the assumption.

Given e, set u v outside of t2=1B(xk, r). For fixed Xk, we shall again use the
notation v+/- for V(Xk +/- r) and will show that for e sufficiently small we can define u
inside B(xk, r) in such a way that u is very close to v (in the L sense) on B(x, r),
E[u;xk- r, xk + r] <_ (v_,v+)+ C3exp(-C/e) for some C and C3, and u is
continuous at the endpoints of B(xk, r). By taking C slightly smaller and applying
Lemma 3.1, the proof of the theorem will then be complete.

Let - [0, 1] -- Rn be an optimal path from v_ to v+ as described in Lemma 3.2.
Let a be the Euclidean arclength of 7. Let y R [0, 1] be the solution of

(3.7) --=adY-1 v/2W(.(y()))
satisfying y(0) 1/2. (Since v/ and - are Lipschitz continuous, a unique C
solution is guaranteed to exist.) Note that lim__. y() 1 and lim__._o y() 0.
Define u inside B(xk, r) by

v_ + (’)’ (y (1 r/e)) v_)(x xk + r)/e,

+ 7

xk r X xk r + e

x-r+s <_ x <_ x +r-,

Xk +r--e < x < xk +r.

It is easy to see that u is continuous and, for e sufficiently small, will satisfy the
L requirement; therefore, we only need to check the energy requirement. Note that
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Now, using (3.7) and the definition of 9’ we have

(3.9)

Next, we estimate I1 (letting C3 represent a constant whose value may change
from line to line)"

(3.10)

Zl=/-’+(-w 7 (Y (1 r/e)) v_
+v_

1J3’ (y (1--r))-v_] 2

<-C3]o/(Y(I-)) -v-I2

_<C3(y(1-r-)) 2.

(x + r)) dx

Now, Lemma 3.2 implies that there exists a constant C > 0 such that, for ( << 0,

(3.11)

’() o- v/W((()))
C> .c Iz(()) -I
C> --(()).
2r

Applying a simple comparison argument to (3.11) yields

y() _< C3exp r
for << O. Substituting this into (3.10) we have

(3.12) I _< C3 exp(-C/s).

Similarly,

(3.13) h <_ Ca exp(-C/e).

By substituting (3.9), (3.12), and (3.13) into (3.8), we see that u satisfies the
energy requirement, so we are done.

Remark. For the standard two-component case with W having two minima, the
maximum principle can be used more directly in the proof of Lemma 2.1 (see [2])
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and an explicit value of C can be obtained in Theorem 3.3. This C agrees with that
obtained in [1] and [4].

Remark. The initial data u just constructed are in WI’(0, 1). Since E is
continuous on this space and elements of this space can be approximated arbitrarily
closely by Cp functions (for arbitrarily large p), the initial data in Theorem 3.3 can
be assumed to be arbitrarily smooth.

4. Motion of transition layers. From Theorem 3.3, which establishes slow
evolution in a certain abstract space, it is natural to infer that the movement of the
transition layers themselves is extremely slow. This concept can be made precise in a
number of ways, one of which we present here.

Fix some closed subset K of D(W) \ VV-I({0}), and define the interface I[u] of a
function u by

def

This terminology is natural, since the set K is bounded away from the phases of
W, where the bulk energy is low. By analyzing how rapidly I[u] changes, we obtain
information on how fast the transition layers move.

Let d(A, B) denote the Hausdorff distance between the sets A and B, i.e.,

d(A, B) max {sup d(a, B), sup d(b, A) }beB

We shall show that d(I[u( ., t)], I[u]) grows very slowly in t.
THEOREM 4.1. Fix > 0 and > O. Then there exist constants C, > 0 and a

family of initial conditions {u 0

_
<_ g} of (1.3) satisfying homogeneous geumann

boundary conditions and the estimate

It(X) )(X)l dx

such that the time T(/) necessary for d(I[u(., T(/))], I[u]) to exceed satisfies

(4.1) T() >_ exp(C/).

Proof. Assume, without loss of generality, that _< r.
that

Choose t small enough

inf {(1,2) zj e w-l({0}),l e K,2 e

> 4N sup {(zj, 2)" zj w-l({0}), 2 e B(zj, )}.
Choose M N so large that.MF(t) > Eo[v], where F is defined as in (2.1).

We claim that there exists eo > 0 such that for all e _< eo and for all functions
z’[0, 1] Rn satisfying

(4.2) 15(x) (x)[ dx <
17M2

and

(4.3) Ee[z] <_ Eo[v] + 2Nsup{(zj,2)’zj e W-l({0}), (2 e B(zj,fi)}
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we have

d (I[z] {Xk}N )k=l "Verification of claim. Note first that if e is sufficiently small then for each k there
exist

x_ (x e/2, x)

and

Xk+ E (Xk+,Xk + /2)

such that Iz(xk+/-) v(xk+)l < t. This follows as in the proof of Lemma 2.1. Now,
suppose the claim is violated. Then, reasoning as before,

N

E [z] >_ [z;
k:l

+ inf {(/)(1, 2) zj

E0[v] 2N sup {(zi, 2)" zy e W-({0}), 2 e B(zy, )}
+ inf {(1, 2)" zi e W-({0}), ( K, 2 e B(zy, )}

> E0[v] + 2Ysup {(zy, <2) z] e W-({0}), <2 e B(z/,)}

which is a contradiction. Thus, the claim is true.
Apply Theorem 3.3 with min{, +2/(17M2) to obtain a parametrized set of

initial conditions {u" 0 g}. Note that z u satisfies (4.2) and, by the con-
struction in the proof of Theorem 3.3, satisfies (4.3) for sufficiently small. Applying
the claim we get

for e suciently small. By Theorem a.g, the triangle inequality, and the fact that
E[(.,t)] is decreasing in t, we see that there is a constant
sumciently small, z (., T) satisfies (4.2) and (4.a) if T exp(C/e). Thus, for all
such T we also have

d (I[ue( T)] {xk}N )
By the triangle inequality we get

d (I[u], I[u

This means that (4.1) must hold.
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also like to thank the referees for their helpful suggestions.
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ON A SYSTEM OF INTEGRODIFFERENCE EQUATIONS
MODELLING THE PROPAGATION OF GENES*

HWEI-TING LINt
Abstract. The author considers the gene spread of a certain diploid plant, one of whose gene

loci has two alleles. A mathematical model is formulated as a system of integrodifference equations
[N(n+l), u(n+l)] Q[N(n), u(n)], where Q is a system of nonlinear convolution integral operators.
The dynamics of Q in the heterozygote intermediate case is considered in a one-dimensional habitat.
When the initial disadvantageous gene is present only in a finite region of the habitat, the dynamics
of Q tends to a constant equilibrium dominated by the advantageous gene. Under certain conditions,
the system has traveling wave solutions with speed not less than a minimal wave speed. The method
of the Laplace transform is used to determine the minimal wave speed explicitly. The Contraction
Mapping Theorem is applied to prove the existence and the uniqueness of the traveling waves.
Moreover, it is proved that the minimal wave speed is the asymptotic speed of propagation of the
advantageous gene, and the dynamics of the model approaches the traveling waves from suitable
initial generations.

Key words, traveling waves, asymptotic stability, integrodifference equations, gene spread

AMS subject classifications. 45G10, 92A12, 92A15

1. Introduction. We study a discrete dynamical system that models the prop-
agation of mutant genes. This model was proposed in a project by Kareiva et al. [6].
They consider a certain diploid plant, one of whose gene loci has two allelic types:
A and a. The pollen disperses throughout the habitat according to some probabil-
ity distribution function P. Then the pollen randomly mates with female gametes.
The seeds thus formed disperse throughout the habitat according to some probability
distribution function . The seeds then settle down in the habitat to germinate and
grow into adult plants. The new generation of the adult plants starts another cycle
of the spread of alleles A and a. See the following flowchart of this model. We copy
this flowchart from Kareiva’s project [6].

female
gametes

adult
plants

pollen dispersion

random
mating

germination
and growth

seeds
formed

seeds
dispersion

The complete cycle of the gene spread.

We consider the spread of genes in a one-dimensional habitat. Let ul(x) and
vl (x) denote, respectively, the local densities of female gametes of types a and A in a

certain generation. We assume the local densities of pollen of types a and A are given

Received by the editors September 14, 1992; accepted for publication (in revised form) May 20,
1993.
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by kUl and kvl, where k is a constant. The pollen disperses according to a dispersion
probability distribution P(x). Thus the pollen has the densities kul 7) and kVl 7)
after dispersion, where

ul * T)(x) ul (x y)dT)(y), vl P(x) vl (x y)dT)(y).

Then the pollen randomly mates with the female gametes, and a fraction k of the
female gametes produces seeds.

The diploid seeds of genotypes aa, Aa, and AA thus formed have local densities

ul * p(x)

(u + v) p(x)’

,l(X) 1 * (x)+ (x) ’(x)
(u + Vl) * p(x)

respectively. These seeds disperse throughout the habitat according to the dispersion
probability distribution S(x). They then settle down and a fraction d of each genotype
grows into adult plants. Thus the adult plants of genotype aa, Aa, and AA have local
densities

k’d Ul (u + vl) , :p .S(x), ’ (( * P)+( * P)),S(x)(Ul -t- Vl) * "

respectively. We assume that dk’ is a constant that does not depend on the genotypes.
Therefore the local population density of adults in the generation is given by

Nl(x)=dk’ tl (tl
__

Vl) , ) *S(x)+dk tl(Vl(tl*D) -Vl(tl--1
*)

*

-t-dk’ Vl(tl -Vl)*) *S(x) d]g’(t nt-v1)*

We now assume that each adult plant of type aa produces c1 (N1) female gametes of
(N1) female gametes of type A andtype a, each adult plant of type Aa produces 1

the same number of type a, and each adult plant of type AA produces 1 (N1) female
gametes of type A. c1, 1, and Yl are assumed to depend only on the population
density N1 dk’(ul+vl).S. Then the densities gl(X) and 1 (x)of the new generation
of female gametes are given by

(i)
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The problem is to determine how the genotypes spread in the habitat in the course
of many generations. In this paper, we consider a few aspects of this problem in a
one-dimensional habitat.

To simplify the equation, we define

u2 dk’ul, v2 dk’vl, 02 dk’o, /2 dk’/., 72 dk’7.
Then u2, v2 satisfy the same system (1) with c2, /2, "2 as viability functions and
with the constant dk’ replaced by 1.

We now assume that there is a positive constant No such that

(2) 0_Nc2(N)_No, 0_N2(N)_No, 0_N72(N)_No

for 0 _< N <_ No. Then we claim that, if 0 _< u2 + v2 <_ No, we also have 0 _< if2 + 2 <_
No. To see the claim, we note that

If (u2 + v2) * S(x) # O, then we have fi2(x) + 2(x) _< No. If (u2 + v2) * S(x) 0 then

2(x) + 2(x) <_ max{a2(0),/2(0), ")’2(0)}(u2 + v2) * S(x) 0.

This proves the claim.
We shall assume from now on that the initial gamete population density u2 + "02,

and hence all later densities, satisfy u2 + v2 _< No.
For the convenience of later presentation, we introduce No as a unit of biomass,

and renormalize the variables by the following definitions:

U2 V2v- :v a(N) c2(NoN), /(N) 2(NoN), 7(N) 72(NON)

for 0 <_ N <_ 1. Then we still have the system (1) with k’d 1, and the inequalities (2)
with No 1. Throughout this paper, we shall use N(x) u(x) + v(x) dk’ Yl(x)

No aS

the variable of population size. Then IN, u] will be used as our state variables instead
of [u, v].

We can now write down the complete cycle as the mapping Q defined in the phase
space

A {IN, u] I.N, u C(), o _< u(x) < N(x) 1 for all x e },

where

C(t) {f If is a bounded continuous function in/R. f(+cx) exist}.

The mapping Q is given by

Q[N, u] [QI[N, u], Q2[N, u]] IN, ], IN, u]
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.-{-v ,S
N,79

We assume that zero is a point of increase of 7) (i.e., P(e) P(-e) > 0 for all
e > 0; see Feller [4]). Thus N /)(x) 0 will imply N(x) 0. Then we adopt the
following convention:

(x) (x)
0, (x) * ,(x) v (x)(x) N (x)

o, (x) N 7(x) N-, ’(x)
O, (x) N (x)

O,

whenever N 7)(x) O. Hence Q is well defined in A.
The space C(i) is endowed with the usual sup norm

Ilfll- sup
x

We also use the sup norm in A unless otherwise stated. Since 79 and 8 are probability
distributions, f 79 C() and f $ C() whenever f C(/R). This follows from
the Lebesgue Dominated Convergence Theorem. Therefore Q maps A into itself.

An element of A will be called a state of Q. A constant state of Q is a state
which is independent of x /. Q obviously maps a constant state into a constant
state. The corresponding mapping of Q on constant states is the classical one-locus
two-allele selection model (see Karlin [7]). c, fl, and -y play the roles of the viability
fitness matrix elements. However, in contrast with the classical model, a, fl, and "7 are
density dependent. The dynamics of this density-dependent model is presented in Lin
[10]. If an advantageous gene is present in a certain generation, the distribution of gene
frequencies tends monotonically to the distribution dominated by the advantageous
gene, and chaos generically occurs in the evolution of population size due to the
density dependence of viability functions.

The modeling of the propagation of an advantageous mutant gene was first intro-
duced by Fisher [5]. He proposed that evolution of the gene frequency v(x, t) of an
advantageous gene in a population living in a homogeneous one-dimensional habitat
obeys the following nonlinear diffusion equation:

vt vxx + v(1 v).

Fisher [5] and Kolmogorov, Petrovsky, and Piscunoff [8] showed that this model admits
traveling waves with speed not less than a minimal speed (which is 2). The wave with
minimal speed is an asymptotic state of v(x, t) evolving from some suitable initial
conditions. Later work of Aronson and Weinberger [1] went on to show that the
minimal wave speed is indeed the asymptotic speed of propagation of the advantageous
gene. They also reexamined the modeling process of Fisher’s equation, and improved
it to take care of both biological realism and mathematical rigor.
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One of the recent contributions to the theory of gene spread was a model in-
troduced by Weinberger [15]. He proposed a scalar integrodifference equation of the
form

Vn+ (x) f k(x

where vn(x) is the gene frequency of the advantageous gene at nth generation, and
k(x) is a probability density describing the diffusion process. He showed in [15] that
a minimal wave speed c* exists as

c*- inf { 1 / }
and it is the asymptotic speed of propagation. He also discussed the connection
between his model and Fisher’s equation.

In our model, the population density N(x) varies with time and space position.
This model is an extension of the model in Weinberger [15], where the population
density is assumed to be independent of space position (and hence independent of
time). We prove in this paper that a slow selection process enables an advantageous
mutant gene to spread throughout the habitat in an asymptotic speed of propagation
given by Weinberger’s formula. We shall rely on some results in Weinberger [15]. The
difficulty in our model is the loss of monotonicity in the system. The use of the com-
parison principle as presented in Weinberger [16] is limited. The main technique we
use is the asymptotic behavior of the solutions of some convolution integral equations
as presented in Diekmann and Kaper [2] and Lui [13].

In this paper, Q(n) Q o... o Q (n times) denotes the nth iteration of Q. If
IN() u()] E A is an initial generation, then Q(n)IN() u()] is called the nth iteration
state of IN(), u()] under Q, denoted by IN(), u(")].

2. Basic assumptions and the main results. We state the assumptions for
the viability functions and the probability distributions.

(A1) Na(N), NI(N), and N/(N) are smooth concave functions mapping the
interval 0 _< N _< 1 into itself and max{a(1),/(1), (1)} < 1.

(A2) a(N) _</3(N) _< -y(N) for 0 _< N _< 1. a(N),/3(N), and 3’(N) are not all
equal for all 0 _< N < 1.

(A3) The support of dS contains a neighborhood of 0, and 0 is a point of increase
of 7).

Theconcavity of Na(N) implies that

d2 d (N2a,(N)) < 0.N--(Na(N)) N2o"(N) + 2Nc’(N)

Thus c(N),/3(N), and "(N) are strictly decreasing functions of N. The assumption
(A2) is the heterozygote intermediate assumption. It shows that the allele A is the
advantageous gene. It is then easy to see that

QI[N, u] _< 7(N S)N $

for all IN, u] E A. Thus, when /(0) _< 1, the dynamics of Q is trivial in the sense that

lim Q(n)IN, u] [0, 0]

uniformly in for all IN, u] A. We will always assume the following.
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(A4) 7(0) > 1 and "y’(N*)N* + 1 > 0, where N* satisfies 7(N)= 1.
Note that N* is the unique fixed point of the mapping NT(N). It is assumed by
(A4) to be a stable fixed point of N/(N) such that any initial condition tends to N*
monotonically under the iteration of N/(N). IN*, 0] is then a constant fixed point of
Q. A straightforward computation shows that the differential of Q at IN*, 0] is

[ (’(N*)N* + 1)T* S + 2(/3(N*)- 1)U,DQ[T, U] [ (N*)U , :f J
I(,S + 7) ’) and T, U E C(fi). Here the upper index t denotes thewhere fl

transpose operation. Since (N*) <_ "),(N*) 1 (by (i2)), the Contraction Mapping
Theorem shows that the bounded linear operator DQ’C,()
has a spectrum lying inside the unit disc of the complex plane. Hence IN*, 0] is a
(locally) stable fixed point of the mapping Q whenever (ha) holds. The following
result states that IN*, 0] is in a sense a globally stable fixed point of Q.

THEOREM 2.1. Let [N(), u()] E A satisfy u()(=t=c) < N()(+cx)). Then, under
the assumptions (A1)-(A4), we have

lim t(n) (x) 0, lim N(n) (x) N*
n--,oo

uniformly in x fit. Indeed, the rate of convergence is exponential.
There remains to consider the case where the initial state IN(), u()] satisfies the

equality u()(+oc) N()(=t=oc). We present in this paper several results related to
such a case.

We shall impose more assumptions on the viability functions and the distribution
functions.

(i2)’ a(N) </(N) 7(N) for 0 <_ N < 1.

(ha)’ d7) (the Dirac delta measure). 8 has a bounded probability density
over / such that 0 is a point of increase for ,S’ and the Laplace transform

exists for all I 6/R.

(A4)’ a(0) > 1 and "’(N*)N* + 1 > O.
The assumptions (A2)’ and (A3)’ will simplify the system: The drastic assumption
d7) 6 means that the pollen does not disperse. Although we believe that the
following theorems hold even if d7) 5, we are not able to prove them without the
restriction. From (A4)’, there exists a unique N such that c(g{) 1. Then IN{, N{]
is also a constant fixed point of Q. It is an unstable constant fixed point of Q. By
(A2)’, the strict inequality N{ < N* holds. Define

c inf
1

,x>0
lg(9(N1

The existence of c is discussed in Weinberger [15], [16]. We then show that c is the
minimal wave speed for a family of traveling waves when the selection is slow.

THEOREM 2.2. We define k(N) such that a(g) k(N)o,(N) for 0 < N < 1.
Then, under assumptions (A1) and (A2)’-(A4)’, there exist > 0 such that, whenever
maxo_<N<_N*{I 1 --k(N)l, Ik’(N)l} -< 7, the system Q admits a traveling wave profile
[N(x), u(x)] with speed c, which satisfies the system

Q[N, u](x) [N(x c), u(x c)], x /R,

[N(-oc), u(-oc)] [N*, 01, [N(oc), u(oc)] IN{, N{]
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iff c >_ c. When c > c, the wave profile is unique up to translation and is charac-
teriz, d by the positive limit limx_,(N(x) N)e, where a is the smallest positive
root t>f 7(N)e-XCK(A)= 1.

hrthermore, these waves are the asymptotic state of some initial generation under
the evolution of Q. Let us define

1
@(A) log(7(N’)K(A)) A>O.

It is shown in Lemma 4.1 of Weinberger [15, p. 63] that there exists a unique positive
value A* such that (A*) c. For any 0 < a < A*, the value c (a) > c and a
is the smallest positive root of 7(N)e-XCK(A) 1.

THEOREM 2.3. Under the same assumptions as in Theorem 2.2, there exists > 0
such that the mapping Q with the condition maxo_<N_<N.{ll--k(N)l, Ik’(N)l} _< has
the following asymptotic behavior. Let [N()(x), u()(x)] E A satisfy N()(-x) > 0
and have the asymptotic form for x oc

N()(x) L(o) + e-{A() + e-XR()(x)},
u()(x) L(o) + e-ax{C() + e-xU()(x)}

for some 0 < < a, where R()(x) and U()(x) are bounded continuous functions,
L(), A(), and C() are constants satisfying 0 < L() < 1, and A() >_ C()

(a) When a >_ A*, then

lim max IN(n) (x) N" lim max lu(n) (x) NI 0
n x x>nc n x x>nc

for all c > c.
(b) When 0 < a < i* and A() C(), then

lim sup IN()(x / no) NI lim sup lu(n) (x + ,c) NI 0,
x> n--

where c (a) and is arbitrary. Thus

lim max IN(n) (x) N{I lim max lu(n) (x) NI 0
n--+cx xn ?---(x) xnc

for all c’ >_ (a).
(c) When 0 < a < * and A() > C(), then

lim sup IN()(x + nc) N(x)l lim sup lu() (x + nc) u(x)l O,
n--,cx > n--,x >

where c- (a) and e :t is arbitrary. IN(x), u(x)] is the traveling wave of Q with
speed c, which is uniquely defined by the limit

lim (N(x) N)e
2(,),(N’)- 1)L()

/(N)- (a’(N)N + 1) (A
(o) C()),

where L() H=o[e-K(a)(L(n))] and L(n) is defined by the recursive relation
L(+) a(L(n))L(n) for n 0, 1, 2, Thus

lim max IN(n) (x) N’I lim max lu(n) (x) Nfl 0
n---cx x>nc n---,cx x>nc
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for all c’ > t(a).
Theorem 2.3 extends Theorem 1 of Weinberger [15, p. 60] to the system Q. It

shows that c is an asymptotic speed for the spread of the advantageous allele A. Note
that the initial state [N(), u()] E A in Theorem 2.3 satisfies N()(c) u()(c)
L(). We will touch upon the cases where [N()(+/-oc), u()(+/-c)] [0, 0] in 7.

We now indicate the organization of this paper. Theorem 2.1 is proved in 3.
Section 4 covers a key lemma on the asymptotic behavior of the bounded solutions
to a linear convolution equation. The techniques used to show such an asymptotic
behavior are contained in Oiekmann and Uaper [2] and Lui [11]. In 5, we apply
the asymptotic representation from 4 along with a (pointwise) Lipschitz estimate of
the mapping Q to prove Theorem 2.2 via the Contraction Mapping Theorem. Then
Theorem 2.3 is presented in 6 as a direct consequence of the proof of the existence
theorem in 5. Finally, in 7, we give some concluding remarks on other traveling
wave solutions of Q and their relations to the scalar mapping discussed in Weinberger
[15], [16] and Lui [11], [12].

3. The proof of Theorem 2.1. We introduce the gene frequencies

u(x) (x)
u, 7)(x) [im] , P(x)re(x)= N(x)’ N , 7)(x) N , P(x)

We rewrite the mapping Q in terms of the variables IN, m]. Thus_
a(N 8)[nmVn] ,S + (n ,S) In(m(1 rh) + rh(1 m))] $

+7(N * S)IN(1 m)(1 rh)] S,
a(N $)[Nm] 8 + 1/23(N $)IN(m(1 rh) + rh(1 m))] S--For each IN(x), m(x)], we define two functions:

1
p(x,y) -N(y){a(N 8(x))[m(y) + rh(y)]

+/3(i ,S(x))[(1 re(y)) + (1 fit(y))]},
q(x, y) N(y){a(N S(x))m(y)(n(y) + (N S(x))[m(y)(1 (n(y))

+ (1 m(y))(y)] + 7(N * S(x))(1 m(y))(1 rh(y))}.

LEMMA 3.1. Assume that a(g) < /3(N) <_ 7(N) for all 0 <_ N < 1. Let
N(x), m(x) be two continuous functions in such that 0 < N(x), re(x) <_ 1 for all
x J. Then

(a) p(x, y) <_ q(x, y) for all x, y
(b) rh(x)_< IIm[[o(f_op(x,x- y)dS(y)/ f-o q(x,x- y)dS(y)) <_ Ilmllo for all

x.
poof. ()

q(x.) -;(x.)

-N(y){2am(y)(n(y) + 2/5[m(y)(1 rh(y)) + (1 m(y))Vn(y)]

+ 27(1 re(y))(1 (y)) aim(y) + fit(y)]
[( .()) + ( ())]}

1
-N()(( ,n()) [( ).() + ( )( .())]

+( n())[( )() + ( )( ())]}.
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When 0 _< m(y) _< 1 for all y , it is clear that 0 _< rh(y) <_ 1 for all y . Since
c _</ _< 7, we get p(x, y) <_ q(x, y) for all x, y

(b) We note that

1
a(g S)[NmVn] S + -(N S)[N(m(1

1
{a(N S)[Nm] S + (N S)[Nm(1 )]

1
{a(g s)[gm] S + 3(g s)[g(1 m)]+

1
<-[[m[[ {a(g ,s)[g] .S +2

1+[[[[{a(N S)[gm],

By the definition of (y), we have [[[[ [[m[[. Therefore

1
a(N S)[Ym] S + Z(N * S)[Ym(1

]]m]] p(x,x- y)dS(y).

By the definition of q(x, y), the identity

N(x) q(x, x y)dS(y)

holds for all x . Thus

(x) < L(x, x )dS()

L q(x, x- )s()

for all x e . Then (a) implies (b).
We start to prove Theorem 2.1. When m()(x) 0, m(n)(x) 0 holds for all

n 1, 2, 3, Then N(n) (x) satisfies

N(+) (N() .
An application of Theorem 3 of Weinberger [15] proves this theorem. Thus we shall
assume that m()(x) O.

The rest of the proof will be divided into several steps.
Step 1. N(n)() > 0 and m(n+)() m(n)() < 1 for each n. Moreover,

limn (n)() 0 and limn g(n)() N*.
For convenience, let r g(n)(), 8n m(n)(). Then [r,sn] satisfies the

iteration relations

: eZ( ( Sn)+()(1 )},n+ {"() + )n
(rn)8 + Z(rn

n+l "()4 + eZ()( ) + (n)( )"

By (A2), we have r+ a(r)r. Thus r > 0 by induction. Now

8n+l 8n 8n(1 8n) (rn)8 + 2(rn)Sn(1 8n) + (rn)(1 8n)2"
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The assumption (A2) implies that Sn+l <_ s, <_ so
limit. From the iteration relations for [rn, sn], it is easy to see that limn--,o sn 0
and lim__. r N* (see Lin [10]).

Step 2. limsup__. N(n) (x) <_ N* uniformly in x
Let M max0_<N_<l N/(N). We note that

Q IN, u] <_ /(N $)N S <_ M.

By (A1) and (A4), N/(N) is strictly increasing over 0 <_ N _< M. Then an easy
induction argument shows that

N(’) (x) <_ Mn-1, n-- 1,2,...,

where Mn is defined by

M+=7(Mn)M, M0-M, n=0,1,2,

But limn- Mn N*. This proves Step 2.
Step 3. There exists some integer k such that N(n)(x) > 0 and m(n)(x) < 1 for

all x E and for all n > k.
We define

Zn- {X e JlN(n)(x)-

Since N(’)(x) and m(n)(x) are continuous, Z and Tn are closed subsets of/R. By
Step 1, Zn and T are bounded subsets of . Thus they are compact subsets of .
We claim that

Zn+
_

Zn, n O, 1, 2,

Let xo Zn+l. Then N(n+)(xo) 0. By

N(+)(xo) >_ a(N(n) S(xo)) N() * $(xo),

we get N(") S(Xo) 0. Thus N(n) (x0 y) 0 for all y in the support of d$. Since
the support of dS contains a neighborhood of 0, N(’)(xo) O. Thus xo Zn. This
proves the claim. From the claim, we want to deduce that there exists an integer kl,
such that Zkl . Otherwise, Zn for all n. Then gI,Zn = q). Let x0 NnZ,.
Thus N(n)(xo) 0 for all n. By the same argument of the proof of the claim, we

know that

N() (xo yl y2 Yn) 0

for all Yl, Y2,..., Y in the support of dS. But the support of dS contains a neighbor-
hood of 0, and we have

I-Jn{XO Yl YnlYl,’’’, Yn e supp(d$)} =/R.

Therefore N()(x) 0 for all x. This contradicts N()(+oc) > 0.
proved that N(n) (x) > 0 for all x and n _> kl.

Now, we claim again that

Thus we have

Tn+
_

Tn, n kl,kl + 1, kl -t- 2,
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Let xo c Tn+l. Then rn(n+l)(xo) 1. From Lemma 3.1 (b), we get

1 ?’n(n+l)(x0) < LoP(n)(xO-Xo y)dS(y)
xo

where p(n)(x, y) and q(n)(x, y) are the functions p and q defined by IN(n) (x), rn(n) (x)].
Since p(n)(x, y) <_ q(n)(x, y) for all (x, y), we get

[q(n)(x0, xo y) (Xo, Xo y)]dS(y)p(n) O.

Therefore q(n)(x0, xo-y)_p(n)(xo, xo-y) 0 for all y in the support of dS. From the
expression for q(n)(x, y) p(n)(x, y) in the proof of Lemma 3.1 (a) and g(n) (y) > O,
we have

(xo (x0 + (7 (xo 0.

By the assumption (A2), (/3 a)(n)(xo y) + (7 -/3)(1 rh(n)(xo y)) 0 for
all y C /R. Thus rn(n)(xo -y) 1 for all y in the support of d,S. In particular, we
get rn(n)(xo) 1 by putting y 0. This proves the claim. From the claim, we can
find k >_ kl such that T 0. Otherwise, if Tn -# 0 for all n >_ kl, then there exists

Xo ffln>_kTn. From rn(n)(xo) 1 for all n >_ kl, we deduce that rn(k)(x) 1 for all
x ri. This contradicts m(k)(+/-) < 1. This proves Step 3.

tp 4. IITrt(n) llcx decreases to 0.
For convenience, we let an Ilrn(n)ll. By Lemma 3.1 (b), we have an+ < an.

Thus limn_an a exists. By Steps 1 and 3, 0 < an < 1 for all n > k. Thus
0<a<l.

Let us consider the function

1 a(N)(m + rh) +/3(N) (2 m
g(N, m, (n) a(N)mrh + (N)(m + Vn 2rnrh) + 7(N)(1 m)(1

which is defined in 0 < N, m, rh < 1. The function g is the ratio of the functions p
and q. Note that g(N, m, (n) g(N, Vn, rn). By the assumption (A2), a computation
shows that

g(N,m,(n) < max{g(N, an, an), g(N, an, O), g(N, 0,0)}

for all 0 < N < 1, 0 < m, h < an. We define

tn max ){g(N, an, an), g(N, an 0), g(N, 0,0)}.
O_N_ 1/2 (I+N*

(1 + N* rh) 1 only if rn 1 or rh 1. ThusNote that, for 0 <_ N <_ g(N, m,
N*when 0 < an < 1, we haveg(N, rn, rh) <_ tn < l for all0 <_ N <_ (1+ 0 <_

rn, rh <_ an. By (A4), Step 2 implies that we can choose k in Step 3 such that
N*0 < N(n) (x) _< (1 + for all x and n _> k. Thus, for n _> k, we get

g(N(n) * S(x),m(n)(y),?=rt(n)(y))
_

tn

for all x, y 5. But

g(N(n) , S(x),m(n)(y),?=n(n)(y)) q(n)(xly
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Hence

p(n) (X, X y) <_ tnq(n) (X, X y)

for all x, y E . Integrating the above inequality with respect to dS(y), we get

m(n+l)(x < iim(n)llo cxp(n)(x,x y)d(y)
< antnq(n)-( x y)dS(y)

for all x E i. Therefore an+l <_ antn for n >_ k. We let n --, c. Then a <_ a t where

t max max{g(N, a, a), g(N, a, 0), g(N, O, O)}.
0_<N_<1/2 (1+N*)

Since 0 _< a < 1, we have 0 < t < 1. Therefore a 0.
We note that this argument shows that Ilrn(n)ll decreases to 0 exponentially.
Step 5. Let bn infxein N(n)(x). Then there exists an > 0 such that bn >_ for

all n >_ k, where k is the integer in .Step 3.
We note that, from Steps 1 and 3, b > 0 for all n _> k. We can rewrite N(n+I)(x)

as

N(n+)(x) o(N(n) S)[N(n)m(n)ff’t(n)] S

-zc-(N(n) S)[N(n)(m(n)(1 (n)) + (n)(1 m(n)))] , S
+9/(N(n) * S)[N()(1 re(n))(1 fit(n))] * S

7(N(n)
* ’(x)) N()

* S(x) + On(x).

Since ]l#tll _< Ilrnll and N()(x) are uniformly bounded, Step 4 implies that dn
IIDnll tends to 0 as n oc. By (A4), we can choose e0 > 0 such that 7(N)N >_ 7(b)b
for all b < N* and b _< N _< N* + e0. Step 2 implies that we can find k2 >_ k such
that N(n)(x) <_ N* +o for all x /R and n _> k2. Therefore, when n >_ k2,
N(n+l)(x) >_ 7(bn)bn -dn for all x /i. We deduce that

bn+ >_ 9/(bn )bn d for n _> k2.

We claim that if there exists a subsequence bni such that bi has a positive lower
bound l, then b has a positive lower bound for n _> k. To prove the claim, we may
choose the lower bound such that 0 < < N*. Then "(1)l- > 0. Thus we can
choose k3 >_ k2 such that dn < /(1)l- for n >_ k3. We can find an index ni with

ni >_ k3 and bn >_ 1. Then we will prove by induction that bn >_ for n >_ hi. Assume
that bn >_ for some n >_ hi. Then

bn+ >_ /(bn)bn dn >_ 9/(1)l dn (9/(1)l l)- dn + > 1.

This proves the claim.
We know that bn is a bounded sequence. If Step 5 is false, it follows from the

claim that lim_ bn 0. From Step 1, N(n)(:l:oc) tends to N* as n -. c. Thus,
for each n _> k2, we can find Xn such that N(n)(xn) bn. This can be done by
taking k2 larger whenever it is necessary. We call

en N(n) * (Xn,+l) for n >_ k2.
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Then

bn+l N(n+l)(xn+)
7(g(n) * -(Xn+l)) N(n) * (Xn+l) + Dn(Xn+l)
")/(e-,n)e,n + Dn(xn+i), n > k2.

Since Dn(Xn+l) O(llm(n)ll) as n --, oc, we get limn__, 7(en)en 0. But 0 <
N(n) _< 1/2(1 + N*), 7(en) >_ 7(1/2(1 + N*)) > 0. Thus lim_o en 0. NOW, from the
iteration relation for N(n+l), we get

where (X) O(llm(’)lloo). bn(X) tends to 0 uniformly in x e .
x- x+ in the inequality, we have

However,

By putting

bn+l >_ bn{’7(en) + Dn(Xn+l)}, n>k2.

nlirnoo{7(en) + Dn(x+)} 7(0) > 1.

We can find k4 >_ k2 such that (en) +/)(Xn+l) > 1 for all n _> k4. Thus bn+l >
bn > 0 for n _> k4. This is a contradiction to limn--,o bn 0. The proof of Step 5 is
complete.

Step 6. lim_,o b N*. Hence N() (x) converges to N* uniformly in/Ft.

Let e > 0 be given sufficiently small. From Steps 2 and 5, we can find k2 >_ k
such that

0 <

_
bn <_ N(n)(x) <_ N* + , bn+ >_ ’7(bn)bn- d

for n _> k2 and for all x E /i. Define

l min (7(N)N- N),
I<N<N*-> 0. Thus we can find k5 >_ k2 such that dn < for n _> k5. We claim that there

exists k6 _> k5 such that bk, >_ N* -. We prove the claim by contradiction. Suppose
that b < N* - for all n >_ kh. From

bn+l >_ 7(bn)bn -dn (’7(bn)bn bn) dn + bn >_ 11 dn + bn > bn

for all n >_ kh, we know that limn-,o bn b exists. Clearly, <_ b <_ N* . However,
by letting n - oc in bn+l >_ b,7(b)- dn, we get b >_ bT(b). Thus 7(b) <_ 1. But
b < N*, and we also have 7(b) > 1. This is a contradiction, and the claim is proved.
From the claim, we can prove by induction that b >_ N* -e for n >_ k6. Suppose
that this inequality holds for some n. Then

bn+l >_ 7(bn)bn -dn >_ 7(N* )(N* ) -dn
[7(N* e)(N* ) (N* e)] d + (N* e)

>_l-dn+(N*-e) > N*-.
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Thus we have proved that ]bn N*I _< e for all n _>
The proof of Theorem 2.1 is complete.
Remark 3.1. From the proof of Step 3, we see that if N()(x) 0 (without

assuming N()(+oc) > 0), then for any compact subset K C /5, there exists no such
that N(n)(x) > 0 for all x E K and n >_ no.

Remark 3.2. If we assume instead of (A3) that each point of is a point of
increase for dS, then we can obtain the following conclusion. Let IN(), u()] E A

satisfy

u(0)(x)
N()(x)0 and rn()(-t-a)= lim <1;

-+/- N() (x)

then, under assumptions (A1), (A2), and (A4), we have ?(n)(x) -- 0 uniformly in
and N(n) (x) -, N* uniformly on compact subsets of .

4. A preliminary lamina. In this section, we shall present a lemma on the
asymptotic behavior of a positive bounded solution 99(x) to the linear convolution
equation

99(x) f(x) 99 * F(x),

where F is a probability distribution function on/i and f(x) is a given continuous
function. This lemma is essential to the proof of the existence of the traveling wave
solutions of Q. We shall use several results in Essn [31 and Diekmann and Kaper [2].
A full discussion on the existence and the uniqueness of the bounded solutions to the
above convolution equation can be found in Lin [9].

We assume that F has a bounded probability density such that the Laplace trans-
form

() e=dF(x)

exists for all A >_ 0. We define Fo min,x>o/(A).
LEMMA 4.1. Let f C() satisfy f(x) >_ 0 for all x 1R and f(c) > 1. Suppose

that 99 C(1R) satisfies 99(x) >_ O, 99(x) O, and

99(x) f(x) 99 , F(x) for all x e .
We make the following assertions.

(a) There exists some k > 0 such that f_ eX99(x)dx < (x for 0 < ) < k.

(b) > O, <
bounded for all 0 <_ < a, while 99(x)e is unbounded for > a.

(c) If we assume further that o > f(c) >_ f(x), f(x) is not a constant function,
and f(x) f(x) + O(e-) as x oc for some > O, then 99(x) has the asymptotic
representation

99(x) e-[A + U(x)e-’],

where A, et, and a are some positive constants. U(x) is a bounded continuous function
with Ue-’ bounded, and U(x) <_ 0 for all x . Moreover, a is the smallest positive
root of the equation f(o)/(A)= 1.
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Proof. (a). Let I < t < f(c)and choose/> 0such that F(1)-F(-l)= 5(1+7).
Define

0

F(x) F()-(-)
F(1)-F(-l)
1

if x _< -1,
if-1 _< x _< l,
ifl<x.

F(x) is again a probability distribution. Now

(x)

t-1

t+l

t-1

t+l

t-1

t+l

where (x) can be written as

(x) (f (x) t) (x y)dF(y) + f(x) (x y)dF(y).

Choose xo such that f(x) > t for x _> xo. Then (x) _> 0 for x _> xo. By integrating
the above identity from x to r with x0 _< x

_
r, we get

(3) N () N()
t+ 1

p(y)dy + t + 1
(y)dy,

where

N (x) { s, (x)
-F.(x)

Note that f_ IxldF(x) < and f_ IN(x)ld- f_ Ixld(x). Since f() > 1
and E C(), p(c) 0. Thus limr_, , Nt(r) 0. Therefore, using p >_ 0 and

>_ 0 in (3), we have proved that f (y)dy and f (y)dy exist for all x >_ xo, and
they have the relation

t+lp(y)dy
t- 1 { }, N(x) + t + i Cty)dy

We shall generalize this relation as follows.
Define (n) and (’) inductively as

(n+l) (X) ((n)(y)dy (o) (x) v(x),

)(n+l) (X) 2(n)(y)dy, (o) (x) (x),
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for n 0, 1, 2, We claim that (fl(n) and (’) exist for all n and they satisfy the
following identities

t--l(n)+ 2 (n)(4) (n)_ (n), Ft t+ 1 t+ 1

2 (n+1) ]t- 1 (n) . Nt(x) + (x)(5) (+l)(x)=
t+l t+l

for n 0, 1, 2,..., and for all x >_ x0. We have proved the case n 0. Assume that
(4) and (5) have been proved in step n; then (n+) and (+) exist. We integrate
(4) from x to c, and note that

This proves that (4) holds for step n + 1. We can now integrate (4) for step n 4- 1
from x to r. We get

(n4-1) , Nl(r)- (fl(n+l) , Nl(x) L Lrr 2 (n+l)(y)dy"t 1 (n+l) (y)dy + t + 1t+l

By definition, fl(n+l)((X)) 0, (n+l)
_

0 and (n+l)
_

0; this implies that (n+2)
and (+2) exist for x >_ x0 and that the identity (5) holds for step n 4- 1.

Since (n) _> 0, we get from (5)

(n+)(X < t--1/ 9(n) (x y)Nz(y)dy
t+l

t-1< rnx{cz(n)(y)lly xl < Z}IINIIL
-t4-1
t-1

< (n)(x- 1)]]Nt[[L1 for x > x0.
-t4-1

Choose x >_ x0 4- to get

(n4-1) (X l) (n) (y)dy () (y)dy + (+) (x)

t- l()(x_ Z)llNzlIL k-()(x -Z)_< ()(z- ) + t + 1

for n 1, 2, 3,..., where

t-1
k- + t + 1
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Thus

(n)(x) <_ k-(n-1)ga(1)(X for X _> x0,

Now, by integration by parts,

1
x)n_99(n)(x)

(n- 1)! (Y- (y)dy,

Therefore, for x _> xo and 0 < , < k,

This proves (a).

n 1, 2, 3,

n 1,2,3,

(b) Let dF(x) p(x)dx, where p(x) > 0 is a bounded measurable function. Let
0 < A < a. Choose ,ko and q such that 0 < A </o < a and 1 < q < Ao/A. Let r be

1 Thenthe conjugate exponent of q, i.e., +

() I() ( )x(-p()a i(){ + e },

where

A (x )(-p()d,

Now

B p(x y)e"x(x-y) eYp(y)dy.

0 < B < (sup cp(y)ey) eYp(y)dy <
y<_O

A (x

(/2 )(::(x y)qe(-Y)dy er(X-)(-Y)erXYp(y)rdy

IIllg (x)edx Ilpll P(r): < .
Therefore (x)e is uniformly bounded. When A > a, if (x)e is bounded,
(x)e(x+) is integrable, a contradiction to the definition of a.

(c) We rewrite the equation as

(x)- I(), f(x) (f(x)- f()), f(x) h(x).

Let (A) f_ e(x)dx and H(A) eh(x)dx be the Laplace transforms
of and h, respectively. By (a), (A) is finite for 0 < I < a; hence the Laplace
transform of , F is finite for 0 < A < a. We have the identity

(6) [1 f()(A)](A) H(A) for 0 < A < a.
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Note that f(cx)Fo < 1. The equation f(c)/(/) 1 admits at least one positive
root. However, h(x) <_ 0 and h(x) 0 in . If a cx, then (I)(A) and H(A) exist for
all/ > 0 and H()) < 0. Thus the identity (6) can not hold for all A > 0. Therefore
0 < a < c. Then (I)(A) must be singular at A a, i.e., (I)(a) c (see Widder [17]).
Now

Since If(x)- f(oc)lex is bounded and (x)e(-1/2 )(-y) is integrable,

If(x)- f(oc)lep(x- y)e(a-1/2)(-U)dx < oc

e) is finite. The above argument also implies that H(,)uniformly in y. Thus H(a +
is finite for 0 < ,k <_ a + -. This proves that f(oc)(a) 1. cr is obviously the

smallest positive root of f(oc)/(A) 1.
It remains to prove that (x) has the desired asymptotic representation. Since

/() is convex with/(0) 1, F(A) is decreasing near a. Hence we can choose A such
that a < < a + and 0 < l=/(,)f(oc) < 1. We rewrite the equation as

Multiply both sides by ex. Then 1 F + g, where

1
qs o(x)e"x, dF),(x) _f,())
g(x) (f(x)- f())e , F.

,,e)’dF(x),

Since f and are uniformly bounded, g decays exponentially near x -oc. Near
X (:,

But 0 < A-e < a- < a, and by (b), qs_ is bounded. Thusg(x) is bounded
and continuous, and decays exponentially at +c. Therefore, there exists a unique
bounded continuous function U(x) satisfying U 1U F:, + g. Indeed,

j=l

where F(j) F ..... F (j times). Note that U(x) <_ 0 for all x E , since g _< 0
by assumption. Define

(x) :(x) U(x): >_ o.
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satisfies

f(oc), F, 0 < _< c( + e-), C some constant.

This equation has the general solution

polynomial,

where # is a (real or complex) root of 1 f()(#). Since a is the smallest positive
root of 1 f(cx)/(#) and < 1, the equation f()/(#) 1 has only one real root
a inside the strip 0 _< Re(#) <_ ). This a is a simple root of f(oc)/(#) 1. All
other roots inside the strip 0 <_ Re(It) <_ ) are pairwise complex conjugate. Since, for
# + iT where and r are real,

( + il) eivxexdF(x) -- 0

/(it)f(oc) 1 has only a finite number of roots inside the strip 0 <_ Re(it) <_ ). Also,
roots it with Re(it) > are excluded by the requirement that 0 <_ <_ C(1 + e-x).
Thus an application of Theorem 146 in Titchmarsh [14, p. 305] gives

(x) Ae + E Pt

where the sum is over complex numbers It such that f(x)/(It) 1 and 0 <_ Re(It)
A. But (x) >_ 0 for all x, and we must have (x) Ae- with A >_ 0. Therefore

o(x) Ae-’: + U(x)e-’ e-’[A + U(x)e-dX],
where d A a. This A can not be zero, otherwise o oe satisfies

(+)-0.

Theorem 4.1 of Essn [3, p. 126] implies that %(x) 0 for all x, a contradiction to

0.
The proof of Lemma 4.1 is complete. [:]

5. The existence of traveling waves. From now on, we shall assume (A1)
and (A2)’-(A4)’. The mapping Q is simplified to

N=a(N,S) ,S +27(N,8),S +(N,S) ,8

a(N , S) , S + 7(N , S) ,S
It is more convenient to work with the variable v N u instead of u. In terms of

a(N)IN, v] nd k(N) , the mapping Q is

=7(N,S)N,S+(k(N,S)-I)7(N,S) ,8,

(N 8)v 8.
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We look for a traveling wave solution of Q in the form

N(n)(x)=N(x-nc), v(n)=v(x-nc), n 0, 1,2,...,

where c is the wave speed and IN(x), v(x)] e A is the wave profile. Thus IN(x), v(x)]
is such a wave profile iff it satisfies the following system of convolution equations:

N /(N So)N Sc + (k(N 8) 1),(N S) - S =_ QI[N, v],

v /(N 8)v Sc Q2[N, v],

where 8(x) S(x + c) is the translated probability distribution. We will denote
[Qlc, Q2] by Q. Clearly [N(+cx), v(+)] must be constant fixed points of Q. In
this section, we look for traveling wave solutions which satisfy the boundary conditions

(7) [N(-x), v(-x)] IN*, N*], [N(), v(cx)] [N{, 0].

We shall discuss other types of traveling wave solutions that connect [N*,N*] and
[0, 0] in 7.

LEMMA 5.1. Let [N(x),u(x)] be a traveling wave of the system Q with speed c
which satisfies the boundary conditions (7). Suppose that c’(N)N + 1 > O.

(a) Then 0 < N(x) < N* for all x e J. Thus infx N(x) > O.
(b) /f a(N*)N* >_ g, then N <_ N(x) < N* for all x e .
(c) If lc’(g*)N* + c(N*)l _< a’(N)N + 1, then c > c. Moreover, when c > c,

N(x) and v(x) have a representation of the form

N(x) + e- X{A +
+

where R(x) and V(x) are bounded continuous functions, a is the smallest positive root
of the equation 7(N)e-CK(A) 1, and 0 < < a. A and B are two constants with
the relation

A 2(-(N{)- 1) /3.
/(N)- (a’(N)N + 1)"

Proof. (a) By (A2)’, we have

N(x) < 7(N Sc(x)) N S(x) < M,

where M max0<N<l NT(N). But NT(N) is increasing over 0 < N < M. Therefore
N(x) < Mn for all x E , where Mn is defined by

Mn+l 7(Mn)Mn, Mo M, n O, 1,2,.

Since 7’(N*)N* + 1 > O, Mn decreases to N* as n cx. Thus N(x) < N*. Now
N(x) satisfies the inequality

N(x) >_ c(N S(x)) N S(x) >_ c(N*)N S(x).

If N(xo) 0 for some x0 in , then N, Sc(n)(xo) 0 for all n 1,2, 3, An
argument involving the concept of "the point of increase" of a distribution function
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(see Diekmann and Kaper [2]) implies that N(x) 0 for all x e . This is a
contradiction to the boundary conditions of N(x). Therefore N(x) > 0 for all x E .

(b) Let No infxe N(x). Define N1 a(No)No. We claim that N(x) >_
min{N1, N} for all x E . Let x be a point where N, So(x) <_ N;, and we
have

N(x) >_ a(N Sc(x))N 8c(x) >_ a(No)No N1.

On the other hand, let x be a point where N 8c(X) > N. Since a(N*)N* >_ N
and Na(N) is concave, we have

N(x) >_ a(N Sc(x))N Sc(X) >_ N.
This proves the claim.

From the claim, No _> min{N1, N}. IfN0 < N, then N0 >_ N1. Buta’(N{)N+
1 _> 0 and Na(N) is concave, we must have No < a(No)No N1. This is a contra-
diction. Therefore No >_ N.

(c) The equation for v(x) is given by

v ,(N , $)v , $, v(-(x)) N*, v(oc) O.

Let f(x) 7(N,S(x)). Then f(cx) 7(N) > 1. By Lemma 4.1 (a) and (b),
v(x)e is bounded for all A > 0 sufficiently small. We claim that (N(x) N)ex is

also bounded in . To prove the claim, we write the N equation as

By the Mean Value Theorem,

c(N S(x))N S(x) N; T(x)(N Sc(x) N),

where

T(x) {a’(N(t) S)N(t) S + a(N(t) S)}dt,

N(t) (1 t)N(x) +

For convenience, we call N(x) (N(x)- N{)e. We multiply both sides of the N
equation by ex. Then

(8) N(x) T(x)e-K(A) N ,.F(x) + g(x),

where

{ v }g(x) ((N &(x)) c(N Sc(x)))e-K(ik) 2v -v F(x)

with

1 e),Xd,.(x)"v(x) v(x)e and dF(x) e_K(A)
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Since 0 _< v <_ N and v is bounded, g(x) is bounded in . By (b), N <_ N(t) <_ N*.
Note that cd(N)N+(N)is decreasing in N and I’(N*)N*-t-((N*)l <_ ’(N)N+I.
Therefore IT(x)l <_ ’(N)N + 1 for all x e . Since

lim(a’(N)N + I)e-K(A)= a’(N)N + 1 < 1
A--,0

we have (a’(N)N + I)e-K(A) < 1 for all A > 0 small enough. Thus, for such
we get

]T(x)e-K(A)] <_ (a’(N{)N + 1)e-K(A) < 1

for M1 x E . Therefore the equation

(x) T(x)e-K(A) F(x) + g(x)

has unique solution which is bounded in/R. This proves that N(x) is bounded in
for some A > 0.
From the claim, we deduce that

f(x) (N S(x)) /(N{) + O(e-)
as x c for some A > 0. Thus Lemma 4.1 (c) implies that the equation /(N)e-ACK(A)
1 has a smallest positive root a. Therefore

1
c -log(/(g)K(a)) >_ c.

Moreover, when c > c, v(x) has a representation of the form

v(x) + V(x) 

for some 0 < e < a, where B > 0 and V(x) is a bounded continuous function with
V(x) <_ 0 for all x 6/R. We put this form of v(x) into the N equation. By a similar
argument as in the proof of the claim, we get the representation of N(x). Indeed, we
will get the relation between A and B as follows. Since A lim(N(x)- N{)e,
we get

A (c’(N)N + 1)e-K(a)A + 2(/(N)- c(N))e-K(a)B

by letting x c in (8) for A a. Thus (c) is proved.
LEMMA 5.2. Let IN(x), u(x)] A have the asymptotic form

N(x) n + e-a{A + e-R(x)}, v(x) e-{B + e-XY(x)}

for some 0 < < a. R(x) and V(x) are bounded continuous functions. L, A, and B
are constants. Assume that infxsn N(x) > O. Then

/(x) Qlc[N, v](x) + e-ax{. + e-eX(x)},
(x) Q2[N, v](x) e-{B + e-V(x)}., fl, and [ are computed as

L:a(L)L,
t e-(’CK(a)[A(’(L)L + (L)) + 2B((L) c(L))],
B e-K(a)/(L)B.
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and (x) are also bounded continuous functions.
Proof. We only prove the representation of N. The argument for is similar.
We write

(Qlc[N, v] L)e= (a(N $c)N * $c a(L)L)e + E[N, vie=,
where

{ v2}E[N, v] (/(N ,Sc) a(N ,Sc)) 2v -But

(c(N ,Sc(x))N ,S(x) a(L)L)e
T(x)(N Sc(X)- L)e
T(x)[Ae-K(a) + e-(+)K(a + e)R F1 (x)e-]
A(a’(L)L + a(L))e-K(a) + BI(x) + Cl(x)e-,

where

T(x) {a’ (N(t) 8c)N(t) S + a(N(t) 8)}dt,

N(t) (1 t)N(x) + tL,
B1 (x) IT(x) (a’(L)L + a(L))]e-CK(a)A,
61 (x) T(x)e-(+)K(a + e)R F1 (x),

and

dFl(X) (e-(a+e)CK(o" + ))-le(a+)Xd8c(X).

Since N(t) L + O(e-) as x oc, we have

T(x) (a’(L)L + a(L)) + O(e-)

as x c. Thus Bl(x) is a bounded continuous function with Bl(x) O(e-x) as
x --, oc. Since T(x) is bounded, C1 (x) is also a bounded continuous function. With
a similar computation, we can write

E[N, v](x)ex 2(7(L) a(L))K(a)e-B + B2(x) + C2(x)e-,
where

B2(x) 2(/(N * S(x)) a(N Sc(x)) /(L) + a(L))K(a)e-B

-(/(N , S(x)) a(N , S(x))) (v’___) ,,Sc(x)ea

C2(x) 2(’),(N S(x)) c(N S(x)))e-(+)K(a + )V F1 (x).

C2 (x) is obviously bounded. No

"(N Sc(x)) a(N 8(x)) /(L) a(L) + O(e-=),
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v2(x) O(e-2x) as x --, x, and infxe N(x) > 0. We get

B (x) x

Therefore

[Qlc[N, v](x) J]ex A(a’(L)L + a(L))e-CK(a)
+2((L) a(L))K(a)e-aB
-[-(B1 (x) -- B2(x)) -- (C1 (x) -}- C2(x))e-ex

A +
where

R(x) (B1 (x) -]- B2(x))eex - (C1 (x) -[- C2(x)).

However, 0 < e < a. Hence

(x) +

as x - cx. Therefore/(x) is bounded. The proof is complete.
We now establish a key lemma on the Lipschitz estimate of Q.
LEMMA 5.3. Assume (A4)’. Then there exist 0 < ko < 1 and lo > 0 with the

following property. If ko <_ k(N) < 1 for all 0 <_ N <_ N* and max0<N<N*
lo, then for any [Ni(x), vi(x)] e A with N <_ N(x) <_ N* (i 1,2), we have the
following inequalities:

(a) Il(x) 2(x)l <_ 7(Nf)mx{lu ul * S(x), Iv vel * S(x)},
(b) Il(X) 2(x)l <_ 7(Nf) max{IN1 Nel, lu uel, Iv v2l} *

for all x in :t, where

for 1,2.
Proof. We prove the lemma at each point x in . Without loss of generality, we

may assume that N S(x) _> N2 * S(x) at x. The argument for the case where
N1 * $(x) <_ N2 * Sc(X) is the same. We divide the proof into several steps.

Step 1. We prove the inequality (a).
By the definition of (i 1, 2), we have

2 /(N Sc)(v v2) S + (7(N1 S) 7(N2 S))v2 S.

Since N So(x) >_ N2 * S(x) and 7 is decreasing, we get (7(N S(x))- 7(N2
S(x)))v2 S(x) _< 0. Therefore

(x) 2(x) _< (N)lVl V2[ * -c(X).

Now we obtain a lower bound for 9 (x) 92(x):

1 2 (N c)(N1 ltl) * c (N2 * Sc)(N2 it2) *
(3’(N1 * Sc)N1 * Sc ")’(N2 * qc)N2 *
+(’(N2 S) ,,/(N ,S))ul S + "y(N2 ,S) (u2 u) $c.
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Since N’(N) is increasing and /(N) is decreasing in N _< N _< N*, we have (N1 *
c(x))N1,8c(x)-(N2, S(x))N2 ,S(x)

_
0 and ((N2,8(x))- /(N1 (x)))u,

Sc(x) >_ 0. Then

(x) 2(x) 7(N2 * (x))(u2 u) (x) -7(Nf)lu u2i *

The proof of Step 1 is complete. Note that the inequality (a) for is independent
of ko and To.

For convenience, we define t mino<N<N* k(N) and max0<N<N* ]M(N)].
Step 2. There exist 0 < kl < 1 and 0 < ?2 such that whenever kl _< n and

0 _< r _< r2, the following inequality holds"

9/(N * 8c(x))H(x, .), S(x) <_ t(x)- 2(x) <_ 9/(N * 8c(x))H(x, .),

for all x in Kt, where

H(x, y) (ul (y) u2(y)) [1 + (k(N S(x)) 1) u
(y) + u2(y) 1N(y)

+(k(N1 S(x)) 1) N (y)N2(y) (N2 (y) N1 (y)),

v2(y)2
(N2(y) N1 (y))+(k(g So(x)) 1) g (y)N2(y)

and H(x,.) $c (x) is defined by

H(x, .) Sc(x) H(x, x y)dSc(y).

H(x, .), 8(x) is similarly defined.
To find the upper bound, we write
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where

H(x, y) (ul (y) u2(y)) [1 + (k(N1 Sc(X)) 1) tl (y)NI(y)+ u2(y) 1
t2(y)2

(N2(y) N1 (y)),+(k(N., ,S(x)) 1) N (y)N2(y)

G u2 .S + (k(N .Sc) 1)- .$ (7(N .&)-(N2

+(k(N S) k(N S))(N S)
We claim that there exists 1 > 0 such that G 0 whenever 0 1. We

apply the Mean Value Theorem to rewrite G as

G(x) (N1 N2) 8c(x) {’(.)[u2 * Sc(X)

+(k(N S(x)) 1) S(x)]

,S(x))+k’(.)y(N2 S(x))
(Y g) S(x) ’(.) S(x)

}
(aeca that (N N) S(z) 0.) Since (N) is decreasing in 0 N N < 1, we have

( u) ,S(x)<o’(.) -When , we choose such that

1 (min 17’(N)I).0 1 2(0 ONN*
Then, for 0 , we have

’(.)k(N S(x)) + (N)v O.

Therefore, G 0. Thus

e(x) (x) 5 (N1 S(x))H(x, .) S(x).

To find the lower bound, we use u N- v. Then
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-(N S)(N1 v) S -(N. )(N .)

+(k(Nl , Sc) 1) [/(NI , Sc) (N vl)2 Sc 7(N2 S) (g2 v2)2

N1 N2 S

+(k(N S) k(N2 S))(N2 S) (N2 v2)2

N
k(ii 8)((i S)N (N: 8)N )
+[1 + 2((N1 ) )]((N S)v S (N ,.S)v )

+((1 sl ( s) s (

( &)((l &) & ( s)

+((Xl sl ( s))( s) s
+ [(1 + ((1 s) 1)) s

+(1- (1 sl (

+(N S)[1 + 2(k(N1 ) 1)l(v Vl)

(Xl*e)((Xl*c)-l) [(vl-2)l2N1 N12(N2-NI) *c

d + (1 s)(, .)

where

We claim that there exist 0 < kl < 1 and 0 < 72 _< rh such that ( >_ 0
whenever kl _< a and 0 <_ _< 72. Since -(N) is decreasing and we are assuming that
N Sc(x) >_ N2 * 8(x), we have )(N2 $(x))- )(N1 * 8(x)) >_ O. If 1/2 _< t, then

[2k(N1 8c(x)) 1Iv2 8c(x) + (1 k(N $(x)))-22 S(x) >_ O.

Now, by the Mean Value Theorem, we get

(x) >_ k(N S(x))(’’() + ())(N1 N2) ,.c.(X)

+/(N2 Sc(X))-2 Sc(X)k’(a)(N1 N2) So(x)
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for some with N1 * c(X)

_ _
N2 * ’c(x). Then, when a _> ,

min (’7’(N)N + y(N)) N*rl (N1 N2) * So(x)G(x)

_
I,

N <_N<_N*

[1 N* ](N1 N2)*>_ (7’(N*) + 1)- N*7 So(x).

By assumption, 71(N*)N + 1 > 0. We define

{ 1 }r]2 min /]1, --7(/’(N*)N + i)

Then, for t _> 1/2 and 0 _< r] _< 72, we have ((x) _> 0. This proves the claim and Step
2 by letting kl .

Step 3. There exists 1 > k >_ kl such that whenever k <_ , H satisfies

H(x, y) <_ max{lN (y) N2(y)], lUl (y) u2(y)l}

for all x, y E .
We note that

1 + (a 1) 2N* < 1 + (k(N1 * Sc(x)) 1)u
(y) + u2(y) < 1.

N{ N(y)

When a --, 1 1 + (a- 1)2N* --. 1. Thus we can choose 1 > k2 >_ k such that

2N*
0 _< 1 + (a- 1) iN-- for k2 < .

Then, for a > k2,

Step 4. There exists 1 > k4

_
k2 such that whenever k4

_
t, H satisfies

H(x, y) >_ max{lN (y) N.(y)l, lUl(y) u2(y)l, [vx (y) v2(y)l}

for all x, y
We consider three cases.
Ca . N() >_ N(U).
We have

() < v()
N(y)- N2(y)’

v:() > (u) > 0.
N(u)- N(U)-
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Thus

+ ((v (x)) ) (: v ()v ()+ v:() )
[(el(y) ) (v2(y)=l+(k(Nl,8c)-l) 1

NI(y) + 1
NI(y)

On the other hand, by a _> 5,

+ ((, S(x)) ) (2 ()()+ v())
l+2(a-1) 1- 1- 1-

Since N1 (y) N2(y),

v2(Y)2 (N2(y) Xl (y)) 0.(k(N1 $(x)) 1)
ml (y)N2(y)

Therefore

-I() ()1.
Case b. N() < N() and v () v().
Then 1() 2(). We write H as

+((Xl * So(z)) 1)
N1 ()N2()

(2() + 2() 1() 1 ())

(2() 1()) {1 + ((Xl* e(z)) 1) [ 1()(
1() + 1()N2()

+(k(N c(z)) 1)
N1 ()N() (() ())"

Similar to the argument in Step g, we can choose 1 > ka k such that

1 + (k(N S(z))- 1) kN() + 1
N() + N()N() 0

for ka N . By v() 2 v(), we have

() ()
0 1

1()
1

1()"
Hence

(z, ) max{vl (} v(), (() 1

X { 1 + ((NI * c(z))- 1)[[()N1() + (1 NlV()() )]}
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Thus

Now

Case c. NI(y) < N2(y) and vl(y) < v2(y).
By the choice of k3 in Case b, for a > k3, we have

l + (k(N * Sc(x))- l) (2- v(y) + v2(y)

_> 1 + (k(N Sc(x)) 1) LN(Y)[u (y) + (1 v2(y)2 1 > 0.
N(y)N2(y) ]

v2(y)2
(N2 (y) N (y)).(x,y) >_ (k(N S(x))- 1)N(y)N2(y)

v2(y)2 N*
0 _< (1 k(Ni 8(x)) NI(y)N2(y)

< (1 a) N-- 0

asal We can choosel>ka>k3suchthat (1--a) N*- < 1 for a > k4. Therefore

(x, y) N (y) N2(y)

for a k4. This proves Step 4.
We define ko k4 and 0 2. By Steps 2, 3, and 4, we get

I(x) 2(x)[ 7(N;) max{IN1 N21, lUl u21, Iv v[) S=(x)

for all x , whenever ko k(N) < 1 for all 0 N N* and 0 o.
We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2. We choose ko and o such that Lemma 5.3 holds. We

can also adjust ko and o such that a’(N*)N* + a(N*) 0 and a(N*)N* N for
ko n minoNN* k(N) and 0 B o. Then Lemma 5.1 can be pplied. The
necessity that c c follows. The desired traveling wave has the exponentiM decay
form at x when c > c.

We prove the existence for c > c first. Define a to be the smallest positive root
of the equation

7(N{)e-K(A) 1.

a exists due to c > c. Let 0 < e < a be chosen such that

o < + < 1.

Let a(N) and (N) be given such that and satisfy ko and 0 0. For
B > 0 fixed, we define the space

B {JR, V] R(x) and V(x) are bounded continuous functions

in . N(x) N + e-[A + e-R(x)] and

v(x) + s t sfr 0

nd N N(x) N* for all x , }(9)

where

A 2(7(Nf)- 1) B.
7(Ni) -(a’(N)N + 1)



A SYSTEM OF INTEGRODIFFERENCE EQUATIONS 65

Clearly B 0. For [R, V] E B, define

u(x) =_ N(x) v(x) N + e-"X[(A B) + e-X(R(x) V(x))].

We call U(x) R(x)- V(x). Then we define a metric on B by

(0) d([R1, V1], JR2, V2]) max{llR1 R211, IIV] V211, IIU1

(B, d) is then a complete metric space. We define a mapping F on B by

(11) F([R, V]) [/, ], [R, V] e ,
where

/ [(Qc[N, v]- N)e Ale,
V [Q2c[N, vie" B]e.

First, we claim that F B --, B. By Lemma 5.2,/ and are bounded continuous
functions. Now

[/(x)e-x + Ale- +N Q[N, v](x) (x),
[(x)e + lie- Q2[N, v](x) O(x).

From 0 _< v(x) <_ N(x), we get 0 _< (x) _< N(x). We need to show that N <_ N(x) <_
N* for all x E . By the definition of Q[N, v], we get

a(N $)N 8 <_ <_ 7(N $)N 8c.

Because 7’(N*)N* + 1 > 0 and a(N*)N* >_ N, we have (from N <_ N(x) <_ N*)

N <_ a(N S)N S <_ (x) <_ /(N 8)N $ <_ N*.

This proves the claim.
Now we want to prove that F is a contraction mapping when ko and o are suitably

adjusted. Given [Ri(x), V(x)] B (i 1, 2), we let

Ni(x) N{ + e-[A + e-XR,(x)],
,(x) -[B + -Y(x)]

for 1, 2. We define

Qlc[Ni, vi], Q2c[Ni, vi] for 1, 2.

We estimate J/1 (x)- J2(x) as follows.

/ -2 (a(N qc)N S a(N2 S)N2 S)

-7(N2 * S)(1 k(Y S)) 2v2 N2 ]
=I++,
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where

By the Mean Value Theorem,

II[ <_ (a’(N;)N + 1)IN2- Nil * So.

Similarly,

<_N<_N*

Irl _< 7(gi)(1 t) 3 + IVl v21 * Sc + y--l lY N21 * Sc

Thus, for all x

IN(x) N2(x)l _< pl max{]v v. So(x), IN1 N21 * So(x)},

where

Pl pl(;, r/) (a’(N)N + 1)+ (37(Ni)N*)r

+(1 n) 3N* max 17’(N)] + 7(gl) a + 2-;N<_N<_N*

Note that

lim p(n,r) a’(N)N + 1 < 1.--- 1,r--,0

We can choose kl >_ k0 and 0 _< ?1 ?]0 such that pl(t,r]) < 1 for kl _< and
0 _< r _< rl. The choice of kl and rl is independent of c. By the definition of the
metric d, we have to estimate II/)1 -/2 x, Irl Ir2 o and 01 2 II x. By

/) (x) -/)2 (x) (Q[N, v](x) Q2e[N2, v2l(x))e(’+)x,

we get

1/1 (x)-/2(x)[ _< pl max{Iv1 -v2l * Sc(X), IN1 N2[, S(x)}e(+)x

<_ ple-(’+)K(a + e) max{IV1 V2I * F1 (x), JR1 R21 * F1 (x)}
_< Pl max{llVl v211 , IlRx R211 }
<_ pd([R1, Vii, JR2, V2]),

where

dFi (x) (e-(a+e)CK(o + e))-le(a+e)Xd,Sc(X).
and we have used

1e-("+)K(a + e) < < 1.
7(g)



A SYSTEM OF INTEGRODIFFERENCE EQUATIONS 67

Similarly, from Lemma 5.3, we get

and

Therefore

d([/l, 1], [/1, 2])
_

pd([R1, V1], JR2, V21),

where

p max{p1, /(N)e-(a+)CK(a + )} < 1.

Hence, whenever kl

_
t and 0 _< _< ?1, F B B is a contraction mapping. Thus

F has a unique fixed point JR, V]. The corresponding [/(x), v(x)] satisfies

IN(x), v(x)] Qc[N, v](x)

with N <_ N(x) <_ N*, 0 _< v(x) <_ N(x) for all x e/R, and N(c) N, v(c) 0.
Since R(x) and Y(x) are bounded, N(x) and v(x) are not constant functions. We
claim that N(-c) and v(-c) exist with N(-c) v(-c) N*. If the claim is
proved, IN(x), v(x)] is the desired traveling wave solution.

To prove the claim, we note that (N.$) _> 1 for all x E . Thus v(x) >_
v(x). S(x) for x e . Since v(x) is bounded, Theorem 4.1 of Ess6n [3, p. 126]
implies that v(-cx) exists and v(-oc) = 0. However,

"(N $c(X))
v(x) for x e .

,8(x)

(-)We have the limit limx-_ "),(N S(x)) v(-) 1. Since (N) is strictly decreas-

ing in N, we have limx__._ N S(x) N*. By the General Tauberian Theorem of
Wiener [18], we deduce that

lim N h(x) N* h(x) dx

for all h(x) LI(). Thus Theorem 9 in Chapter V of Widder [171 implies that
N(-c) exists and N(-c) N*. From the N equation, we get (by letting x -c)

N* "/(N*)N* (1- a(N*)) (N* v(-cx))2

Therefore v(-c) N*. This proves the claim.
The uniqueness of this traveling wave for c > c follows from Lemma 5.1 (c) and

the uniqueness of the fixed point of F.
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We now prove the existence of a traveling wave for c c. Define

1
cn Cl / -, n- 1, 2, 3,

n

For each Cn, there exists a unique traveling wave INn (x), v, (x)] of the system Q with
speed c, which satisfies the following conditions:

Nn (CX) N{ N{ <_ Nn (X) <_ N*,
o, o <_ v (x) <

for all x E . And we normalize (by translation) each wave such that

1N*, 1N* < vn(x) <_ N*vn(O)-
2 2

for all x <_ 0. The sequence of functions [Nn(x+c,), Vn(X+C,)] is uniformly bounded.
Since S has a bounded probability density, the sequence of functions [N,(x + c,)
S(x), Vn(X + cn) * $(x)] is equicontinuous on every compact subset of . But

Nn(X -- Cn) * S(x) Nn(x y + c,)d$(y) N, Sen (x).

Thus [N Sc, vn S] are equicontinuous on every compact subset of /R. By
N; <_ Nn(x), Vn(X)2/Nn(x)are uniformly bounded in . Therefore (v2/N),,S, (x)
are equicontinuous on compact subsets of also. Since

Nn o(Nn , Scn)Nn , SCn + (’)/(Nn * SCn) o(Nn * Sc)) 2Vn -n * Sc,

v, ")’(N * cn)Vn * Scn
it follows that [N, v] are equicontinuous on compact subsets of . Thus we can
extract a subsequence of [N, v] which converges to a limit IN, v] uniformly on every
compact subset of Kt. For convenience, we may assume that limn_, N(x) N(x)
and limx_ v(x) v(x). Since this convergence is uniform on compact subsets of

and c is a bounded sequence, the limits

lim Nn(X + cn) N(x + c’), lim Vn(X - cn) v(x +

hold for all x E . Thus, by the Lebesgue Dominated Convergence Theorem,

lim N Sen (x) N S (x), lim v, Sc. (x) v Sc7 (x)

for all x e/R. Then IN(x), v(x)] satisfies

IN(x), v(x)] Qc7 IN, v](x), N <_ N(x) <_ N*, 0 <_ v(x) <_ N(x)

N* and N* < v(x) < N* for all x < 0. It remainsfor all x . Moreover, v(0) 7 7
to show that IN, v] is the desired traveling wave, i.e., [N(+/-), v(+/-)] exist and they
satisfy the boundary conditions (7).

By using 7(N S (x)) >_ 1 for all x and the v equation, we get

v(x) v,Sc (x) for allxe.
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Since v(x) is bounded, Theorem 4.1 of Essn [3, p. 126] implies that v(+/-cx) exist. If
1N. From the .v equation, wev(c) v(-oc), then v(x) is a constant which must be

get 7(N $c (x)) 1 for all x e/R. Thus N(x) N* for all x e/l. But IN*
can not satisfy the N equation. This contradiction establishes that v(ec) - v(-c).

N* N* HenceNow, from -g <_ v(x) <_ for x < 0, we get v(-c) _>

v(x)
lim 7(N So; (x)) lim

We find as before that N(-o) N*. Because [N(-oc), v(-cx)] is a constant fixed
point of Q, the N equation implies that v(-cx) g*. Thus v(c) # N*. If v(c) > 0,
then the same argument implies that N(c) N*, and hence v(c) N*. This is
a contradiction. Therefore we have proved that v(oc) 0. Finally, we need to show
that N(c) exists and is Ni. For this purpose, we define a limsupx__. N(x),
Ni _< a _< N*. We recall that the N equation has the form

N a(N $)N $ + E[N, v],

where

((7(N.$;)-a(N.S)) 2v- (<_ 7(gl) 2+ v.S7.

Thus limx__. E[N, v](x) = 0. By taking the limit sup in the N equation as x --. c,
we get a _< a(a)a. Hence c(a) _> 1. However, gl _< a, a(a) _< a(Ni) 1. Therefore
c(a) 1, i.e., a N{. But g{ <_ N(x) <_ N*, we have liminf_ N(x) >_ N{
limsupx_o N(x). Thus N(oc) exists and N(oo)= Ni. This proves Theorem 2.2. []

We remark that the above proof used the following facts from simple analysis. Let
f(x) be a bounded continuous function and g be a continuous nondecreasing function.
Suppose that F is a probability distribution over//. Then

lim sup f F(x) <_ lim sup f(x), lim sup g(f(x)) g(lim sup f(x)).

These are easily proved by using the definition of limit superior.

6. The proof of Theorem 2.3. We will modify the proof of Theorem 2.2 to
show the asymptotic behavior in Theorem 2.3. As in .5, we will use IN, v] instead of
IN, u]. The mapping Q is defined in 5.

Let v()(x) N()(x)- u()(x) e-X{B() + e-V()(x)} where B() A()

C() and V() (x) R() (x)-U() (x). Define the sequence [(n)(x), (n)(x)] as follows:

[f(n-t-1) (X), (n+l) (X)] Qc[j/(n), (n)](X),
[_(o) (x), (o)(x)] IN() (x), u() (x)].

n 0, 1,2,...,

Then we prove by induction that

[Jr(n) (x), 9(n) (x)] IN(n) (x q- nc), v (n) (x + nc)] for x E/l, n 0, 1, 2, .
Moreover, by Lemma 5.2, we have

(n)(x L(n) + e-{A() + e-R()(x)},
)(n)(x e-ax{B(n) nu e-exv(n)(x)},



70 HWEI-TING LIN

L(n), A(n) and B(n) satisfy the recursive relations in Lemma 5.2. R(n) (x) and V(n) (x)
are bounded continuous functions.

We choose/11 such that, when max0<N<N.{ll- k(N)l []’(N)]} < Wi, we hve
a’ (N*)N*+a(N*) > 0 (due to (A4)). Then, since 0 < i() < 1, we get limn L(n)

N. The rate of convergence is exponential in n. If a and c satisfy the relation
e-CK(o’)/(N) 1, then the infinite product

L() H [e-CK(a)’(L(’))]
n--O

converges and L() > 0. The sequences B(") and A(") converge to the limits B()
and A(), respectively, where

B() L()B(O), A() 2(-(N;)- 1)L() B(0)
7(Ni* -(a’(N)N + 1)

The rate of convergence is also exponential.
We claim that

(12) Ni <_ lim inf/9() (x) <_ lim sup 29() (x) _< N*

uniformly in x E /R. That limsup_/9(n)(x) <_ N* follows from Step 2 of the
proof of Theorem 2.1. Due to the choice of r/l, there exists 5 > 0 and no such
that supxt 29(’)(x) <_ N* + 5 for all n >_ no, and Na(N) is strictly increasing in

0 <_ N <_ N* + 5. We define the sequence/() (x) as follows:

j(n+l) o(j(n) $ .c)J(n) , -c, n no, no + 1, n0 + 2,...,
jr(no) (X) j(no)(X).

By (A2)’, Q[N, u] >_ a(N S)N S. An induction argument gives that/9() (x) >_
/() (x) for n >_ no and x IR. If N() (:t:cx) > 0, Step 1 of the proof of Theorem 2.1
implies that /9(n)(:t:) > 0 for all n. But a’(N{)N{ + 1 > 0 (due to the choice of
/11), and Theorem 3 of Weinberger [15] implies that

lim ()(x)= Ni uniformly in .
n---oo

Hence

lim inf () (x) _> Ni uniformly in .
n---oo

The claim is proved.
We prove Theorem 2.3 (b), (c) first. By the assumption, 0 < cr < *. Let c

(a). Then e-’K(a)’,/(N) 1. Thus L(), A() and B() are finite numbers. We
can choose 0 </12 _<//1 and 51 > 0 such that, when max0_<N_<N* {[1-k(N)], Ik’(N)l} _<
/12, we have

7(N 5)e-(’+)K(a + e) < 1, a’(N 5)(N 5) + a(N 5) < 1

for all 0 < 5 <_ 51. The space/3 in the proof of Theorem 2.2 is modified as follows:

13 {[L,A, B, R(x), V(x)] Ig- Nl _< 5, ]A- A() _< 5, ]B- B()
R(x) and V(x) are bounded continuous functions in q. Let

N(x) L + e-[A + e-R(x)] and v(x) e-’[B + e-V(x)].
0 <_ v(x) <_ N(x) and N -5 <_ N(x) <_ N* + 5 for all x
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For [Li,Ai, Bi, Ri, V] E B, 1, 2, the metric d is defined as

d([L1, A1, B1, R1, V1], [L2, A2, B2, R2, V2])
max{ILx L21, lAx A.I, IB B.I, IIR R2II, Ilyl y2ll, IIu u.ll},

where U R V/, 1, 2. (B, d) is again a complete metric space. The mapping
Qc now corresponds to a mapping F defined by

F[L,A,B,R, V] [L, ft.,/,/, ],

where the image is given as in Lemma 5.2. Since o/(N)N{ + 1 > 0, 5 > 0 can
be chosen such that F" B -- B is assured. A Lipschitz estimate on R(x) and Y(x)
similar to Lemma 5.3 establishes the contraction property of F. Indeed, 0 < r/_< r/2
can be chosen such that, whenever max0<N<g* {ll-k(N)l, Ik’(N)l} _< r/, the following
estimate holds"

d(F[L, A1, B, R, V], F[L., A., Be, R, Ve])_
pd([L,AI,B,R, V], [L2,A2,B2,R2, V2]),

where

p max{7(N 6)e-(’+)CK(a + ), o/(N 5)(N 5) + o(N 6)}.

Therefore F has a unique fixed point in B. We shall identify this fixed point in cases

(b) and (c), respectively.
By the claim (12), we can find nl such that N - <_ (n)(x) <_ N* + for

x , IL(n) -N[ <_ 5, IA(n) -A()I <_ 5, and IB(n) -B()[ <_ 5 for all n >_ n.
Thus [L(n), A(n) B(), R(n) (x), V(n) (x)] B for n _>

(b) When A() C(), we have B() B() 0 for all n. Hence A() B()
0. Then [Ni, 0, 0, 0, 0] B and is the fixed point of F. That is,

and

lim sup (n)(X)e(a+e)x lim sup V(n) (x) O.

By j(n)(x) N(n) (x --[-- he) and (n)(x) v(n) (x -[- nc), (b) is proved.
(c) When A() > C(), then A() > 0. There exists a unique traveling wave

[N(x),v(x)] with speed c such that limx(N(x)-N{)e" A(). Define R(x) and
y(x) as

N(x) N + e-X[A() + R(x)e-x], +

Then [N{,A(), B(), R(x), V(x)] e B and is the fixed point of F. Therefore

lim IIR() Rlloo lim ]IV(n) Vl[oo 0.
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Hence

and

lim sup I(n) (x) v(x)le
n--,c x>l

lim sup I(B(n) B()) / e-eX(y(n)(x) V(x))] O.
n---,oc x>l

Let c > c (a) be a larger wave speed. Then

max IN(n) (x) NI sup liar(n) (y) Nilx_nc’ y_n(c’--c)

<_ sup [29()(y)- g(y)l / sup
y>_O y>_n(c’--c)

IN(y)

But limn_ supy>_n(c,_c)IN(y) Nil 0; therefore,

lim max IN(n) (x) N O.
n (:x) x n

(c) is proved.
(a) When a _> A*, then, for any 0 < (71 < ,*, we can write

N()(x) L(o) + e-lX(x)e-lx, u(O)(x) L(O) + e.-lX_(x)c-1x,

where 0 < e < O"- O" 1. /) and D are bounded continuous functions. Let C IIl(Crl).
Then (b) implies that

lim max IN(n) (x) Nil lim max lu(n) (x) N o.
n-,oc x>_ncl n-,oc x>_nc

Since al can be chosen arbitrarily in 0 < al < A*, cl > c is arbitrary also. This
proves (a).

The proof of Theorem 2.3 is complete.
Remark. When L() Nf and

A(O) 2(y(Ni) 1) c(O)
(N{)- 1 + a’(N)N{

in Theorem 2.3, the rate of convergence in (b) and (c) is exponential. If C() O,
then

lim sup IN(n) (x + nc) Ni le(+) lim sup lit(n)(X "-t-" nc) N{ le(+)x 0.
n---x) xEK/ n---,c xE

On the other hand, if C() > 0, then

lim sup IN()(x + nc) N(x)le(+’) lim sup lu() (x + nc) u(x)le(‘’+) O.
n--c xK/ n---cx
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7. Concluding remarks. We have shown some special cases of the dynamics
of Q in Theorems 2.1-2.3 when the initial generation has positive local population
density N() (x) at x +/-. In this section, we shall make a few remarks related to
the case when N() (+c) 0 (for example, when N() (x) has compact support) and
to the heterozygote superior case.

() Traveling waves connecting IN*, 0] and [0, 0]. We assume (A1)-(An). IN*, 0]
and [0, 0] are always constant fixed points of Q. Define

c* inf
1

,x>0
log(7(0)K(A)).

It is shown in Weinberger [15], [16] that the traveling wave equation

(13) N=7(N,$)N,$, N(-oc)-N*, N(c)=0
of the mapping 7(N * S)N S admits a solution iff c > c*. When c > c*, the traveling
wave is unique up to translation. Then, as a direct consequence of Remarks 3.1 and
3.2, the system of the traveling wave equations

[N(x c), u(x c)] Q[N, u](x),
[N(-c), u(-c)] IN*, 0], [N(), u(oc)] [0, 0]

u(x) c*admits a solution IN(x), u(x)] with limx_ N(x) < 1 iff c

_
and the profile is

9i [N(), 0] n N() at (la). Wn > *, tna [N(), ()] t
lim_ N(x) < 1 is also unique up to translation. We note that, when u(x) 0, the

system of the traveling wave equations for Q becomes (13).
()We try to remove the condition limx_ N() < 1. Indeed, if d7) 5 and S has

a probability density of type PF. (see Lui [11]), then IN(x), 0], where N(x) satisfies
(13), is the unique (up to translation) traveling wave of Q when c > c*.

The proof is as follows. Let [2, ] A be a traveling wave solution of the system
with wave speed c > c*. Define the sequence of functions N() (x) by

N(+)(x)-/(N() ,S(x))N() ,S(x), N()(x)- (x), n=0,1,2,

By (A2), an induction argument shows that

0 <_ (x- nc)<_ N()(x), n- 1,2, 3,

Since S has a probability density of type PF2, N(n) (x) tends asymptotically to N(x-
nc +
N(x + ) for all x e Kt. Let a be the smallest positive root of "7(O)e-’K(A) 1.
Then g(x)e is bounded, and so is g(x)ex. Since 0 _< (x) _< g(x), t(x)e’ is
also bounded.

We denote R(x) N(x)e’ and W(x) ft(x)e. By multiplying both sides of
the traveling wave equations by e, we get

R 7(N* S)R, F +7(0) 7(0) -F * F

(0) R
F

W 7(N * S) a(N, S) 7(n * S)
7(0)

w, F + 7(0) *

(14) (0) n F
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where dF(x) 9/(O)eXdS(x). By (A2) and -),(N So) _< 9’(0), we have

o < R(x)< R, F(x), O<_W<_W,F(x) for allxE.

Then Theorem 4.1 of Essn [3] implies that R(+oc) and W(+oc) exist. Since R(-oc)
0 and R 0, R(cx) > 0. For convenience, let A1 R(c) and A2 W(c). Then,
by taking x --. c in (14), we get

A1 A1 + (oz(0)- (0))A2
-(0) A-- +

A2 A2 + (a(0)- "(0)) A22
"(0) A1

2(/3(0) -(0)) A2(A1 A.)
-(0) A1

(/3(0) -(0)) A2(A1 A2)
"(0) A1

By (A2), c(0) < 7(0). Thus A2 0. We have shown that W(+cx) 0. Since
W(x) <_ W F(x) for all x e , Theorem 4.1 of Ess6n [3] implies that W(x) =_ O.
Thus (x) =_ 0. Therefore

2(x) 2 &(x), N*, 0.

But c > c*, and there exists some t such that N(x) N(x + t).
The asymptotic behavior and the stability of the traveling waves of the scalar

mapping -(N S)N S are studied extensively in Weinberger [15], [16] and Lui [11]-
[13]. They show that when the initial generation N()(x) satisfies N()(oc) 0 in a
certain sense, the nth generation N(n) (x) tends asymptotically to a traveling wave. If
the initial generation IN() (x), u() (x)] of the system Q satisfies N() (cx)) 0, we think
that a similar form of Theorem 2.3 should hold when N is replaced by 0, and the
traveling wave IN(x), u(x)] is the wave connecting IN*, 0] and [0, 0]. In other words,
c* should be characterized as the asymptotic speed for the spread of the advantageous
gene when N() (x) has compact support.

(b) The degenerate system Q where a(N) (N) 9/(N) for all 0 <_ g <_ 1.
The system decouples into

N 7(N * S)N S, = -/(g ,s u + gg . T)
.$

Suppose that (A1), (A3), and (A4) hold. The constant fixed points consist of [0, 0]
and [N*,u*] for all 0 <_ u* _< N*. If [N()(x),u()(x)] e A satisfies N()(+oc) > 0,
then N(n)(x) tends to N* uniformly in JR, and u(n)(x) tends to u* uniformly on

compact subsets of/R. u* is given by

u(O)(_o
u* N* (1-J)N(O) }+ j N(O)(oc)

j- lim

n times

where 7 1(8 +9 ,S). The system admits a traveling wave [N(x), u(x)] with speed
c, which satisfies the boundary conditions

[N(-c),u(-c)] [N*,u*], [N(c),u(cx)] [0,0], 0 <_ u* <_ N*

iff c > c* The wave is uniquely given by u(x) * N(x) where N(x) satisfies (13)
These waves are also the asymptotic states of some initial generations. These results
will be published elsewhere, where the condition (A4) can be relaxed to include some
cases of-1 < "’(N*)N* + 1 < O.
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(c) The heterozygote superior case. When /(N) > max{a(N),-(N)} for all
0 < N < 1, there exists the interior constant fixed point of Q, i.e., the so-called
polymorphism, where two alleles coexist in equilibrium. The dynamics of Q restricted
to constant states is already nontrivial. When the viability functions are density in-
dependent, the complete dynamics is known (for example, Karlin [6]). However, the
mapping Q has density-dependent viability functions. One can show (see Lin [10])
that the dynamics of Q (restricted to constant states) tends asymptotically to the
dynamics of the scalar mapping NG(N), where

G(N) /3(N)2 a(N)7(N)
2/(N)-a(N)- 7(N)"

The chaos occurs generically. In general, the relation between the system Q and
the scalar mapping G(N. S)N. ,S is yet to be explored. Only some special cases
where c, , and satisfy certain relations are known. These results will be published
elsewhere.
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BLOW-UP SOLUTIONS OF QUASI-LINEAR DEGENERATE
PARABOLIC EQUATIONS WITH ,CONVECTION *

RYUICHI SUZUKI

Abstract. The Cauchy problem of the quasi-linear degenerate parabolic equations with con-

vection term is considered. Under some conditions, the existence of single-point blow-up solutions is

shown; it is also shown that the blow-up point is bounded. In addition, the asymptotic behavior of
interfaces of blow-up solutions is studied.

Key words, blow-up solution, single-point blow-up, quasi-linear degenerate parabolic equation,
convection, asymptotic behaviors of interfaces, Cauchy problem
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O. Introduction. In this paper we shall consider the Cauchy problem in N"

(0.1) Ot(u) uxx + g(u)x f(u), (x, t) e (0, T),
(0.2) (x, 0) (x), x e ,
where/(v), g(v), and f(v) with v >_ 0 and (x) are nonnegative continuous functions.

Equation (0.1) describes the combustion process with convection in a stationary
medium in which the thermal conductivity ’(u)-1, the volume heat source f(u), and
convection g(u) depend in a nonlinear way on the temperature (u) (u(x, t)) of
the medium.

Throughout this paper we assume
(A1) (v),f(v),g(v) e C(R+)3 C(N+),/(v) > 0,/’(v) > 0,/"(v) <_ 0, and

I(v),g(v),g’(v) > 0 for v > 0;lim-oc/(v)= ;I o/-1 and g o/-I are locally
Lipschitz continuous in [/(0),

(A2) {go/- }’(u) _< Cv/{/-i }’(u) in the neighborhood of u 0 for some positive
constant C.

(A3) (x) >_ 0, 0, and e IS(N) (bounded continuous in
With these conditions the above Cauchy problem has a unique local solution

u(x, t) (in time), which satisfies (0, 1)in IR x (0, T)in the following weak sense, where
T > 0 is assumed to be sufficiently small (see, e.g., Oleinik et al. [8], [11], [15]).

DEFINITION 0.1. Let G be an open interval in N. By a weak solution of equation
(0.1) in G (0, T) we mean a function u(x, t) such that

(1) u(x,t) >_ 0 in G [0, T) and e (G [0, T])for each 0 < T < T.
(2) For any bounded open interval (xl,x2) C G, 0 < T < T and (x,t)

C2(t [0, T)), which vanishes on x Xl,X2, the following identity holds:

(0.3)

* Received by the editors August 24, 1992; accepte4 for publication (in revised form) September
14, 1993.

Department of Mathematics, Tokyo Metropolitan College of Aeronautical Engineering, 8-52-1
Minamisenju, Arakawa-ku, Tokyo, 116 Japan.
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Remark 0.2. If 2q _> m + 1,

(0.4) (ul/’)t uxx (uq/m)x + up/m (rn, p, q >_ 1)

satisfies (A1), (A2), and (A3).
If u(x, t) does not exist globally in time, its existence time T < is defined by

T sup{r > 0; u(x, t) is bounded in ] x [0, T]},

and we see that

(0.6) lim sup u(x, t) oc.
tTx

In this case we say that u is a blow-up solution and T is a blow-up time.
The main purpose of the present paper is the study of blow-up solutions. We are

especially interested in the shape of the blow-up set which locates the "hot-spots" at
the blow-up time. In addition, since our quasi-linear equation (0.1) has a property
of the finite propagation of an interface, there are some interesting subjects such as
asymptotic behavior of the interface near the blow-up time. These problems have been
studied for (0.1) without convection term in [5], [6], [7], and [16], and by Mochizuki
and Suzuki in [14].

First, we consider the. finite propagation of interfaces of solutions of (0.1), (0.2).
To deal with this we require the additional conditions:

(A4) (x) > 0 for x e (-al,al) and 0 for x (-a,a),
gt

(Ah) lim (v) 0,
v---0 - dv

(A6) (0) f(0) 0, /(V) < "
Remark 0.3. If q > 1 and rn > 1, equation (0.4) satisfies (Ah) and (A6).
Put

(0.7) a(t) {x e t) > 0}, r(t) O(t)

for each .t E (0, T). Then the interface F is given by

(0.8) r U r(t) (t),
O<t<T

and under assumptions (A1)-(A6) we can show that (t) is bounded and nondecreas-
ing in t e [0, T) (see Theorem 1.7). Moreover, (t) is represented by continuous
functions i(t) [0, T) I (i 1,2) like 2(t) {xlx e ((t),2(t))}. For the case
without convection term in (0.1), these results have been shown by Knerr [11], Suzuki
[16], and Mochizuki and Suzuki [14].

Next, we restrict ourselves to the blow-up solution of (0.1), (0.2) and shall study
the shape of the blow-up set and the behavior of the interface of u near the blow-up
time. The existence and nonexistence of a blow-up solution of (0.1), (0.2) is discussed
in Friedman and Lacey [4], Imai and Mochizuki [9], and Imai, Mochizuki, and Suzuki
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[10]. We assume the following condition, as given in [10], as a "necessary" condition
to raise a blow-up:

(A7) / ’(v) dv < oc.
f(v)J1

Furthermore, we assume that f(u) grows more rapidly than g(u) and u (see (A10)
in 3), and, for the initial data o(x), that

(AS)
(A9)

"- {g()}’ + f() >_ 0 in

the lap-number of (x) in [al, a2] is two.

Here, we define the lap-number of o(x) in the following way.
DEFINITION 0.4 (see [13]). Let I [a, b] be a closed interval and w w(x) be a

real-valued function on [a, b]. We say w is piecewise monotone if I can be divided into
a finite number of nonoverlapping subintervals J, J2 J, "t2i=Ji I), on each of
which w is monotone. Then there is the least value of the numbers m for which we
can find a division {Ji} as above. This value is called the lap-number of w on [a, b]
and is denoted by l(w).

Then, for the semilinear case (u) u, Friedman and Lacey [4] have shown
the existence of single-point blow-up solutions of (0.1) for the Dirichlet problem. In
this paper we extend this result to the Cauchy problem of a degenerate quasi-linear
equation. Moreover, we can also get that the left side interfaces stay bounded as t
tends to the blow-up time T. To state these results exactly, we need the definition of
a blow-up set.

DEFINITION 0.5. The blow-up set of u is defined as

S- {x e I; there is a sequence (xi, ti) e (0, T)
such that xi -- x, ti -- T, and u(xi, ti) --

and each x E S is called a blow-up point of u.
Our second result is that, if we add the assumption (A10) in 3, then we obtain

S {70} for some -c < 70 <_ c and -co < limtTT (t) (see Theorem 3.4).
The final question we consider is whether 70 < c or r]0 c holds. Our answer

is that 70 < ov (see Theorem 4.4) if we add another condition on f such that f(u)
grows more rapidly than g(u) and u (see (A11) in 4), and if we choose a special initial
data corresponding to (All) (see (A12)in 4).

Remark 0.6. p > max{m, 2q m,m + q 1} and 2q _> m + 1; (0.4) satisfies
(A10), (All).

Remark 0.7. Condition (A2) is needed to show the uniqueness of weak solutions
of (0.1). If uniqueness of weak solutions to (0.1) holds, the above results are valid
without (A2).

The methods of proving these results are essentially the same as those in Friedman
and Lacey [4] and Suzuki [16]. We use the smoothness and comparison principle and
a property of the zero set of Ux(X, t).

This paper is structured as follows. In 1 we summarize the above two principles
and show the finite propagation of the interfaces of the solutions (see Theorem 1.7).
In 2 we study the property of the zero set of ux(x, t), where the lap-number of the
initial data of the solution u(x, t) is 2. Using this property we prove the existence of
single-point blow-up solutions in 3. Finally, adding some assumptions, we show that
the blow-up point is bounded in 4.
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1. A comparison principle and finite propagation of interfaces. In this
section we begin with two propositions that will be fundamental tools in our study of
the interfaces and the blow-up sets.

PROPOSITION 1.1 (smoothness principle). Assume (A1)-(A3). Let G be an open
interval and let u be a solution of (0.1) in G >< (0, T) in the sense of Definition 0.1. If
u(2, t-) > 0 for some (2, t-) E G (0, T), then u is a classical solution in a neighborhood
W of (2, t--), and hence u e C(W).

Proof. Note that (v), f(v), g(v) C(]+) and ’(v) > 0 for v > 0. Then the
above proposition follows frOn the usual parabolic regularization method (see, e.g.,
Ladyzensknja, Solonnikov, and Ural’ceva [12]).

DEFINITION 1.2. For each open interval G c I, a supersolution (or subsolution)
of (0.1) in G (0, T) is defined by (1) and (2) of Definition 0.1 with equality in (0.3)
replaced by >_ or <_).

PROPOSITION 1.3 (comparison principle). Assume (A1)-(A3). Let u (or v) be a

superposition (or subsolution) of (0.1) in G (0, T). If u >_ v on the parabolic boundary
of G (0, T), then we have u >_ v in the whole G (0, T).

Proof. See, e.g., Gilding [8].
Remark 1.4. Condition (A2) is required in the proof of Proposition 1.3. But this

condition could have been replaced by a weaker condition if we added some regularity
conditions on (x) (see Diaz and Kersner [3]).

In the rest of this section, based on these principles, we shall show finite propa-
gation of the interface in t < T. First, we prove several lemmas.

LEMMA 1.5 (positivity). Assume (A1)-(A3) and (Ab). Let u be a weak solution

of (0.1), (0.2). If u(2, t--) > 0 for some (2, t-) e I (0, T), then

(1.1) u(2, t)>0 fort>_.

Proof. (cf. Suzuki [16] and Friedman and Lacey [4]). Without loss of generality
we can assume 2 0. Since u is continuous in 1 [0, T), there exist a0 > 0 and 5 > 0
such that

u(x, t) >_ ao in [-25, 25] [, + 25).

Let p(t) be the solution to

Ap
(1.2) p’(t)

/,(p)
in_ (-, ) with p(t-) a,

where A (/25)2 and 0 < a < a0. Integrating this, we have

(1.3) p(t) W-I(W(a) A(t- t-)), where W(s) s ’(V)v dv.

Note that ’(v) > 0 and "(v) _< 0 in v > 0. Then, as is easily seen, W(s) is increasing
in s > 0 and W(s) --. -cx as s O. Thus p(t) > 0 for each t > .

Now we put

(1.4) (xv(x, t) p(t) sin

Then, since fl’(p) <_ fl’(v), we see

(x, t)e (-5, 5) x T).
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Next we put

i g’
sup () dt.(1.6) r(t)

o<_<_p(t)

Set

and

R1 {0 < x < 5, 0 < t < T},
R2-{r(t)-r(T)<x<0,0<t<T},

R3 {r(t) r(T) < x < r(t) r(T), 0 < t < T}.

In addition, we define a function w(x, t) in the following way:

w(x, t) v(x, t) inR1,

w(x,t) p(t) inR2
(x, t) (x (t) + (T), t)
w(x, t) 0 otherwise.

in R3

Since

g!
r(T) < T sup (()

O_<_<a -then, from (A5), if a > 0 is small enough, we have

0 < r(T) < 6.

Hence we obtain

and

(x, t :0
w(x, t-) <_ a

inx<_-25, x_>25,
in -25<_x<_25,

(.s) (x, t-) < (x, t-),

On the other hand, we compute

and

() + (w) () + (v)v
_g’(v)vx_O inR1 (sincevx_0inR1),

(w)t wxx + g(w)x ’(p(t))p’(t)

_
0 in R2 (since p1(t) <_ 0),

() x +() ’ Z’r% x + ’()v
< (’(v) ’Z’)Vx

=/’(v) (v)- sup ()
op(t)

<0

Vx

in R3 (since v _< p, v _> 0 in R3 and (A5)).
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By this computation we can see that w(x, t) is a subsolution of (0.1) in IR [0, T).
Applying the comparison principle (Proposition 1.3) to w and u, we get

(1.9) u(x, t) >_ w(x, t), (x, t) e 1 [-, T),

namely,

(1.10) u(O, t) >_ p(t) > O, t e [, T). []

This lemma and the comparison principle imply the existence of the interface;
that is, if we put

(1.11) (t) i{l(x, t) > 0},

(1.12) 2(t) sup(x]u(x, t) > 0),

and assume (A4), then we have

(1.13) {xlu(x,t) > 0} (l(t),2(t)) for each t e [0,T).

Furthermore, if we assume (A6), then we can obtain the finite propagation of the
interface in t < T using the following lemma.

LEMMA 1.6. Assume (A1)-(A6). Let u(x,t) bea weak solution of (0.1), (0.2).
Suppose that there exist (a, t l) E IR x [0, T) and M > 0 such that

(1.14) u(x, t 0 or x > a,

(1.15) u(a, t) <_ M for t e It1, T).

Then, there exist > 0 and h > 0 depending only on M such that

u(x,t) =0 for(x,t) e [a -k 1, oo) [tl,tl-kh]N[tl,T).

Furthermore, if M > 0 is small enough, we can take > 0 small enough.
Proof. (cf. Lemma 2.2 in this paper, Lemma 2.3 of Mochizuki and Suzuki [14],

and Knerr [11]). We construct a supersolution w(x, t) of (0.1) in the form

(1.17) w(x, t) b-l([p(t)- (x- a)]+),

where [g]+ max{g, 0},(u) fdv//3(v),p(t) C(M)(t t) + (M), and
C(M) 1 + SUPo<v<2M{g’/’+ f/’} (these functions are well defined since we
have assumed (Ah)and (A6)).

In fact, in the domain {{x > a} [tl,t + k]} C {p(t) >_ x- a}, where k
C(M)-I{b(2M) b(M)}, we have w b-(p(t) x / a) <_ -(p(t + k)) 2M,
and hence

(1.18)

,() () + f()
Z,() () + I()1 Z,() Z()Z’()

g,(w) + f(w) < C(M) Ore(w).<_ 1 + ,, (W) (w)’(w)
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Therefore, this w is extended by 0 to the whole {x _> a} [tl, tl + k] as a supersolution
of (0.1). To achieve this, we have only to note that f(0) 0 and Ozw(p(t) + a, t)
(-1),(0) 0.

Moreover, we have

w(x,t) >_ O u(x,t) onx>_a,
w(x,t) >_ -l(p(t)) _> -1((M))= M >_ u(x,t) onx=a, t>_t.

Thus, Proposition 1.3 implies that

(1.19) w (x, t) >_ u (x, t) in {x >_ a} [tl, tl q-

where k’ min{k, T tl }.
By the property of w(x, t), choosing h k’ and p(tl + h), we conclude the

assertion of (1.16). Since (M) --, 0 as M --, 0, we can choose k small if M > 0 is
small enough. Hence we can choose > 0 small enough also.

THEOREM 1.7. Assume (A1)-(A6). Let u(x, t) be a weak solution to (0.1), (0.2).
Then f(t) forms a bounded set in I and is nondecreasing in t:

a(tl) C "(t2) if 1 < t2,

and there exist continuous functions i(t)" [0, T) --* I (i 1, 2) such that

(t) {XIX e (l(t), 2(t))}.

Proof. Proposition 1.3 and Lemmas 1.5 and 1.6 are reduced to Theorem 1.7
easily.

2. The property of the zero set of ux(x,t). Throughout this section, we
assume (A1)-(A6). Furthermore, we assume that the lap-number of the initial data
99(x) is 2 (see (A9)). In this section we prove the next proposition.

PPOPOSITION 2.1. Let u(x, t) and i(t) be as in Theorem 1.7. If we assume (A9),
then there exists a C1-function /(t): (0, T) --. such that

(2.1) {X e (l(t), 2(t)); ltx(X, t) O}

for each t (0, T) and for some 5 > 0

--al -- <_ ?7(t) for all t (O,T).

First we give the following lemma.
LEMMA 2.2. Let 9n(X) be a C-function such that 9(x) >_ l/n, 99(q-n) l/n,

and n(X) converges to 9(x) as n goes to c locally uniformly with respect to x.
Furthermore, assume that the maximum point of9n (x) is unique and aa99n(X) >_ n(X)
in x <_ a ira <_--a1+5, and in x >_ a ira >_ a for some 5 > O. Here we note that
(aax + x)/2 a and au(x) u(ax). Let un(x,t) be a classical solution of the
initial boundary value problem

(2.3)
+

0)
u(+n, t) l/n,

(x,t) e [-n,n] (O,T),
x e I-n, n],
t>0.
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Then un (x, t) > 1In for (x, t)
locally uniformly in 1 [0, T).

Proof. See Gilding [8].
Remark 2.3. The existence of the above n(X) is guaranteed by assumptions (A4)

and (A9).
LEMMA 2.4. Let Un(x,t) be as in Lemma 2.2. Then for each T’ E (O,T) there

exists a C1-function ln(t) (0, T’) --* 1 with large n such that

(2.4) {x e (-n, n); Un,x(x,t) 0} {r/n(t)} for each t e (O,T’).

Furthermore,

(2.5) -al + 5 <_ ]n(t) for t (O,T’),

where > 0 is as in Lemma 2.2.
Before we show this lemma, we need some notation and definitions (cf. Chen and

Matano [2] and Suzuki [16]).
Notation 2.5. Let w(x) be a continuous real-vMued function on K where K is a

bounded closed interval in 1. We define the nodal number of w by

UK(W) the number of points x e K with w(x)= O.

DEFINITION 2.6. We say that w C(K) poses only simple zeros if w’(x) # 0

for any x K such that w(x) O. The set of all such functions is denoted by E (K).
LEMMA 2.7 (see Angenent [1] and note Suzuki [16]). Let p(x,t),q(x,t), and

r(x, t) be locally bounded continuous functions on [a, b] (to, T) with pxx, pxt, ptt, px, pt,

qx, qt all locally bounded continuous. Furthermore, let p(x, t) > 0 and let w(x, t) be a
classical solution of

(.6) (x,t) + q(x, t) + (x, t), (x, t) 6 [a, b] x (to, T).

Assume that w(a, t) # 0 and w(b, t) # 0 for any t e (to, T). Then
(i) (w(., t)) is finite for any t (to, T) and is monotone nonincreasing in t;
(ii) If xo is a multiple zero of w(.,tl), then u(w(.,t2)) > (w(.,t3)) for all

to < t2 < tl < t3 < T;
(iii) There exists a strictly decreasing sequence of points {tk} such that {tk} to

and w(x, t) e E ([a, b]) for any t e (to, T) \ {t}.
On the other hand, we have the following lemma about lap-number (see

tano [13]).
LEMMA 2.8 (Matano). Let u(x, t) be a solution of the following Dirichlet problem:

ut a(x, t)u + b(x, t)u + f(t, u)
(x, O) o(x)
u(a, t) u(b, t) 0

in [a, b] (0, T),
in [a, bl,

(0, T),

where no(x) e C([a,b] [0, T)),a e C([a,b] [0,T)),b e C([a,b] [0,T)) for some

0 < a < 1, f e C([0, T) I), and a(x, t) >_ 5 in [a, b] [0, T) for some > O. Then if
we assume that u(x, t) > 0 in [a, b] [0, T) and/(u(., 0)) 0, the lap-number l(u(., t))
is nonincreasing in t [0, T).

Proof of Lamina 2.4. Applying the maximum principle to Un(X, t), we obtain

(2.7) un(x,t) > l/n inxe[-n,n], t > O
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and

(2.8) :t=ux(=t=n, t) < 0 for t > 0.

Note that the lap-number l(un(,,t)) l(un(’,t)- 1/n) for t > 0 is equal to two by
Lemma 2.8. Hence, since the nodal number u[-n,n](U(’, t)) 1, it follows from Lemma
2.7 (ii) that there exists a Cl-function rn(t) such that

(2.9) {x E (-n, n); un,x(x, t) 0} {rn(t)} for t > 0.

set
Next we prove (2.5) (see Friedman and Lacey [41). Choose a e [-n,-al + ] and

w u(x, t) v(x, t) in [-n, a]
where u Un and v aaUn. Then w satisfies

(2.10) ’(u)wt wxx + Cw -{g’ (u) + g’ (v) }ux + g’ (v)wx,

where

c C(x, t) +
--V --V

Furthermore, if we set h(x, t) e-’tw, where 7 is chosen later, then h(x, t) satisfies
the following equation"

(2.11) ’(v)ht hx + {’,/’ + C}h -{g’(u) + g’(v)}e-’tu + g’(v)h.

Since ’(v) > 0 and C < cx for each t e [0, T’] and x e [-n, n], if 7 is large enough,
then

+ c > 0.

Further, we note that

h(a,t) =0,
(2.12) h(-n,t) e-t{u(-n,t) v} e-t{1/n v} <_ 0 for t > 0,

h(x, O) fln -O’aCfln 0 for x [-n, hi.

We shall claim that h _< 0 in [-n, a] x [0, T’]. Indeed, otherwise we take the
positive maximum value of h(x, t) at some point (2, t-) in (-n, a) x (0, T’]. Then we
have

(2.13) h(2, t-) > O, h(2, t-) O, ht(2, t-) >_ O, and hx(2, t-) <: 0,

and for u(x, t), we also have

(2.14) u(2, t-) > v(2, t-),

(2.15) u(2, t-) v(2, t-).

Suppose 2 _< rn(t-). Then u(2, t-) >_ 0. Noting this and (2.13), we see

’(v)ht hxx + {’(v) + C}h > -{g’(u) + g’(v)}e-’tux + g’(v)h
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at (x, t) (2, t-). This contradicts (2.11).
Next suppose r/n(t-) < 2. Then ux(2, t-) < 0 and vx(2, t-) > 0. These results con-

tradict (2.15).
Hence we obtain h <_ 0 in I-n, a] [0, T’), that is,

(2.16) Un(X,t) <_ aaUn(X,t) for (x,t) e [-n,a] {0, T’].

Therefore,

(2.17) un,(a, t) > 0 for t C [0, T’].

Since a c I-n, a + 5] is chosen arbitrarily, we get

rn(t) >--hi A-.

This shows (2.5). The proof is complete.
Proof of Proposition 2.1. Using Lemmas 2.4 and 2.7 and the limit procedure of

an approximate solution Un, we can prove Proposition 2.1. Indeed, by Theorem 1.7
there exist continuous functions i(t): [0, T) -- 1 such that

(2.18) 1 (0) -a, 2(0) al for t e [0, T)

and

(2.19) {x; u(x, t) > 0} ((t),2(t)) for each t e (0, T).

Hence, for each t e (0, T), there exist sequences {x:} and {hj } (hi > 0) such that

(2.20) X- -- l(tl) and x-
(2.21) 1 (t) < X- < Xf < 2(t) for t

and

(2.22) +u(x, t) < 0 for each t c (t- 5, tl + 5).

Now we shall show that the nodal number of ux(., tl) on [x-, xf] is 1, namely,

(2.23) [x; .+](u(.,tl))= 1.

Applying Lemma 2.7 to ux(.,t) in [x-, x-], we can see that [x;,xf](u(.,t)) is finite

for each t e (tl -by, tl + by) and is nonincreasing in t e (tl -5j, tl + 5j), and we see
that uz(., t2) e E([x-,x-]) for some t2 e (tl -by, t). Then we get that if n is large
enough,

(2.24) c t e +

In fact, assume that there exists a subsequence {r/nk (t)} C (n(t)} such that. x- <
/nk (t). Then, by Lemma 2.4, we obtain that un (x, t) is increasing in x [x-f,x].
Therefore, since Un (x, t) converges to u(x, t) as nk -- cx3 by Lemma 2.2, we can see
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that u(x, t) has the same property as Unk (x, t) and so ux(x-, t) > O. This contradicts
(2.22). On the other hand assume that there exists a subsequence {rbk (t)} C {rb(t)}
such that r/n (t) <_ xj we can also show the same contradiction.

For each t E (tl- 5, tl + 5j) let T0(t) be an accumulating point of {rn(t)}. Then,
since u(., t) is decreasing in x [xj, v0(t)] and u(., t) is nonincreasing in x [r0(t), x-],
namely, ux(x, t) > 0 in x [x-, r/0(t)] and u(x, t) < 0 in x [0(t),x-], we obtain

ux(ro(t),t) 0 and r0(t) (x-,x-f).
Take t t2 and assume that there is a point Xl (x-,xj) but 70 such that

u(xl, t2) 0. It follows from u(., t2) E (Ix}-, x-]) that Xl iS a simple zero point of

u(x, t2) in [x;,x-f], namely, ux(Xl, t2) 0. This contradicts the fact that u(x, t2) >
0 (or < 0) in the neighborhoods of xl. Hence the zero points of ux(x, t2) in [x-,x-f]
coincide with r0(t2), that is, u[}-,l(U(., t2))= 1.

Since the nodal number of u(., t) in [x-, x-] is nonincreasing in t, we get (2.23).
Furthermore, noting that the accumulating point is only r/0(tl), we see that ,(tl) --rl0(tl) as n

Therefore, if j - oc in (2.23), then we get

u(l(tl),.(t2))(ux(.,t)) 1

and
{x (l(tl),2(t));u(z,t) 0} {r/0(tl)}.

Noting that t (0, T) is chosen arbitrarily and u(., tl) e 2 (1 (tl), @.(t)) by Lemma
2.7 (ii), and setting r/(t) r0(t), we have that
for each t (0, T), r(t) is el-function, and

(2.25) rn(t) -- r(t) (n -, oc) for each t e (0, T).

(2.5) is reduced by (2.2) easily. The proof is complete.

3. Single-point blow-up. In this section we assume (A1)-(A6) and (A9), we
show the existence of single-point blow-up solutions of (0.1), (0.2), and we study the
asymptotic behavior of interfaces of the blow-up solutions. To accomplish this, we
also need (A7) and (AS) and the following assumptions:

(A10) There exists a C2-function F(v) such that
(i) F(v), F’(v), F"(v) > 0 for v > O,
(ii) f @/F(() < ee, and
(iii) there are constants c > 0 and vo > 0 such that

f’F- F’f (g’)2F > c(F2g’’ + F’F) for v > vo.

Condition (A10) shows that f(u) grows more rapidly than 9(u) and u.
Remark 3.1. (A0) is satisfied by (0.4) if p > max{m, 2q- m}. In this case we

can put F() /’ for rn < i5 < min{p, p + rn q}.
Condition (A8) is required to ensure that u(x, t) is increasing in t for each x N.

Namely, we have the following lemma.
LEMMa 3.2. Assume (A1)-(A3) and (AS). Let u(x,t) be a weak solution of

(0.1), (0.2) in R x (0, T). Then u(x, t) is nondecreasing in t. If u(xo, to) > 0 for some
(xo, to) x (0, T), then Otu(x, t) >_ 0 in the neighborhood of (xo, to).

Further, if we add (A7) and (A10), then we can get the following lemma.
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LEMMA 3.3 (cf. Chen and Matano [2] and Suzuki [16]). Assume (A1)-(A3), (A7),
(A8), and (A10). Let gt (a, b) be a bounded open interval and let u(x, t) be a positive
weak solution of (0.1) in QT (0, T). Furthermore, suppose that

(3.1) ux(x, t) > 0 [or ux(x, t) < 0] in (x, t) e [c- , c + 6] x (T, T)

for some c e (a, b) and > 0 with (c 5, c + ) c (a, b) and some T e (O, T). Then
there are no blow-up points in (c- , c + ).

Proof. We shall prove this lemma in the case when

(3.2) u(x,t)>O in(x,t) e(c-5, c+5) (T,T).

Assume xo e (c- 5, c + 5) is a blow-up point of u(x, t). Then, by (3.2) and Lemma 3.2
we soon see that

(3.3) lim u(x, t) oc for x e (xo, c + 5).
tTT

Choose d E (x0, c + 5) and set

(3.4) J u p(x)F(u(x, t)), (x, t) e Q (d, c + ) (T, T)

and

(3.5) [p(x) Sinc+5_dj
where > 0 and tl (T, T) is chosen later. We compute

(3.6)
(’J)t Jx epA(x,t) + B(x,t)J g’J

’Fut + pF"(Ux)2,

where

and

p/ p. }A(x, t) f’F F’f + ---9’ + F e{pF29’’ + 2p’F’F}

B(x, t) f’ + epF’g’ + 2ep’F’ eg’pF’ g"J- 2eg"pF.

Here we used the relations

uxz Jx + ep’F + epF’J + e2p2F’F

If we note that

and

(Ux)2 j2 + 2epFJ + e2p2F2.

p’ 2 sin A(x d). cos A(x d)

p" 2A2 (1 2p) where ,
c+6-d’
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then we get

-2g’ sin A(x d) cos A(x d) + 2A2(1 2p)
(sin A(x d)}2

2( cos A(x d). sin A(x d). g’}
{sin A(x d) }2

2{ sin A(x d). Ig’l}
{sin A(x d)}2

Hence, putting sin A(x d), we get"

v"-P--g + > -4/2 -4-
P P 02

where 0 < 0 < 1.
Set

h(O) -4 + 2
and assume that 0 is independent of g’. Then we see that h(O) takes the minimum
value

(9-) 1 2A
h
2

=-42-(g’)2

since h’(O) -420-3 + 20-2g’, and h(O) 0 is reduced to 0 2A/Ig’l. Therefore,
we have

p" 1
(3.7) _P_g,+_ > _4A2_ (g,)2p-

Thus, we get the lower bound estimate of A(x, t)"

(3.8) A(x,t) >_ f’F- F’f + (4A2 + 1/2 (g’)2)F- {pF2g’’ + 2Ip’IF’F}.

Considering (A10), Lemma 3.2, and the fact that F’(u) goes to infinity as u cx), if
t is close enough to T we have

(3.9) (’J)t Jxx >_ B(x,t)J- g’Jx.

On the other hand,

(3.10) J(d, t) u(d, t) > O, J(c + 5, t) u(c + 5, t) > O,

and

(3.11) J(x, tl) > 0 (by (3.2)) for smallenough > 0.

Applying the maximum principle to J(x, t), we obtain

J(x,t) > 0 in (t,T) (d, c + ),

namely,

(3.12) -- >p in(t,T)(d,c+
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Integrating this inequality over d <_ x <_ c + 5 yields

du fc+5(3.13) p(x)dx
J u(d,t) F(u) >

a d
intl <t<T.

The right-hand side of (3.13) is a positive constant, while the left-hand side tends
to zero as t T T by virtue of condition (A10)(ii) and equation (3.3). This contradiction
shows that x0 is not a blow-up point of u(x, t). The proof is complete.

THEOREM 3.4. Let u(x, t) and i(t) be as in Theorem 1.7, and let S be the blow-up
set of u(x, t). Furthermore, assume (A7)-(A10). Then

(3.14) S {70}

for some 7o E [-al + 5, c] with a small 5 > 0 and

(3.15) -cxz < lim (t).
tTT

Proof (see Friedman and Lacey [4]).
function r/(t)" (0, T) R such that

By Proposition 2.1, there exists a C1-

(3.16) {x e ( (t), 2(t)); ux(x, t) 0}

for each t G (0, T) and

(3.17) -a+5_<(t) for allt(0, T),

where i(t) is defined by (1.11), (1.12). Therefore, we see that

(3.18) ux(x,t) >0 forCe(t) <x<-al+5, 0<t<T,

and it follows from Lemma 3.3 that

(3.19) {x;x < -a +5} C S,
where S is the blow-up set of u(x, t).

Here, if we show that

(3.20) lim (t) 0tTT

exists, then by Lemmas 3.2 and 3.3 we can obtain the results of Theorem 3.4. Hence,
we shall prove (3.20).

Assume that limtTT r/(t) does not exist. Then, if we set r/_ liminftTT r/(t) and

7+ lim inftTT ?(t),

(3.21) -al+6_<r/_ <r/+<.

Choose -a + 5 < s < 7- and r/_ < s2 < r/+ such that

(3.22) + e
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Then, since limtTT u(r/(t), t) cxz, by Lemma 3.2 we get limtTT u(x, t) c for each
x E (r/_, r/+). Hence, if To is chosen close enough to T, we obtain

(3.23) ux(x, To) > 0 for 81 < X "( 82

and

(3.24) t(81, t) < t(82, t) for t e (To, T).

Set w u-v where v(x, t) au u(2c-x, t), and consider w(x, t) in the rectangle
region R {Sl < x < a, To < t < T}. Then, we see

(3.25) w(x, To) u(x, To) au(x, To)

_
0 in [81, o1

and

(3.26) W(X, 81) t(81, t) t(82, t) 0 in t e [To, T).

By the same method as we used in the proof of (2.16) we obtain

(3.27) w(x, t) <_ 0 for (x, t)e [81, o] [To, T).

Since w(a, t) 0, we get

(a t) uxwx (a,t) >_0 fort[To, T).

This is a contradiction of c e (r/_,r/+). Therefore, we obtain (3.20) and S {r/0}.
The proof is complete.

4. The upper bound estimates and bounded-point blow-up. In this sec-
tion we show r/0 < cx where r/0 is as in Theorem 3.4. In order to show this, we need
the upper bound estimates of the blow-up solution of (0.1), (0.2). We must further
assume (All) on f(u) such that f(u) grows more rapidly than u and g(u), and we
choose the suitable initial data (x) corresponding to (All).

(All) There exists a C2-function (v)such that
(i) , ’, " > 0 for v > O, (0) ’(0) 0 and f(v) //3’ (v) >_ (v) near v O;
(ii) fo d/() < oc;
(iii) There are constants C > 0 and Vl > 0 such that

4"(f’- O’f) >_ (g,,)2O for v >_ Vl

and
(g")2 (I) f’
4"/3’ + <C for0<v<vl;

(iv) sup
o<</-(t) (v)

where H()= ()"

(A12) "-g()’+ f(o) _> () in D’,
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where O() is as in (All).
Remark 4.1. (All)is satisfied by (0.4)if p > max{m, 2q- 1, m + q- 1} and

2q _> m + 1. In this case, we can put O({) {p/m-a for sufficiently small a > 0 (as
-+ oo) and O({) m{(P+m-1)lm (aS { --+ 0). In general, we can not replace O({) by

the function F() in (al0).
LEMMA 4.2. Assume (A1)-(A12). Let Un(x,t) be a solution of the regularized

problem

Ot(u) u** + g(u), f(u),
(X, O) n(X),
u(+n, t) (1/n)t + /,

(x, t) e I-n, n] x (0, T),
x e I-n, n]x (0, T),
t>O,

with the blow-up time Tn. Let n(x) be as in Lemma 2.2, and let us add the following
condition to it:

(4.2) o- {g(99)}’ + f(o) >_ (On) in T’

(the existence of the above n(x) is guaranteed.by assumption (A12)). Then, for some
Cl > O,

(4.a) tn(X,t) <_ H-I(cl(Tn t)) for (x,t) e ] x [0, Tn),

where H({) fo dr/O(r) and Tn’ min{T, T}.
LEMMA 4.3. Lemmas 2.2 and 2.4 hold for large n if (2.3) is replaced by (4.1).

Furthermore, it holds that Un(X,t)> 1In + O(1/n)t for (x,t) e [-n,n] [0, Tn).
Proof. Noting the condition (All)(i) and using the comparison principle, we ob-

tain u(x, t) > 1In + O(1/n)t. Proceeding with a proof similar to that of Lemma 2.4,
we get the assertion of Lemma 4.3.

Proof of Lemma 4.2 (see Friedman and Lacey [4]). Set

(4.4) J ut c(t)O(u)

where u tn, and
O(1/n) -ctc(t) O(1/n + TO(1/n))e

where C > 0 is as in (All)(iii). We compute (’J)t- Jxz in the following way"

(’J)t Jx B(x, t)J g’J + c(t)A(x, t),

where

and

A(x, t) f’O O’f c/3"O9 + C’O g"Ou, + O"(u)2

Here we used the next relation:

ut J + c’u.
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We further compute that

Noting/’ > 0 and condition (All) we get

O’f (g")20} > 0 for 0
0/’ 40"/’

v vl.

Hence, considering condition (All) again, and noting/" _< 0, we see that

(4.5) A(x, t) >_ O.

Thus, we have

(4.6) (’J)t J >_ B(x,t)J- g’J.

On the other hand,

(4.7)
J(n, t) ut(+/-n, t) c(t)O(Un(=t=n, t))

O(1/n)O(1/n) O(1/n + TO(1/n)) e-cto(1/n + O(1/n)t) >_ 0

and

(4.8)
J(x, O) un,t(x, O) O(un(X, 0))

"- {g(tn)}’ -- f(n) (I)(n) 0 (by (4.2)).

Applying the maximum principle to J, we obtain

(4.9) J(x,t) >_ 0 in [-n,n] x [0, T’),

that is,

Here we note that

,,, > (t)(u.).

TO(l/n) f3 O’(1/n + TO(1/n)s) ds

1 _> 1/2 for large n.
O’(1/n + TO(1/n)s) ds

CT we getHence, if we put cl [e-

(4.10) ltn,t ClO(Un).
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Integrate (4.10) over It, Tn for each x e I-n, hi. Then, we have

U,t dt >_ T t.(4.11)
Cl ((Un

Setting H()= f d/((r), we have

--:-[H(un)] >_ Tn t,

that is,

c1
---{H(un(x,Tn)) H(un(x,t))} >_ Tn t.

Therefore,

(4.12) H(un(x, t)) >_ cl (Tn

Since H() is a decreasing function in (, we obtain

Un(X,t)

_
H-I(cl(Tn t)).

The proof is complete.
THEOREM 4.4. In Theorem 3.4, if we further assume (All) and (A12), we get

(4.13)

and

(4.14) lim2(t) < x.
tTT

Proof. Let T’ e (0, T) be fixed and set h(t) H-I(cI(T -t)). Then by Lemma
4.2, if n is large enough, T < Tn and

(4.15) Un(X, t)

_
H-I(cl (Tn t))

_
h(t).

Put

(4.16) V(X, t) tn (X -- k(t), t)

where k(t) f l(h(s))ds and l()= supo<v<(g’(v)/’(v)).
Then v(x, t) satisfies the following equation:

’(v)v v ’ {k’
9’() },(v) v + f(v).

Since
((x,t))
Z,(v(x,t)) l(v) <_ l(h(t)) k’(t),

we obtain

(4.17) k’(t)
g’(v) > 0
Z’(v)

for (x, t)e [-k(t)- n,-k(t) + n] [0, T’).
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On the other hand, noting condition (All)(iv) we see that

(4.18)

T

k(t) <_ k(T’) ./a l(H-l(cl(T’- s)))ds

1 foe1T’ l(H-l(t)) dt (put t cl(T’ s))
Cl

1 f0
cT

l(H-l(t))dt< k(T)
c

< oc for t E (0, T’).

Thus, for each a >_ a there exists N such that

(4.19) a<_n-k(T) <_n-k(t) for alln_>N and each tE [0, T’].

Put @(x, t) =crav v(2a- x, t). Then we can consider

w=v(x,t)-(x,t) in U [a,n-k(t)lx{t}
0<t<T

since n- k(T) <_ n- k(t) for t e [0, T’]. As w satisfies the equation

(4.20)

where

c(x, t) f(v) f() + tv- v-
if we set h(x, t) e-tw where 7 is chosen later, then h satisfies the following equation:

Since fl(v) > 0 and c < oc, choosing large enough, we get

(4.22) 7fl’(v) + c > O.

On the other hand, as u(x,t) >_ 1/n + (1/n)t for (x,t) e [-n,n] x [0, T’) and
v(n k(t), t) u(n, t) 1/n + (1/n)t, we obtain

(4.23)
h(n k(t), t) e-’ {v(n k(t), t) aav(n k(t), t)}

{1 (1) }e-’ + t av(n k(t),t) <_0
n n
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and

(4.24) h(a, t) e- {v(a, t) v(a, t)} O.

Noting the condition on n in Lemma 2.2, we also obtain

(4.25)
h(x, O) (x + k(O), O) o(x + k(O), O)

n(X) -an(X) 0 for each x e [a, n].

We claim that h 0 in t20<t<T,[a, n- k(t)] {t}. Suppose

(2, t-) 6 U0<t<T,(a, n k(t)) x {t}

is a maximum point and h(2, t-) > 0. Then

(4.26) ht(2, t-) >_ 0, hxx(2, t-) <_ 0, hx(2, t-) 0,

namely,

(4.27) (, t-) > (, t-),

(4.28)

Assume 2 >_ /(t-) k(. Then

(, t3 _<o.

Noting this, (4.17), and (4.26), we see that

This contradicts (4.21).
On the other hand, assume 2 < r/n(t-) k(t-). Then v(2, t-) > 0 and v(2, t-) < 0.

These results contradict (4.28). Hence, we obtain h _< 0, that is,

(4.29) w(x, t) <_ O, (x, t)e [a, n- k(t)) [0, T’],

or

(4.30) Un(X + k(t), t) <_ Un(2a- x + k(t), t), (x, t)e [a, n- k(t)] [0, T’].

Here, if n - cx, then

(4.31) u(x + k(t), t) <_ u(2a- x + k(t), t) for (x, t)e [a, cx) [0, T’].
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Putting x’ x + k(t), a’ a + k(t), and noting k(t) <_ k(T), we obtain for each
a’ e [al + k(T), cx)

u(x’, t) <_ aa, u(z’, t) for (x’, t) e [0, T’].
Since this shows that u(x, t) is a decreasing function in x e [al +k(T), cx) for t e [0, T’],
we get

(t) <_ al + k(T).
As T’ E (0, T) is chosen arbitrarily, we conclude that

(4.32) (t) <_ a + k(T) for t e [0, T).
Hence, we get

r/0 lim (t) < a + k(T)
tTT

and noting Theorem 3.4, we obtain

s
Therefore, by virtue of Lemma 1.6, we also obtain (4.14). The proof is complete. [:]
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DYNAMICAL BEHAVIOR OF SOLUTIONS OF A SEMILINEAR
HEAT EQUATION WITH NONLOCAL SINGULARITY *

KENG DENG

Abstract. The heat equation with a nonlocal nonlinearity ut --uxx + ellu(’,t)llq/(1- u), 0 <
x < 1, e, q > 0, subject to u(0, t) u(1, t) 0 is studied. Stability-instability is analyzed and finite
time quenching results are given. Discussions are also extended to more general problems.

Key words, nonlocal parabolic equation, equilibrium state, stability, quenching, global exis-
tence

AMS subject classifications. 35K05, 35K20, 35K55, 35K57, 35K60

1. Introduction. In this paper, the following initial-boundary value problem is
considered:

(D)
/ t)llq/( 1 u),
u(0, t) u(1, t) 0,

0)

0<x < 1,
t>0,
0<x<l.

t>O,

Here e, q > 0 and to(x) is a continuous function with u0(0) u0(1) 0. Moreover,
we take

/oIlu(., t)l] It(x, t)l dx

and require that 0 _< u0 < 1. Then, by the maximum principle, u(., t) >_ 0 for all t in
the existence interval.

There are two reasons for considering this problem. One comes from the physical
motivation, since the above problem is closely related to a popular model arising in the
study of a polarization phenomenon in ionic conductors as follows (in our notation)"

(K)
ut uxx + e/(1 u), 0 < x < 1,

u(0, t) u(1, t) 0, t > 0,

u(x, O) O, 0_<x_<l.

t>0,

In [51, the following were proved for (K):
t)=l"(a) If a > 8, there is a finite time T such that limt_T- u(,

(b) Whenever (a) holds, limt_T- maxx ut(x, t)
This kind of phenomenon is known as quenching, that is, the solution of the equation
remains bounded, whereas its derivatives blow up at some moment. It is easily seen
that (K) is a special case of (D) (when q 0, to(x) 0). Furthermore, the nonlocal
term f It(x, t)l dx can be treated as an average value of u(x, t) on [0, 1], which means
that we intend to use all the information over the whole interval. Thus, as many other
nonlocal mathematical models have been formulated from physical phenomena over

* Received by the editors December 24, 1991; accepted for publication (in revised form) May
12, 1993.

f Department of Mathematics, University of Southwestern Louisiana, Lafayette, Louisiana
70504-1010.
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the last few years, a more precise description of the "real world" may be expected.
Actually, we shall see that the nonlocal nonlinearity has a remarkable effect on the
dynamical behavior of solutions.

The other reason for investigating problem (D) comes from a purely mathemati-
cal point of view. Since 1975, when the results for (K) appeared, problem (K) and its
various generalizations have been extensively studied (see [6], [7], and the literature
cited therein). However, to the best of our knowledge, no one has done any prob-
lem of the type described here. Due to the presence of the nonlocal term Ilu(.,t)llq
in the equation, the discussion becomes more complicated, and certain conventional
arguments may not apply. Therefore, we want to undertake a study.

The plan of our paper is as follows: in the next section, we present the comparison
theorem and local existence of solutions for (D). In 3, we characterize the set of
stationary solutions of (D). In 4, we establish stability and quenching results for (D).
Finally, we discuss more general problems.

2. Comparison and local existence. For simplicity, let DT (0, 1) x (0, T)
and DT U FT [0, 1] x [0, T). We begin with the definitions of subsolution and super-
solution of (D).

DEFINITION. A function u(x,t) is called a subsolution of (D) on DT if u E
C2,1 (DT) N C(DT U FT) satisfies

+ t)ll /(1 0 < x < 1, 0 < t < T,
(C) u(x,t) _0, x-O, 1, O<t<T,

0) < 0 < x < 1.

A supersolution is defined by (C) with reversed inequalities.
In the sequel, we shall use the comparison principle to conduct our discussion.

For this reason, we state the following theorem.
THEOREM 2.1. Let u(< 1) be a subsolution and v(< 1) be a supersolution of

problem (D). Then u <_ v on DT.
Proof. Suppose u, v _< 5 < 1 on DT. Then f(s) 1/(1 s) is continuously differ-

entiable for 0 _< s _< 5, and the conclusion follows from the relevant theorem in [3].
COROLLARY 2.2. If uo + lluoIIq/(1- no) >_ 0(<_ O) on (0,1), then ut(x,t) >_

0(_ O) on DT.
Proof. The condition on u0 implies that u0 is a subsolution (supersolution) of

T(D). Thus u(x,t) >_ uo(x)(<_uo(x)) on DT. Then let v(x,t) u(x,t + h)(O < h < -).
In DT-h, we find that v(x, 0) u(x,h) >_ uo(x)(<_uo(x)), and v(x,t) is a solution,
and thus a supersolution (subsolution), of (D). It follows that u(x, t + h) >_ u(x, t)
(_<u(x, t)) for h > 0 arbitrarily small, and hence ut >_ 0(<_ 0).

By means of the comparison theorem, we now establish the local existence of
solutions of (D).

THEOREM 2.3. For nontrivial initial datum, there exists a To < c such that
problem (D) has a unique nonnegative solution on DTo.

Proof. Clearly u 0 is a subsolution. If there is a supersolution v with v < 1
on DTo for some To < c, then by the comparison, any solution u(x, t) should be
bounded away from one. Recalling the local existence theorem in [3], we then obtain
the desired result.

Note that if v < 1 then IIv(., t)llq < 1 on 0 < t < To for any q > 0. Thus it suffices
to find a solution of the ordinary differential equation

(0)
dv
dt 1 v’ v(0)

0<x<l
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Problem (O) has a solution of the form v 1 [(1 v(0))2 2t]1/2. For
sufficiently small t, v remains bounded by one and hence v is an apppropriate su-
persolution.

3. The stationary solutions. For the stationary solutions of (D), we need to
solve

v" + llv]lq/(1 v) O,
(S)

v(0) =v(1)=0.
0<x < 1,

If v(x) is a nonnegative classical solution of (S), then by the strong maximum prin-
ciple, v(x) > 0, and consequently v" < 0 on (0, 1). Thus v has exactly one maximum
at E (0, 1). For convenience, let

F(s) log

Then v also solves

(3.1)  llvll F( )+  llvllq

where # v().
Integrating (3.1), we have

(3.2)
v/E(,)- F(,)

Since v(0) v(1) 0, from

(3.3) v/F(#)-

it follows that .
Let

Then (3.3) is equivalent to

1
G(#) F(#)- F(r) d.

(3.4)

Note that v(1- x) is also a solution of (S). Combining this. fact with (3.2) ensures
that there is exactly one solution of (S) with v([) #. Thus for 0 < x < -, v(x) is
implicitly given by

v(x) 1
d /llll/:x(3.5) v/F(#)- F(/)

and by v(x) v(1 x) if [ < x < 1, with # and Ilvll satisfying (3.4). Therefore, we

should focus our attention on (3.4). However, for each given e, in order to count the
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number of #, we need an additional relation between # and e that is independent of
Ilvll. To this end, we let

(3.6) V (1 -v(s))ds, Y (1 v(s))ds 1 I]vll.

Thus, in lieu of (S), with h(y) (1- v(x(y)))2, we find

hvv 2ellvllq/h 0,
(3.7)

h(0) h(Y)= 1.

O<y<y,

Then, using a scale change of variable z y/Y, and setting w(z) 1 h(y), we
obtain

w= + 2ellvllq(1 -livll)e/(1 w) o,
w(O) w(1) o.

0<z<l,

Note that if max0<z<l w(z), then 2#- #2 with # max0<x<] v(x). By
a similar reasoning, we get

(3.9) c(x) vll,ll,/(1- Ilvl]).

Then the combination of (3.4) and (3.9)yields

(3.10)

Substituting (3.10) into (3.4) and letting

x/(G(it))l+(2/q) )
q

K(#)
a(#) o(a)

we then have

(3.11) K() .
On the other hand, for given e, if it satisfies (3.11) and v(x) satisfies

dv 2(u)x,
1

VF(,)- F()

on 0 < x <_ 1/2 and v(x) v(1-x) on 1/2 < x < 1, then it is easily seen that
v(0) v(1) 0, v() it, and

v" + 2G2(it)/(1 v) 0.

Repeating an argument similar to that leading to (3.8), we have

which implies that v(x) is a solution of (S). Hence the number of solutions of (3.11)
is the same as that of (S).
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To help determine the cardinality of the set of solutions of (3.11), we present some
lemmas.

LEMMA 3.1. vG(#) > G(A) for # in (0, 1).
Proof. Since

1
d7 and F(A)=log

1
-log

1
G()

v/F() F(7) 1---L- (1 #)------- 2F(#),

by using the change of variable (1 7) 2 1 T, we obtain

1
d,a() v

V/()_ ()
and so

fo" dr/> O.

Since G(#) > 0 on (0, 1), it follows that K(#) > 0 on (0, 1). To investigate
the behavior of K(#) near # 0 and # 1, we use a transformation 0 0(#)
[log(i/(1- #))]1/2. Since 0(#) is strictly increasing on (0, 1), we then have that for
o (0,

(3.12) G(#) 2e-2 e da

and

(3.13) G()) 2e-2 f e da.
do

By this change of variable, we find that

eO’2 eO’2
J 0

ea2 d

-q

Then from L’HSpital’s rule

(3.14) K(1)= lim H(O)=O forq>0
0--

and

(3.15)
0,

K(0) lim H(O)= 12,
00+

if0<q<l,
if q= 1,
if q> 1.

LEMMA 3.2. There is a #o e (0, 1) such that 1/v/F(# > G(#) for 0 < # < #o
and 1/V/F(# < G(#) for #o < # < 1.

Proof. G(#) can be written in the form

f()
dr/,G(#)

f(V) v/F(#) F(V)
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where f(r/)= F’(/)= 1/1- 7.
Upon integration by parts, we obtain

G(#) 2v/F(#)- 2 v/F(#)- F()d.

Thus on (0, 1), G’ (#) exists and equals

(3.17)

f(#) fot’ 1
G’(#)

v/F(#)
f(#)

v/F(#)- F(r)

f(#) v/F(p, -G(#)

d

By (3.12), it is easy to check that G(0) G(1) 0. Since G(#) > 0 on (0, 1), there
is at least a/to with G’(#0) 0. If we can show that on (0, 1), G’(#) has at most
one zero, then it follows that G’(#) is positive on (0,#o) and negative on (/to, 1),
and consequently, making use of (3.17) yields the desired result. To this end, we
differentiate G(/t) twice to get

G"(/t) f’(/t)
v/F(/t

G(/t) + f(/t) 2(F(/t))3/2 v/F(/t
+ G(/t)

At any point /to where G’(#) 0, we can see that G"(/t0) -f(/to)/
(2(F(/to))3/2) < 0, which means G(/t) can only attain its maximum on (0, 1). Thus
the proof is complete. [3

Remark 3.1. A numerical computation gives/to -0.574.
In order to analyze the monotonicity of K(/t), we turn our attention to K’(/t).

By (3.17) and

1d
G(,k(/t)) 2(1 -/t)f(A) v/F(,k(3.18) -- G(A) 2f(/t)

v/2F(/t)

a straightforward calculation gives

(3.19)

Define
(3.20)

J(/t)- 1 + v/.F(/t c(,)) c(a))
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then it turns out that the sign of K’ (#) is the same as that of J(#). However, the sign
analysis of J is complicated. We can only obtain some incomplete results; others rely
on numerical evidence.

Suppose that there is a #1 E (0, 1) such that J(#l) 0. Then a routine compu-
tation shows that at #1

(3.21)

As a consequence, when q 2, by Lemma 3.1 we see that J(#l) < 0, which im-
plies that K(#) should always attain its maximum on (0, 1). This is impossible since

limu_.o+ K(#) +oc. Hence J(#) < 0 and K(#) is decreasing for 0 < # < 1 if q 2.
Then, in view of Lemma 3.2, for #o < # < 1 and q < 2 or 0 < # < #o and q > 2,

we find

1
J(#) < 2

v/F(#) c(,)) < 0,

which shows that K(#) is decreasing on (#o, 1) for q < 2 or on (0, #o) if q > 2.
We now write J(#) in (3.20) as

(3.22)

and set

(3.23) Jl(#) x/G(#)- G(,k)- v/F(#)G(#)C(/X).
LEMMA 3.3. Jl(#) < 0 on (0, 1).
Proof. Noting Lemmas 3.1 and 3.2 and the result for the case q 2, we can see

that J1 (#) < 0 on (0, #0]. For #0 < # < 1, we have
(3.24)

J[ (#) f(#) (c(A) 2x/c(#) I

2v/F(#
G(#)G(A) + 3v/F(#)G(#)G(A)

f(#) (-2Jl (#) + G()J2(#)),

where

(3.25) ( 1 )J2(#)- v/F(#)-
2vrF(#

a(#)- 1,

with

(3.26) J(#) f(#) -J2(#)+ G(#) +
2v/F(#) v/F(#) 4(F(#))3/2
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0.1 0.1 0A 0A 0 0.7 0 0.g

FIG. 1. K(#) for q 0.2.

0.1 0.2 0.. A 0.6 0.6 0.7 0.8 0.9

FIG. 2. K(#) ,for q-- 0.8.

If J1 (#) _> 0 somewhere in (#0, 1), then there is at least one point #2 (#0 < #2 < 1)
such that J1 (#2) 0 and J (#2) >_ 0. It follows from (3.24) that J2(#2) >_ 0. Then by
(3.26) and recalling Lemma 3.2, we can see that J2(#) > 0 for all # E (#2, 1), which
contradicts the fact that J2 < 0 near # 1, since by L’H6pitM’s rule lim_.l- J2(#)
0 and lim,_l- J(#) +oo.

By means of (3.22) and all the lemmas, together with the factthat J(#) < 0 on

(0, #0) if q > 2, we have the following theorem.
THEOREM 3.4. If q k 2, there is a unique solution of (S) for each given > O.
Although we cannot provide a rigorous analysis in case 0 < q < 2, the asymptotic

formulas (3.15)-(3.16) and the numerical results of Figs. 1-3, allow us to assert the
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0.1 O 0.1 OA OA O 0.’ OA 0.9

FIG. 3. K(#) for q 1.0.

following:
(C1) If 0 < q < 1, there is an s(q) such that

(a) if s > e(q), there are no positive stationary solutions;
(b) if e s(q), there is a unique solution; and
(c) if e < e(q), there are exactly two solutions.

(C2) If q 1, we have the following:
(a) if e >_ 12, there are no positive stationary solutions; and
(b) if e < 12, there is exactly one solution.

(C3) If 1 < q < 2, for every e > 0, there is exactly one solution.
Remark 3.2. If one can verify (C2), then the validity of (C3) follows, since by

(3.22) J(#) is a decreasing function of q for 0 < # < /to. On the other hand, for
0 < q < 1, it is easy to check that lim_.0+ K’(#) +c; hence (C1) (c) holds at least
for small > 0.

Remark 3.3. In view of (3.1), (S) has no nonclassical solution vs(x) in the sense

1}, but vs(that v(x) solves the equation in (S) classically on (0, 1)\{x 3) 1.

4. Stability and quenching. Throughout this section, C1, C2, and C3 will
be assumed. In order to get statements about the stability of solutions of (S) or the
quenching result for problem (D), we first establish a relationship between solutions
of (D) and those of (S).

LEMMA 4.1. Suppose that u(x,t) is monotone in t and limt--. u(x,t)
v(x)(<l) exists. Then v(x) is a classical solution of (S).

Proof. Let
x(1-y), O <_ x <_ y <_ l,G(x,y)= y(1-x), 0_<y_<x_<l.

G is the Green’s function for -(d2/dy2) with Dirichlet boundary conditions.

u(x, t) is uniformly bounded and monotone in t, for fixed x E [0, 1],
Since

]01lim G(x y)u(y, t) dy G(x y)v(y) dy,
t-(x)
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and then

G(x, y)u(y, tn) dy --* 0

for some sequence tn -- cx. On the other hand,

G(x, y)u(y, t) dy G(x, y)ut (y, t) dy

-u(x, t) + llu(., t)llq G(x, y)/(1 u(y, t)) dy

/oo--, -v(x) + ellv]]q G(x, y)/(1 v(y)) dy

v(x) llvll G(x, y)/(1 v(y)) dy.

Moreover, since v(x) < 1 on (0, 1), v(x) and v’(x) are absolutely continuous, and hence
v(x) is a classical solution of (S).

By virtue of the above lemma, we can obtain a complete stability-instability result
for stationary solutions of (D). This time, we treat the solution of (S) as a function of
x depending on the parameter a and denote it v(x, ).

LEMMA 4.2. In the case 0 < q < 1, if < e(q), the two solutions of (S) are
ordered.

Proof. Let #_(e) < #+(e) and denote the corresponding solutions of (S) by
v_(x,e) and v+(x,e), respectively. Assuming the assertion is not true, it follows

(:, a) > V+(2, ). We now choose a 5(5 < ) sothat there is an 2 (0, ) such that v_

small that v_(x, ) <_ v_(x, ) and v_(x, ) <_ v+(x, ). Let u(x, t, ) be a solution of
(D) with uo(x,)= v_(x, 5). Via the comparison theorem, we then find that

u(x,t,) <_ v_(x,) and u(x,t,) <_ v+(x,).

Moreover,

u0 / llu01]/(1 u0) v’_’ (x, 5)/ llv-(., 5)11/(1 v_(x, ))

0.

Hence, recalling Corollary 2.2, we have ut(x, t,a) >_ 0 in DT. By Lemma 4.1, limt-.
u(x, t, ) exists and should be equal to one of the two solutions of (S), which leads to

).a contradiction, since v+(1/2, a) > v_ (,
THEOREM 4.3. Let v(x,a)(<l) be a positive solution of (S) on some interval

). Then, if u’ [a, b], the solution is stable, whereas[a, b], and let #() v(, () > 0 on
it is unstable if #’() < O.

Proof. For the case #’() > 0 we first show that v(x,l) < v(x,2) on (0, 1) for
a_l < 2 _< b.

From #’() > 0, it follows that #(1) < #(2) if a <_ 1 2 b. In view of the
conclusions in (C1), (C2), and (C3) in the previous section, we restrict our attention
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to the case 0 < q < 1. It is clear that #’(e) > 0 can only occur in (0, #o), where #o is
the critical number in Lemma 3.2, since K’(#) < 0 in [#0, 1) if 0 < q < 2. Noting the
fact that G’(#) > 0 in (0,#0), by (3.4) we see that elllv(.,el)llq < elllv(.,e2)llq. Then
from (3.5), we find that for 0 < x _< ,

1 fro
(x’e2) 1

(4.1) dr/< dr/,
,0 v/P(())- () v/P(,(.))- P()

and consequently
1

dr > 0.’V(=,) v/F(,())- F()
(x e )on(0 1) fora<elSincev(x,e)=v(1-x,e)if <x<l,v )<v(x e2

Let u(x,t,e) be a solution of (D) with u0(x,e) v(x, e2). Then on (0, 1), we
have

o + xlloll/( o) v(x,:) + 11(.,)11/( (,))
< (x,) + llv(., )11/( (,))

Hence ut <_ O. From the comparison principle and monotonicity of u, on (0, 1) we also
have

v(x,) < (x,t,) < (x,.).

By Lemma 4.1, w(x, e) limt-, u(x, t, el) is a solution of (S) satisfying v(x, el)

_
e.). But w is aw(x, el) <_ v(x, e2), and in particular, v(,e) _< w(,el) _< v(,

solution of (S) with , and so w(x,l) is either v(x,) or else the other solution,
V(1v+(x,). From the graph of K() , it follows that v+(,el) > ,:), which

excludes the possibility that w(x,) v+(x, s). We thus show that v(x, Sl) is stable
from above. With e > e2, in a similar manner, we can also prove that v(x,e) is
stable from below.

If p’(e) < 0, we know that v(x, e2) < v(x,) in a subinterval [xo, x] contained in

(0,1) for a 1 < 2 b. Let u(x,t,2) be a solution of (D) with uo(x, e2) v(x,).
Then on (0, 1), we find that

Uo / .lluollq/(1 u0) Vxx(X, el) -[- ellv(., 1)11q/(1 v(x, el))
> x,) + 11(., )11/( (, ))
--0.

Thus ut >_ 0 on DT. Consequently, u(x, t, e2) is increasing in t, which indicates
that v(x, e2) is unstable. Similarly, it can be shown that with e > e2, v(x, e2) is also
unstable.

Making use of this theorem combined with the characterization of the stationary
solutions in 3, we state the following.

(S1) For 0 < q < 1, there are two branches of solutions of (S), one stable, the
other unstable.

($2) For q >_ 1, the unique solution is unstable.
Next we establish quenching and global existence results for problem (D).
THEOREM 4.4. Assuming the conjecture at the end of 3, we have the following

results.
(I) Let O < q < l.
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(a) Fore < (q), if O < no(x) < v+(x,) on (0, 1), then u exists for hilt > 0
andlimt.-. u(x,t) v_(x,e): if uo > v+(x,e) on (0, 1), then u quenches
in finite time.

(b) For (q), if O < uo <_ v(x, e(q)), then u is global and limt u(x, t)=
v(x,e(q)); if uo > v(x,(q)), then u is not global.

(c) For > e(q), if no(x) > 0 on (0, 1), every solution quenches in finite
time.

(II) Suppose q 1.
(a) For < 12, if 0 no(x) < v(x,e), then quenching does not occur

and limt u(x, t) 0, while quenching happens in finite time if no(x) >

(b) For 12, every solution with positive datum on (0, 1) quenches in finite
time.

(III) Assume q > 1. For any > O, ff 0 no(x) < v(x,e), then u exists globally
and limt u(x, t) 0, whereas u quenches in finite time if no(x) > v(x, ).

Proof. Without causing any confusion, we shall sometimes write the solution of
(D) with an initial value u0 as u(x, t; no).

(I) (a) We choose v0 v_(x, a) with a < and w0 v+(x, 5) with 5 > e such
that v0 uo w0 on (0, 1). Then, by comparison,

t; < t; < t;

On the other hand, by recalling Corollary 2.2, we can see that u(x, t; v,o,) is mono-
tonically increasing while u(x,t; To) is monotonically decreasing, since v0 +
(1- v0) > 0 and wo + llw011q/(1- w0) < 0. Hence, both limt-. u(x,t;vo) and
limt--. u(x, t; To) exist and equal v_(x, e); consequently, so does limt_. u(x, t; to).

If to(x) > v+(x, ), we can find a 5 (5 < ) so close to that to(x) >_ v+(x, 5).
Then set vo(x) v+(x, 5). We observe that ut(x,t; vo) >_ 0 on the existence interval
wherever u exists. Thus, if u does not quench for all t > 0, as t -- , u(x, t) tends to

e). However, in view of Remarkw(x), a stationary solution of (D) with w(1/2) > v+(,
3.3, there are no more stationary solutions of (D) even in the weak sense. Hence u
must quench in finite time.

(b) The proof for (b) is similar to that for (a) and hence is omitted.
(c) We choose a 5 with 5 < such that vo(x) v_(x, 5) <_ to(x). Then we have

u(x, t; to) >_ u(x, t; vo). Since ut(x, t; vo) >_ 0, u(x, t; vo) can only exist in finite time,
and the conclusion follows.

(II) (a) Since 0 <_ no(x) < v(x,), there is a number 5 > such that no(x)
v(x, 5) and #(5) < #(). Let To(x) v(x, 5). Then the comparison theorem yields
that 0 <_ u(x, t; no) <_ u(x, t; To). Because u(x, t; To) is monotonically decreasing, as
t ---, x, u(x, t; To) approaches a stationary solution of (D) other than v(x, ), which
must be the null solution.

(b) By the same reason as for (c) of (I), the proof is left out.
(III) We can argue in a similar manner, hence the proof is omitted.
Remark. In [8], for (K) it was proved that there is a critical number 0 such that

when < 0(= 0), with certain data, the solution of (K) converges to the smaller
(unique) stationary solution, while quenching occurs if > 0. The same result holds
for solutions of a plasma-type equation ut (um)xx - /(1 U)(0 < m < 1) [2] and
for those of a quasilinear parabolic equation ut uxx/(1 + u2)+ 1/(1- u) [4]. For our
problem, when 0 < q < 1, similar dynamical behavior of solutions can be observed,
whereas there are notable differences if q _> 1. This shows that within necessary limits,
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the influence of a nonlocal term can be so minimized that results for purely local
problems are preserved for nonlocal ones, although analyses are more complicated in
general.

5. Further discussion. In this section we describe briefly how the results can
be generalized to other cases. First we point out that for problem (D), if the L1 norm
is replaced by the Lp norm (p > 1), a similar assertion can still hold. For instance,
if 0 < q < 1, we may conclude that there are two numbers eo and el (o < 1) such
that when e _< so, certain solutions exist globally, while finite time quenching happens
if > 1. Since by the nhlder inequality, Ilu(.,t)ll _< Ilu(.,t)l[pq, it follows that the
solution with the Lp norm is a supersolution of that with the L1 norm. Hence, if
e > 1 (q), every solution must quench. On the other hand, following an idea in
[1], we choose v(x) 2x(1- x) (the reason for such a choice was outlined in the proof
of Theorem 4 in [1]) and find that

max 2 and IIV]lp 2q xp(1-x)p
o<<1 1 v

Let o 21-q[B(p+ 1,p+ 1)]-q/P. Then if <_ o,v(x)is a supersolution. Thus u(x,t)
is bounded from above by v(x) if to(x) <_ v(x).

Next we indicate that arguments used for problem (D) can also apply to another
kind of problem,

(D*)
ut uxx + /(1 -{{u(., t)[[qu),

(0, t) (, t) 0,

(x, 0) o(x),

O<x < 1,

>0,
0<x<l.

t>O,

Because the corresponding stationary solutions of (D*) satisfy the following
boundary value problem,

v"+ e/(1- Ilvllv), 0 < x < 1,
(s*)

v(0) =v()-0,

we introduce a transformation w(x) llvllv. The mapping v w is one-to-one,
since if wl(x) w2(x), it follows that Ilwlll IIw211, which implies that Ilvlllq+1
IIv2llq/ 1, nd consequently, vl(x) v2(x). By such a transformation, (S*) is changed
into

w" + llwllq/(q+l)/(1 w),
w(0) w(1) 0.

0<x < i,

Since (S**) is of the same form as (S), we are able to conduct a discussion similar to
our earlier one. However, it is interesting to note that q/(q + 1), the power of Ilwll,
is always less than one. Thus we merely have assertion (C1), and consequently, only
Theorem 4.4 (I) is valid. This illustrates that in problem (D), as a multiplier of the
parameter e, the nonlocal term makes a more powerful impact on the prevention of
quenching.
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EXISTENCE AND BIFURCATION OF VISCOUS PROFILES FOR
ALL INTERMEDIATE MAGNETOHYDRODYNAMIC

SHOCK WAVES*

H. FREISTOHLER AND P. SZMOLYAN$

Abstract. A viscous profile for a magnetohydrodynamic shock wave is given by a heteroclinic
orbit of a six-dimensional gradient-like system of ordinary differential equations. This system, and
thus possibly the existence of a viscous profile, vary with an array 5 of four positive dissipation
coefficients. It is known that for each choice of 5, all "classical" and "degenerate intermediate" shocks
as well as some "nondegenerate intermediate" shocks have viscous profiles, and that, vice versa, each
given nondegenerate intermediate shock has no viscous profile for some range of 5. Complementing
this picture, it is shown that (i) each nondegenerate intermediate shock does have a (family of)
viscous profile(s) for a certain other range of 5, and (ii) such profiles, for all intermediate shocks
sharing the same relative flux, are generated in a global heteroclinic bifurcation. Both (i) and (ii) are
proved in a regime of 5 in which the dissipative effects due to electrical resistivity and longitudinal
viscosity dominate those associated with transverse viscosity and heat conduction: The constructive
proof is based on a recently formulated method in geometric singular perturbation theory.

Key words, shock waves, magnetohydrodynamics, heteroclinic orbits, singular perturbations

AMS subject classifications. 34C37, 34D15, 35L65, 76W05

1. Results. Under standard physical assumptions, plane magnetohydrodynamic
waves are mathematically governed by the differential equations (e.g., [3]), in space
x E R and time t E R,

+ (pv) 0,

+ + + 1/2 b

(1.1) (pw) + (pvw- b)x #wx,

b + (vb- w) b,

C+(v(+p+ Ibl )-w

Here p, O, p(p, 0) > 0 denote density, temperature, and pressure of the fluid, v R
its longitudinal and w e R2 its transverse velocity, b R2 the transverse magnetic
field, and

p( + (v+ w I)) + b

the total energy with e e(p, 0) the internal energy per mass. The "longitudinal"
fluid viscosity and the "transverse" fluid viscosity p are positive combinations (

4+ 5, ) of the two numbers (, 0) known as the two viscosity coefficients
(cf. [20, 15, 49, and 78]) of the fluid, describes its electrical resistivity, and a its
heat conductivity; the terms involving these coefficients are macroscopic descriptions
of dissipative mechanisms. We assume that apart from these mechanisms, the fluid is

an ideal gas, i.e., pressure and internal energy are given by

p-ROp and e=cO,
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where R and cv, in principle arbitrary positive numbers, are the gas constant and
the specific heat at constant volume, respectively. In addition to the thermodynamic
quantities p and e already introduced so far, we will also make use of the entropy

(1.2) S -R In p + Cv In 0.

We abbreviate (p, pv, pw, b,) E U c (0,0) x R x R2 x R2

(A, #, u, n) E [0, x)4 as , and write (1.1) briefly in the form
x (0, c) as u, and

(1.3) ut + (f(u))x (D(u, 5)ux).

In (1.3), all details of (1.1) are subsumed under the two real analytic mappings f
UR7andD’Ux[0,c)4--,R7x.

In the limiting case 5 0, (1.a) is the (nonstrictly) hyperbolic system of conserva-
tion laws describing ideal magnetohydrodynamics. This case admits certain solutions
of the form

x <(1.4) u+ x > st;

they are precisely those functions of the form (1.4) which satisfy the Rankine-Hugoniot
conditions, i.e.,

(1.5) q

for some constant q. A solution (1.4) of (1.3) with 5 0 is called a shock if both

(1.6) +) S(--)) > 0

and

(1.7) s is not an eigenvalue of f’(u-) nor of f’(u+)

hold, where in (1.6)

(1.8)

is the relative mass flux associated with the solution (1.4), identical with the first
component of the complete relative flux (1.5). Condition (1.6) means that entropy
increases in the history of particles crossing the shock, a natural requirement based
on the second law of thermodynamics. Condition (1.7) means that the discontinuity
is noncharacteristic on either side.

For a given shock (1.4) and a given 5 G [0, oo)4, 151 > 0, a heteroclinic orbit given
by a solution R -, U of the system

(1.9) D((x), 5)’(x) f((x))- s(x) -q, q from (1.5),

which connects the fixed points u+"

(1.10) (-t-c) u+

is called a (5-) profile of the shock. The idea of this notion is that the solution

(1.11) u5 (x, t) (x st)
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of (1.3) is a regularized counterpart of (1.4) in which the effect of dissipation D(., 5)
is visibly resolved. The main result of this paper is the following theorem.

THEOREM 1.1. Every magnetohydrodynamic shock has a profile at least for a
certain open range of 5 (, #, , a) e A (0, cx:)) 4

Note that there are a number of different types of magnetohydrodynamic shock
waves, and that for many q, several shocks of different types coexist with the same
relative flux q.

Let us call a shock nondegenerate intermediate if, besides (1.4)-(1.7), it satisfies

(1.12) Ib+lb- -Ib-lb+ O,

i.e., the magnetic fields on either side are strictly antiparallel. All other shocks are
classified as slow, fast, or degenerate intermediate. We mostly consider the nondegen-
crate intermediate shocks, because as we detail below, previously known results imply
that all other shocks have 5 profiles for all 5 E A. Theorem 1.1 can thus be viewed
as a corollary of the following Theorem 1.2. To introduce a concise notation for the
situation of interest, we will say that q E R7 satisfies condition I iff a nondegenerate
intermediate shock with relative flux q exists. Note also that if condition I holds for
a given q, then all intermediate shocks with relative flux q are nondegenerate.

THEOREM 1.2. Consider a q R7 which satisfies condition :. Then there exist
a number wo > 0 and a smooth function y (w0, x) -, (0, c) such that for all
5 (A,#,,) with

(1.13)

all shocks with relative flux q have 5 profiles. In particular and more precisely, if
u-,u+ U,s R define an intermediate shock and the number p, defined as the
number of positive eigenvalues of if(u-)- sI plus the number of negative eigenvalues
of if(u+) -sI minus eight, is positive, then there exists a p-parameter family of such
profiles; if p O, then a pair of profiles exist.

We also show that the profiles for intermediate shocks are generated in a global
heteroclinic bifurcation of system (1.9) with bifurcation parameter 5. A profile is called
coplanar if the b and w components of both remain in a fixed one-dimensionM linear
subspace of R2.

THEOREM 1.3. Consider a q R7 which satisfies condition :. Then there exist

(possibly only small) numbers ")’1, /2 > 0 and a smooth function w: [0,
such that the following holds for all (A, #, , t) with

(1.14)

If /) < .w(#/),/)), then no coplanar 5 profiles exist, for any intermediate
shock with relative flux q.

For ,/A w(#/A, /A), of all intermediate shocks with relative flux q only the
(unique) One with p 0 has a coplanar profile.

/f,/ > w(#/, /), then all intermediate shocks with relative flux q (and p > O)
have (coplanar) profiles.

To interpret these theorems, we recall that slow and fast shocks have been proven
in [12], [4], [5], [16] to possess (coplanar) 5 profiles for all values of 5 e A and many
values 5 E 0A. In [4] and [5] this was done by means of the Conley Index theory. For
the marginal class of degenerate intermediate shocks the same is known (see [16] and
[8]). It seems to be here that the assertion of Theorem 1.1 is established for the first



INTERMEDIATE MAGNETOHYDRODYNAMIC SHOCK WAVES 115

time for the class of nondegenerate intermediate shocks. Concerning these, [12], [4],
and [5] had shown that for any nondegenerate intermediate shock there always is a
range in A, namely of 5 with >> #, , a such that the shock has no 5 profile. That
nondegenerate intermediate shocks may conversely have profiles for other values
(e 0A), had been recognized long ago; cf. [18], [19, pp. 174-179], and [1]. In recent
years Brio and Wu [2], and Wu ([23] and references therein), motivated by questions
on the physics of the earth’s magnetosphere, presented numerical evidence for stable
magnetohydrodynamic traveling waves corresponding to such profiles. Connection
matrix theory, a tool closely related to the Conley Index, was used in [21] to prove,
nonconstructively, the existence of 5 profiles, with some 5 E A, for some nondegenerate
intermediate shocks. In [21], the authors stated also some conjectures about more

profiles, which indeed amount to a picture that is roughly similar to our results. In [7]
and [8] it was shown that for all 5 E A there exist nondegenerate intermediate shocks
which have 5 profiles.

Complementing these earlier findings, the investigations whose results we report
in this paper have had a double motivation. On one hand, it seems that proofs for the
existence of viscous profiles represent a basic first step in any attempt at a more com-
plete theoretical understanding of intermediate magnetohydrodynamic shock waves
in the presence of dissipation. Also, we view our results more generally as a contri-
bution to the ongoing debate on admissibility criteria (cf. [14]) in conservation law
theory: Theorem 1.1 implies that in the case of magnetohydrodynamics--an example
of nonstrict hyperbolicity--the simple criterion (1.6) of entropy increase has a sat-
isfactory, consistent dynamical interpretation in the dissipative framework. This, in
turn, contrasts especially with results which indicate that the stability of nondegen-
crate intermediate shock waves undergoes an explosive loss as 5 0 even along rays
5/151 const (cf. [9], [10], and references therein). On the other hand, the o.d.e.
system ((2.1) below) describing magnetohydrodynamic traveling waves is appealing
from the dynamical systems point of view. The present paper is based on the idea of
applying geometric singular perturbation theory (cf. [6], [22]) to this system.

2. Preliminaries and outline. We now turn to basic details of the problem and
our approach. To determine the concrete form of (1.9), we rewrite (1.1), restricting
attention to solutions which depend solely on x. The result is

where dots denote differentiation with respect to x. The parameters m (see (1.8)),
j, e R, and c, 5 R2 correspond to a relative flux q (m, j, 5, c, e). Using isotropy
and Galilean invariance, we will from now on assume without loss of generality that

m>O and 5=0.

We set d l/m, T vim and rescale x by l/m; w, b by m; 0, p, c, j by m2, and e

by m3 to obtain the following six-dimensional system, which we henceforth will refer
to as E6:
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(2.1)

Since in deriving (2.1) we had assumed independence of t, E6 is (1.9) in the case s 0.
Again due to Galilean invariance, the restriction s 0 implies no loss of generality.
In other words, E describes all profiles for magnetohydrodynamic shocks.

Before we outline and then enter the central part of our analysis, we show how
previously known results imply the assertion of Theorem 1.1 in the cases which are
not covered by Theorem 1.2.

LEMMA 2.1. Theorem 1.1 holds if restricted to shocks whose relative flux q vio-
lates Z.

To see this, note first the following lemma.
LEMMA 2.2. (i) All gas-dynamic shocks have profiles for all values of A.

(ii) All slow or fast shocks have profiles for all values of A.
Proof. Statement (i) is a trivial consequence of [13]; compare also similar remarks

in [7] and [8]. A gas-dynamic shock is one with b- b+ 0. Slow and fast shocks,
unless they are gas-dynamic, are characterized by (non-anti- !) parallel magnetic
fields, i.e.,

b+ Ib- Ib-Ib+ 0.

The existence of profiles for such shocks is known from [4] and [12] and (ii) follows.

.Next observe the following lemma.
LEMMA 2.3. (i) For any magnetohydrodynamic shock, properties (1.5) and (1.7)

imply that the relative magnetic flux c occurring in the normalized system E6 is dif-
ferent from 0 unless the shock is gas-dynamic. (ii) If q E R7 is such that c 0 and
Z does not hold, then any shock with relative flux q is slow or fast.

Proof. If c 0, fixed points of (2.1) with b -7/: 0--if there are any--occur grouped
in whole circles. According to (1.7), however, the left- and right-hand states u-, u+
of a shock are isolated zeros of f. Thus only gas-dynamic shocks are possible if c 0.
On the other hand, if c 0, any states u-, u+ satisfying (1.5) have Ib-I, Ib+l > 0
and fulfil thus either (2.2) or (1.12); violation of 2" precludes the latter. S

Remark. (i) Gas-dynamic shocks may be slow or fast or (degenerate!) intermedi-
ate.

(ii) Switch-on and switch-off discontinuities, characterized by (1.5), (1.6), and
either b- 0 or b+ 0, and thus also having magnetic flux c 0, are no shocks
in the sense of this paper: They violate our noncharacteristicity assumption (1.7).
However, these discontinuities are already known [16] to have 5 profiles for all 5 E A.

Lemmas 2.2 and 2.3 prove Lemma 2.1. Obviously, Lemma 2.1 and TheoreIn 1.2
together imply Theorem 1.1. Thus, we make the standing assumption that q satisfy
Z and prove the conclusions of Theorems 1.2 and 1.3. The whole rest of the paper is
devoted to this purpose.

To approach it, we treat E6 as a singularly perturbed problem: In the #, << u, A
limit, the essential dynamics are captured by the three-dimensional reduced system
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p,3 in the variables b and T that one obtains from E6 by setting # 0. We use
methods from geometric singular perturbation theory [6] to prove the existence of a
three-dimensional invariant manifold C for E6 with the same dynamics as E3. This
reduces the whole problem to E3. In our analysis of E3, one key ingredient is the use
of a Lyapunov function. While in the analysis of E6 in [12] and [5] a mathematical
potential P different from the physical entropy S has been used, it interestingly turns
out that for E3, S itself is a Lyapunov function. The other main ingredient in our
analysis of E3 consists in a further restriction of .attention to the dynamics in the
invariant half-plane Rc (0, oo). The corresponding system E2 in two variables was
already discussed in [18]. Our analysis completes the reasoning of [18] and puts it on
a mathematically sound basis. Summarizing, we can describe our strategy as finding
heteroclinic orbits for E2 and/or for E3, and lifting them to E6.

The geometric singular perturbation approach to the problem of viscous profiles
for magnetohydrodynamic shock waves is new. In [5] and [16] slightly related ideas
were used to construct isolating neighborhoods in an analysis for the case of limiting
values of 5 where some of its coefficients vanish. However, the logic in that approach
is completely different from ours. The authors of [5] and [16] concluded (for fast and
slow shocks) from the existence of 5 profiles for all 5 E A the existence of 5 profiles for
marginal dissipation E 0A. By contrast, we establish (for intermediate shocks) first

profiles for certain 0A and subsequently induce 5 profiles for a certain range of
5A.

Many of the new arguments we present below are not restricted to ideal gases. It
would be interesting to investigate the same question for more general equations of
state.

In the following 3, we carry out the reduction of E6 to E3. In 4, we analyze the
geometry of E3. Combining the results of 3 and 4, the main results are proved in
the final 5.

3. Geometric singular perturbation theory. The dynamical systems ap-
proach to singular perturbation problems--in its modern form--goes back to [6], but
has only recently become more popular. In [22] a method--based on this invariant
manifold approach--is formulated to prove the existence of transversal heteroclinic
orbits of singularly perturbed differential equations. In this section we briefly summa-
rize the necessary results from [6] and [22] and then apply them to completely reduce
our analysis of the six-dimensional system E to that of the three-dimensional system
E3. Consider first a general singularly perturbed system of differential equations in
the standard form

(3.1) X({,r),
e#

with e (-e0, e0), e0 > 0 small, and (, /) U C R’ x R open. We assume that
X" U -+ Rn and Y" U --+ R
reduced problem

are smooth functions. By setting e 0 we obtain the

(3.e)
o

The basic idea is to obtain orbits of the singularly perturbed problem (3.1), for small
values of , as smooth perturbations of orbits of the reduced problem (3.2). The
following results are contained in [6, Thm. 9.1].
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THEOREM 3.1. In addition to the assumptions made above in this section, assume
that

(a) the equation Y 0 has a manifold Co of solutions which is the graph of a
smooth function " c Rn -- R and

(b) there exist integers 18 and lu, with 18 +lu l, such that the partial Jacobian Yv
has l, eigenvalues with negative real part, and lu eigenvalues with positive real part,
for all points of Co.

Then the reduced problem (3.2) defines a flow on Co, and the following assertions
hold in an appropriate neighborhood of Co N K, where K C U is any compact set
satisfying K

There exists 31 > 0 such that Co can be extended to a smooth family of manifolds
Ca, a E (-31,31). The manifolds Ca are invariant under the flow of the singularly
perturbed problem (3.1), and the restriction of this flow to Ca is a smooth perturbation
of the reduced flow on Co. If l, 0 [lu 0], then Ca is moreover positively [negatively]
isolated for the flow (3.1), for all a (0, 31), i.e., any orbit whose w- [a-] limit set lies
in Ca lies itself completely in Ca.

The above theorem is basic for the following proposition.
PROPOSITION 3.2. Under the assumptions of Theorem 3.1 all structurally stable

properties of the reduced problem (3.2) persist for the restriction of the singularly per-
turbed problem (3.1) to the invariant manifold Ca for small a. In particular, (normally)
hyperbolic (manifolds off fixed points of the reduced problem persist identically; their
associated stable and unstable manifolds and transversal intersections of these pertur.b
smoothly. Hyperbolicity and transversality extend to the singularly perturbed prob-
lem (3.1) (without restriction to Ca) with dimensions of stable and unstable manifolds
increased by l and lu, respectively.

This proposition summarizes what we use from the second author’s paper [22]. For
details we refer to [6] and [22], for background material to [15] and [17]. Theorem 1.1
was announced in [22]. Another similar application of geometric singular perturbation
theory can be found in [11].

We turn to applying geometric singular perturbation theory to the problem posed
in 1. To make system E6 accessible to Theorem 3.1 and Proposition 3.2, we fix
u, A,/5, > 0 with/5 + 1 arbitrarily and consider E6 with # a/5, t a, for
small values of a > 0. From this point of view, E6 is of the form (3.1) with n 3
and (b, ), (w, 0). By setting a 0 we obtain the reduced problem E3, which
corresponds to (3.2)"

u -dw + Tb- c,
R0 1

r -J’
(3.3) w db @(b, T),

0=
1 ( 1

c- (T--d2)lbl2-b.c+--jr+e (b, r).

The last two lines describe the domain of definition

(3.4) o
of E3. With t) lu3, Co is the graph of ) (@, )) over the reduced physical state
space

(3.5) U3 {(b,T) e R3
T > 0, (b,T) > 0};
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this is assumption (a) of Theorem 3.1. Assumption (b) is also satisfied, with 18 0
and lu 3, since the 3 3 matrix Yv(, )()), at each E U3, has the eigenvalues 1,
1, and cv, which are all positive. We restate [4, Thm. 4.1] as the next lemma.

LEMMA 3.3. For each choice of (c,d,e,j), there is a compact ball K c U which
contains all fixed points and all heteroclinic orbits of E6 with arbitrary (AUOA).

Applying Theorem 3.1 with this K, for each quadruple (, A,/2, k) as above and
each with I1 < 1, 1 > 0 appropriate, we obtain an invariant manifold for E6

with , A as given and it /2, t k. Analogous statements hold for the marginal
cases (/5,) (0, 1), (/5, k) (1,0). By iterated application of Theorem 3.1 near
these cases, we see that can be chosen as (, A) > 0 independently of/2, k.
Observing finally that the phase diagram of E6 depends only on the mutual ratios of
the coefficients p, A, it, , i.e., briefly speaking, on 5/151, we formulate the implications
of Theorem 3.1 and Proposition 3.2 as the next lemma.

LEMMA 3.4. There is a smooth function -: (0, cx) -- (0, zx) such that whenever
5 (, it, , t) e A satisfies it/,/ < z(/), then E6 possesses a three-dimensional
invariant manifold C, located near Co and depending smoothly on 5/151, with the fol-
lowing properties:

(i) All fixed points and heteroclinic orbits of E6 lie in C.
(ii) Hyperbolic fixed points of E3 are hyperbolic fixed points of E6 with dimen-

sions of the corresponding unstable manifolds increased by 3.
(iii) The existence of transversal (manifolds of) heteroclinic orbits connecting

hyperbolic fixed points of E3 implies the existence of transversal (manifolds of) hete-
roclinic orbits of E in C connecting the same fixed points.

By virtue of Lemma 3.4, we can henceforth restrict attention to E3.

4. Geometry of the reduced problem. In this section, we study specific prop-
erties of 3 which do not depend on the actual values of , > 0 nor, within the limits
of our overall assumption I, on those of the quantities c, d, e, j associated with the
relative flux q. Inserting the last two lines of (3.3) into its first two lines, 3 obtains
the form

(4.1) (T d2)b c,
1 1 ( T2 d2 )(4.2) A- ]bl2 + T-- j + T 2 2 Ib12 b.c + e

where k l+cv/R and A denotes the original A divided by 1+ R/c,. Mathematically,
these equations define a smooth dynamical system E3 on the half-space T > 0 (of which
E3 is the restriction to U3). Considering this extension in the sequel, we will thus
sometimes be dealing with points, orbits, etc., which indeed lie outside the physical
range U3 by assuming nonpositive temperature . Note, however, that U3 itself is
positively invariant under the flow of E3, as we will prove immediately. First we
observe what follows.

LEMMA 4.1. Systems E3, E3 are gradient-like: The entropy

(b, T) R In T + c In (b, T), (b, T) e U3,

and/or the function

(b, T) =-- c’R/cv-(b, T), (b, T) e R2 (0, cx),

are strictly increasing along all nonstationary orbits.
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Proof. A direct computation shows that

and/or

(u), Aq" )-r TCv/Rv-(b, T)

hold for all (b,T) E U3 or (b, T) E R2 (0, oc), respectively. Cl

Remark. S is also a reduced version of the mathematical potential P used in
[12], [4], [5] and Lemma 4.1 follows thus partially also from (i) the existence of P and
(ii) the fact that the reduced problem of a gradient-like singularly perturbed prob-
lem is gradient-like with respect to (the restriction of) the same Lyapunov function.
Observations (i) and (ii) were made in [12] and [5], respectively.

LEMMA 4.2. The physical range U3 is invariant under the forward flow of E3.
Proof. Consider the forward orbit O+, with respect to the flow of E3, of a point

u . has a finite value at u and increases along O+. Suppose that, along O+, T

approaches zero. Then

c )lbl2-b’c+--jT+e
must become arbitrarily large, which is impossible. Now suppose that 0 approaches
zero along O+. Then T must become arbitrarily large, which implies that 0 becomes
large--a contradiction. Thus, T and 0 remain positive and bounded away from zero
along O+.

Fix e Re such that

(4.3) le[ 1, e ce with c _> 0,

and let E Re x (0, cx) C R3. The following is obvious..
LEMMA 4.3. System E3 is invariant under reflection across E. In particular, E

is invariant under the flow of E3.
The properties of E3 to be discussed in the rest of this section are indeed properties

of the restriction of E3 to E. Upon introducing the variable b b.e, E2 := E31E
and E2 "= E31E are governed by the equations

(4.4) ub (- d2)b- c,
b 1 ( T2 d2b2_bc+e)(4.5) ++ + T- j + 2 2

It is from now on that we make use of our overall assumption 2;. By part (i) of Lemma
2.3, we have e - 0; with (4.3), this amounts to

(4.6) c > 0.

Note that c -7/= 0 implies that all fixed points of E3 must lie in E.
In the next step of our analysis we establish pertinent properties of the nullclines

of E2. These are the portions in the half-plane T > 0 of the hyperbola H C R2 given
by

(4.7) h(b, T) (T d2)b c O,
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and of the solution set G c R2 of the equation

(4.8) g(b, T) b2(kT d2) 2bc + (2k 1)T2 2kjT + 2e O.

In particular, fixed points of E2 are, of course, given by elements of HNGn(Rx (0,
Let H-, H+ denote the lower left (- < d2, b < 0) and upper right (T > d2, b > 0)
branch of H, respectively.

LEMMA 4.4. H and G intersect transversally in precisely four points. With
(henceforth assumed) appropriate numbering, these points ui (bi, T), 0, 1, 2, 3
satisfy H+ N G {no, ul }, H- N G {u2, u3} and, more precisely,

T0 > T1 > d2> T2 > 73 > 0,

bl >bo>0>b3>b2.

At least for 1 and 3, u lies in the physical range U2 =_ {(b,T) E R2 - >
0 and 0(be, T) > 0}.

Proof. H G has at most four elements: Multiplying (4.8) by b2 and substituting
-b d2b+c from (4.7) yields a fourth-order polynomial in b. By virtue of Z and (1.7),
G intersects H- and H+ transversally in at least one point each. Since, however,
g c at each of the four infinities of H, G H+ consist then indeed both of
two transversal intersection points. We number the altogether four points such that
b > b0 > 0 > b3 > b2; this implies TO > ’ > d2 > T2 > T3.

It remains to show that-u and u3 lie in U2. Since, due to Z, G N H+ N U2 ,
it suffices to note that u0 E U2 would imply u U2, and u2 U2 would imply
u3 U2. To see this, reduce 2 still further by setting 0"

0

(4.9) g(b, T)/(2kT).

The flow that these equations define on the portion of H lying in the half-plane T > 0
corresponds to the flow governed by the single equation

(4.10)

on the two intervals (0, d2) and (d2, c). In (d2, c), this scalar flow has precisely two
fixed points: -0 and T1. Since the right-hand side of (4.10) is negative for T (’, TO),
this interval is a heteroclinic orbit from T0 to T. Adding a second component b
c/(’r- d2) lifts it to a heteroclinic orbit of (4.9). Since by an obvious extension of
Lemma 4.2, the physical range U2 H is positively invariant under the flow of (4.9),
we conclude the desired implication u0 E U2 u G U2. The argumentation for
u2 G U2 =v u3 G U2 is analogous once one observes additionally that T3 must be
positive since T2 > 0 >_ T3 would again contradict the positive invariance of U2 H
under the ilow of (4.9).

In the following we discuss the geometry of the nullclines H and G; cf. [18].
The hyperbola H has a horizontal asymptote at T d2, and the branches H+ in

b > 0, - > d2 and H- in b < 0, T < d2. Thus, it remains to discuss G. For given T

the two possible solutions of (4.8) are given by

(4.11) b
kT d2

r(T) C
2 ((2k 1)T2 2kjT + 2e)(kT d2).
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G

FIG. 1. Nullclines g(b, T)= 0 in cases (1), (2), and (3).

Real solutions exist for 7r(T) > 0. G has a horizontal asymptote at - d2/k, which
G approaches from above as b --, c and from below as b -- -oc. Since k > 1, the
horizontal asymptote of the hyperbola H lies above the horizontal asymptote of G.
The geometry of G is determined by the number and the location of zeros T* of the
cubic polynomial 7r. Since the leading coefficient of 7r is negative and 7r(d2/k) c2 is
positive, we have to distinguish three cases:

(1) there exists one zero T > d2/k;
(2) there exist three zeros T’ > d2/k > T > T;
(3) there exist three zeros T > T > T > d2/k.
In cases (1) and (2), G has two connected components, G1 and G2; in case (3),

G has three connected components G1, (2, and G3, which are labeled in the order in
which they appear as T decreases (see Fig. 1). Note, that horizontal and vertical lines
intersect G at most twice. Furthermore, G has exactly two, zero, and four vertical
tangents in cases (1), (2), and (3), respectively. As the parameters c, d, e, and j vary,
certain bifurcations are possible. Starting from case (2) the zeros T and - may
coalesce and then disappear; from case (3) the zeros T’ and T or the zeros T and

r may coalesce and then disappear; the resulting case is always case (1). Except
at these bifurcations, which we do not discuss in the following but which can be
treated similarly with unchanged results, G1 and G2 are separated by a vertical strip
in case (1) and by a horizontal strip in case (2). In case (3), G is separated from G2
and G3 by horizontal and vertical strips.

Now we discuss the relative position of H and G for the three cases. We know from
Lemma 4.4 that H and G intersect transversally in four fixed points, u0, u E H+,
U2, U3 E H-.

In case (1) there are two possibilities which give four fixed points.
(a) Both H+ and H- intersect G;
(b) H+ intersects G, and H- intersects G2.
In case (2), remembering that the horizontal asymptote for H lies above the

horizontal asymptote for G, we see that H+ intersects G1, and H- intersects G1 and

In case (3) there are four possibilities which give four fixed points.
(a) Both H+ and H- intersect G;
(b) H+ intersects G and H- intersects G3;
(c) both H+ ad H- intersect G2;
(d) H+ intersects G2 and H- intersects G3.
LEMMA 4.5. The case8 (1.b)., (3.b), and (3.d) are not possible, i.e., H- does not

intersect G2 in case (1),. and H- does not intersect G3 in case (3).
Proof. We prove the lemmafor case (1), the proof for case (3) is similar with G2
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replaced by G3. G is the solution set of the equation g(b, T) 0. The critical points
of g are the solutions of

(4.12)
(4.13)

gb(b, T) 2b(kT de) 2c O,
g(b, T) kb2 + 2(2k- 1)T- 2kj O.

Equation (4.12) describes a hyperbola/, which is just H contracted by a factor k
in the T direction. In b < 0, the parabola P defined by (4.13) intersects/ once in
the critical point (b,, T,), which is a saddlepoint. The topology of the level curves
of g changes at the level value g(b,, T,), in a way that corresponds to the transition
between case (1) and case (2) upon variation of e. This implies that all of G2 lies in
the halfplane b < b,. In particular, G2 can intersect H- at most in the quarterplane
Q {(b, T)" b < b,, T > max{T,, 0}}. Since g > 0 in Q and gb < 0 on H- N Q, g is
nowhere stationary along H- N Q. Since both infinities of G2 lie on the same side of
H-, this means that G2 cannot intersect H- at all.

The above discussion and Lemma 4.5 imply that the three cases have the following
common property.

LEMMA 4.6. The set G ([b2,bl] x R) consists of two smooth graphs G+ of
functions g+ "[b2, bl] --* R, distinguished by g-(b) < g+ (b), b e (b2, bl). uo belongs to
G+, u3 toG-. u andu2 each lie onG+ orG- or both. (At least) in (b2,b), both
g- and g+ are smooth, and are stationary in at most one point.

Finally we characterize the four fixed points.
LEMMA 4.7. (i) no, u, u2, u3 are hyperbolic fixed points for the flow of E2; uo is

an unstable node, u3 is a stable node, u and u2 are saddles.
(ii) At ul and u2 the stable and unstable manifolds are never tangent to vertical

or horizontal lines, nor to G or H.
(iii) Interpreted, via suspension (b, T) (be, 7), as points in R3, u0, u, u2, u3

are hyperbolic fixed points of E3. As such, the ui have stable [unstable] manifolds of
dimensions i [3 i], 0, 1, 2, 3.

Proof. For the reduced problem (4.9) u0 and u2 are repelling, u and u3 are
attracting. Thus, for sufficiently small t/,k assertion (i) follows by means of Proposi-
tion 3.2. We abbreviate (4.4) and (4.5) as

(, ’) (h(b, )/u, (b,

and compute the derivative

of this vector field at any of the fixed points:

A’(b, T) ( 1/0
k- (7 -J))

Taking into account that for symmetric matrices A, B with B positive definite, the
number of negative and positive eigenvalues of the product BA does not depend on B,
(i) follows for arbitrary , A > 0. Assertion (ii) follows immediately upon multiplying
A"’(b,T) by the vectors (1,0) -, (0,1)-, (-h-,hb) -, and (--,b)-. To see (iii),
we just note that in progressing from E2 to E3, an additional mode is added with
eigenspace E-t-= e+/- {0} and eigenvalue T- d2.
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Remarks. (i) Note that in connection with the signal speeds cf, CA, Cs of fast
magnetoacoustic, Alfvn, and slow magnetoacoustic waves (cf. [3]; cf > CA > c8 > 0),
assertion (iii) of Lemma 4.7 means that the physical states represented by the points
u0, ul, u2, u3 correspond to flow with velocity v > ci, v E (CA,Ci), v (c8, CA), and
v < c, respectively. Correspondingly, the transition (u0, ul) is a fast shock, (u2, u3)
a slow shock, and all (u,uj) with e {0, 1},j e {2,3} are intermediate shocks.

(ii) The characterization of the fixed points of E2, E3 given in Lemmas 4.4 and
4.7 reflects well-known results [19] on the original full system E6. The geometric
statement of Lemma 4.6 puts us in a position to understand the dynamics of 2 (see
[18] and [19]) rigorously (see Lemma 5.1) and in all cases (see Fig. 1).

5. Existence and bifurcation of heteroclinic orbits. Gradient-like struc-
ture, positive invariance of physical state space, boundedness of the set of points on
complete bounded orbits of positive temperature, the dimensions of stable and un-
stable manifolds, and specific geometric properties pose rather strong restrictions on
the flow of 5]3 which we will now use to prove the theorems stated in 1.

LEMMA 5.1. (i) With a certain fixedw, the two-dimensional system E2, depending
on , ) > O, has heteroclinic orbits of the following types and no others:

() .0 1, 0 - , 0 , 1- , fo ,/ > ;
(b) 01, 1-2,23 for,/A=w;
(c) 01,23 for,/A<w.
(ii) At the bifurcation ratio / w, the unstable manifold of {u} (0, oc)2

and the stable manifold of {u2} (0, c)2, with respect to the extension of E2 by the
equations i O, ) O, intersect transversally.

(iii) All orbits of types 0 --, 1, 2 3, 0 2, 1 -- 3, 1 --, 2 are unique, while
orbits of type 0 -- 3 occur in a one-parameter family. In all cases there exist also
orbits with a-limit uo [w-limit u3] which have no w-limit [(-limit] in the physicalrange
U2

(iv) The fixed points which lie in the physical range are ordered according to
increasing values of the entropy S, i.e., < j implies (ui) < (uj).

(v) The fixed points u, u2, and u3 always lie in the physical range U2.
Proof. (i) Consider the rectangle

R _-- (0,

in the (b, T) half-plane, with some > sup{g+(b); b2 _< b _< bl} (see Fig. 2).
Independently of /, the flow of 2 leaves R through the boundary portion

(OR)+ =-({b2} x (T2,])U([b2, bl] x {’}) [-J ({bl} (TI,]),

and enters R through

(OR)- =- ({b2} (0, T2)) t2 ({bl } (0, T1)).

By part (ii) of Lamina 4.7, there are unique orbits F, F which approach the fixed
points ui, i 1,2, from the interior of R, as their a or w limit, respectively. We
investigate possible positions of these orbits.

First, we show that assertions (a) and (c) hold in the extreme cases ,/A >> 1
and / << 1, respectively. These cases can be treated by the geometrical singular
perturbation theory from 3. For /A sufficiently large there exists a one-dimensional
attracting invariant manifold F3 of E2, close to G- and containing u3. For the flow
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H+

FIG. 2. Phase portrait of E2 in R.

restricted to 1-’3, u3 is itself attracting. Let F3+ be the portion of F3 in b3 < b < bl.
Note that F3+ must lie in T > 0, since either the point ul or points on its almost
vertical unstable manifold lie (arbitrarily) close to F3 (for large enough /), which
implies F3+ C U2 by Lemmas 4.2 and 4.4. Hence, the almost vertical strongly unstable
manifold of u0 enters the domain of attraction of F3+ and an orbit 0 3 exists, as
soon as / > w* with w* sufficiently large--which we henceforth assume. (The
idea underlying this argument consists in considering both the reduced and the "fast"
problem into which E2 decouples for /A c; cf. [22].) This orbit 0 - 3 and parts
of H and (OR bound a region which F’ intersects but cannot leave. Thus, F’ has the
w limit u3. The orbit Ful, the portion of H- between u2 and u3, and (OR)+ bound
a region R C R which is negatively invariant. Since F and F. point into Rp, they
must both have an a limit u0. Finally, as u. lies in the physical range U2--this we

anticipate from (v)--F is completely contained in R \ (clos(R’)) and thus has w-limit

u3. The four orbits F, F’, F, F, being of type 0 - 1, 1 3, 0 2, 2 3,
respectively, surround a region filled with orbits 0 --, 3. We have shown that (a) holds
ifw >w*.

From now on we quit the assumption /A > w* and consider instead cases where
/ < w, with a possibly different number w, > 0. If w, is sufficiently small, the orbits
F’, F are almost horizontal curves. This shows immediately that no heteroclinic orbit
of type i ---, j exists, for any (i,j) E {0, 1} {2,3}. On the other hand, considering
the portions of R above F and below F, respectively, we still see that F and F are
heteroclinic orbits of type 0 --, 1, 2 -* 3, respectively. We have thus shown that (c)
holds if w _< w..

The phase portraits corresponding to cases (a) and (c) are both structurally stable
(since they do not contain saddle-saddle connections). They are not equivalent (since,
e.g., one of them contains an orbit of type 1 --. 3, the other does not). Thus for at
least a certain value w E [w., w*], the phase portrait of E2 with / w does co)_tain

an orbit F which is heteroclinic to saddles. Necessarily, F F F and (b) holds
with this w. By part (ii) of Lemma 4.7, the intersections of F with sufficiently small
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FIG. 3. Connecting orbits of E3.

neighborhoods of u and u2 lie inside the region

N =- {(b, T) E R g(b, T) < O, h(b, T) < 0}.

The vertical or horizontal orientation of the vector field along H and G, respectively,
together with the piecewise monotonicity property of g+ mentioned in Lemma 4.6
imply that F lies completely in N. At least for /A in a neighborhood of w, the orbits
F, F intersect the b 0 line in unique points (0, T), (0, T) where T and T are
smooth functions of /A. Noting that F C N implies (T T)’(W) < 0, we see that
the bifurcation takes place locally near w as described in (a)-(c). Hence w is unique
and (a)-(c) hold globally.

(ii) Immediate from (T- T)’(W) O.
(iii) Follows directly from the facts that F connects to u0, F to u3, and the

behavior of the vector field along H.
(iv) Follows from (i) and Lemma 4.1.

(v) From Lemma 4.4 we know already that ul, u3 E U2. The facts that u U2

and that a 1 --, 2 orbit exists for u/ w (case (b)) imply that also u2 U2, by
virtue of Lemma 4.2.

The following lemma characterizes the flow of E3.
LEMMA 5.2. (i) Assume that E3 has four fixed points and that an orbit 0 --, 3

exists in E. Then, unique orbits 0 1, 2 -- 3, a pair of orbits 1 -- 2, and one-

parameter families of orbits 0 -- 2, 1 ---, 3 exist for E3. The union of these orbits
and the fixed points is the boundary of a two-parameter family of orbits 0 -- 3. (ii)
Assume that -]3 has the three fixed points u, u2, and u3 and that an orbit 1 - 3
exists. Then, a unique orbit 2 -- 3, a pair of orbits 1 -- 2, and a one-parameter
family of orbits 1 -- 3 exist for E3.

The situation in the case of assertion (i) is shown in Fig. 3.

Proof. We consider a sufficiently small sphere t centered at u3 and on this sphere
a maximM connected reflectionMly invariant set Ft0 of points with a limit u0.
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All orbits passing through points in f0 are heteroclinic orbits 0 --, 3. We denote the
union of these orbits by B.

B is an open, bounded subset ofR3. The invariance of B implies that its boundary
OB is invariant. Consider now the boundary 0ft0 of ft0 relative to ft. Any point in

00 has u3 as its w limit and must have ul or u2 as its limit Since certain other
points of Ft have no c limit inside the physical domain U3, 00 contains more than
one point. Since the unstable manifold of u2 lies in the invariant plane E, there is
at most one orbit 2 -- 3; hence, 0t0 contains in particular a point with c limit ul,

i.e., an element of the unstable manifold W of ul. Thus, 00 contains a maximal
smooth curve F C t NW of such points. F is either a closed curve or has endpoints.
If F were a closed curve, then all points in B would have a limit u, an obvious
contradiction. The endpoints of F have an a limit u2 and coincide, lying on the thus
existing and necessarily unique orbit 2 --, 3. The nonempty boundary, with respect
to W, of the set OB NW consists of orbits 1 2; by the reflectional symmetry of
E3 (see Lemma 4.3) it is a pair of such orbits.

The remaining assertions of (i) follow by reversing the direction of the flow and
the rSles of u0, u, U2, and U3. Statement (ii) is proved in the same way.

Remark. Note that the proof of Lemma 5.2 uses only (parts of) assertions (iii)-
(v) of Lemma 5.1--and not the detailed knowledge statements (i) and (ii) provide
about bifurcation. The following observation yields a closer connection between the
statements of the two lemmas. For /A w, the two-dimensional manifold W of u
intersects the two-dimensional stable manifold W of u2 in the orbit 1 2, which
lies in the invariant subspace E. Due to the reflectional symmetry of 3 with respect
to E, the intersection of W and W is nontransversal. If W and W are in
sufficiently general position, e.g., if the intersections of W and W with the plane
b 0, for /A w, have contact of some finite order, then a pair of symmetrically
located transversal orbits 1 2 of 3 is generated as /A passes through w. Since
the orbits 0 1, 2 3 are trivially transversal, the A-Lemma [15] then implies the
existence of the families of orbits 0 2, 1 3, 0 3 described in Lemma 5.2 for
/A- w small and positive. However, it seems difficult to verify the generic condition
of sufficiently general position analytically.

All orbits established in Lemma 5.2--with the possible exception of orbits 1
are transversal, because of the dimensions of the corresponding stable and unstable
manifolds. Since by Lemma 5.1 an orbit 0 --, 3 (or 1 -- 3 if u0 is not physical)
exists for /A > w, Lemma 5.2, Lemma 3.4, Proposition 3.2, and the analogue of
Lemma 5.2 for the restriction of E6 to the invariant manifold C imply the assertion
of Theorem 1.2.

To prove Theorem 1.3 we consider systems E4, E4 of four equations

where (b, T, w) E R x (0, cx) x R and 0 > 0 or 0 E R, respectively. Representing the
restriction of E6 to E x E, E4 governs all coplanar profiles and is related to E2 in

precisely the same way as E6 is to E3. Thus, Proposition 3.2, the analogue of Lemma
3.4 for E4, and Lemma 5.1, in particular its part (ii), imply that the bifurcation of
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heteroclinic orbits of E4 occurs as described in Theorem 1.3.
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TIME-LIKE TRACE REGULARITY OF THE WAVE EQUATION
WITH A NONSMOOTH PRINCIPAL PART*

GANG BAO AND WILLIAM W. SYMES$

Abstract. A trace regularity result is established for the multidimensional wave equation with
nonsmooth variable coefficients in the principal part. It is shown that the time like trace of the
solution can be as regular as the solution itself, provided that microlocal restrictions against the
tangential oscillations of the coefficients.

Key words, trace regularity, microlocal Sobolev spaces, nonsmooth symbol classes, propagation
of singularities, pseudodifferential cutoff

AMS subject classifications. 35L10, 35R25, 35S05

1. Introduction. A simplified model that governs many physical processes, such
as acoustic and seismic wave propagation, is the following wave equation:

1 d

c2(x, t) dt Va(x, t) V u(x, t) f(x, t),

where both coefficients c(x,t) and a(x,t) are functions that may or may not be
smooth. In this paper, we continue our study of trace regularity properties for the
solution of the multidimensional wave equation with nonsmooth coefficients. The
classical trace theorem in Sobolev spaces indicates that there will be a half-derivative
loss when a distribution is being restricted to a codimension one hypersurface. On the
other hand, the standard method of energy estimates yields that for a strictly hyper-
bolic partial differential equation with smooth coefficients, the restriction (or trace)
map to a codimension one space-like hypersurface, mapping the solution to its trace,
is from HS(Rk) to HS(Rk-l) locally for any real s. It is our goal in this work to in-
vestigate the circumstances under which a time-like trace of the solution is as regular
as the solution itself. Obviously, even with smooth coefficients, the answer would be
negative without any assumptions, which is essentially due to the ill-posedness nature
of time-like hyperbolic Cauchy problems, or the presence of grazing rays. Moreover,
the situation will be more complex when nonsmooth coefficients are present, where
only limited initial regularity can be propagated.

In many applications, e.g., control and inverse problems, the situation where the
coefficients (i.e., the medium) are time independent is of particular interest. Thus
we shall throughout assume that the coefficients are time free in the model, i.e.,
c(x, t) c(x) and a(x, t) a(x), although some of the analysis may be extended to
the time-dependent case.
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The following theorem is the main result of this paper. We show that with
additional microlocal smoothness along the tangential directions in the coefficients, the
time-like trace can be as regular as the solution itself. Let us denote d2(x) 1/c2(x)
and [-1 d d2(x)O2t- A and (’,n) is the Fourier variable corresponding to
x (x’, Xn). Throughout, the function c(x) is always assumed to be positive as it
stands for wave speed in applications.

THEOREM 1.1. Suppose that s > 3 + n/2 and that u solves the problem

[E:ld Va(x) V]u(x, t) f(x, t),
{t 0},u(x,t) e Ht I **mg (’7) near

with

where t is a compact subset of {(x, t) e an+l, It[, [Xn[

_
e0} for small eo > 0 and

F a conic neighborhood of’7.

Assume that
(i) u E Ht-1 gl H_(F), 1 _< _< s;
(ii) d(x) e HSv1HI(K) and Va(x) e Hs-flHm(K), H" F C T*(Rn+l) -K C T* (Rn) is the projection map;
(iii) f e Ht- fl Hm(F).

Then

u

Trace regularity results are of great importance in diverse fields, such as control
theory, boundary and initial boundary value problems of partial differential equations
(PDEs), and in particular inverse problems. An interesting example arises from seis-
mic imaging, where one wants to determine the mechanical properties of the earth
through analyzing the seismogram measured on the surface of earth, i.e., the solu-
tion on a time-like surface. Clearly, modeling this process requires the most precise
information about the time-like trace.

In [2], we proved a trace theorem for general linear PDEs with smooth variable co-
efficients, applying the Hbrmander-Nirenberg pseudodifferential cutoff technique and
the method of energy estimates. Our theorem indicates that the difficulty mentioned
above may be resolved by imposing more smoothness against grazing ray directions.
We thenstudied in [3] the wave equation with nonsmooth coefficients only at lower-
order terms. Compared to the general case in [2], a much simpler pseudodifferential
cutoff was available, which together with a result on propagation of singularities for
strictly hyperbolic .d.o. equations with nonsmooth coefficients at lower order terms
enabled us to prove a trace theorem.

The proof of Theorem 1.1 basically follows the framework developed in [3]. How-
ever, because of the presence of nonsmooth coefficients in the principal part, additional
technical difficulties will necessarily take place. For example, the result on propaga-
tion of singularities which is essential in our proof becomes much harder to obtain.
When the principal part has smooth or constant coefficients, as in [3], a generalized
Ranch’s lemma and a commutator lemma allowed us to extend a Baals-Reed theorem
(the BRI, Theorem 1 in [7]) on propagation of singularities to a more suitable setting
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for linear problems. However, the same idea breaks down when the principal part be-
comes nonsmooth. To cure the difficulty, a refined approach was introduced by Beals
and Reed in [8], where nonsmooth symbol classes and the corresponding calculus were
developed. Their approach follows the general outline of Hhrmander’s proof of the
theorem on propagation of singularities for PDEs with smooth coefficients [11], but
of course the nonsmoothness of the principal part requires some very delicate com-
mutator estimates. The key step was to establish a sharp Grding’s inequality which
allowed them to reduce the microlocal problem to a local one. They then proved a
theorem on propagation of singularities for .d.o equations with nonsmooth symbols
(the BRII, Theorem 3.2 in [8]). In this paper, we prove an extended version of the
Beals-Reed theorem (the BRII). Our theorem assures that under similar hypotheses
some lower-order microlocal regularity of the solution, for instance, HSt-regularity
(for s _> 0), will also propagate along the null bicharacteristics. We also treat the case
where coefficients may depend only on some of the variables, while we show that a
better result can be expected. We emphasize that this is particularly important since
the coefficients in our model are time independent!

We expect that the calculus of nonsmooth symbols developed in [8] and this work
will find other applications. Working on PDEs with nonsmooth coefficients, one would
often encounter similar commutator estimates.

Recently, studies on trace regularity have received much attention. For solutions
of the multidimensional wave equation with constant coefficients, Symes proved in
[22], by using the method of geometric optics, that with finitely energy initial data
compactly supported away from the boundary, the trace is as regular as the solution
in the interior. Similar results were obtained independently by Lasiecl and Triggiani
[16] based on an application of the classical Laplace-Fourier transform. They also
established (see [17]) a series of sharp global trace regularity results for second order
hyperbolic equations with smooth coefficients and Dirichlet or Neumann boundary
conditions. More recently, by using a microlocal cutoff technique, Lasiecka and Trig-
giani in [18] obtained an optimal tangential trace regularity theorem for the wave
equation with smooth coefficients in a bounded domain. For a wave equation, Kim
[13] proved a trace regularity result by employing a microlocal method, which further
allowed him to study the regularity of some boundary controls. Our approach differs
from that mentioned above in several aspects: The data in this work need not have
compact supports, and the coefficients in the model may be nonsmooth; furthermore,
our method relies heavily on various results on propagation of singularities. For more
general geometry and functions, Joly studied in [15] some trace regularity results in
the case of anisotropic Sobolev spaces in two dimensions where the domain can be
any arbitrary open set of R2.

The outline of the paper is as follows" In the next section, we introduce nonsmooth
symbol classes which are more flexible than those defined in [8] in the sense that the
coefficients may depend only on part of the variables. We then develop a calculus
for this class of nonsmooth symbols which handles a more general class of functions
with less regularity than in [8]. We establish a Grding type inequality. Finally,
we present a theorem on propagation of singularities. Section 3 is devoted to the
proof of our main theorem. This is done by a combination of microlocal cutoff, the
"fattening" lemma, the method of energy estimates, and the theorem on propagation
of singularities.

Throughout, the reader is assumed to be familiar with the basic calculus of pseu-

dodifferential operators (.d.o.) as presented in [24] and [19]. A classical .d.o. P of
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order m is denoted as P EOPSm with its symbol p Sm. ES(P) stands for the
essential support of operator P. H is the standard L2-type Sobolev space and Hl,c
means a local Sobolev space.
distribution u is expressed as . Usually, the constant from the Fourier transform
is assumed to be absorbed by the integral. For simplicity, C serves as a generalized
positive constant the precise value of which is not needed. The characteristic function
of a set F is represented by

We conclude the introduction by a brief discussion about nonlinear wave equa-
tions. The approach of this work may be adopted nicely in the trace regularity study
of a class of nonlinear wave equations. In fact, various results on propagation of singu-
larities for semilinear and quasi-linear wave equations have been developed by many
people, in particular by Ranch [20], Bony [9], Beals and Reed [7], [8], Beals [4], [5],
and Chemin [10]. But compared to the linear case, much higher overall smoothness
of both the solution and coefficients would be required. Along this direction, some
progress has been made in Bao [1].

2. Propagation of microlocal regularity. We introduce some basic concepts,
related material may be found in Beals and Reed [8]. General theoretical aspects as
well as applications of nonsmooth microlocal analysis may be found in Ranch [20],
Beals [6], and Taylor [25] and references therein.

DEFINITION 2.1. A distribution u is said to be in Hs N Ht(x0,0 if there exist
(x) e C(R’) with (x0) # 0 and a conic neighborhood " C an\{0} ofo such that

<>S(u)A() e L2(Rn) and <>rX()(u)A( e L2(Rn).

Next, we define a nonsmooth symbol class, which follows [8] with one main differ-
ence, that is, the present symbol class includes symbols that depend only on part of
the variables. An interesting special case deals with PDEs with coefficients depending
on part of the variables. For convenience, we denote x (xl,x2) G Rn x Rn-n,
1 <_ no <_ n. The frequency variables corresponding to x (xl,x2) are denoted by
_

(1, 2) E an0 an--no.
DEFINITION 2.2. Smo;S’r(K) is defined to be the collection of symbols a(xl,),

smooth in , such that

a(xl,)/(>m e H g Ht(K

as a function of x uniformly in .
In other words, for each (x,o) K, there exist a function (x1) C(Rn)

with (x) : 0 and a conic neighborhood of 0 such that

and

with norms independent of .
In particular, when n no, the symbol class becomes the one introduced in [8].

In that case, we denote

s -n

More generally, dealing with operators with lower order terms, we also need the
following definition.
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.rn-t-k;s-t-k,rTkDEFINITION 2 3 For k > 0 an integer, st,no (K) consists of symbols
a(x ) of the form

am+k(xl, ) -- am+k_l (xl, ) -}-...- am(xl, ),
where am(x1, ) E Sm;8’r (K) and for 0 < j <_ k

am+y(xl’) E aY,(xl)Pm+J,z(xl’) e sm;sx(K)

with "’m (K) and Pm+j,(x1, ) e 1,o
It is easy to observe that

+... + (K) c (K)(K) c

We are now ready to state a linear theorem on propagation of singularities for
.d.o. equations with nonsmooth coefficients. Again recall that x (x, x2) e RTM x
RTM and (1, 2) is the corresponding frequency variable.

THEOREM 2.1. Let no < s, 0 s, q and q < l+ s-no (1 no n), and
.m+2;s+2,q+2a(x (K)

is of real principal type with real principal symbol am+2 which is homogeneous of
degree m + 2 in , and that is the null bicharacteristic through the characteristic
point (x0,o). K H with H T*(Rn) T*(Rn) the projection map. Assume
that

+m(i) e
(ii) v H+ .. (xo, o) for some 0 e 1,
(iii) f e HzN Hqme(),

and that

Then

a(x1, Dx)v f

_.lq+m+ee

That is, if the solution v has improved microlocal regularity at a point on a null
bicharacteristic, the improved regularity will stay for the rest of the null bicharacter-
istic.

Remarks on Theorem 2.1. In the case that s and no n, we. speak of
the original Beals-Reed theorem (the BRII). Compared to the BRII, Theorem 2.1
assures that weaker regularity of the solution may also be propagated along null
bicharacteristics, and a better regularity result can be achieved when the coefficients
depend only on some of the variables.

It seems that the regularity hypotheses on the coefficients and right-hand side
cannot be improved much. However, the sharpness questions on this theorem and
other theorems on propagation of singularities (the BRI, the BRII, and Theorem 2.1
in [3]) remain open. Needless to say, these questions are extremely important and
worthwhile to pursue in the future.

The most precise information about the propagation of singularities may be ob-
tained in the case of one-space dimension, where the wave operator can be factored into
products of two simple first-order differential operators. Roughly speaking, the im-
proved microlocal regularity is then propagated along null bicharacteristics with very
few restriction on the order of smoothness. The best reference for one-dimensional
hyperbolic problems is Rauch and Reed [21].
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2.1. About the proof of Theorem 2.1. Theorem 2.1 may be proved by fol-
lowing the general scheme of the proof of the BRII in [8] with some necessary modi-
fications. The main ingredients of their proof are as follows:

The development of a calculus for the nonsmooth symbol class
Construction of an appropriate microlocal cutoff b0 by essentially following
Bony’s construction in [9].
Proof of a generalized Grding’s inequality.

The key step was to develop the calculus of the nonsmooth symbol class, which led
to a systematic way of handling commutators that involve either nonsmooth functions
or nonsmooth symbols (.d.o. with nonsmooth coefficients). It was shown that the
nonsmooth symbol class developed by Beals and Reed preserves important continuity
properties of smooth .d.o.

We point out that when the differential operator of a differential equation has
constant coefficients or is with a smooth principal part, the microlocal cutoff may
be constructed in a much simpler fashion. In fact, following Hhrmander’s first proof
of the theorem on propagation of singularities in [12] (see also Nirenberg [19]) there
exists a bo E OPS such that [P,, b0] is of order m- 2 instead of m- 1, if P, is the
principal part of an ruth order partial differential operator with usual assumption on

Pm. Having constructed this operator b0, one may reduce the microlocal regularity
problem to a local one by acting b0 to both sides of the PDE.

For simplicity, we shall skip the formal proof of Theorem 2.1 with the under-
standing that the proof can be formally done by modifying the proof of the BRII ([8],
pp. 174-177). In order to do so, a calculus of general nonsmooth symbols must be
developed and also a new Grding’s inequality must be established. Through this
process, Theorem 2.2 will play a crucial role since it characterizes the fundamental
Sobolev continuous properties of the class of nonsmooth symbols. The rest of this sec-
tion is devoted to establish the necessary results for completing the proof of Theorem
2.1.

2.2. Sobolev continuity of nonsmooth symbols. We begin with some in-
equalities that will be used frequently.

PROPOSITION 2.1. Let

Cg2 sup /[g(<, {, 7)12d<

and

For h L2, define

Then

C sup J IK(, , 7)[2d.

(Th)(, 7) f K(, , 7)g( , , 7)h(,

]lTh]l _< CCKIIh]I.

Proof. Consider that for any f(, 7) L2 and [If[I-< 1,

[(Th, f) f f(Th)dd7
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Interchanging the sequence of integrations and by Cauchy-Schwarz’s inequality, we
have

1/2

hence the conclusion follows. V1

Similarly, one can prove the following result.
PROPOSITION 2.2. Denote (1, 2) and r/= (71, r/2), where 1, rll and are

of the same dimension. Let

C sup / dlh(, )l 2

f ,
and

a sup ddlG( r, )[2.

For v E L2, define

T(v)(?’]) / f ddG(, ?, )h(, )g(?]l 1 , f]2 2, , )v()
Then

Pro@ For any f e L2(d) with Ilfll-< 1, consider

PROPOSITION 2.3. Assume that K is a closed cone which is strictly contained
in an open cone K. If K, l Kc, where KC is the complement of K, then

(1) I-Vl >C11,C>0;
(2) if I1 >- Co > O, then (- r/> _> C(>.
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The following theorem establishes continuity properties of the nonsmooth symbol
class. Let Hi" (xi, x2, 1, 2) .__+ (x 1, 1, 2).

THEOREM 2.2. Let no/2 < s, 0 <_ <_ s, q, and q < + s- no/2 (1 _< no _< n).
Suppose that a(x ) E Rm;8’q(/), 0 < m < s, ? gr Thenn

a(xl,Dx)

is a bounded operator from HI N Hq(F) to Hl-m Hqm(F).
Remarks. We list some of the interesting special cases of Theorem 2.2.

If no n and s, then Theorem 2.2 becomes an earlier result of Beals
and Reed (Theorem 1.3 in [8]). In addition, the case where a(x, ) a(x1, )
gives rise to Ranch’s lemma [20].
The case a(xl,) a(x) is the generalized Ranch’s lemma proved in [3]
(Lemma 2.3).

Proof. W.l.o.g., we assume that s < q, some obvious modification will yield the
conclusion for s _> q. For u e Hg H(F), we may assume u and a(x1, ) have
compact supports in x near x0, and x near x, respectively, where (x0, 0) E F.
Then

and

a(xl, Dx)u(x) f / ei ’ a(xl,

(auj(rl) / a(?] 1, 1, rl2)t(l, 2)d1

Next since a

where sup f f2((, )d( < c.

Define v() (}t() e n2. Thus

with

()t-m(aui() f/((1, r])f(r]l 1, 1, r]2)v(l, ]2)dl

K(I, ?) <?]>l-rn/<?]l l>s <l, ?]2>l-m

Therefore from Proposition 2.1, it suffices to show that

sup J IK(1, r)12d < c

which follows immediately from HSlder’s inequality and the assumption that s > no/2
and > m.

Let 0 be a conic neighborhood of 0 such that u Ht Hqme(O), and a(x1, )
Snmo;s,r(a) where a IIO the projection of 0 onto the l-space. Let 0 CC O, be a

strictly smaller conic neighborhood of 0 and a is the projection of 0. We must show
that

Xo,()(>-m(aui(7) L2
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Write

&(,)- Xa()fl(,)()m + Xac()f2(’)()m

() XO()v() + XO().()

where fi L2(d) uniformly in and vi L2. Then

Xo’(/])(/])q-m E f Kij("/])fi( ’ ’/]2)vi(1,/]2)d’
i,j--1,2"

where

Kll(’I,/]) XO’(/])Xcr(/] l).o(l,/]2)(l,/]2)m(/]>q--m

K12( /]) XO,(/])Xo.(/]I cl)xoo(I ’/]2)(1,

</]1

Once again, by Proposition 2.1, it suffices to show that

sup /
We now estimate these kernels separately.

On support Kll,/] E 0’,/]1 1 E a, (1,/]2) . Then

<>q-
[Kill _<

</]1 1>q<1,/]2}q--m e L2(d{1)

On support K12, /] 0’, /]1 1 a, and (1,/]2) E 0C. Then
hence

1

since > n0/2.
On support K21,/] ’,/]1_ 1 crc, and (1,/]2) , therefore (1,/]2) > C(/]/.

It follows that

c

On support K22,/] 0’,/]1_1 crC, and ({1,/]2) Oc, therefore <1,/]2> C</]}
It follows that

C
L2IK=.I _< <n 5>,+z_q e (d)

because of the assumption s + q > no/2. E]
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2.3. Calculus of nonsmooth symbol class. With the presence of nonsmooth
coefficients, one always needs to study various algebraic properties, such as products
of two nonsmooth functions, the action of a nonsmooth symbol (.d.o.) to a function,
and commutators between smooth (or nonsmooth) .d.o.s. To serve the proof of
Theorem 2.1, we shall study compositions of an operator that has nonsmooth symbol
with a smooth operator from left. The proof of Theorem 2.1 also requires a Grding’s
inequality.

.m;s,q,l,rDEFINITION 2.4 For F C T*(Rn), bd (F) is a collection of symbols that
are in sm;8’q(F) and define bounded maps from

H r"l H(F) - HL-m n Hn-m(F)
LEMMA 2.1. Let no/2 < s, 0 < < s, 1 < no < n, s < Sb, n/2 < Sb, and

q < min{s + no/2, Sb + s n/2}. Let k > 0 be an integer, and for I1 < k

a(x1,) e S0;8+k’q+(’)’) Ob(x,) e Sk-Il;b’q(F) and "- IIlr.
Then b o a(x, ), the symbol of operator b(x, D)a(x, D), satisfies

Proof.

It follows from

that

and

boa(x,) E -0bDa(xl’) } Sb;’q’t’q(F)

(b o a)(x, Dx)u(x) f eiX’b(x, )(aui()d.

(aui() / 5(1 1, 1, 2)?(1, 2)d1

(bo a)(x, Dx)u(x) / / eiX’(b(x,)&( 1, 1, 2)(1, 2)dld

aui(l) f f [(l , )(1 1, 1, 2)?(1, 2)dld

Substituting 1 and 2 by + and 2, we have

au() f f (1 1 1, 2 2, 1 + 1, 2)(1, 1, 2)()ddl

On the other hand,

(OgbD a)(x, D)u(x) f e’(ObD a)(x,
d

and

(ObD,aui(l) J J ei’(-)(ObDa)(x, )t()ddx

/ f 0)(1 1 1, 2 2, -)(l)ca(l -);(-)d-dl
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Now, defining

1
r(x,D) bo a(x,D) E -ffi(ObDl a)(x’D)

we then get by Taylor’s theorem

for the case k 0, the term in braces should be replaced by/(?]1 __1 __1, ?]2 __2, 1
_

Therefore

(rui(?]) / (?] (,

where

Let K’ cc K be a small conic neighborhood of0, (x0, 0) E F, with K sufficiently
small so that estimates of Definition 2.2 hold for 0b on K and a on HK (H the
projection map from Rn to Rn). In order.to show

b o a(x,) E -obDa(xl,) } sm;s’q(F)

it suffices to prove

XK’ (?])it)(?], ) L2and (?])q
()m

e (d?]).

This may be proved similarly as in the proof of Theorem 2.2 by treating as a

parameter, hence we shall omit it.
We next show that r(x, D) is a bounded operator from Htg Hqme(F) to Ht-m g

(r).
Let us begin by proving the local part of the conclusion. W.l.o.g., only the case

k - 0 is considered here. For [a k, let

h(l, )()m and () v()/(} t,
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where h(l,) E L2(d1) uniformly in and v E L2. The integral kernel in the
expression (2.1) can be written

g(T]I -1 1, ?./2 2, , 1)/(?.11 -1 1, g]2 2)Sb,

where g(, , {) L2(d) uniformly in and {.
Thus

with

K(1, 7, ) (71 1 1, 72 2}Sb (l )s ()l--m

Because of Proposition 2.2, we only need to show

K L2(dld4) uniformly in .
We separate it into several pieces:

If IVl/3 I1, then

CIKI ( 1 1, 2 2)s {l)s;
hence K L(dld{), since s> no and s > n/2.

In the reion where I1 < 11/3 I(- 41- ,-4)1, Uhe

C

C<

In the region, I1 < 1I/3 and [(1_ 1_ 1,

_
)l < 11/3. Since

we have

or 11/3 Ill. Thus

C

C

i.e., K e L2(dld).
We next deal with the microlocal part. Let 0/cC 0, then for lal k, write

(1>a(1 ): x0’hl(l,)(>m
<.,>,

X.OC(I )h2 (1, -) (-)m+
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where hi(1, ) E L2(d1) uniformly in 4. Let

() x’()() + x().()

with Vl and v2 L2.
The imegral kernel of (2.1) can be written as

XK,(V ,V )g(1 1 1, V , , 1)
(v _1 ,v _)

(v C , v )(v , v ,)
wr {,,) Zta} uniformly in 1 .d ,

Therefore, we have the following close form:

I=k

Gi,y,h(l,w,)gi(w--,W2-2,;,)hY(,)Vh()dld
i,j,h=l,2

We only need to show, from Proposition 2.2, that Gi,j,h L2(dd) uniformly in W-
The fact that this is indeed so follows from the hypotheses and an analysis of eight
different pieces of the kernel. The arguments are similar to the proof of Theorem 2.2
or the proof of the local part. For simplicity, we leave it to the interested reader.

A simple partition of the unity argument and an application of Leibnitz’s rule as
in [8] (the proof of Corollary 1.6) give the following result.

COROLLARY 2.1. Let no < s, 0 s, 1 no n s 5 Sb, n/2 < s, and
q < min{s + n0/2, Sb + s-- n/2}. Let k 0 be an intver, and for ]aI k

a(xl,) e s+;+’"+(), a(x,) e s-";,"(r).
Then b o a(x, ), the symbol of operator b(x, D)a(x1, D), satisfying

b o a(z, ) ObDa(z ) e ba (r).

The proof of Lemma 2.1 may be sharpened in a way similar to the proof of Lemma
1.12 in [8] to yield the following representation.

LEMMA 2.2. et n0/2 < s, 0 s, 1 o e,s, d q s + l-0/2.
Assume also that k 0 is a iteger ad O,

(1, e s;+’+(, o(, e s+"

The there ezist smbols r(z ) (z ) e S;’’’q(r) and p(z, ) (z ) e S" sch1,0
that

b oa(x,D)-
Il<k
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Accordingly, one can also prove a consequence of Lemma 2.2.
COROLLARY 2.2. The conclusions of Lemma 2.2 hold if the assumptions on a

and b are replaced with

a(xl, ) e Ob(x, ) E S.
LEMMA 2.3. Let k >_ 1, no < s, 0 <_ <_ s, q < s + no/2, and

a(x ) S,;+,+().
Then the adjoint of a is an operator with symbol

,;+,+()
and

that

{a* (x, ) 5(x, )} e Sbkd-1;s-t-k-l’qWk-l’l’q(/).
The proof follows from the calculus of smooth .d.o. and Theorem 2.2 by observing

implies that

a E al(xl)pl(xl’)’ Pk,t Sk

a* (x, D) EP(x, D)5t(x)

with P* (x, ) e S.
Finally, to complete the proof of Theorem 2.1, we need a Grding type inequality.

Let H" (x1, x2, ) -- (x1, ) be a projection map.
LEMMA 2.4. Let no/2 < s, 0 < <_ 1, x (xl,x2) an an-n, and

(2.2) P(x, ) a(x1, )P0(x, ) + P1 (x, ) >_ 0,

where a(x ) ,q,8+2c(V) P0(x,) S(U) and P(x,) Sc(U) for V IIU.
0Then for all u e Hcomp(U)

Re(P(x,D)u, u) >_ Cl[u 2[HO(U)
Proof. The proof may be given by following the general outline of the proof of

Lemma 3.1 in [8] with some necessary modifications. As in Taylor [24], let b(D, x, D)
be the riedrichs symmetrization of P. Set R(x,D) b(D,x, D) -p(x, D). If one
can show that

R(x,D) o oHo, - Hoc
is a bounded operator, then (2.2) would follow since (b(D, x, D)u, u >_ O.

Let q be a smooth nonnegative even function, supported in [1 -< 1 satisfying

f q2()dC 1, and define

F(, ) ()n/4
q ()i/2

b(v, x, ) ] F(, )P(x, )F(, )d.
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Then

Thus

(b(D, x, D)ui(7) / (r, rl , ),()d
(R(x, D)ui(rl) J P(r/- , )()d,

where/?/(r/, ) =/(r/+ , r/, ) P(, ).
If one can show that

(2.3) <>s<2>r](,)] Cg(,)

with g L2(dv) uniformly in for some r > (n- u0)/2, then similar arguments as in
the proof of Proposition 2.1 or Proposition 2.2 yield

Ru H.
Observe that since f F2(, )d 1, we have

(2.4) / / F(r/+ , )/5(r], )F(, )d -/5(, )

[( + , ){P(, ) P(, )}(,)d

(2.5) + f{F(v + )}P(V, 4)d .

On support of F(, ), I- ] (}1/2, hence for large one has . Then (2.4)
and the hypotheses on a, P0, and P imply that

for any r with g0(v, ) L2(dv) uniformly in .
The estimate (2.3) can then be established by following the proof of Lemma 3.1

in IS].
3. Proof of the main theorem. We now prove the main result of this paper,

Theorem 1.1, a trace regularity theorem for the linear acoustic wave equation with
nonsmooth coefficients in the principal part.

As we mentioned earlier, since the hypersurface {x 0} is a time-like surface,
the method of energy estimates cannot be applied directly. Following [3], we alter
the wave operator by a microlocal cutoff technique so that {Xn 0} will become a
space-like surface with respect to the new operator. More precisely, we shall construct
a .d.o. equation which is strictly hyperbolic corresponding to the trace {x 0}.
Since the operator in our construction is differential in Xn, the standard method of
energy estimates (for example in [14] or [24]) can then be employed to derive the
basic estimate. Naturally, there will be a remainder term. We then show that the
remainder term can be controlled by the microlocal hypotheses and Theorem 2.1.

Let2: XCT*(Rk)YCRk Rk serveasamapfork>k0,

m.(x) {(x, , ) e . (x, v, , v) e x}.
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Proof of Theorem 1.1. Let "o,’1 be two conic subsets of the set {(x, t, ’,w) E
Rn+l Rn; (x,t) o, (’,w) Rn, d(x)lwl >_ I’1} where gt0 is a small compact
neighborhood of Ft, andt C t. Then, construct an operator Q C (R, OPS (Rn)),
q q(x, t, , w), whose symbol satisfies

ES(Q) C 1 and 0 qo 1,
q0 1 on 7o{(x,t,’,w), [(’,w)] > 1},

where q0(’,w) is the principal symbol of Q. Define another operator E as

#= ( ),x’,t ,t

where ’,t d2O a, and A,,t d20 + a,.
Observe that the principal symbol of E

eo qo(d2w2 -]’12) + (1 qo)(d2w2 + I’12) C(w2 + I’1),
for l(w, ’) , with some positive constants C, . Hence, E is an elliptic .d.o. of
order two.

Let (x, t) C(Rn+) with supp {]Xn e0}. We then have a strictly
symmetric hyperbolic problem:

(-02x + E)u dCU + (I Q)(A,,td ,,t)u
(3.1) [,] + Cf + Cw. w + 2( )o,u

d[0y,] [,] + Cf + CW. W + 2( )0,,

where d d20y A.
Thus, we obtain a standard wave equation with Xn playing the role of "time." This

together with the fact that is compactly supported gives us a symmetric hyperbolic
Cauchy problem with zero Cauchy data. It follows from a hyperbolic energy estimate
in Taylor [24, pp. 73-78] that

(3.e)
ll(u) =0 CI r.h.s, of (3.1)llt_

0[11 + I1II1-1 + IlCW.. Vll- + I1( )a,ll-,],

where C, and > 0 on supp(), and supp() CC . Let C() and
1 on 2, where supp() CC 2 CC . Then the above estimate leads to

II() I=0 I1 c[111] + I1I- + llw. Wll- + I1(- )0,11-,]

where we have used (1- )(I- Q)0,ullt-l,a Clull for any real r.

Using the hypotheses, similar to the proposition in BeMs and Reed [7], one can
show that u e Hoc. Hence a generalized Schauder’s lemma (Lemma 2.2 in [3]) yields

eva. Vu H-Therefore, to complete the proof it suffices to show that

(I Q)a2,u H[c (gt),

which requires the use of Lemma 3.1 stated below. In order to apply Lemma 3.1, we
choose B I- Q C (R, OPS(Rn)) of order m 0, A E]d of order m0 2,
and h- l- 2 in the statement of Lemma 3.1.
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Concerning the assumption (1) of Lemma 3.1, Ell(A) defined as the microlocal
elliptic region of A [-! d is easy to determine by knowing that the operator [:]d is
elliptic away from the set {d2w2 112}. To verify hypothesis (3), one only needs to
look at

+ w + f).

Then [:]dO2x,U E HI-3 follows by some simple commutator arguments. Therefore, the
only assumption that needs to be checked is

j/+l (Rn+lu e .., (IT* )\Ell(rnd)] N HIES(I Q))

and this demands Theorem 2.1.
In the statement of Theorem 2.1 choose

(m, no, n, l, s, q, e) (0,n,n + 1,/- 1, s-2,/, 1)

then the microlocal hypotheses verify all the assumptions of Theorem 2.1. Notice
that the main assumption, s > 3 + n/2, is required by the corresponding hypothesis
("q < +. s- n0/2) in the statement of Theorem 2.1. Let 0 and /1 approach the set
{(x, t, , w) (x,t) o, dlwl _> I’1}. The set

[T*(Rn+l)\Ell(rn)] C fIIES(I Q)

is contained in a small (conic) neighborhood of the Hamiltonian flow out of . Hence
Theorem 2.1 and the microlocal initial hypotheses yield that

j/+lu e "’rn ([T*(Rn+l)\Ell([:])] IIIES(I

We have completed the proof of Theorem 1.1.
For the sake of completeness, we state a lemma given in [2].
Consider a smooth family of .d.o. P C(Rk-k, oPSm(Rk)), i.e., for each

y Rk-k with k0 < k, P(x,y, Dx!_E oPSm(Rk)’Itisknwn’,wn see [2] or [23], that
P is not necessarily a .d.o. in R. However, as .o in [2], a smooth family of

.d.o. behaves like a .d.o.
Recall the map, for k > k0,

II2(X) {(x,y,) e Y C Rk R" (x,y,,r) e X C T*(Rk)}

The normal bundle of a foliation R Rk-k Rk is the set

Af={(x,y,,r/)Rk R-k Rk Rk-k,=0}.

LEMMA 3.1 (Fattening lemma). Let B(x,y, Dx) C(Rk-k,oPSm(R) and
A(x, y, D, D) ORSm(R), where 1 <_ ko <_ k. Let-- {(X,) e ak ak, (l,’’’,ko) --0}

be the normal bundle of Rk Rk-k. Also, assume that
(1) A is microlocal elliptic on a conic set Ell(A), with Af cc Ell(A);
(2) u e Hh Hhm+l([T*(Rk)\Ell(A)] C fIES(B(", y, ")));

jh-m+l(Rk), where (x) e c(ak).(3) ACu
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Then

.-+(R)BCu ’oc

in addition, if B is either a convolutional operator or its symbol has compact support
in spatial variables,

BCu e Hh-’+l(Rk)
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UNIFORM STRICT CONVEXITY OF A COST FUNCTIONAL FOR
THREE-DIMENSIONAL INVERSE SCATTERING PROBLEM *

MICHAEL V. KLIBANOV AND OLGA V. IOUSSOUPOVA:

Abstract. An inverse problem of determination of the coefficient a(x) in the equation utt
Au T a(x)u,x E I3, (0, T) is considered with initial conditions u(x, O) O, us(x, 0) 5(x), and
some additional data that can be treated as backscattering information. The goal is to develop a

finite-dimensional technique that would be a basis for future computations. We reduce our inverse

scattering problem to an equivalent Cauchy problem for a nonlinear hyperbolic integrodifferential
equation with the data on the lateral side of a time cylinder. It is assumed that the solution v(x, t)
of this equation has the form v(x, t) p(x, t) -t-w(x, t), where function p(x, t) is given and function
w(x, t) is unknown and has a finite number of nonzero Fourier coefficients. In particular, function
p(x,t) can be considered as a first guess. A special cost-functional J(w) dependent on a large
parameter A is introduced. The main result of this paper is Theorem 1.1. By this theorem, the
functional J is uniformly strictly convex on any ball B with the center at the origin with a proper
choice of the parameter A A(B). Therefore, by this theorem, a finite-dimensional perturbation of a
true solution of the above-mentioned nonlinear Cauchy problem can be found by convex minimization
techniques.

Key words, inverse scattering problem, Carleman estimates, strict convexity, global conver-

gence, imaging, strong scattering

AMS subject classification. 35R30

0. Introduction. Numerical methods for three-dimensional inverse scattering
problems (ISP) currently attract considerable interest. In part, it is due to their sig-
nificance for imaging of the complicated internal structure of inhomogeneous media,
such as biological tissues, industrial devices, etc. One of the most attractive advan-
tages of such imaging is in displaying the subtle structures of abnormal inclusions of
the media, which is of special importance for diagnosis of some human diseases, nonin-
vasive quality control of industrial devices, etc. Presumably an imaging device should
introduce electromagnetic waves into inhomogeneous media. Then this device should
measure scattering data all arou.d the media and treat this data computationally.
Finally, it should display the image of the internal structure of the media on the basis
of computational results. Thus numerical methods for three-dimensional ISPs play
a fundamental role in imaging processes. We also refer to such traditional areas of
application of three-dimensional ISPs as ocean acoustics and geophysics.

Currently, these methods have been developed mainly in a frequency domain, i.e.,
for the Helmholtz-like equation Au + k2(1 + c(x))u 0; cf. Cheney [3], Colton and
Monk [4], [5] and Gutman and Slibanov [6]; [3] and [4] contain surveys. However,
ISPs with time-dependent data play a substantial role in imaging problems as well.
Numerical methods for three-dimensional ISP with time-dependent data have been
studied by Baylis, Li, and Morawetz [1] and by Klibanov and Malinsky [13]. ISes
for the equation utt Au + a(x)u,x E ]t3 were considered in [1] and [13]. Here
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potential a(x) is the unknown function. Note that this equation can be obtained by
the Fourier transform from the SchrSdinger equation AV+ k2V +a(x)V 5(x) which
is commonly used to model many-body systems. A Newton-Kantorovich numerical
method was developed in [13] for the weak scattering case, which is in the case when
la(x)[ <( 1.

Newton-Kantorovich methods, however, require that a distance between the
starting point (i.e., the initial guess) and the solution has to be sufficiently small,
which is, of course, not always the case in applications. We note that in practical
computations of inverse problems the solutions are usually sought as m-dimensional
perturbations of a certain initial guess. Thus it would be very helpful to develop a
finite-dimensional technique which would have a guaranteed convergence for any fixed
dimension rn and for any distance between the initial guess and the solution of the
ISP. Such a technique would be a basis for future practical computations which would
give results sufficient for practical goals. One should expect, however, that the ques-
tion of convergence of such a method as rn --, oc would be very hard to answer due
to ill-posedness of the inverse problems; cf. Lavrent’ev et al. [18] and Tikhonov and
irsenin [23] (see also 6).

In this paper we develop such a finite-dimensional technique for an ISP for the
above mentioned hyperbolic equation. Our ISP deals with the backscattering data.
First we get rid of the unknown coefficient a(x) and obtain, in this way, a time-like
Cauchy problem (1.21)-(1.23) for a nonlinear hyperbolic integrodifferential equation.
This problem is actually equivalent with the original ISP. Let N >_ 1 be an arbitrary
integer and rn N3. We seek a solution v(x, t) of this nonlinear Cauchy problem in
the form v(x,t) w(x,t) + p(x,t), where function p(x,t) is given, function w(x,t)
is unknown, and w(x, t) has rn nonzero Fourier coefficients with respect to a certain
orthonormal basis. Therefore function p(x, t) can be considered as a first guess for the
solution v(x, t). But we do not impose "smallness" conditions on the function w(x, t).

Let function w,(x, t) be the sought solution and c, c(w,) E ’ be the vector
of the Fourier coefficients of the function w,. By Tikhonov’s principle one can assume
that a solution of an ill-posed problem belongs to an a priori given compact set; see

[23]. Thus without loss of generality, we can assume that c, B1/2 where

Then we introduce a special weighted minimizing cost functional J J(w), where
A is a large positive parameter. The functional J is tightly connected with Carleman
estimates; cf. Klibanov [12]. Vector c, c(w,) provides a global minimum of J on

/1, in the case of the absence of a noise in the data (regarding the noise, see Theorem
.).

The main result of this paper is Theorem i.I, which claims that there exists a

constant (B1) such that the functional J is uniformly strictly convex on/1.
The genuine meaning of this result is that one can find a finite-dimensional pertur-
bation of the true solution of the nonlinear Cauchy problem (1.21)-(1.23) by convex

minimization methods. We note that Theorem 1.1 guarantees a global convergence
of a number of traditional minimization algorithms to the global minimum w, of J
(on/1). In particular, we prove, basically for the sake of completeness, Theorem 1.2
which establishes a convergence rate of the simplest version of the gradient method,
in a case when the starting point is the center of B and the data does not contain a

noise. We also prove Theorem 1.3, which shows that the gradient method provides a

reasonable solution even in the presence of a noise in the data. Finally, Theorem
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1.1 implies Theorem 1.4, which claims that our "m-dimensional" solution w(x, t) is
unique. Of course, Theorem 1.4 cannot be considered as a global uniqueness result
(see a discussion of the uniqueness issue below). One can argue, however, that some-
times computations are successfully carried out despite the lack of global uniqueness
results. The reason for this is that theorems similar to Theorem 1.4 are sometimes
sufficient for practicM computations and provide good indications of the validity of
global uniqueness results. We consider this paper as a basis for future computations,
which will be discussed elsewhere (see also 6).

To our knowledge, Symes was the first one who proved, using an entirely different
technique, uniform convexity of a minimizing cost functional for an inverse problem
for the equation utt c2(x3)Au -- 5(x)f(t) with unknown coefficient C(X3); see, e.g.,
Theorem 6.1 in [22] and the references cited there. He also raised a question about
similar results in a case when the unknown coefficient depends on n 3 variables. As
far as we know our result is the first one in this direction.

Let T constant > 0 and R3 x (0, T). Let a nonnegative function a E
C2(I3) and a function u(x, t) be a solution of the Cauchy problem

(0.1)
utt Au + a(x)u in ,

0,

where 6(x) is the delta function. Introduce spherical coordinates

Xl r cos 0 sin 99, x2 r sin sin 99, x3 r cos 99, E [0, 2;r), [o,

1T. Let gtro C ]13 be a cylinderLet ro, R be positive constants such that ro < R <

tro: {X 3. V/x21 +x22 rsin99 < ro}.
Let w be the boundary of ro.

The principM problem of interest for us is as follows: Assume that the function
a(x) 0 for x tro and is unknown otherwise. We would like to determine this

function for x e (31o) N {/x/ < R} assuming that the following function is

given:

(x, t), t e (0, T).

We note that since function a(x) 0 inside of gtro, then we can uniquely determine
function u(x, t) for (x, t) o (0, T) as a solution of the following boundary value
problem:

u=Au ingto (0, T),

(0.3) o,

(x,t).
Hence actually the following function #(x, t) is given:

(0.4) u #(x, t) for (x, t) e fro (0, T).

Remarks. (i) In fact, it would be more natural, perhaps, to assume that function
a(x) 0 only in the ball x e {Ixl < r0} and function u(x,t) is given only on the
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sphere Ixl r0. In this case, however, we would face some specific difficulties related
to the fact that the Jacobian

det (0(Xl’ x2, x3)
r2 sin

equals zero at 0, r, i.e., on the line Xl x2 0 (see also the second remark in 3).
We would face these difficulties only because we get Carleman estimates in terms of
spherical coordinates (not cartesian ones). Consequently, we think that a modification
of our Carleman estimates would lead to an elimination of these obstacles. Currently,
however, we do not know how to handle this.

(ii) Nevertheless condition (0.2) is not a very restrictive one. For instance, this
condition is valid in the case when the function a(x) has a compact support in a
neighborhood of a point 2 (21, 22 23 such that v/2 + 222 > 2r0. That is, a(x)= 0
for Ix- 21 > a, where 0 < a < 121- r0. In this case one can assume, for instance,
that one measures scattering data on a sphere Ix- 21 a which certainly can be the
case in imaging problems. Then one can get function in (0.2) by solving a boundary
value problem similar with (0.3).

(iii) In fact, measurements (0.2) on the surface w contain backscattering informa-
tion, which is the only unique "useful" part of the measuring signal. Indeed, waves
propagate from the source x 0, which is placed inside of the cylinder gto, and sup-
port of the unknown function a(x) is outside of gto. If our measurement data did not
contain the backscattering signal, we would be unable to get a uniqueness result (see
Theorem 1.4 below).

It is widely known that numerical methods for ill-posed problems, and for inverse
problems in particular, are closely connected with uniqueness theorems for these prob-
lems. It is also well known that global uniqueness results are much more difficult to
get in a case where unknown coefficients depend on n >_ 2 variables than those for a
n 1 case. In particular, uniqueness theorems for the inverse problem (0.1) and (0.2),
as well as for closely connected problems of integral geometry, are currently proven
only under rather restrictive conditions imposed on a(x); see Lavrent’ev, Romanov,
and Shishatskii [18] and Romanov [19]. To our knowledge, the question about the
global uniqueness theorem for this problem still remains open despite a large number
of attempts to answer it. Incidentally, the lack of methods of proofs of globM unique-
ness results is, perhaps, the second major reason (in addition to ill-posedness) why we
cannot yet investigate our functional J),(w) as m - c.

Nevertheless, global uniqueness results were proved for similar multidimensional
inverse problems under the assumption that u(x, 0) - 0 for all "needed" x. These
results were proven by the method of Carleman estimates which has been applied to
inverse problems beginning from the work of Bukhgeim and Klibanov in 1981 [2], see
also the survey in Klibanov [12] and references cited therein. Recently Klibanov et al.
started to apply Carleman estimates for proofs of convergence of numerical methods
both for ill-posed Cauchy problems and for inverse problems; see [11] and [13]-[15].
The method of the current paper is also based on Carleman estimates. Note that by
the classical approach, these estimates are applied to proofs of uniqueness and stability
results for ill-posed Cauchy problems; cf. Hhrmander [8], Iskov [9], and Lavrent’ev
et al. [18].

The paper is constructed as follows. In 1 we show how to get a time-like Cauchy
problem for nonlinear hyperbolic integrodifferential equation, instead of the inverse
problem (0.1) and (0.2). In this section, we also introduce the functional J and
formulate Theorems 1.1-1.4. In 2 we prove miscellaneous lemmas. In 3 we prove
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a special form of the Carleman estimate (Theorem 3.1). Section 4 is devoted to the
proof of Theorem 1.1. In 5 we prove Theorems 1.2 and 1.3. Section 6 is devoted to
the discussion of the results obtained in this paper.

We close the Introduction with basic notation. In the sequel, all the functions are
real valued. Let T1 T- R. Denote

(0, T1),

DT1 =’ (x,t)" r0 < Ixl < R, sin > ,t E [0, T1)

Hence for all (x, t) e DT1,

and the conic surface

r ro2rsincz>_ .r0 >_

{ ro }01(DT1) sin -,r0 < Ixl < R,t e (0, T1)

is a part of the boundary O(DT) of the domain DT. Furthermore 6ql (DTI) C to,

because for (x, t) 01 (DT)

V/X r+.x rsin r0 < r0.

Hence by (0.4) the following functions are given:

(0.6) t[0(DT ), VltlO (DT )"

Consider the part cO2(DT of the boundary O(DT),

{ }02(DT) Ixl r0,sin > ,t (0,T1)

Denote

(0.s) ? O1 DT U 02 DTI
Hence by (0.4) the following two functions are given:

(0.9) ul--- )1, 0--

where n is an outward normal vector on r/.
Let H2(DT) be the Sobolev space and H(DT) be a subspace of H2(DT) such

that for all f e H(DT),
off[ n O.

More generally, let P be a subdomain of DTI such that cOP V /(P) # , where OP
is the boundary of P. Then H(P) denotes a subspace of H2(p) such that

Of] O,fl(P)-- n (p)
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for all f e H)(P). Likewise, we introduce a Sobolev space Hg(ro, R) as a space of
functions f(r) having a finite norm

IlfllH(o,) (Ifl 2 + If’l 2 + If"12)r2 dr
o

and such that f(r0) f’ (ro) O.

1. Statement of the main results. Solution u of the Cauchy problem (0.1)
with a E c2(l3) has the form

(1.1) u(x, t) 5(t Ixl) + (x, t),

where function 5(x, t) 0 for t < Ixl, and 5 E C3(t > Ixl). Since a(x) >_ O, using the
Kirchgoff formula one can simply derive that

(1.2) 5 >_ 0.

Consider the function

(1.3) Ul u(x,T)d-.

Then (0.1), (0.8), and (1.1)-(1.3)imply

(1.4) Ultt AUl --a(x)ul in ,
(1.5) tl (X, t) 0 for t < .Ixl,

(1.6)
1

ulIt=lxl 4lx I,

(1.7) tll l(X,t), (U

On
((x, t),

(1.8) Ul >0 fort>_Ix[,

(1.9) ?1 - C3(t > Ixl),

where functions 1,2 have the form

1 (X, t) I(X,T) dT, 2(x, t) 2(x, T) dT.
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Now we want to replace the characteristic conic surface {t Ixl} with the plane
{t 0}. In order to do that we introduce a new function (x,t) ui(x,t + Ixl).
Hence (1.4)-(1.7)implies

2
(1.10) Aft 2fit + fit + a(x)fi 0 in 1R1r

(1.11) ’[,=o

(1.12) ], 1 (x, t q- 7’)
a 2(x, t - r).On

Likewise, (1.8)and (1.9)lead to

(1.13) > 0 in 1R].,

(1.14) e C3(1).
Since by (1.13) the function is positive, we can consider the function 9 In . Hence

e. By (1.14), 9 E C3(1R1). Besides, (1.10)-(1.12) lead to

2
(1.15) A 2t + 17[2 2rt q- t + a(x) O,

r

(1.16) [t=0 In
4rr

(1.17) lv ln[l (x, t + r)],

(1.18)

Now we can eliminate function a(x) from (1.15) simply by differentiation with respect
to t. The price for this is that we will not know initial data for the function.

(1.19) v t.

Nevertheless by (1.16),

(1.20) fo (1)(x,t) v(x,T) dr + In

Denote
0

3 - ln[l (x, t + r)],
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Thus (1.15)-(1.20)lead to

L() o, c(),
Ov(1.21)

vl 3, On 4.

Here the hyperbolic nonlinear integrodifferential operator L has the form

L(v) Lov + 2Vv Vv(x, T)dT 2vt v.(x, T)dT
(1.22)

2
2vrv + -vt + 2VvVg- 2vtg(r),

r

where

and

Lov Av- 2vrt

(1)(1.23) g(r)=ln --r
Now assume that the function v(x, t) is found. Then using (1.20) we find the function
(x,t). Let e. Then by (1.10) and (1.11) we obtain

(1.24) a(x) 4rlxI(A5- 25rt)(x, 0).

Therefore we have proven the following lemma.
LEMMA 1.1. Solving of the inverse problem (0.1) and (0.2) is equivalent to solving

of the time-like Cauchy problem (1.21)-(1.23).
Below we always assume that function v(x, t) in (1.21)-(1.23) has the form

(1.25) v(x, t) w(x, t) + p(x, t),

where function p(x, t) is given,

Op
(1.26a) p E H2 DT1) and

Hence w H(DT). One could consider the function p(x, t) as first guess for the
function v(x, t).

In the sequel, we will assume that the function w(x, t) in (1.25) has a finite number
of Fourier coefficients with respect to an orthonormal basis. We describe conditions
imposed on this basis below. Let arcsin(ro/R),2
weighted L2 space of functions f(0, ), 0 (0, 2r), (1, 2) having a finite norm

IlfllL., dO If(O, )l2 sin d.

rthermore, let (DT) be a Sobolev space of functions having a finite norm

f 3 D, dO sin d r2 dr
o

T }1/x [ et[lll + I1o
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and such that fl=o fl=o 0.
Choose an orthonormal basis {n(0, )}n=l in L2, such that the following con-

ditions are fulfilled
(/)n e 52([0,27r] X [1, 2]),

(1.26b) (0,

(o, 0.
0(/)n

(0, (/)n(0, 2) --Only the third set of conditions (1.26b) seems a little bit strange among these because
we deal with the L2 space. For this reason let us briefly describe one possible example of
an orthonormal basis in n2,, which satisfies (1.265). Let n(O, ) be an orthonormal
basis in L2(0, 2) x (l, 2) (not L2,l) formed from the trigonometric function

[27r8( (Pl) 1sin(m0) sin
[ --) sin(mO) cos

2rs( 1) ]
2 1

cos(m0) sin
2rs( 1) and cos(m0) cos
2 fll L 2 i

where m and s are nonnegative integers. Let y() E c2[1, 2] be a function such that

y() > 0 for e (1, (#2),

Y(l) V/(l) Y(2) Y’(2) O.

Consider functions {y()$n(O, )}. They are linearly independent and satisfy condi-
tions (1.26b). Furthermore, this is a complete set of functions in L2,. Therefore,
applying the standard orthogonalization process to this set we obtain the desired
orthonormal basis {n}.

Choose an orthonormal basis {Qn(r)}= in Ho2(r0, R) such that all functions Qn
are piecewise analytic in (ro, R) and Qn e C2[ro, R]. Finally, let {Sn(t)}= be an
orthonormal basis in H2(0, T1) such that all functions S(t) are analytic in (0, T1) and
S C2[0, T1]. Let E be a set of products

{nl (0, fl)Qn2(r)Sn3(t)}ncl,ng.,n3=l

Then E C (H(DT1) N [-I (DTI)) and E is an orthonormal basis in/(DT). Choose
an arbitrary positive integer N and denote

PN f e H(DT)" f(x,t) E Cnnl (0, )Qn2 (r)Sn (t), n (nl, n2, n3)
nl n2 n3--1

We note that PN C (H(DT)3 H(DT)). If a function is f e PN, then c c(f) e
]t(" will denote the vector of the Fourier coefficients of this function.

In the sequel, we assume that in (1.25) w PN.
Consider the function

f e H(DTI) f3 [-I(DT).
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Then

Furthermore, since all norms are equivalent in finite-dimensional spaces, the following
lemma is valid.

LEMMA 1.2. Norms in H2(DT) and 3(DT) are equivalent for f E PN.
Now let us discuss the noise issue. If the function in (0.2) is given with a noise,

then this noise generates a noise in the functions 3, 4, and, consequently, in the
function p because of (1.26a). On the other hand, if the function is given without
noise, then generally one should not expect noise in the function p. Because of (1.26a),
(1.26b), and Lemma 1.1 we will consider the function p as a given data for our inverse
problem.

DEFINITION. We will say that the functions p H2(DT) is an exact data
(generated by the function a(x) in (0.1)) ifp satisfies (1.26a) and there exists a function
w PN such that the function v w + p satisfies (1.21) and (1.22).

Therefore, in the case of exact data one can find the "target" function a(x) by
(1.24) exactly. In the case when p is not an exact data we will assume that it can be
presented in the form

(1.27) p p + p5

with p, p5 H2(DT). Here function p is an exact data, function p5 corresponds to
the noise, and

(1.28)

where a sufficiently small positive constant 6 represents the level of noise. By Tikho-
nov’s principle, in the case of noise data, one should find a sequence {ws} C PN such
that

(1.29) lim IIw IIH=(D  o,
5--0

where w, is a solution corresponding to the exact data; see [23] (below we will show
that the solution w, is unique; see Theorem 1.4).

Further, by Tikhonov’s principle we can assume that function w, belongs to an a
priori given compact set in (DTI). Hence for the sake of definiteness and without
loss of generality we will assume that

Thus

(1.31) c, B_

Denote
Pv {w e PN" Ilwll ?,D  ) < x}.

Hence (1.30) implies, in particular, that w, E P.
Since T > 3R and Tx T- R, then R/T < 1/2. Choose a constant
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and introduce a function

(1.33) Z(x, t) t) +

Likewise, introduce the domain G,

(1.34) { r0 }G= (x,t)’/(r,t)>-R,r>r0, sin> ,t>0
Hence

GN{r=r0}= (x,t)’lxI=r0,0<t<
R r_______0 sina>

Consequently (1.32) and (1.34) imply G c DT1.
Let be a positive parameter. Consider a cost functional J(w),

(1.35) J(w) Ja[L(w + p)12e2 dxdt, w e Pv"

This functional actually depends on an m-dimensionM vector c c(w) E B1. Therefore
in the cases where we wish to emphasize this dependence we will write F (c) instead of
J (w), keeping in mind, of course, that F(c(w)) J(w) and that all the statements
about J(w) can obviously be reformulated for F(c). Now (1.21)-(1.23), (1.30), and
(1.31) imply that in the case of exact data, our inverse problem can be reformulated
as follows.

Minimize functional J(w) for an appropriate choice of the parameter ).

Since J (w) _> 0 and J(w,) 0, then w, is a point of global minimum of J(w)
(in the case of exact data). Let J(w)(h), h PN be the Frechet derivative of J(w)
at the point w. The main result of this paper is as follows.

THEOREM 1.1. There exists a positive constant (DTI, P,a) such that for
all >_ functional J (w) is uniformly strictly convex on P. That is,

k
J(w + h) J(w) J(w)(h) >_ - IIhlI2H2(DT

for all w, h e PN, where a positive constant k k(DT, Pv, , ) does not depend on

Remark. As mentioned above, the main point of Theorem 1.1 is that beginning
with a function, which is a finite-dimensional perturbation of a true solution of the
nonlinear Catchy problem (1.21)-(1.23), one can recover the true solution by a convex
minimization procedure. We recall that by Lemma 1.1, Catchy problem (1.21)-(1.23)
is equivalent to the original inverse problem (0.1) and (0.2).

Theorem 1.1 guarantees the global convergence on B1 of a number of well-known
minimization algorithms, provided that the starting point of the iterative process
would be the center of B1. For example, consider the simplest version of the gradient
method of the minimization of F (c). Fix a number >_ . Let H(a) be the Hessian
of F(c). Clearly, there exists a positive constant K K(A, P) such that y*H(c)y
Ky]2 for all vectors y G Rm and for all a G B1. Theorem 1.1, however, implies that
in addition to that,

(1.36)
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Choose a number such that

2
(1.37) 0 < < .
Define a sequence {an} by

Co O

(1.38) an an--1 V[FA(Cn-1)], n>l.

Consider a number q"

(1.39) q max{ll k], I1

Then

(1.40) 0 < q < 1.

THEOREM 1.2. Assume that we deal with exact data p(x,t) and fix a number
A >_ . Let c, be the solution of the minimization problem (1.35) on B1 and c, E B1/2.
Then we have Cn B1 for all n and

qnIc, < Io c, <

Now consider the case of noisy data.
THEOREM 1.3. Assume that we deal with noisy data p(x,t) given in the form

(1.27) and (1.28) and fix a number A >_ A. Let c, be the solution of the minimization
problem (1.35) on B1 with the exact data and c, B1/2. Then there exists a swCficiently
small number > 0 such that if <_ , then

1
qnICn --C,] - Jr-C1

where positive constants C1, depend only on DT1, P, a, and A.
In particular, for every 5 . (0, ) choose an integer no -no(5) such that

1 CI- qno <
1- q

and denote c Cno. Then
CI-c,I <
1-q

which corresponds to Tikhonov’s principle (1.29).
Thus Theorems 1.2 and 1.3 actually claim the global convergence of the gradient

method (1.37) and (1.38) on B1. Similar convergence results of other versions of the
gradient method can be obtained as well. Theorem 1.2, or at least its different versions,
is well known, of course, as an almost immediate consequence of (1.36); cf. Hestenes
[4]. However, we will give a proof of this theorem since we will need it for the proof
of Theorem 1.3.
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Note that one can consider the following set PN(q) instead of Pv:
PN(q) {W e PN" IIWlI f-I(DT <

with an arbitrary positive constant q. Definitely Theorems 1.1-1.3 can be reformu-
lated for this case. Hence the following uniqueness result follows immediately from
Theorem 1.2.

THEOREM 1.4. The Cauchy problem (1.21)-(1.23) has at most one solution v(x, t)
of the form (1.25), where function w E PN and the function p satisfies (1.26a). In
particular, inverse problem (0.1) and (0.2) has at most one solution such that the
function v satisfies these conditions:

Now let us heuristically discuss possible implications of these results for practical
computations. One of the advantages of the functional J is that one should calculate
four-dimensional integrals over the domain G only once. In (1.35), a finite number
of integrals are calculated, using certain combinations of basic functions, e2A0 and p.
Besides, one should not calculate solutions of the forward problem as soon as data
p(x, t) is given, which is convenient since computationally the forward problems are
usually time consuming.

We note that the weight function e20 decreases rapidly with respect to both r and
t. Generally one should probably not expect that by solving the minimization problem,
one could get a reasonable approximation for the solution w, for all (x, t) DT1.
Instead, one should expect to get a good approximation only in a certain neighborhood
of the surface r. And this neighborhood is not necessarily small.

Thus by virtue of (1.24) one could get a reasonable approximation for the function
a(x) in a certain neighborhood of the surface N {t 0} c ]3, say in the domain
{x: r0 < Ixl < r0 + b, sin > (ro/R)}, where b is a positive constant. Then by
(1.10)-(1.12) one could solve the following linear time-like Cauchy problem:

(1.41) /kt 2trt + a(x)t O,

in

(1.42) {(x ro },t)" r0 < Ix] < r0 + b, sin > e (0, T1)

1
(1.43) lt=o= a i"’x"

(1.44) On
t +

Therefore one. can get functions

0 rofor sin> , t(0, T1),

in this way. Then one should take rl r0 + b, etc. This procedure is actually very
similar to the layer stripping method; cf. Somersalo, Cheney, Isaakson, and Isaakson
[20] and Sylvester [21].
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Note that in problem (1.41)-(1.44), Cauchy data are given on the part of the
side of the time cylinder (1.41) rather than on the whole lateral surface, which is

{ r0 }rU Ix] =r0+b, sin > ,t e (0, T1)

This indicates that the Cauchy problem (1.41)-(1.44) is perhaps rather unstable; cf.
John [10]. On the other hand, one might expect that the initial data (1.43) might
provide "more stability" for this problem. Thus the stability question needs to be
investigated further in this case. Also, we note that a numerical method for a similar
Cauchy problem with the data on the whole lateral surface has been developed in [13]
and [14].

On the other hand, since in an imaging process one is expected to measure scat-
tering data all around a bounded medium, then it is reasonable to assume that, in
addition, function a(x) is given for Ixl > R and function u(x, t) is given at the sphere
{Ixl R} as well. In this case one should replace in (1.26a) the surface with the
surface

rl --rU Ixl R, sin > ,t (0, T1)

Thus by (1.25) one would have w] (Ow/On)]v 0 and functions Qn(r) satisfying
the following dditional conditions Q(R) Q(R) 0. Furthermore, domain G
should be replaced with

G= (x,t)" r +at < R’, ro < r < R, sin > -, t e (O, T1)

where R is a number such that R > R. Thus G c G.
An obvious modification of the Theorem 1.1 is valid in this case, of course. Fur-

thermore, we feel that this modified ISP is, by its genuine nature, much more stable
than the original one, since we "restrict" function w at {Ixl R} as well. Certain in-
dications of this were given in Kazemi and Klibanov [11], Zlibanov and Malinsky [13],
Komornik and Zuazua [16], and Lasiecka and Triggiani [17], where Lipschitz stability
estimates were obtained for some hyperbolic Cauchy problems with the data on the
lateral side of the time cylinder (see also references in [11], [13], [16], and [17]). Numer-
ical experiments for these Cauchy problems were performed in Klibanov and Rakesh
[14], and indeed they demonstrated high stability of these problems. Thus in this case
one might expect to have a good approximation for w.(x,t) for all (x,t) E DT1 by
minimization of J. This line of development will be discussed elsewhere.

2. Auxiliary lemma. The main result of this section is Lemma 2.3, which is
based on the special properties of the finite-dimensional space PN. Since Qn(r) are
piecewise analytic functions then the following lemma is true.

LEMMA 2.1. There exists a number R1 RI(N) (0, R) such that if

N

E dnn(r) 0 for r (0, R1),
n--1

with some constants dn, then

N

o (o, R),
n--1
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where functions Qn were introduced in 2.
LEMMA 2.2. Let R1 RI(N) be the number defined in the Lemma 2.1 and

R2 E JR1, R). Let E be the time cylinder such that

{ ro }E (x,t)" ro < Ixl < R2,sin99 > ,t E (tl,t2), where 0 <_ tl < t2 <_ T

Then there exists a positive constant " (E, DT1, PN) such that

Proof. Since function f PN are analytic in respect to t (0, T) then by Lemma
2.1 the following implication is valid:

{f 0 in E} --, {f 0 in DT}.

Therefore for f PN norms of Hi(E) and H(DT) are equivalent since PN is
finite-dimensional space.

Finally, Lemmas 1.2 and 2.2 imply that the following lemma is true.
LEMMA 2.3. Let the number R2 and the cylinder E be the same as in Lemma

2.3. Then there exists a positive constant /= -(E, DT, PN) such that

ilflIH(E) :IIflIH(DT), f PN.

3. Special form of a Carleman estimate for PN. Let us remember by (1.23)
and (1.32)-(1.33) we have the following relations:

(3.1) Lou Au- 2urt,

(3.2) (r, t) -(r + ct), c constant

(3.3) { }G= (x,t)’fl(r,t)>-R,r>r0, sinqs>-,t>0
Hence the boundary OG of the domain G consists from exactly four pieces, wl, w2,033,

and 034

r0 R- r0(3.4) Wl r r0, sin > , 0 < t <
a

{ to}032 t 0, r0 < r < R, sin 9 >

{ ro }033 r + at R, r > ro, sin 9 > , t > 0

(3.7) { }034 sin -, fl(r, t) > -R, r > ro, t > 0
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0G a)l U J2 U J3 U W4.

In the sequel, C will denote different positive constants dependent only on G, PN, and
a, C C(G, PN, a) > 1. However, in Lemmas 3.1-3.6, C does not depend on PN. The
main result of this section is the following theorem.

THEOREM 3.1 (special form of a Carleman estimate for PN). There exists a
sufficiently large constant (G, PN, a) such that for all >_ and for all functions
u E PN the following Carleman estimate holds:

/G(Lou)2e2"x dx dt >_ CA/G(IVul2q-u2t)e2"Xdxdt-Ce-2"xR L (IVu[2 q-ut2)da.

Proof of this theorem consists of proofs of several lemmas (see Lemmas 3.1-
3.7 below). Proofs of these lemmas are rather simple, but they require a relatively
large number of rather routine calculations, which is "commonplace" in the theory
of Carleman estimates (cf. Lavrent’ev et al. [18], Chapter 4). A more elegant proof
would probably be the symbol method, as it was done, for instance, by HSrmander
[8] and Iskov [9] for "standard" Carleman estimates, that is, for estimates which are
valid for the whole Sobolev spaces. But we do not know how to use this method in
our particular case, because our estimate is valid only for finite-dimensional space PN,
and because of a major difficulty in our particular case described below.

Now let us explain why we cannot use the standard Carleman estimate here. First
of all, let us remember briefly the Carleman estimate for the operator Pu utt tu;
cf. Is/kov [9] and Lavrent’ev et al. [18]. Consider domain

a {Ixl < 1, t e (-b, b)},

where b constant > O. Consider a weight function l(X, t) [xl -at2, where
cr constant (0, 1). Choose a constant c such that

Consider domain

cG(O, 1) and ii-ca
{(x, t). Ixl < 1,/1 (X, t) >

Then fc C t and the following Carleman estimate is valid:

(Pu)2e2l dx dt >_DA (lac(IVul 2 + u2t )e dx dt

-I- D,3 ffl u2e2"1 dx dr,

for all u H2(flc) and for all >_ 0, where positive constants D, A0 depend only on, c, and a.
In particular, the last estimate implies, by b > 1, uniqueness of a time-like Cauchy

problem
lutt Au <_ A(IVu + lutl + lul) infl,

Ou
(3.9) ull:l=- =0,
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where A constant > 0; see Hhrmander [8], Iskov [9], and Lavrent’ev et al. [18].
Likewise, using Carleman estimate (3.8) and prescribing nonzero Catchy data at the
surface {Ixl 1} one can get Hhlder and even Lipshitz stability estimates for this
Catchy problem; cf. Zazemi and Klibanov [11], and Klibanov and Malinsky [131.

Now note that the boundary 0tc of the domain of integration in (3.8) consists of
exactly two parts 01 tic,/)2tc, where

(3.10)
alc-- {l(X,t)= C}, 02 c {Ixl- 1}

0 0,gt J 02gt.

Thus 01gtc is the level surface of the weight function and 02gt is the surface, where
Catchy data are given.

Property (3.10) is a genuine feature of the Carleman estimates theory.
Remark. Sometimes domains of integrations with different properties can be con-

sidered. However, as soon as one needs to get a uniqueness or a stability result
(on the basis of Carleman estimates) one must inevitably employ domains with the
property (3.10).

In the case of Theorem 3.1, however, surface w2 is a part of the boundary OG;
see (3.4)-(3.7). But definitely w2 is neither a level surface of the weight function nor
a surface where Catchy data are given (they are given on wl and w4, since u E PN C

H(DT1)). All the other surfaces in (3.4)-(3.7) are either level surfaces of the weight
function or surfaces, where Catchy data are given. Nevertheless the surface w2 has
to be a part of the boundary of the domain of integration, because of our need to
estimate the integral

e2 u(x, T) dT dx dt, u n2(()

through the integral

G
u2e2 dx dt,

whichever domain G would be (see Lemma 3.8 and (1.22)). Therefore the presence of
the surface d2 is the major difficulty of our .particular case of the Carleman estimate.

Remark. In the sequel, we will always use the fact that in the domain {r > r0,

sin > ro/R}
3 3

_< + + _<
i--1 i--1

for all smooth functions u, where positive constants A1, A2 depend only on r0 and

ro/R.
Below we prove Theorem 3.1 by proving Lemmas 3.1-3.7. In these lemmas we

first obtain pointwise differential identities using the rule of differentiation of products.
Then by integrating these identities over the domain G and employing Gauss’ formula,
we will get desired L2 estimates.

Thus in Lemmas 3.1 and 3.2 we estimate from below the integral

2urLoue2: dx dt.
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Then in Lemmas 3.3 and 3.4 we estimate from below the integral

-2utLoue2 dx dt.

Finally, a combination of two latter estimates and properties of the set PN will provide
the desired Carleman estimate, that is, an estimate from below the integral

Lou)2e2 dx dr, u E PN;

see Lemmas 3.5-3.7.
LEMMA 3.1. For all functions u C2(G) the following identity is valid:

(2Lo)r sin e)’ 2(1 2)?r sinex 2 si. + sineX
OU OU OUa

where

V -2u2r2 sin e2Z.

"The vector functions U (U1, U2, U3) belongs to C and satisfies the estimate

and

(3.14) U2(r, O, , t) U2(r, 2r, , t).

Proof. The left-hand side of (3.11) can be rewritten as

2 1
2u u+-u+

r r2 sin2

r2 sin

uoo +
1 0 (sinu)-2urt]r2 sin 0

Hence by (3.2)

0 (u2r2 sine2f) + 2Ar2 sin Zu2e2Z2ur(Lou)r2 sin e2Z
0 ( sin e)_2urouo sin..e+ 2urue si2 sin2
0

+ (2UrU sin e2x) 2uu sine2
0

+ (-2ur2 sine2) 4Aaur2 sin

=2(1-2a)ur2sine2-2A (si: +)sinex
OU1 OU
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where the function V is as in (3.12), and functions U1, V2, U3 have the forms

sin2
sin 99U2 2uruo sin2 99

e2z, U3 2uru sin 99e2Z.

LEMMA 3.2. For all positive and for all functions u E H(G) the following
estimate is valid:

2urLoue2Z dx dt > 2//a[(1 2a)u2 Cu u2le2Z dx dt

+ fw 2u2e2XZ dx Ce-2R f ’Vul2 da"

Proof. Since c e (0, 1/2) then 1- 2c > 0. Let u e C2(()N H(G) in (3.11).
Integrate (3.11) over G using Gauss’ formula and (3.12)-(3.14). Noting that/31
-R and -(1/sin2 99) > -(R/ro)2 in G we obtain (3.15) for all functions u C2(()N
H(G). But since this set of functions is dense in H(G), then (3.15) also holds for all
u e H3(G).

LEMMA 3.3. For all functions u C2(G) the following identity is valid"

(3.16)

2ut (Lou)r2 sin

4A[ut2 + - u2r utulr2 sin

+ 2/a { u + u) sine2 4ursine2
sin2

OZ OZ2 OZ

where

u + u2) sin99eZ.(3.17) W u2rr2 + sin2,99

the vector function Z (Zi, Z2, Za) belongs to C1, satisfies the estimate

(a.18)

and

Proof. The left-hand side of (3.16) can be rewritten as

2ut(Lou)r2 sin

--2ut Urr - r2 sin2 99
uoo +

1 -0--0 (sin 99u) 2ut] r sin 99e2Z.r2 sin 99 0
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Hence

where

0
-2ut(Lou)r9 sin e2# 0- (-2uturr2sine2#)

-F 2UrtUrr2 sin e2)’ A- 4uturr sin e2Z
4Auturr2 sin e2Z 4UtUrr sin

0 ( sin e2) sin+ --2utuo sin2 + 2utouo sin2
e2

0
+ (--2utu sin Te2XZ) + 2utu sin e2xZ

0
) 4ur2 sine2fl 4ur sine+ (2ur2 sine2 +

4 u + u utu r2 sin e2z

+2A(,, u +u)sinwe2_4ursinwe2sin2

OZ OZ2 OZa

u +u2) sine2ZW= u2r2 + sin2

and components of the vector function Z have the forms

Z1 2(ut2 utur)r2 sin

sin e2A3Z2 -2utuo sin2 W
Z3 -2utuo sine2x#. F1

LEMMA 3.4. For all positive A and for all functions u E Hg(G), the following
inequality holds"

(3.20)

Proof. Integrate (3.16) over G, using Gauss’ formula and (3.17)-(3.19). Noting
that la -R and (1/sin2 ) _> 1, we obtain (3.20) for all functions u E C2(() N
Hg(G). Since the last set of functions is dense in Hg(G), then (3.20) is valid for
u H(G) as well. []

LEMMA 3.5. Choose a constant s such that

(3.21) 0 < s <
1 2a
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Then there exists a constant 1 A(ro, a, R) A(G) such that for all > and
for all functions u E H(G) the following inequality is valid:

G(2ur 28ut)Loue2 dx dt

(3.22) >_ CA /c(u2 + u2t )e2 dx dt CA /(u + u)e dx dt

+ / ( s) c(u +). c-.[ (w +).
J3

Proof. Multiply inequality (3.20) by s and dd to (3.15). Noting that s < 1 and
-(1/r2 sin2 ) -C in G, we obtain

G(2u
2sut)Loue2AZ dx dt

].(( + s) esii] + es}, dx dt

(.)
CA a(u+u)eAZ dxdt-4ro ue2A dxdt

Consider the quadratic form

I(, (1 +) +.
Note that 1 2 + 2s > 0, since (0, ). Therefore this quadratic form is positive
definite for s satisfying (a.l). Hence there exists a positive constant b b() such
that

I(,l ( + ),
for.all Zl, z. Let 1 4s/bro. Hence, for > , (a.2a) implies

a(2
2st)L0ex dz dt

CA(u +u)edxdt-CA(u +u)edxdt
3

which is exactly (3.22).
LEMMA 3.6. There exists a positive constant A2 A2(G) such that for all 2

and for all functions u H(G) the following inequality is valid"

fa(Lou)2e2X dxdt CA fa(u + u)e2XZ dxdt

ca
(a.4)

+
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Proof. The Cauchy inequality leads to

(2ur 2sut)Lou < (Lou)2 + ur2 + (Lou)2 + s2u2t
_< 2(Lou)2 + ur2 + u.

Hence (3.24) follows immediately from the last inequality and (3.22). S
Until now we have not used the assumption u E PN. As a price for that we have

negative signs at u, u2 in (3.24). In order to get rid of this defect we should "supress
negative integrals"

-ca + ex et, +

by "positive integrals"

CA (u2 + ut2)e2X dx dr,

Thus now is the time to use properties of PN.
LEMMA 3.7. For all functions u PN the following estimates are valid"

; C/a u2e2a dx dr,(u + u2)e2aZ dx dt <_ -(3.26) Jfw C/ u2re2),O(u + u2)e2"xf dx <_ -Proof. We will only prove the estimate

(3.27) ue2XZ dx dt <_ u2e2X dx dt

since proofs of (3.25) and (3.26) are completely parallel.
Consider the function u PN. Since functions {nl} form an orthonormal basis

in L2, q, then the function u can be represented in the form

N

(3.28) u
nl=l

where

Hence

2r

/o2un, (r, t) dO u(r, O, 7), t)nl (0, 7)) sin 7)

N OCnl (0 ()?0 Z l,n (r, t) Ob
nl=l

Hence by the Cauchy inequality,

(3.29)
nl=l
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Denote q (R- ro/a). Since the function (r, t) does not depend on 0, 99 then
(3.28) and Parceval theorem imply

(3.30) u2e2x dx dt dt u21 (r, t)e2XZr2 dr.
hi---1 ro

Similarly (3.29) leads to

Hence (3.30) and the last estimate imply

(3.31) fa ue2 dx dt <_ C iG u2e2Z dx dt.

Now recall that PN C H(DT1), which means, in particular, that ulr=r o
for all u E PN. Hence,

u u(y,O,,t)dy, uEPN.

Hence

U2e2) dx dt dO sin dT dt r2e2A u dy dr
ro

Ra dO sind dt jo exn
o
UT dy

R3 dO sin d e-2-t dt u dy e-2at dr

R3 dO sin d e-2at dt

x d
o 2

2r dO sin d dt e(,t) d
o

C faex dz dr.

Hence we have actually proven that

(3.32) u2e2Z dx dt <_ - uTc2"x dx dt, u e H(G).

Finally, (3.31) and (3.32)lead to

j C J u2re2n dx dr,ue2 dx dt <_ -
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Proof of Theorem 3.1. This proof follows immediately from Lemmas 3.6 and 3.7.
We close this section with one auxiliary result which is quite similar to Lemma 3.7.
But the difference is that this result is valid for all u E L2 (G). We omit the proof since
a quite similar result is known; see [12].

LEMMA 3.8. For all functions u L2(G) the following inequality is valid

D f U2e2A/7 dx dte2DI dx dt <_ --where the positive constant D depends only on the domain G and on the constant

4. Proof of Theorem 1.1. Let us remember that the functional J(w) has the
form

(4.1) J(w) ia[L(p + w)12e2"xZ dxdt, w e Pv.

Here function p H2 (DT1),

Pv {w e PN" [[WlIft(DT1) < 1},

and the nonlinear operator L has the form (see (1.22))

(4.2) f0 f0Lv Lov + 2Vv Vv(x, 7) dT 2vt Vr(X, T)dT

2
2VrV + Vt + 2VvVg 2vtg’(r),

r

with

Lov Av- 2Vrt g(r) In

The main idea of the proof is that first we prove, by rather simple estimates, that

J(w + h) J(w) J(w)(h)

> (Loh)e)’ dz dt
-4

-CM2 IXThl + ht2 + h2 + IVh(x, )l dT

where the positive constant M does not depend on , w, and h. Then we note that by
Theorem 3.1, (3.32), and Lemma 3.8 the first integral on the right-hand side of the
latter estimate, roughly speaking, dominates the second integral. Finally, Lemma 2.4
will provide the desired result.

Proof. First of all, we should calculate

Ja (w + h) Ja (w) and J(w)(h)

for w, h e P. By (4.1)

(4.3)
Ja (w + h) Ja (w)

[" [L(p + w + h) L(p + w)][L(p + w + h) + L(p + w)le-2 dx dt.
J
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By virtue of (4.2),

L(p + w + h) L(p + w) + Loh + 2V(p + w) Vh(x, T)dT

Hence

+ 2Vh V(p + w)(x, T)dT 2(p + w)t hr(x, T)dT

2ht (p + w)r(x, T) dT 2(p + w)h
2

+ ht + 2VhVg 2(p + w)h- 2htg’(r)
r

2hh + 2Vh Vh(z, r)dT 2ht h(z, "r) dT.

(4.4) L(p + w + h) L(p + w) Lo(h) + LI (p + w, h) + L2(h),

where L1 is a linear operator with respect to h, and L2 is a nonlinear operator. Namely,

(4.5)

and

(4.6) L2(h) -2hh + 2Vh Vh(x, T)dT 2ht h(x, T)dT.

Although operators L1, L2 seem to be rather complicated, they will not give us any
"troubles," simply because they do not contain second-order derivatives of h. Thus we
will "suppress them by Lo(h)" using Theorem 3.1.

By (4.4) we obtain

L(p + w + h) + L(p + w) 2L(p + w) + [Lo(h) + L1 (p + w, h) + L2(h)].

Hence (4.3) leads to

(4.7)
J(w + h) J (h) ./. [Lo(h) + L (p + w, h) + L2(h)]

[2L(p + w) + Lo(h) + L (p + w, h) + L2(h)]e2Z dx dr.

In order to calculate the Fr6chet derivative J(w)(h) we should single out the
"linear part," with respect to h, of the right-hand side of (4.7). Hence

(4.8) J(w)(h) 2 Ia L(p + w)[Lo(h) + LI (p + w, h)]e2 dx dt.
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Therefore (4.7) and (4.8)lead to

(4.9)

Jx (w + h) Jx (w) J(w)(h)

Jc[Lo(h)]2e2X dx dt + /a Lo(h)[Ll (p + w, h) + L2(h)]e2Z dx dt

+ ./ L1 (p + w, h)[Lo(h) + L1 (p + w, h) + L2(h)]e2"x dx dt

+ [ L2(h)[2L(p + w) + Lo(h) + LI (p + w, h) + L2(h)]e2Z dx dr.

Denote

(4.10) II (h, ) =/ Lo(h)[L (p + w, h) + L2(h)]e2Z dx dt,

(4.11) I2(h, ) =/ L1 (p + w, h)[Lo(h) + L (p + w, h) + L2(h)]e2 dx dt,

and

(4.12) I3(h, ) Ja L2(h)[2L(p + w) + Lo(h) + L1 (p + w, h) + L2(h)]e2Z dx dt.

Hence (4.9) can be rewritten as

(4.13)
Jx(w + h) Jx(w) J(w)(h)

=/[no(h)]2e2"x dx dt + Ii(h, ) + I2(h,/) + I3(h, ).

In order to prove the theorem we have to estimate the right-hand side of (4.13)
from below. First, we estimate the integrals I1, I2, I3 separately. As in 3, C > 1
denotes different positive constants dependent only on G, P, and a. Let M be a

positive constant such that

(4.14) max{l, IlWlIcl(O), liP + WIIc2(o)} -< M, w e P(.

Formally speaking we could replace M with C, but we will not do that in order to
make our estimates more clear. We remember that h E P. Hence

(4.15) Ilhilc,() _< M.

First, we estimate from above the following functions:

[Ll(p+w,h)]2, [L2(h)]2, IL2(h)l, w, heP.
By (4.5) and (4.14),

(4.16)
]LI(p + w, h)]

_
2M IVh(x, T)] dT

+ 2M ]hr(x, T)I dT+ MCIht + MCIVh + 2MIh I.
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Hence

{(4.17) ILl (p + w, h)l 2 <_ CM2 IVhl 2 + ht2 + h2 + IVh(x, T)I dT

Furthermore (4.6) and (4.15)imply

IL2(h)l _< 2M IVh(x, T)dT + 2M Ihr(x, T)I dT + 2MIhr I.

Hence

(4.1s) IL2(h)l 2 _< CM2 h2 + IVh(x, T)l dT

On the other hand, (4.6) and the Cauchy inequality imply

(4.19) IL2(h)I

_
C I’h]2 + ht2 + h2 + (Vh(x, T))dT

Furthermore, applying (4.17) and (4.18), we get

Next, consider the integral I2. The Cauchy-Schwarz inequality and (4.11) lead to

Now we are ready to estimate integrals I1, I2, and I3. Using the Cauchy-Schwarz
inequality and (4.10) we obtain
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Hence applying inequalities (4.17) and (4.18), we obtain

1/(Loh)2e2X dx dtI2(h, ) >_ -(4.)
CM[ ]I + h + h + Vh(x,) d dx d.

Finally, we have to estimate the integral I3. By (4.12),

+ + [
(4.) JG JG

+ J L()[L( + , ) + L()],d dr.

In order to estimate the first integral in (4.22) we apply (4.14) and (4.19). Thus

2 .f L( + w)L()e, dt

CM .f L()I,dt(4.23)

Hence the Cauchy-Schwarz inequMity (4.17), (4.18), (4.22), and (4.23) lead to

h(H, A) (Loh)2e2xZ dx dt

CMf + + + (,) t.

Thus estimates (4.20), (4.21), and the last inequality imply

CMf ] + + + t(,) t.

Hence by (4.13) we obtain

1 fa[o(h)]ea, dzdt&(w + h) & (w) J[ (w)(h) k

CMf ,+ + + (,) , dr.

rthermore, applying inequality (3.32) nd Lemm 3.8 we conclude from the last
estimate that

( + ) () j()()
(4.24) 1 f(Loh)2e2A, dx dt CM2 fa([Vh[2 + h)e2’ dx dt.
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Now we are ready to apply the Carleman estimate from Theorem 3.1 to the first
integral in (4.24). We obtain

for all w, h E P and for all A >_ . Let Ao max(, 2M2). Then the last inequality
leads to

(4.25)

Since for v H2(DT1)

(IVvl 2 + v2t da < CIIV[tH(Drl),

(4.25) implies

(4.26)

Let R1 RI(N),R e (O,R) be the number defined in Lemma 2.1.
arbitrary number R2 (R1, R) and denote

{ ro }(R2) (x, t)’(x, t) > -n2, Ixl > ro, sin > , t > 0

Choose an

Since fl(x, t) -(r + ct) then

G(R2) {(x, t): -(r + ct) > -R2, Ix[ > ro, t > 0}.

Thus G(R.) c G and

(4.27) exp(2A/3) > exp(-2AR2) > exp(-2AR) in G(R2).

Let E E(R1, R2) be the time cylinder

{ roE- (x,t) ro < ]x < R,sin > ,0<t< a

Hence E C G(R2) and by Lemma 2.3 there exists a positive constant

DT PN such that

(4.28) Ilflln(E) llflln.(O), f e PN.
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Note that since R1 R1 (N) depends on PN only, we can actuMly choose 7 dependent
only on DT1 and PN.

Therefore (4.26)-(4.28)lead to

for all w, h E P and for all A >_ A0. Since

lim [exp(-2A(R-R2))1 =0,

then we can choose _> A0 such that

2 1
1---_ exp[-2A(R- R2)] > for A > A.

Therefore, we finally get the desired estimate

k
J(w + h) J(w) J(w)(h) >_ - [[h 2

for all w, h E Pv and for all A >_ A, where

k CA7 exp(-2AR2).
2

5. Global convergence of the gradient method on B. In this section we
prove Theorems 1.2 and 1.3. Let us remind the reader that parameter A _> is fixed
in these theorems.

Proof of Theorem 1.2. Let {c,} be the sequence defined in (1.38). By the well-
known formula

r

=An(cn-c,),

HA(c, + T(Cn C,))(Cn C,) dT

the matrix An has the form

An H,x(c, + T(5n C,)) dT.
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Hence (1.36) implies

(5.2) klyl 2 <_ y*A,y <_ Klyl 2, y E Fm.

Since

(5.3) VFA (c,) 0,

then (5.1)and (1.38)imply

(5.4) ICn+l C, ICn C, VFA(Cn)
I(I An)(Cn c,)l <_ III AnIllcn c, l,

where I is identity matrix. Since I- An is a symmetric matrix, we have

I1r AII max{ll Pll, I1 Pml},

where p and #, are the smallest and the biggest eigenvalues of An, respectively.
Hence (1.36), (1.39), and (1.40) lead to

(5.5) IlI- Anll < q < 1.

Thus (5.4) and (5.5)imply

(5.6)

Note that

Io ,1 10 ,1 < .
for all n, which implies that an BI for all n.Hence by (5.5) and (5.6), ]Cn- c,] <

Finally, (5.6) leads to

ICn C, <-- 0 C, Iq < 1/2 qn. [3

Proof of Theorem 1.3. In the case of noisy data we cannot claim that VF(C,)
0, where c, is the minimum of J on B1 with the exact data. However, by (4.8) the
gradient AF(c) is continuous on B. Hence (1.22), (1.27), and (1.28) imply

(.7)

where the positive constant C1 depends only on DT1, Pv, a, and A. Choose a positive
number such that

C1 1
5 < for all 5 (0, ](5.8)

1 -q

By (5.1) and (5.4)we obtain

ICn+l c, Ic c,

I( An)(cn c,) VFx(c,)I < IlI- AIIIc c,1-4-
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Hence (5.5) and (5.7) lead to

(5.9) [cn+l

Furthermore, using the mathematical induction method and (5.9), we get

Ic c,I < IO a, lq / C@(1 + q -t- q2 +... + qn)
1
qn CI(1 qn)

< +
q

as long as an C B. But (5.8) and the last inequality imply that a B for all n > 0.
Therefore

Ic -c,I < +c1
1-q

for all n.

6. Discussion. The main result of this paper is Theorem 1.1, which claims that
three-dimensional ISP (0.1), (0.2) with nonoverdetermined data can be reformulated as
a locally convex optimization problem. We realize, however, some shortcomings of this
result. The major shortcoming consists of imposing restrictive conditions on the wave
field itself (function v(x, t)) rather than on the unknown coefficient a(x). Generally
speaking, we do not even know what these conditions imply for a(x). Also, we cannot
regard the "infinite tail" of Fourier series of the function v(x, t) as a small noise because
in this case one should assume that Fourier coefficients of v(x, t) decay exponentially
as N oc (due to the Carleman estimate). Note that if one would be able to handle
the limit as N oc, then one would get a global uniqueness result. We remember,
however, that the global uniqueness result is a long term open problem for this ISP
as well as for many similar three-dimensional problems with nonoverdetermined data.
Once again, we wish to point out that Theorem 1.1 represents just a first result in
this very difficult direction and this somehow justifies these shortcomings, at least in
our opinions.

As to future efforts in this direction, one might try two lines of developments. The
first one would consist of computational implementation of this or a similar numerical
scheme. The second one would consist of relaxing stringent conditions of Theorem
1.1 by attempting to find a finite number of Fourier coefficients of the function a(x)
rather than of the wave field itself. Our preliminary studies show, however, that a more
complicated numerical scheme should, perhaps, be considered in that case. Hence
combination of these two approaches rather than a single one should probably be
implemented into computer codes.

Acknowledgment. We would like to express our gratitude to S. Gutman, M.
Kazemi, R. Malek-Madani, and P. Sacks for fruitful discussions. Our special thanks
to K. Kunisch and the Institute of Mathematics of Technical University of Graz,
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MULTIPLICITY RESULTS FOR TWO CLASSES OF
BOUNDARY-VALUE PROBLEMS*

PHILIP KORMAN AND TIANCHENG OUYANG:

Abstract. Multiplicity results are provided for two classes of boundary-value problems with
cubic nonlinearities, depending on a parameter A. In particular, it is proved that for sufficiently large
A, there are exactly two solutions, and that all solutions lie on a single smooth solution curve. The
last fact allows one to use continuation techniques to compute all solutions.

Key words, multiplicity results, bifurcation of solutions

AMS subject classification. 34B15

1. Introduction. We consider a Dirichlet problem of the type

(1) u" + Af(x, u) 0 on (a, b), u(a) u(b) 0

for two classes of cubic nonlinearities depending on a parameter A, and we prove
existence and multiplicity results. We also study in detail the solution branches as- oc. For both types of nonlinearities we show existence of a critical A1, such that for
0 < A < A1, (1) has no nontrivial solution; it has at least one solution at 1; and it
has at least two solutions for A > A1, with precisely two solutions for A sufficiently large
(nontrivial solutions that we find are positive by the maximum principle). Moreover,
all solutions lie on a single curve of solutions. The last assertion is important for
computational purposes, since it allows one to use efficient continuation techniques to
compute all solutions of (1).

Exact multiplicity results are usually difficult to establish; see, e.g., Lions [5]. Our
main tools are a bifurcation theorem of Crandall and Rabinowitz [2], and a variational
argument due to Ambrosetti and Rabinowitz; see [7]. For both problems it is relatively
easy to show that there are no solutions for sufficiently small > 0. We then show
that for sufficiently large the functional corresponding to (1) has at least two critical
points: a minimum point (corresponding to the stable maximal solution of (1)), and
a saddle point (corresponding to the unstable minimum solution). To show that there
are exactly two solutions for sufficiently large , we show that all solutions must lie
on certain curves in the (A, u) "plane." We then study the properties of these curves
and exclude the possibility of more than two solutions.

The equations that we study have attracted considerable attention. For constant
a(x) and b(x), problems (3) and (21) were studied by Smoller and WasHerman [10] (see
also [11] and [12]), who obtained exact multiplicity results by a very nontrivial phase
plane analysis. The Neumann problem for (3) was studied in detail by Angenent,
Mallet-earet, and Peletier [1] and Rocha [8]; see also Hale [3]. For f independent of
x, both Neumann and Dirichlet problems were studied extensively by Schaaf [9].

Our approach appears to be quite general. We intend to consider other equations
where exact multiplicity might be three or more for some values of . We are also
working to extend our results to partial differential equations.

* Received by the editors June 1, 1992; accepted for publication (in revised form) April 28, 1993.

Institute for Dynamics and Department of Mathematical Sciences, University of Cincinnati,
Cincinnati, Ohio 45221-0025.

: Department of Mathematics, Brigham Young University, Provo, Utah 84602.
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Next we list some background results. Recall that a function (x) E C2(a, b)N
C[a, b] is called a supersolution of (1) if

(2) "+Af(x,)<_O on(a,b), (a)>_0, (b)>_0.

A subsolution (x) is defined by reversing the inequalities in (2). The following result
is standard.

LEMMA 1. Let (x) antiC(x) be, respectively, super- and subsolutions of (1), and
(x) >_ (x) on (a, b) with (x) (x); then (x) > (x) on (a, b).

We shall often use this lemma with either (x) or (x) or both being the solution
of (1). The following lemma is a consequence of the first.

LEMMA 2. Let u(x) be a nontrivial solution of (1) with f(x, O) =_ O. If u(x) >_ 0
on (a, b) then u > 0 on (a, b).

We proved the following proposition in [4].
PROPOSITION 1. Consider the problem (1) and assume that f(x, u) C1([-1, 1]

R+ satisfies
(i) f(-x, u) f(x, u) for all x e (-1, 1) and u > 0;
(ii) xfx(x, u) < 0 for all x e (-1, 1)\{0} and u > O.

Then any positive solution of (1) is an even function with u’(x) < 0 on (0, 1]. More-
over, any two positive solutions of (1) do not intersect.

Remark. Except for the last statement, this proposition is included in the Gidas-
Ni-Nirenberg theorem.

Next we state a bifurcation theorem of Crandall and Rabinowitz [2].
THEOREM 1 [2]. Let X and Y be Banach spaces. Let (, 2) R X and let F be

a continuously differentiable mapping of an open neighborhood of (, 2) into Y. Let the
null-space N(Fx(A,2)) span{x0} be one-dimensional and codimR(Fx(/k, 2)) 1.
Let F(A, 2) R(F(A, 2)). If Z is a complement ofspan{xo} in X, then the solutions
ofF(A,x) F(, 2) near (,2) form a curve (A(s),x(s))= ( + T(s),2 + sxo+ z(s)),
where s -- (T(S),Z(S)) e R Z is a continuously differentiable function near s 0
and T(O) T’(O) z(O) z’(O) O.

Throughout this paper we consider only the classical solutions (which is not a
serious restriction in the one-dimensional case). We also assume, without loss of
generality, that (a, b) (-1, 1).

2. A class of cubic nonlinearities with double root. On the interval [-1, 1]
we consider the following boundary-value problem:

(3) u"+Aa(x)u2(1-b(x)u)=O, -l<x< 1, u(-1)-u(1)=0.

We assume throughout this section that a(x) and b(x) are even functions a(x)
C1(-1, 1) F C[-1, 1], b(x) e C2(-1, 1) F C[-1, 1], satisfying the following con-
ditions:

(4) a(x),b(x) > 0 for 1 <_ x _< 1;

xb’(x) > 0 and xa’(x) < 0 for x e (-1, 1)\{0};
b"(x)b(x)- 2b’2(x) > 0 for 1 < x < 1.

For example, b(x) x2 --O/ with a > 3 satisfies the above conditions. Notice that
condition (6) implies that lib(x) is a supersolution of (3). To prove our multiplicity
result we need the following lemmas. Recall that by maximum principle any solution
of (3) is positive on (-1, 1).
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LEMMA 3. Every solution of (3) is strictly concave, i.e., u" < 0 (or 1-b(x)u > O)
for all x E (- 1, 1).

Proof. Denote w(x) b(x)u(x). Then one computes

Aa(x) w2(1 w) 2b’u’ + b"u.+

If x0 is a maximum point of w(x), then

0 w’(xo) b’(xo)u(xo) + b(xo)u’(xo),

Using this in (7), we obtain

(s) + ka(xo) w:(xo)(1 w(xo)) u(xo) (b"(xo)b(xo) 2b’(x0)).b(xo) b(zo)

By our assumptions, the right-hand side of (8) is positive, while w"(xo)

_
O. Hence

w(xo) < 1, i.e., 1 b(x)u(x) > 0 for all x E (-1, 1), and the proof follows.
LEMMA 4. Every solution of (3) is an even function with u’(x) < 0 for x (0, 1].
Proof. Using Lemma 3 one sees that Proposition 1 applies, giving the conclusions

of the lemma.
LEMMA 5. Let ua (x) be a continuous-in-A branch of solutions of (3). Then either

lima_ ua(x) 0 or lim__, ua(x) lib(x) for all x (-1, 1).
Proof. Rewrite (3) in the form

(9) u(x) G(x,)al)u()(1 b()u()) d,

where G(x, ) is the corresponding Green’s function, which is easily seen to be strictly
positive and bounded on (-1, 1) x (-1, 1). By Lemma 3, u(x) is bounded as A --, c

(by lib(x)), and the integral on the right in (9) is positive. It follows that for each
(-1, 1) either lim_ ua() 0 or lima_ u({) l/b({). Finally, since by

Lemma 4 u({) < 0 for { (0, 1), it follows that only one of the above possibilities
holds for all {.

If u(x) is a solution of (3), then the corresponding linearized problem will be used
in the sequel

(10) w" + Aa(x)(2u- 3b(x)u2)w 0, w(-1) w(1) 0.

LEMMA 6. If (11) has a nontrivial solution, then w(x) does not change sign on

(-1, 1), i.e., we can choose it so that w(x) > 0 on (-1, 1).
Proof. Assume that w(x) changes sign in (-1, 1). Assume that w(x) has a zero on

[0, 1), and the other case is similar. Without loss of generality (taking -w if necessary),
we may assume that w(x) < 0 on (Xl,X2), 0

_
Xl < x2

_
1, W(Xl) W(X2) 0, and

w(x) > 0 for x < Xl and close to xl, and for x > x2 and close to x2 (unless x2 1).
Differentiating (3), we obtain

(11) (u’)" + Aa(x)(2u 3b(x)uU)u -a’u2(1 bu) + Aab’u3.
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Multiply (10) by u’, (11) by w, and subtract and integrate both sides. Obtain

(12) [a’u2(1 bu) ab’u3]w dx.

The quantity on the right side in (12) is positive by our assumptions. The one on the
left is equal to

which is negative by Lemma 4. The contradiction proves the lemma.
LEMMA 7. Let u(x), the solution of (3), be such that max[_l,1] b(x)u(x) <_ .

Then the only solution of (10) is w =_ O.
Proof. Since u(x) > 0 solves (3), it is the principal eigenfunction of

z" + Aa(x)(u- b(x)u2)z #z, z(-1) z(1) 0,

corresponding to the principal eigenvalue # 0. The principal eigenvalue of

(13) w" + Aa(x)(2u- 3b(x)u2)w #w, w(-1) w(1) 0

must be positive, since 2u 3bu2

_
u bu2 for all x E (-1, 1), with inequality being

strict near x =t=1, by our assumption. If w(x) is a nontrivial solution of (10), it is
a nonprincipal eigenfunction of (13) (corresponding to # 0), and so it must change
sign on [-1, 1]. But this contradicts the previous lemma.

THEOREM 2. There exists a critical , such that for 0 < A < the prob-
lem (3) has no solution; it has at least one solution at A ; and it has at least
two solutions for > . All solutions lie on a single curve of solutions, which is
smooth in . For each > there are finitely many solutions, and different so-
lutions are strictly ordered on (-1,1). Moreover, there exists 2 >_ A, so that for
> 2 the problem (3) has exactly two solutions denoted by u-(x, A) < u+(x, A), with

u+(x, ) strictly monotone increasing in , u-(O, ) strictly monotone decreasing in ,
and lim_. u+(x, A) 1/b(x),lim_ u-(x, A) 0 for all x e (-1, 1). (Recall that
all solutions of (3) are positive by maximum principle.)

Proof. Multiply (3) by u and integrate

(14) u’2dx A a(x)u2u(1 b(x)u) dx.

By the Poincar inequality,

u’2dx >---- u2dx.

On the other hand,

a(0) J_a(x)u2u(1 b(x)u) dx <_
4b(0)

u2 dx.

Thus (3) has no solution for A < 2b(O)/a(O).
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Existence of at least two solutions for sufficiently large , follows similarly to the
proof of a theorem of Ambrosetti and Rabinowitz; see [7, p. 12]. We outline the
argument. Solutions of (3) are critical points on H(-1, 1) of the functional

1___.( l
,,a(x)

u3 U4
g(u) u’2 - + ,Xa(x)b(x)-- dx.

It is easy to show that J(u) is bounded from below, so that it must have a global
minimum. By the Poincare5 inequality, J(u) is positive in a small neighborhood of
zero in H(-1,1). If we now can exhibit a function for which J(u) < 0, then in
addition to a global minimum, where J(u) < 0, the functional J(u) will have another
critical point, where J(u) > 0, in view of the well-known mountain pass theorem; see

[7]. It is easy to check that

J cos x < 0

for sufficiently large ,. (Alternatively, we could consider the evolution equation corre-
sponding to (3) with the initial data

1 71-
0) cos

It is easy to show that 0 < u(x, t) <_ c for some c > 0, and so by well-known re-
sults, u(x, t) would have to converge as t -, oc to the set of solutions of (3). Since
J(u(x, 0)) < 0 for sufficiently large ,, and J(u(x, t)) is nonincreasing in t, it follows
that u(x, t) cannot converge to zero. This would provide us with at least one positive
solution of (3), which is sufficient for the arguments that follow.)

It is clear that the problem (3) has a maximal solution for A large. We now study
the curve of maximal solutions for decreasing ,k. Rewrite (3) as

(5) F(A, u) u" + Aa(x)u2(1 b(x)u) 0,

where F: R C[-1, 1] --, C[-1, 1]. Notice that F,(), u)w is given by the left-hand
side of (10).

Now let (,1, u(x)) be a solution of (15). If the corresponding linearized equation
(10) has only a trivial solution w 0, then by the implicit function theorem we
can solve (15) for ) < ,1 and , close to ,k, obtaining a continuous-in-/k branch of
solutions. We cannot continue this process of decreasing A indefinitely, since we know
that for A > 0 sufficiently small, (15) has no solution. Let A0 be the infimum of A for
which we can continue the branch to the left. We claim there is a sequence {A} and
uo e C(-1, 1), a solution of (15) at A A0, so that as An $ A0,u uo. Indeed,
using Lemma 3, we conclude that there is a number M > 0, such that for any solution

It follows that a subsequence of {u } converges uniformly on [-1, 1]. Passing to the
limit in the integral version of (15) (see (9)), we establish the claim.

By the definition of ,0 it follows that F(,0, Uo) is singular, i.e., (10) has
a nontrivial solution, which is positive by Lemma 6. By Lemma 6 one sees that
N(F(o, UXo)) span{w(x)} is one-dimensional, and then codimR(F(0, Uo) 1,
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since Fu(Ao, U,o) is a Fredholm operator of index zero. To apply the Crandall-
Rabinowitz theorem (Theorem 1) it remains to check that F(A0, Uo) R(F(Ao, U),o) ).
Assuming the contrary would imply the existence of v(x) O, such that

(16) v" + A0(2au0 3abu)v au(1 buo), -1 < x < 1, v(-1) v(1) 0.

Multiplying (16) by w, (10) by v, and integrating and subtracting, we obtain

a(x)u(x)(1 b(x)uo(x))w(x) dx O,

which is a contradiction in view of Lemmas 3 and 6.
Applying Theorem 1, we conclude that (0, Uo) is a bifurcation point, near which

the solutions of (3) form a curve (0 + T(s), U + SW + z(s)) with s near s 0, and
T(0) T’ (0) 0, Z(0) Z’(0) 0. It follows that for A close to 0 and > 0 we have
two solutions u-(x, A) and u+(x, ) with u-(x, ) < u+(x, ) for all x E (-1, 1), and
that u+(x, ) is strictly increasing in A while u-(x, A) is strictly decreasing. We show
next that the upper branch u+(x, ) is increasing in A for all A > 0. Differentiate (3)
in :

(17) u + Aa(2u 3bu2)u -as2(1 bu), u(-1) u(1)-0.

We know by the above that ux(x,A) > 0 for A close to A0 and all x E (-1, 1). Let/1
be the first A where this inequality is violated, i.e., ua(x, A1) >_ 0 and u),(xo, 1) 0
for some x0 (-1, 1). Applying the strong maximum principle to (17), we conclude
that ux(x, A1) > 0 for all x (-1, 1). Thus u+(x,A) is strictly increasing in A for all
A>Ao.

After turning right the curve of solutions will decrease in A, until a possible
turn to the left occurs. If that happens, Theorem 1 applies exactly as above, and
monotonicity of the branches follows similarly, so that after the turn the curve of
solutions is increasing in A (i.e., as we follow the curve for decreasing , the solution is
decreasing). By the same reasoning as used previously, the curve will eventually have
to turn to the right and decrease in A, and so on. Denote by (i, ui(x)) the turning
points (i.e., F(,i, ui)is singular).

We claim that the set of turning points is finite. Indeed, assuming the contrary,
we first rule out a finite accumulation point , i.e., Aik -* along a subsequence.
As previously, we show that a subsequence of uik converges uniformly on [-1, 1] to a
solution (x) of (3). Clearly F(A, ) is singular (since otherwise the implicit function
theorem would imply local uniqueness of the solution near (, (x))). But then we
have a contradiction with Theorem 1, which tells us that there can be no more than
two solutions near (, (x)). Next we rule out an infinite sequence of/ - cx. Notice
that Ui+l(X) < ui(x) for all >_ 1 and all x (-1, 1). By Lemma 5, ui(x) -- 0 as
i --. c, but then we get a contradiction with Lemma 7, which tells us that there can
be no bifurcations for sufficiently small u.

We now return to the curve of maximal solutions and follow it for increasing . If
it turns to the left then Theorem 1 applies, and the curve is decreasing in A after the
turn (i.e., u(x) is increasing when A is decreasing). Since solutions of (3) are bounded,
it follows as above that over any finite interval of A’s there is only a finite number of
turns, and the final turn is to the right. Since all the while the solution is increasing,
it follows by Lemma 5 that it approaches lib(x) as --, x. We show next that



186 PHILIP KORMAN AND TIANCHENG OUYANG

for sufficiently large A bifurcation is impossible, so that the curve of solutions keeps
moving to the right in the (, u) "plane." Indeed, let w(x) be a nontrivial solution of
the linearized equation (10) normalized so that f.1 w2 dx 1 Multiply (10) by w,
integrate by parts, and use the Poincar( inequality, obtaining

7r2

(18) a(x)(2u 3b(x)u2)w2 dx > 4"

Since the quantity on the left is negative for u close to lib(x), we have a contradiction,
which shows that (10) can have only trivial solution for A large. (That w(x) cannot
concentrate near x +1 follows similarly to Lemma 6.)

To recapitulate, we have a smooth curve of solutions which after a possible finite
number of turns has a decreasing and single-valued-in-A lower branch tending to zero,
and a monotone increasing and single-vMued-in-A upper branch tending to lib(x). We
show next that there is only one such curve. Indeed, assuming two such curves we
would have for sufficiently large two upper branches, v v(x, ) and u u(x, ),
both tending to lib(x). Denoting w u v, we express

w"+p(x)w=O -1 <x< 1, w(-1)=w(1)=0,

where p(x) a(x)[u + v b(x)(u2 + uv + v2)] is negative for u(x) and v(x) close to
1/b(x). This leads to the same contradiction as previously, unless w _= 0.

Remark 2.1. Consider an interesting class of problems with the nonlinearity re-
sembling the logistic one,

(19) u" + Au2(b(x) u) 0, u(-1) u(1) 0.

If b(x) is an even function satisfying b(x) > 0 on [-1, 1],b’(x) < 0 for x > 0, and
b"(x) < 0 for all x E (-1, 1), then it is easy to check that Theorem 2 applies.

Remark 2.2. Lemma 7 provides a lower estimate for the maximum value of any
solution where bifurcation occurs, Um> 1/2b(0).

Remark 2.3. If Um is the maximum value of the solution on the lower branch then

Indeed, multiplying (3) by u and integrating,

u2dx <
4 -1

u’2 dx </ka(O)um/ u2 dx.

On the other hand, since all solutions are concave down, we have u(x) >_ u,lx- 1 I.
Using this in (9), we easily obtain the second inequality in (20).

Remark 2.4. Based on the numerical evidence we believe that at A A1 the
solution is unique, while for A > A1 there are exactly two solutions.

3. Cubic nonlinearities with distinct roots. In this section we consider the
problem

(21) u" + Au(u a(x))(b- u) O, -l < x < l, u(-1) u(1) O.



MULTIPLICITY RESULTS FOR TWO BOUNDARY-VALUE PROBLEMS 187

Here b is a positive constant, and the function a(x) E C1[-1, 1] satisfies the following
conditions:

(22) a(x)>_a0>0, a’(x)>O forxe(0,1), a(-x)=a(x)
1

(23) a(x) < -b for all x e (-1, 1).

for all x (-1, 1);

From the maximum principle every solution of (21) satisfies 0 < u < b in (-1, 1).
Notice that, unlike (3), solutions of (21) are concave up near x =t=l.

LEMMA 8. The solution of (21) is an even function. Moreover, ux < 0 for x > O.
Proof. Since 0 < u(x) < b for all x (-1, 1), one easily sees that Proposition 1

applies.
LEMMA 9. Let u(x, ) be a nontrivial solution of (21) for i > io. Then there are

only three possibilities for lim_ u(x, A): 0, a(x), and b. If the solution is increasing
in then lim__. u(x, i) b for all x e (-1, 1).

Proof. The .first part follows from the integral representation of the solution as
before. From the previous lemma we know that for any/k > A0, u(0, A) > a(0). If the
solution is increasing in A this leaves us with lim_ u(0,/k) b. Indeed, the solution
cannot tend to a(x) over a subinterval, since ux < 0 while a’(x) > 0, and it cannot
tend to a(x) at a point for the same reason.

As previously, we need to consider the linearization of (21),

(24) w"+A[-3u2+2(a+b)u-ab]w=0, -l<x<l, w(-1)=w(1)=0.

LEMMA 10. If (24) has a nontrivial solution, we can choose it so that w(x) > 0
in (-1, 1).

Proof. Assume on the contrary that w(x) changes sign on (-1, 1). Assume w(x)
has a zero on (-1, 0] (the proof is similar if it has a root on (0, 1]). We may then
assume that w(x) < 0 on (Xl,X2) with -1 _< Xl < x2 _< 0, and W(Xl) w(x2)
0, w’(xl) < 0, w’(x2) > 0 (by changing if necessary to -w). Differentiate (21)"

(25) u’ + A[-3u2 + 2(a + b)u ab]u Aa’u(b- u).

Multiply (25) by w, (24) by u, and integrate and subtract"

(26) (uw uw’)l21 a’(x)u(b u)w dx.

The quantity on the right in (26) is positive by our assumptions, while the one on the
left is

(27) + < o

by Lemma 8.
THEOREM 3. There exists a critical , such that for 0 < ik < the problem

(21) has no solution; it has at least one solution at 1; and it has at least two
solutions for > . All solutions lie on a single smooth curve of solutions. For each
ik > there are finitely many solutions, and different solutions are strictly ordered.
Moreover, there exists ik2 >_ so that for > i2 the problem (21) has exactly two
solutions denoted byu-(x,)) < u+(x, A), andlim u+(x, A)= b for all x e (-1, 1).
Solution u-(x, )) develops a spike layer at x 0 as
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Proof. The proof is similar to that of Theorem 2, so we shall not repeat all the
details but concentrate on the points that are different. As before we show that (21)
has no solutions for sufficiently small A > 0. To show existence of at least two solutions
for sufficiently large A, we need to consider the functional

?t2 U3 it4 Iu’2 + Aab- A(a + b)- + --- dx

on H(-1, 1), and produce a function for which J(u) < 0. Consider the functional

(a + b)- + dx.

Using the condition (23) one computes J(b) < 0. The function u b does not satisfy
the boundary conditions; however, it is clear that one can now construct uo(x) E
H(-1, 1) with (uo(x)) arbitrarily close to ](b), i.e., ](u0) < 0. Then for sufficiently
large A we have J(uo) < 0, as desired.

To apply Theorem 1 it remains to verify that F(A0, Uo) R(F(A0, Uo)), where
the map F and (A0, Uo) are defined the same way as in the proof of Theorem 2.

Assuming the contrary, we have f-l u"wdx 0(u is solution of (21) w of (24)).
Notice that w(x) is an even function (for otherwise the linear problem (24) would
have another positive solution w(-x), whichis impossible). We then conclude that

u’Pw dx uPw dx uw" dx O.

Next we multiply (24) by XUx, (25) by xw, and integrate and subtract.
above formula,

’(1)w’(1) + xa’(z)w(b- ) dz O,

Using the

which is a contradiction, since both terms on the left are positive.
Proceeding as in the proof of Theorem 2, we follow the curve of maximal solutions

left until a turning point A A0. Near that point, Theorem 1 implies existence of two
solutions with u-(x,A) < u+(x, ) for all x E (-1, 1), and that u- is decreasing in
while u+ is increasing in A (for A close to A0).

By Lemma 9, as A --. cx, any solution u(x,A) of (21) can only approach 0, b,
or a(x). By Lemma 8, u(x, A) cannot approach a(x) over any interval, since ux and
a’ have opposite signs over (-1, 1)\{0}. On the other hand, u(0, A) > a(0), since
x 0 is the maximum point of u(ux(0, A) < 0). It follows that there are just two
possibilities as A -- c: either the solution approaches b for all x (-1, 1), or the
solution approaches zero for x e (-1, 1)\{0}, while u(0, A) > a(0), i.e., a spike-layer
shape. (The possibility that u-(x, A) approaches b on some proper subinterval of
(-1, 1), and zero on its complement, is easily ruled out by the argument used in the
proof of Proposition 1.)

As in Theorem 2 we show the existence of a smooth curve of solutions, which
after possibly finitely many turns, has an upper branch u+(x, ) single-valued in A,
and tending to b as A ---, c (notice that for u close to b, (24) has only the trivial
solution). The lower branch can also have only (possibly) finitely many turns, and it
cannot tend to zero at a finite A (as can be seen by converting (21) into an equivalent
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integral equation). It is easy to see that the lower branch cannot approach b as A - x(setting w u+(x,A)- u-(x, ), we obtain an equation similar to (24)). Hence the
lower branch has to approach a spike layer shape described above. We next show that
as this happens, further bifurcations (turns) are impossible. From (24) we obtain, as
previously (normalizing w),

[-3u2 + 2(a + b)u ab]w2 dx >
4

Since the quantity on the left is negative for u close to the spike layer, it follows that
(24) has only the trivial solution.

We now have a smooth curve of solutions, which after a finite number of turns
has an upper branch strictly monotone increasing and single-valued in A and tending
to b as A --, cx, and a lower branch single-valued in A and tending to the spike-
layer shape. We next show that there are no other solutions. Indeed, any other
solution would have to lie on another curve of solutions, having the same properties.
In particular, we would have another upper branch, tending to b, which was already
ruled out previously.
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BANANAS AND BANANA SPLITS: A PARAMETRIC
DEGENERACY IN THE HOPF BIFURCATION FOR MAPS*
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Abstract. The set of Hopf bifurcations for a two-parameter family of maps is typically a curve
in the parameter plane. The side of the curve on which the invariant circle exists is further divided
by horn-shaped resonance regions, with each region corresponding to maps that have a periodic orbit
of a certain period. With the presence of a parametric degeneracy, the resonance regions sometimes
take the form of closed "bananas" instead of open-ended horns. The authors investigate this local
codimension-two bifurcation, emphasizing resonance regions as projections to the parameter plane
of surfaces in phase x parameter space. The authors present scenarios where the degeneracy occurs
"naturally" and illustrate them through an adaptive control application. More global implications
of the local study are also discussed.
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1. Introduction. When a fixed point for a map of an, n _> 2, has a complex
conjugate pair of eigenvalues on the unit circle, we expect it to undergo a Hopf (also
called Neimark-Sacker) bifurcation under perturbation. In a typical two-parameter
family containing such a point, there is a Hopf bifurcation curve in the parameter
plane which separates maps with an attracting fixed point from those with a repelling
fixed point. The change in stability of the fixed point across the Hopf curve is ac-
companied, except possibly near the strong resonances, by the birth of an invariant
topological circle from the fixed point. The side of the Hopf curve on which the in-
variant circle exists, as well as its stability, is determined by the relationship between
the parameters, the linear terms, and some nonlinear terms in the family of maps.
Again with the exception of parameter values near strong resonances, it is known that
all local recurrence is restricted to the fixed point and to the invariant circle, when
the latter exists.

On the side of the Hopf curve without the invariant circle, all nearby maps are

locally topologically equivalent. On the side with the invariant curve, however, the
parameter space must be further subdivided because, restricted to the invariant circle,
we expect the rotation number of the maps, a topological invariant, to change with the
parameters. From circle map theory we know that the existence of a reduced rational
rotation number p/q implies the existence of at least one least-period-q orbit, so we
concentrate in this paper on determining the location in phase parameter space
where periodic orbits of certain period exist. Such sets are called period-q resonance

surfaces, or p/q resonance surfaces if we wish to identify the rotation number of the
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FIG. 1. Typical Hopf bifurcations: (a) Parameter plane without angular degeneracies. (b)
Parameter plane with two angular degeneracies (at D1 and D2). (c) Angle 0 offixed-point eigenvalue
vs. arc length s along the Hopf curve in (b).

period-q orbit. Their projections to parameter space are called period-q resonance
regions, or p/q resonance regions, or (Arnold) resonance horns if we wish to suggest
their shape. They are also called phase locking regions or entrainment regions, with
both names originating in the context of Poincar maps of two frequency flows on
a torus; in this case, regions of constant frequency ratio for the flow correspond to
regions of existence of a certain periodic orbit for the map.

It is known that a period-q resonance region typically opens out from every point
on the Hopf curve for which the fixed point has an eigenvalue of e2trip with p/q
any reduced rational with q > 5, as suggested in Fig. la. In order to ensure that a
specific resonance region opens in the horn-shaped manner suggested by that figure,
several nondegeneracy conditions must be satisfied. Some nondegeneracy conditions
pertain only to the phase variables, others include reference to the parameters as
well. The failure of any one of the nondegeneracy conditions to hold results in a "de-
generate" Hopf bifurcation. Of specific interest to us is the following nondegeneracy
condition with respect to the parameters: it is usually assumed that the argument of
the eigenvalues of the fixed point varies monotonically along the Hopf curve. When
the argument fails to vary monotonically we say the Hopf bifurcation has an angular
degeneracy. In this case, the nearby Arnold resonance regions can appear locally in
shapes such as closed "bananas" rather than as the open horns of Fig. la. Figure
lb suggests a possible scenario for resonance regions near the Hopf bifurcation curve.
The Hopf points with angular degeneracies are at D1, a "banana" point, and. at D2,
a "banana-split" point.

To emphasize the nonmonotonicity at the points with angular degeneracies, we
show in Fig. lc the argument of one of the eigenvalues of the neutral fixed point as a
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function of arclength, s, along the Hopf bifurcation curve of Fig. lb. The argument
fails to vary monotonically through points D1 and D2.

To be more precise, we make the following definition. Unless otherwise noted,
we assume throughout the paper that we are dealing with a k-parameter family of
functions Fu a2 ---, a2, # E ak, which is C as a function from R2 Rk R2.
We will be mostly interested in two-parameter families (k-- 2).

DEFINITION. Let Fu be a family of smooth maps of the plane with the following
properties:

1. A map in the family has a fixed point

F,o (x0) x0.

2. The fixed point is nonhyperbolic, with complex conjugate eigenvalues on the
unit circle. That is, the Jacobian

DFo (x0) has eigenvalues e+2riw

where wo E R, but 2w0 Z to ensure that the eigenvalues in a neighborhood of the
bifurcation point are complex.

Then (x0,/to) is a Hopf bifurcation point for the family Fu.
The implicit function theorem guarantees that there exist unique fixed points

near x0 for maps Fu corresponding to parameter values # near tto. The fixed points
can be described by a C function x x(#) satisfying x(tt0 x0. The eigenval-
ues of the nearby fixed point x(tt) can be written as A+ +(tt) A+(x(tt))
ep()+/-i(2o+(’)). This defines both p(#) and a(#) uniquely, once a choice of wo has
been fixed, as C functions which must satisfy p(#o) 0, a(#o) 0.

It is customary to study the Hopf bifurcation by making a change of parameters
to (p,a) from the original parameters #. This is possible whenever V,p(tto) and
V,a(tto) are linearly independent vectors.

DEFINITION. The point (x0,/to) is a Hopf bifurcation point with a parametric
degeneracy if the vectors Vt,p(#0 and Va(tt0) are not linearly independent.

DEFINITION. A Hopf bifurcation point satisfies the eigenvalue crossing condition
if

v.p( 0) # o.

DEFINITION. We say (Xo,/to) is a bifurcation point with an angular degeneracy for
the family F if it has a parametric degeneracy, but the eigenvalue crossing condition
is satisfied.

When the eigenvalue crossing condition is satisfied, as it generically is in two-
parameter families, the implicit function theorem guarantees the continuation of a

Hopf bifurcation curve through/to in the parameter plane. If we express the Hopf
curve with arc length parametrization as # #(s) with #(0) /to, it follows that

0.
If we monitor the argument of the neutral eigenvalue of the fixed point along the

Hopf curve, we see that having an angular degeneracy is equivalent to a(#(s))ls=o
0. This is why we call the degeneracy an angular degeneracy. An angular degeneracy
occurs either when V,a(#0) is nonzero but parallel to V,p(#0) or when V,a(#o) 0

(the latter being a nongeneric occurrence in two-parameter families).
We think of the Hopf bifurcation with an angular degeneracy as arising from

two possible scenarios in applications. The first is easier to explain and understand:
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the "natural" parameters (# above) in an application are not related in a one-to-
one fashion to the "universal unfolding" parameters of the modulus and angle of the
eigenvalues of the associated fixed point for the corresponding map, or equivalent
parameters such as p(#) and c(tt defined above. The lack of injectivity results in
singular points for the change of parameters from tt to (p, c). Geometrically, we can
think of curves of singular points as places we need to "fold" the natural parameter
plane in order to place it on top of the corresponding points in the "universal" param-
eter plane. When the Hopf curve crosses such a fold curve in the natural parameter
plane, we have an angular degeneracy. The description of the geometric "folding" of
the parameter space is further detailed in 2.4.

The other general scenario where an angular degeneracy arises is along a curve
of "secondary" Hopf bifurcations in the two-dimensional parameter space. Although
locally the same as an angular degeneracy on a primary Hopf curve, this case cannot
be dismissed as merely an "unfortunate" choice of parameters because a "good" pa-
rameter choice is usually determined with respect to primary bifurcation phenomena.
One codimension-two bifurcation point, a Chenciner or transcritical Hopf point, re-
quires the existence of an infinity of angular degeneracies, each on its own secondary
Hopf curve inside its own resonance region. It was in studying bifurcations near a
Chenciner point, in fact, when we first became interested in the angular degeneracy
we describe in this paper [Me], [Jo]. We discuss this scenario in more detail in 3. We
also present in that section a model of a discrete-time adaptive control application
that has a Chenciner point on a primary Hopf curve, a secondary Hopf curve connect-
ing two Takens-Bogdanov points on the boundaries of a primary resonance region,
an angular degeneracy on the secondary Hopf curve, and banana-shaped secondary
resonance regions.

The main areas of emphasis of the paper are determining a model, or normal form,
for a Hopf bifurcation with an angular degeneracy, investigating nearby resonance
surfaces and their projections to parameter space, relating this bifurcation information
for the model to the bifurcation picture for a generic two-parameter family of maps
with a Hopf bifurcation with an angular degeneracy, and describing situations in which
the angular degeneracy is expected to occur. The main result (Theorem 2.5 and its

corollary) is that the resonance regions near a generic Hopf bifurcation point with an

angular degeneracy "look" either like those near point D or like those near point D2
in Fig. lb. We also discuss more global results about parameter space regions where
banana resonance regions are expected to appear.

The paper is organized as follows. In 2, we recall some basic results about Hopf
bifurcations, present the (known) Arnold theory for individual resonance horns (with
emphasis on the resonance surfaces and using variations on Arnold’s proofs), present
analogous results for resonance regions near an angular degeneracy, and then consider
the implications for the full bifurcation picture near an angular degeneracy. In 3,
we describe scenarios in which secondary Hopf bifurcations with angular degeneracies
are expected to occur, and present the adaptive control model. We discuss global
parameter space bananas in 4, and make final comments in 5.

2. Local resonance regions near a Hopf bifurcation.

2.1. Background. We begin by recalling some standard terminology and results
about Hopf bifurcations and normal forms.

DEFINITION. A p/q resonant Hopf bifurcation point is a Hopf bifurcation point
having eigenvalues e:2ip/q and rotation number p/q around the fixed point for (an
appropriate lift of) the linearization of the map at the Hopf point. The fraction p/q
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must be in lowest terms. If q >_ 5, the bifurcation is said to be weakly resonant; if
3 _< q <_ 4, it is said to be strongly resonant. (Sometimes q 1 and q 2 are called
strong resonances as well, although the eigenvMues for those cases are real.)

Note that, for a fixed choice of p/q, the p/q resonant Hopf bifurcation is a
codimension-two bifurcation--one parameter is needed to bring the norm of the fixed-
point eigenvalue to one, and the other parameter is needed to bring the argument of
the fixed-point eigenvalue to the appropriate value of 2rp/q.

THEOREM 2.1 (normal form theorem). Let (xo, ]to) be a Hopf bifurcation point
for the k-parameter family of functions F R2 --, R2, Ca as a function from
R2 Rk -- R2. Then there exists a neighborhood of ito in the parameter space for
which the original family can be converted by a polynomial change of variables into
the form

(1) f,(z) ep(")+(E) (z + A(#)z +... + B(#)u- +...),

by identifying x E R2 with z C, a translation (to bring the unique fixed point at each
parameter value to the origin), and a "near identity" polynomial change of variables.
A(#) A1 (#) + iA2(#) and B(#) B1 (#) + iB2(#) are complex valued functions.
The omitted terms are all O(Izlq+l), except possibly those of the form zJ2J-l,j >_ 3
which are O([zlb). These "intermediate order" omitted terms are all invariant with
respect to rotations; the q-1 term is the lowest-order term in the normal form which
is not invariant with respect to all rotations. The dependence of all the functions with
respect to It is Ca.

Proof. See [Ar], [GH], [Ru], for example.
THEOREM 2.2 (Hopf bifurcation theorem). Let F :R2 -- R2 be a family of

functions for which F (It, x) F(x) is Ca. Assume the eigenvalue crossing
condition holds at (x0,/to) and that this point is not strongly resonant. Then

1. there is a unique fixed point near x0 for all maps near ]to in the parameter
space. A Ca-smooth Hopf bifurcation curve, defined by the neutral linear stability of
the corresponding fixed point, passes through the point (x0,/to) in the parameter plane.
The fixed point is stable on one side of the Hopf curve and unstable on the other side;

2. if in the normal form of equation (1) A (it0) is negative (positive), then
an attracting (repelling) invariant circle surrounding the fixed point is born from the

fixed point as the parameter crosses the Hopf bifurcation curve from the side with the
attracting fixed point to the side with the repelling fixed point (from the side with the
repelling fixed point to the side with the attracting fixed point). The smoothness of the
invariant circles can be guaranteed to be Cr for any r < c by suitably restricting the
parameter space to a neighborhood of #o. Local recurrent points are the fixed point
and some points on the invariant circle, when the circle exists.

Proof. 1. The existence of a unique fixed point follows from the implicit function
theorem. The stability follows from the Hartman-Grobman theorem.

2. See Ruelle’s textbook [Ru] for a proof of this part of the theorem using the
technique of graph transforms.

When A(it0) < 0, the Hopf bifurcation is called supercritical; when

A (/to) > 0, the bifurcation is called subcritical; when A (/to) 0, the bifurcation is
called transcritical or a Chenciner point.

2.2. Individual nondegenerate resonance surfaces and regions ( la
Arnold). The Hopf bifurcation theorem implies that the bifurcation study would
be complete if we knew how to divide the parameter space on the side of the Hopf
curve with the invariant circle into topological equivalence classes. Consequently, we
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begin by studying surfaces in phase parameter space corresponding to. periodic or-
bits of a certain period. We first present a nondegenerate two-parameter model for
investigating a "resonant" Hopf bifurcation in the neighborhood of a fixed point with
eigenvalues e:t=2rip/q. We will locate all local perio’d-q points in a family containing
such a resonant Hopf point; they will usually live on the invariant circle guaranteed
by the Hopf bifurcation theorem. Although the results in this subsection are not new
(cf. [Ar]), we include the subsection for several reasons: to emphasize the surfaces in
phase parameter space instead of just their projection to parameter space, to high-
light the differences between the nondegenerate and the degenerate cases, to present
some proofs which are slightly different from Arnold’s proofs, and to make the paper
more self-contained.

Arnold’s analysis begins by studying vector fields which are invariant with respect
to rotations of 2rip/q. He then shows that the qth iterates of maps such as the model
families in (2) and (3) below are, up to arbitrarily high order, time-one maps of these
equivariant vector fields. In contrast, we have chosen to work directly with maps, and
for q >_ 5, although many of our arguments are suggested by his analysis, especially
for his q 4 case.

Our model family of maps near a p/q resonant Hopf bifurcation point is

(2) f(p,) (z) e2ip/qep+i(z + Az2 - Bq-1),

where p and a are small real parameters, z is a complex variable, is its complex
conjugate, p and q are integers, and A A1 + iA2 and B BI + iB2 are complex
constants with A -- 0, B : 0. We consider only the local bifurcation for z,p, c
near 0, 0, and 0, respectively. Our justification for using this model is in the proof of
Corollary 2.4 below, where we show that a generic family near a p/q resonant Hopf
point can be changed into the form of equation (2) plus some higher-order terms.

Properties of the (nondegenerate) resonant Hopf model. For the family
defined by equation (2), which satisfies the hypotheses of the Hopf bifurcation theorem
if q >_ 5, the fixed point z 0 has eigenvalue ep+i(+2rp/q). (The corresponding
fixed point for the map in R2, obtained by identifying R2 with C, has eigenvalues
eP+i(+2P/q).) The line p 0, where the origin z 0 changes from attracting (p < 0)
to repelling (p > 0), is a Hopf bifurcation curve. The argument of the eigenvalue is
monotonic along the Hopf curve. In fact, it equals
(Contrast this with the degenerate model, where this monotonicity fails to hold, in
the next subsection.)

The local p/q resonance region, where period-q orbits exist, for equation (2) with
p/q 1/5, A -1- i, B 1, is the horn-shaped region in Fig. 2. All three represen-
tative phase portraits are for the 5th iterate of the map. In phase portrait A, the 5th
iterates rotate counterclockwise on the (attracting) invariant circle; in C they rotate
clockwise; in B they move from saddles (’s) toward nodes (filled circles).

More formally, we restate the following (known) theorem.
THEOREM 2.3. Assume the family f(p,) is defined as in (2) and q >_ 5. Then

there exists a closed neighborhood N of the origin in the phase parameter space with
the following properties:

1. The set of least-period-q (p/q) points in N is topologically a punctured (closed)
disk. The puncture point is the origin--the p/q resonant Hopf bifurcation point which
is a fixed point. The union of the least-period-q points and the fixed point is a closed
disk.
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2. If A1 O, then the projection of the least-period-q (p/q) points in N to the
parameter space is an (Arnold) resonance horn, emanating from the origin in the
parameter space, with both sides tangent to the vector (-A1,-A2). lf, in addition,
B 0, the horns have positive measure, and the order of tangency is q-2 The2
parameter values near (p, a) (0, 0) for which the corresponding maps have least-
period-q orbit(s) near z 0 are precisely those inside and on the boundary of the
resonance horn, excluding the tip of the horn, to which the p/q resonant Hopf point
projects.

3. In the interior of this horn, there exists a pair of period-q (p/q) orbits, one
attracting and one repelling when restricted to the invariant circle. The two orbits meet
in a single saddle-node orbit on the boundaries of the horn (excluding the resonant
Hopf point itself).

Proof. 1. We determine all period-q points by looking at all solutions to fq (z)-z
0 which are not fixed points. Expanding in terms of the parameters p and a and the
modulus of z, solving for the parameters, and neglecting higher-order terms leads to
the result.

2. Eliminate the phase variables from the expressions obtained for the proof of
the above item.

3. Follow arguments similar to those of Arnold [Ar].
Details are in the Appendix. [:]

COROLLARY 2.4. Let Ft, R2 -- R2 be a family of maps which satisfies the hy-
potheses of the Hopf bifurcation theorem as stated in 2.1. Assume also that (xo, #o) is
a p/q weakly resonant Hopf bifurcation point (defined also in 2.1), without a paramet-
ric degeneracy (defined in the introduction). Then there is a neighborhood of (xo,/to)
in the phase parameter space in which the conclusions of Theorem 2.3 will hold,
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where in item 2, A is replaced by A(#o), B is replaced by B(ito), and the vector to
which the resonance horn is tangent is the vector that -A(#o) is mapped to by the
linearization of the coordinate change from the (p, a) parameter space to the original
it parameter space.

Proof. Change variables to bring the original equation into the form of equation
(2) plus some higher-order terms. Details are in the Appendix. [:]

2.3. Resonance surfaces and regions near an angular degeneracy. Our
model family of maps having least-period-q points near an angular degeneracy is

(3) f(,,) (z) e2iep+i(c1"+c22) (z + Az2 + Bq- 1),
where p and T are real parameters, z is a complex variable, is its complex conjugate, q
is an integer, w0 is a real constant, cl and c2 = 0 are real constants, and A A1 + iA2
and B B1 + iB2 are complex constants. As before, we consider only the local
bifurcation for z, #, T near 0, 0, and 0, respectively. The use of this model is justified
in Corollary 2.6.

As with the nondegenerate family in (2), this family has a Hopf bifurcation along
p 0. This family is "degenerate" because the argument of the fixed-point eigenvalue,
2wo + clp--C2T2, does not vary monotonically along the Hopf curve p 0 as - passes
through zero. This causes a change in the appearance of the resonance regions, as we
now describe in Theorem 2.5.

THEOREM 2.5 (properties of the degenerate Hopf model). Assume the family
f(p,) is defined as in (3) and q >_ 5. Assume At, c2, and A2 -cA are all nonzero,
and wo p/q but is sufficiently close to p/q. Then there exists a closed neighborhood
N of the origin in the phase parameter space with the following properties:

1. The set of least-period-q (p/q) points in N and the projection of this set to the
parameter space are described by one of four cases. If we define so := 2r(wo p/q),
then the four cases are determined by the signs of the three quantities A, (A2
cA)/(c2A), and (aoA)/(A2-cA), as indicated respectively in the following list:

a. (-,-, +) or (+, +,-): a twice-punctured sphere which projects to a banana-
shaped region with both tips on the Hopf line.

b. (+, -, +) or (-, +, -): two disjoint punctured closed disks, each projecting
to disjoint resonance horns, each with its tip on the Hopf line (a "banana split").

c. (-, +, +) or (+, -, -): a closed cylinder which projects to a "thickened"
parabolic region.

d ,-) or (+, +, +): the empty set (projecting to the empty set).
The punctures, present in the first two cases, are p/q resonant Hopf points located at
(Z, (p,T)) (0, (0,+/-V/-o0/c2)), and project to corresponding horn tips. If B O,
the parameter space horns have positive measure and have order of tangency q-2 at2
the tips. In all cases, the "centers" of the horns are pieces of parabolas to lowest
order. The parameter values near (p, T) (0, 0), for which the corresponding maps
have least-period-q (p/q) orbit(s) near z O, are precisely those inside and on the
boundary of the resonance region(s), excluding the resonant fixed points which project
to the horn tips.

2. On the interior of this region(s), there exists a pair of least-period-q (p/q)
orbits, one attracting and one repelling, when restricted to the invariant circle. The
two orbits meet in a single saddle-node orbit on the boundaries of the horn (excluding
the resonant Hopf point(s) itsel]).

Note: The terms in quotations are made more precise in the proof. Parameter
space projections of cases (a), (b), and (c) are illustrated in Fig. 3a-3c, respectively.
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FIG. 3. Period-5 resonance regions near a Hopf point with an angular degeneracy. Computa-
tions were done using equation (3) with A -1- i,B 1, cl -0.5, and (a) wo 0.21,c2 -1,
(b) wo- 0.19, c2 +1, (c) w0 0.21, c2 +1.

Proof. 1. The nondegenerate family of equation (2) and the degenerate family
of equation (3) differ only in the appearance of their parameters: c has now been
replaced by (0 + clp + c2"2. The proof is thus obtained by a (noninjective) change
of parameters. Details are in the Appendix. See also the end of the next subsection,
where with the aid of Fig. 4 we describe geometrically how the degenerate parameter
space "unfolds" onto the nondegenerate parameter space.

2. Same as the proof of item 3 in Theorem 2.3.
For the statement of the following corollary, we recall notation from the introduc-

tion: tt(s) is an arclength parametrization of the Hopf curve which passes through
the bifurcation point at s 0, and p(tz)+/-i(2rwo+a(tz)) are the eigenvalues of the cor-
responding fixed point along the Hopf curve.

COROLLARY 2.6. Let F R2 --, R be a family of maps which satisfies the
hypotheses of the Hopf bifurcation theorem as stated in 2.1, including the. eigenvalue
crossing condition. Assume that (x0, #0) is a Hopf bifurcation point with an angular
degeneracy (defined in the introduction), the eigenvalues of DFo(Xo are e+/-2iw, the
rotation number around xo of (a lift oJ) DFt,o(Xo is +Wo, and wo p/q for q <_ 4
(not strongly resonant).

Assume also that and V,a(tto) -- 0. Thus Vp(#o) and V,c(#o) are nonzero
dparallel vectors and a(#(s))ls=o 0. Assume, however, that 7a(#(s))ls=o : 0.



A DEGENERATE HOPF BIFURCATION FOR MAPS 199

Then for any p/q suJficiently close to wo, there is a closed neighborhood N of (x0,/to)
in the phase parameter space inside which the set of least-period-q (p/q) points in N
is described by one of the four cases (a)-(d) enumerated in statement 1 of Theorem 2.5.
The four cases are determined in the same way as in Theorem 2.5, after we put the
original equation in its normal form up to O(Izl 3) terms, change parameters from # to
(p, T), let A A(#o), and write the eigenvalue argument (p, T) 020t-Clp--c2T2 -. .,
a form justified in the proof.

Proof. This proof is similar to that of Corollary 2.4. We show that there is a
nonsingular change of coordinates which brings our original equation into the same
form as our model with an angular degeneracy except for higher-order terms. Details
are in the Appendix.

2.4. Discussion. Although the theorems and their corollaries in the previous
subsection stated results for only one p/q resonance surface at a time, there are some
relationships between nearby resonance surfaces we wish to point out.

First, for a p/q resonance horn away from an angular degeneracy, we recall from
Corollary 2.4 that the angle at which it meets the Hopf curve is determined by the
coefficient A(tt) of the z2 term in the normal form, where # is the parameter value
corresponding to a p/q resonant Hopf point. Since this coefficient varies smoothly
along the Hopf curve, the angles at which the various resonance horns meet the Hopf
curve will also vary smoothly along the Hopf curve. (No similar statement can be
made about the "B(tt)" coefficient of the q-1 term; it is not even the coefficient
of the same term in the normal form as we move from one resonant Hopf point to
another.) This implies that along the Hopf curve for any family, the angle at which
a p/q resonance horn meets the Hopf curve varies smoothly as p/q varies. This is
even true if the B coefficient in the normal form near a particular p/q resonant Hopf
point is zero; the order of tangency of the saddle-node curves for that particular p/q
resonance horn, however, would not be of order q-2

2

A similar statement holds for the consistency in the shape of resonance regions
near an angular degeneracy. The "parabolas" which define the "centers" of the p/q
resonance regions (defined in the proof of Theorem 2.3) vary smoothly in p/q.

We also point out that, even though there are four distinct cases for individual
resonance regions, the collection of resonance surfaces and regions near a single Hopf
bifurcation with an angular degeneracy has one of the following two forms:

a. Twice-punctured disks which project to "bananas" for all p/q on one side of
w0; the empty set for all p/q on the other side of w0.

b. Pairs of punctured disks which project to "banana splits" for all p/q on one
side of w0; closed cylinders which project to thickened parabolas for all p/q on the
other side of w0.

Analytically, this is because the signs of the three quantities At, (A2-cA)/(c2A),
and (coA)/(A2 -ciA1) determine the four cases; only the last quantity can change
sign as p/q is varied (via a0 := 2r(w0 -p/q)).

The first case is illustrated schematically in Fig. lb near point D1 and for the
model family below in Fig. 4d. The second case is illustrated schematically in Fig. lb
near point D2 and for the model family below in Fig. 4d2. See also Fig. 10, described
in the proof of Theorem 2.5 in the Appendix, for a further description of how nearby
resonance regions change as varying p/q causes a0 to change between positive and
negative.
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Model family. To portray a bifurcation picture with more than one resonance
region near an angular degeneracy, we used the following family:

(4) f(p,) (z) e2"eP+(P+’r)(z + nz2 + Bq- + Czar)

with w0 0.19, c -0.5, A -1-i,B 1, C 1, q 5. Figure 4d, using
c2 -1, shows two banana resonance regions; Fig. 4d2, using c2 +1, shows a
banana split resonance region and two parabolic resonance regions.

The family of equation (4) is the same as the model degenerate family we began
with in equation (3), except for the z3 term. We made this Mteration because the
family of equation (3) is invariant to rotations by 2rp/q. This is fine for computing
the p/q resonance region, but not for any other resonance region. For example, if
p/q 1/5, and we were computing the 1/6 resonance region, the invariance with
respect to rotations by 2r/5 would imply that period-6 orbits must appear in groups
of 5. Thus, a saddle-node birth of a pair of period-6 orbits would result in the birth
of 10 period-6 orbits, or 60 period-6 points. The z3 term was chosen because it is of
high enough order so as not to affect the existence of the invariant circle, and because
it is not invariant to any rotations about the origin in phase space. Thus no unwanted
symmetries are present.

The geometry of the parameter change or "Theorem 2.3 to Theorem
2.5 in pictures." Figures 4dl and 4d2 can be thought of as having been created via
parameter space "surgeries" of a bifurcation diagram for a corresponding nondegen-
erate family. Specifically, if we start with the bifurcation diagram of Fig. 4a for the
nondegenerate family f(p,)(z) eP+ia(z + Az2 -- Bq- -- Cz3), we can change it
into either Fig. 4d or 4d2 with the coordinate change a 2rw0 + clp -c2T2. This
coordinate change, replacing a with T, can be decomposed into the following three
coordinate changes, each having a simple geometric interpretation:

a. Shear to make the "singular line" perpendicular to the Hopf curve: c
& + cp (Figs. 4a and 4b).

b. "Unfold a double cover of half of the nondegenerate parameter space": &
2w0 +c211, c2 +1 (from Fig. 4b to 4c for c2 1; from Fig. 4b to 4c2 for c2 -1).

c. Smooth the fold lines: TIT (from Fig. 4Cl to 4d, or from Fig. 4c2 to
4d2).

A rescaling would give the same picture as Fig. 4dl for any negative c2, and the
same picture as Fig. 4d2 for any positive c2.

It is now easier to see why the nondegeneracy conditions of Theorem 2.5 are
necessary. The value of A1 must be nonzero so that the resonance horns emerge
transverse to the Hopf curve. The expression A2 -cA1 must be nonzero to ensure
the resonance horns cross the fold line transversely (the horns emerge with slope AA1
and the slope of the fold line is c). If c2 were zero, the fold might be even more
degenerate.

More general degenerate families could.also be considered as geometric unfoldings
of a double cover of half a nondegenerate parameter space, but only to lowest-order
terms. The model families behave better because they have constant coefficients A
and B; in a more general family these coefficients would depend on the parameters.

3. Angular degeneracies on secondary Hopf bifurcation curves. So far,
the only reason we have given for expecting a Hopf bifurcation with an angular de-
generacy is that the relationship between an application’s natural parameters and
the "universal" parameters, the modulus and argument of a fixed point’s eigenvalue,
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constant c2 +1.
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could be nonhomeomorphic. We now describe some scenarios in which the angular
degeneracy is expected, or even guaranteed, to occur, even for the "best" choice of
parametrizations. They all involve secondary, rather than primary, Hopf bifurcations.
These scenarios, in fact, were the original motivation behind our study of a Hopf
bifurcation with an angular degeneracy which led to this paper.

3.1. Takens-Bogdanov points and secondary bifurcations. When a fixed
point of a family F undergoes a (primary) Hopf bifurcation, one result can be the
birth of periodic orbits as the Hopf curve in the parameter plane is crossed. Period-
q resonance regions (horns), described throughout this paper, where period-q orbits
exist, emanate from a point on the primary Hopf curve where the eigenvalues of DF
at the associated fixed point are located at a qth root of unity.

The sides of a period-q resonance region are period-q saddle-node bifurcation
curves, characterized by having an eigenvalue of DF at one. As a saddle-node curve
is traced out in the parameter space, away from the primary Hopf bifurcation, the
second eigenvalue may vary. (For q _> 5 and parameter values near the primary
Hopf bifurcation, the second eigenvalue determines the local attraction or repulsion
normal to the invariant curve.) If the second eigenvalue also becomes equal to one, we
generically have a double 1, or "Takens-Bogdanov" point [Bo], [Ta]. One consequence
of the analysis of a generic Takens-Bogdanov point is the emergence of a (secondary)
Hopf bifurcation curve from the Takens-Bogdanov point, tangent to the saddle-node
and extending into the primary resonance region. This secondary Hopf bifurcation
curve is characterized by the existence of a period-q point where the eigenvalues
of DF are complex conjugate and on the unit circle. A (secondary) period-mq
resonance horn, analogous to a primary period-m resonance horn, will emanate from
a point on the secondary Hopf curve where DF at the associated period-q point has
an eigenvalue at an ruth root of unity.

Only five possibilities exist for the global continuation of a Hopf curve in a two-
parameter family: (1) continuation in each direction terminates at a Takens-Bogdanov
point; (2) continuation in each direction terminates at a "double (-1) point" [Ar], [Ta];
(3) continuation in one direction terminates at a Takens-Bogdanov point, continuation
in the other direction terminates at a double (-1) point; (4) continuation forms a
closed curve; or (5) continuation proceeds forever (in an unbounded parameter space).
Possibilities (1) and (2) imply the existence of local extrema for the argument of the
neutral eigenvalue along the Hopf curve. These local extrema are generically the Hopf
bifurcation points with angular degeneracies.

Several possible scenarios, all involving secondary Hopf bifurcations and most
involving Takens-Bogdanov points, are suggested in Figs. 5a-e. In Figs. 5a-d, we
can assume the eigenvalue argument is zero at one of the Takens-Bogdanov points.
Continuity of this eigenvMue along the secondary Hopf bifurcation curve, coupled with
the assumed fact that no double (-1) points are encountered along the way, implies
that the argument must return to zero at the other Takens-Bogdanov point. Thus
the argument (generically nonconstant) must reach a maximum or minimum at least
once along the secondary Hopf curve. In Fig. 5e, if by moving all the way around the
secondary Hopf curve also returns the secondary rotation number to its value at the
starting point, then relative extrema must exist. Thus, these scenarios will lead to
Hopf bifurcations with angular degeneracies.

Differences in the figures depend on which side of the horn the second Takens-
Bogdanov point appears, on which side of the secondary Hopf bifurcation curve the
secondary invariant curves exist, and on which type of angular degeneracy is realized
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FIG. 5. Angular degeneracies D due to Bogdanov points B.

("banana" vs. "banana split"). Although there are no Takens-Bogdanov points in
Fig. 5e, it could turn into Fig. 5d by "expanding" the secondary Hopf circle through a
variation of an auxiliary parameter, for example, until the "top" angular degeneracy
"hit" the saddle-node curves bounding the resonance horn. Other similar scenarios
are also possible.

Figure 5a is an illustration of a pair of resonance horns which exist near a
"Chenciner" point [Ch]. A Chenciner point is yet another degenerate Hopf bifur-
cation point: the Hopf bifurcations change between supercritical and subcritical at
the Chenciner point. This is illustrated by the switch in the side of the primary Hopf
bifurcation curve into which the primary resonance.horns grow. As part of his thesis,
Johnson [Jo] showed that there necessarily exist two Takens-Bogdanov points, one on
each side of the primary resonance horn which "turns around," and a secondary Hopf
curve which connects them. In this case, there must be a Hopf point with an angular
degeneracy along that secondary Hopf bifurcation curve. The adaptive control ap-
plication, which we describe next, has a bifurcation diagram with features similar to
Fig. 5a.

3.2. The adaptive control application. Consider the problem of controlling
the linear, discrete-time, single-input, single-output (SISO) plant with unknown, con-
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stant coemcients (see the 1984 textbook by Goodwin and Sin [GS])"

(5) y(t + 1) -cly(t) -a2y(t- 1) + ou(t).

In designing the controller, a first-order reference model of (5) is assumed:

(6) )(t + 1) &l (t)y(t) +/u(t),
where -& and/ are estimates of the actual system parameters a and . Thus, two
sources of plant/reference-model error are introduced by the reference model: (1) the
use of a first-order model (since &. 0, a2 becomes a measure of the plant/reference-
model order mismatch); (2) it is assumed that a good estimate of the gain of the
manipulated variable (0) is known (thus, / is a constant). The objective of the
controller u(t) is to make the system follow the set point y*(t); inverting (6), the
control law

y* (t + 1) & (t)y(t)

is obtained. Choosing y*(t + 1) constant : 0, it is possible to set y* 1 without
loss of generality. The recursive identifier for a is a scalar form of the projection
algorithm of [GRC]"

&(t)=&l(t-1)+y(t-1) y(t) i

c+ y2(t 1)"

Defining x(t + 1) y(t), the closed-loop system can be written as

x(t + 1) y(t),
o (1 & (t)y(t))+ +

1 (t - 1) (1 (t)-- y(t (y(t + 1)- 1)+

and after defining a -al, b -a2, k 0//, and z a- k&l the final form of
the map G: R3 R3

y bx+k+zy
z z- kY (bx+k+zy-1)c--y

is derived. The system is characterized by three parameters. The small and positive
constant c pertains to the estimation algorithm chosen; it is used to prevent division by
zero in the estimator. In our calculations it was kept fixed at the representative Value
of c 0.1. The second parameter, k, is a measure of the error in the assumption of
the value of the gain of the manipulated variable (k 1 implies no error), and finally,
b is a measure of the plant/reference-model order mismatch (b 0 implies no order
error).

Bifurcation analysis reveals a Hopf bifurcation locus for the period-1 fixed point
(it corresponds to the set point of the process) in the (k, b) parameter plane

c+1
b=bh =-.

c+2



-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

A DEGENERATE HOPF BIFURCATION FOR MAPS

subcritical 5

horn

205

eP::ad4c horn

fdii:
rS::=::rni:i:ahlor5

-0.45

-0.47

-0.49

-0.51

60

45

30

15

A

0

pointnu

2 0.74 0.76 0.78 0.80 0.2
k

period-5 SN
secondary HI
period- 1 HB

0.84

FIG. 6. Adaptive control system: (a) parameter space, (b) local bifurcations inside the subcritical
period-5 horn, (c) angle vs location on secondary Hopf curve.



206 B.B. PECKHAM, C. E. FROUZAKIS, AND I. G. KEVREKIDIS

Along the Hopf-bifurcation locus, two complex eigenvalues are located on the unit
circle (critical eigenvalues) while the third, real eigenvalue is given by

c+1
,,1 --bh

c+2

Since A lies well within the unit circle for our choice of c 0.1, the dynamics are
strongly contracting in the direction corresponding to A1. It is therefore expected that
the system will behave in a fashion similar to a map of the plane in the neighborhood
of the Hopf bifurcation. It can be easily shown that as k is vried along the Hopf-
bifurcation line, the critical eigenvalues start at (-1,-1) at k 2.092857 and then move
monotonically over the entire unit circle, approaching (1,1) as k -- 0. As described,
for example, in Corollary 2.4, primary resonance horns are expected to emanate from
this line. This is confirmed in Fig. 6a; the details of the loCal bifurcations at the tip
of the subcritical period-5 horn are shown in Fig. 6b [FAK], [Fr]. The continuation
calculations were performed using AUTO86 by Doedel [Do], [DK] (and a real-time
graphics interface for it by Dr. M. A. Taylor in our group).

On each side of this period-5 horn we observe a Takens-Bogdanov point (two
eigenvalues of DG5 at one); they are marked A and C in Fig. 6b. As predicted
by the theory, we were able to compute the secondary Hopf bifurcation curve inside
the period-5 horn connecting the two Takens-Bogdanov points. Along this curve,
the two relevant eigenvalues of the corresponding period-5 orbit "start" with zero
argument (point A) and after reaching a maximum argument of about 63.8 on the
unit circle (point B--the angular degeneracy) they move back to zero argument at
point C (Fig. 6c). Secondary resonance regions originate from this secondary Hopf
curve. Figure 7 shows the banana-shaped secondary resonance horns associated with
a 6th and 7th root of unity, when the eigenvalues are cos() =t=i sin() and cos() +
sin(), respectively. The 6th root of unity is crossed twice along the AC curve (at

points F and G) where (k, b) (0.8369,-0.4725) and (0.8274,-0.48418), respectively.
Similarly, the period-7 resonance horn opens and closes at points D and E on the AC
curve, where (k, b) (0.8366,-0.4645) and (0.8183,-0.48603), respectively. We have
numerically traced the boundaries of the period-6 and period-7 resonance horns for
G5 in Fig. 7. (Period-6 (respectively, 7) for G5 means period 5.6--30 (respectively,
5.7 35) for the original map G.) These secondary resonance horns both "open" and
"close" on the secondary (i.e., period-5) Hopf bifurcation curve, suggesting that point
B is a banana point rather than a banana split point. We would need to compute
higher-order terms in the normal form on the center manifold, however, in order to
be sure.

We note that in other examples with an angular degeneracy on a secondary Hopf
curve the argument of the eigenvalue at the maximum point (that is, at the angular
degeneracy) is only a couple of degrees instead of 63.8, as it is here. This is why this
example was good for computing bananas: period 5 6 saddle-nodes are much easier
to compute than, say, saddle-nodes of period 5 180.

4. Global bananas. All of our results to this point have been local in nature.
Banana regions or banana split/parabolic regions have been shown to exist in arbi-

trarily small neighborhoods of a Hopf bifurcation point with an angular degeneracy.
On the other hand, banana resonance regions seem to appear in our numerically
computed bifurcation diagrams even relatively far from angular degeneracies. For
example, the period-30 and 35 bananas of Fig. 7 seem relatively far from the angu-
lar degeneracy far enough, at least, so that their shapes would not still be called
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FIG. 7. Period-30 and period-35 "bananas".

parabolic. Also, in the schematic bifurcation diagrams of Fig. 5, all the secondary
resonance regions are closed bananas, even in the case of Fig. 5c, where the two an-
gular degeneracies are intended to be locally banana split points. It is even possible
that the saddle-node curves, which bound the primary resonance regions of Fig. 5, if
continued beyond the point where the diagrams stop, could "end" at a second cusp
on another (or the same) primary Hopf bifurcation curve. We now give the following
global banana result, where the existence of one p/q resonant Hopf point implies the
existence of another.

THEOREM 4.1. Let F be a C function from R2 R2 R2 which represents a
two-parameter family of diffeomorphisms of the plane. Assume the following:

1. There is a Hopf bifurcation curve with a p/q resonant point, q >_ 3, which
does not have an angular degeneracy.

2. The region of phase parameter space where a p/q orbit exists is compact.
Then there must exist another p/q resonant Hopf point somewhere in that compact
region of phase parameter space. Both points are puncture points on the same
component of least-period-q points (i.e., the component of the p/q resonance surface)
in the phase parameter space. (That is, the existence of one end of a banana implies
a second end must also exist.)

Proof. Theorem 2.3 tells us that the surface of period-q points near the assumed
p/q resonant Hopf point is a punctured disk. The idea of the proof is to consider this
surface globally in the phase parameter space. It can be shown that the closure
of the set of least-period-q points in phase parameter space forms an orientable
topological two-manifold. (In the simplest case, this manifold wguld be a topological
sphere, but it might have some number of handles, as well.) All points on this manifold
are least-period-q points under the map (x, it) (F(x), it), except possibly for
isolated fixed points such as the p/q resonant Hopf point projecting to the (first) tip
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of the resonance horn (if q >_ 5). The proof of the existence of the second fixed point
on the resonance surface emanating from the first p/q resonant Hopf point is almost
the same as the proof of Theorem 2 of [P2]. That theorem proves the existence of
a p/q Hopf point on a p/q surface that emanates not from a first p/q Hopf point,
but from "zero forcing amplitude" in a two-parameter family of maps of the plane
generated by return maps of a periodically forced planar oscillator. The p/q surface
for a forced oscillator "naturally" has an invariant circle as a boundary component;
the map restricted to this invariant circle is a rigid rotation by p/q. To convert our
situation to that of [P2], we need to replace the first p/q Hopf point with a boundary
circle on which the map is a rotation by p/q. But this is easily done by "blowing
up" the p/q resonant Hopf point (extending the phase space in polar coordinates to
r 0). The proof of the existence of the second p/q Hopf point then follows from
[P2I.

We next present a corollary which describes conditions under which a whole col-
lection of secondary global banana regions will exist.

COROLLARY 4.2. Let Ft, be a generic two-parameter family of diffeomorphisms
of R2. Assume the following:

1. There is a p/q resonance surface in the phase x parameter space resulting
from a (primary) p/q resonant Hopf bifurcation.

2. The p/q resonance surface includes two Takens-Bogdanov points for the qth
iterate of the map; the two Takens-Bogdanov points are connected by a secondary
Hopf bifurcation curve (also along the p/q resonance surface).

3. Along the secondary Hopf curve the argument of the neutral eigenvalue of
DFq has a single local extremum, say 2rw0.

4. There is no other secondary Hopf curve on the p/q resonance surface.
5. All secondary periodic point surfaces emanating from the secondary Hopf

curve are contained in a compact region of phase x parameter space.
Then, for every m/n e (0,w0), the period-qn surface emanating out of the m/n

secondary Hopfpoint must connect to the period-qn resonance surface emanating from
the unique m/n Hopf point on the secondary Hopf curve on the other side of the local
extremum. (Thus, all resonance regions emanating from the secondary Hopf curve are

globally closed bananas.)
Proof. The hypotheses of Theorem 4.1 are satisfied for each m/n e (0,w0), so

a second m/n Hopf point must exist. The assumptions of a single local extremum
and no other secondary Hopf curves imply that there is only one "appropriate" point.
This point, therefore, is where the other end of the global banana must be. [3

Note: It seems that all primary resonance horns near and on one side of a
Chenciner point on a Hopf bifurcation curve satisfy the hypotheses of Corollary 4.2.
This would give us an infinite collection of primary resonance horns, each having its
own infinite collection of global bananas.

5. Conclusions and comments. Although the parametric degeneracy we stud-
ied in this paper was specifically along a Hopf bifurcation curve, any parametric de-
generacy (with respect to parameters in a universal unfolding of a local bifurcation)
can be thought of, in its simplest form, as merely a local "folding in half" of the degen-
erate parameter space, in order to map it to the universal (nondegenerate) parameter
space. We could, for example, have included the strongly resonant cases in Theorems
2.3 and 2.5 and their corollaries, even though the projections of the resonance surfaces
near the strongly resonant Hopf points to the (nondegenerate) parameter space are
not necessarily cusps.
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It might be useful to write explicit conditions in terms of the original map to
determine (a) an angular degeneracy and (b) the type: banana vs. banana-split
(harder, since higher-order terms are required). We found it much easier to verify
conditions of the theorem by numerically computing arguments of eigenvalues along
the Hopf curve, as we did for the adaptive control application to produce Fig. 6c, than
by computing a normal form (especially when needing to use a center manifold).

We point out that the global results (Theorem 4.1 and Corollary 4.2) are very
much dependent on the phase space being two-dimensional. The fixed-point theorem
from [P2] quoted in the proof of Theorem C applies only in that setting. On the other
hand, we expect local results in higher dimensions to be preserved by use of a center
manifold. Note that Corollary 4.2 does not exclude the possibility of "nonbanana"
resonance regions which do not emanate from the secondary Hopf curve. For example,
if the local banana-split horn "partners" connect to form a global banana, we would
expect the local parabolic regions to also connect, forming global annuli, projections
of tori from the phase parameter space. This scenario can be imagined by extending
the two P/ql horns in Fig. Ib until they connect, forming a global banana; the global
Po/qo region would then likely be an annulus.

We caution our readers that knowing the complete structure of resonance regions
for a family of maps does not necessarily mean we have a complete bifurcation classifi-
cation, even locally in a neighborhood of a nondegenerate Hopf bifurcation point. We
do know that all maps on the side of the Hopf bifurcation curve without the invariant
circle, including all those on the curve itself, are locally topologically equivalent. We
also know that on the side with the invariant curve, the parameter space must be
divided at least into the following equivalence classes: the interiors of each resonance
region (circles in resonance), each boundary of each resonance region (circles in reso-
nance with saddle-node orbits), and curves "parallel" to the resonance regions along
which the corresponding maps restricted to the invariant circle are conjugate to a rigid
rotation with an irrational rotation number. What is missing is a guarantee that all
the maps in a given resonance region are equivalent. Corollary 2.4 comes close to giv-
ing this guarantee: the existence of a single attracting/repelling pair of periodic orbits
as stated in part 3 of Corollary 2.4 implies that all maps corresponding to parameter
values in the interior of a resonance horn and close enough to the tip are topologically
equivalent. This may not, however, imply that this uniqueness of equivalence classes
within a single resonance region can be extended to hold for all resonance regions in
a fixed neighborhood (not depending on p/q) of a Hopf bifurcation point. This is
why in Corollary 2.6, where we make a claim about the shapes of resonance regions
"for all p/q sufficiently close to w0," we were unable to claim, as we did in Theorem
2.3, Corollary 2.4, and Theorem 2.5, that there exists a single pair of period-q orbits
inside the corresponding p/q resonance region.

Even if a complete local classification could be established, no such claim could
ever be made about the global bananas being the complete bifurcation diagram. Check
[ACHM], for example, to see a variety of possible further subdivisions of a single res-
onance region into further equivalence classes. These further subdivisions are pos-
sible in part because, away from the Hopf curve, as well as near strong resonances,
the invariant circle which is born in the Hopf bifurcation may break. This allows
nonuniqueness of rotation numbers, which in turn allows resonance regions to over-
lap. Near strong resonances, in fact, they must overlap, because of global manifold
crossings which imply the existence of an infinite number of periodic orbits for fixed
parameter values.
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There are an additional number of related questions we have not addressed in this
paper" (a) No upper bound is given on the number of resonant Hopf points which may
exist on a given two-manifold of period-q points; more than two could certainly exist.
We conjecture that Lefschetz index theory could be used to show that the fixed points
should generically come in pairs, having indices plus and minus one, respectively.
"Mutant" bananas, with 4 tips, for example, could easily be constructed by parameter
space surgery on a family having a banana with 2 tips! (b) Cusp points (saddle-nodes
with a higher-order degeneracynot to be confused with cusps at resonant Hopf
points) may also appear along the saddle-node boundaries of resonance regions. They
usually appear in pairs, as well, such as on the left-hand side of the subcritical period-
5 resonance horn in Fig. 6a. Work in progress further describes these pairs of cusps
IMP]. (c) Finally, finding examples that would exhibit all schematic scenarios pictured
in Figs. 5a-5e remains, to our knowledge, an open problem.

6. Appendix: Proofs.

6.1. Proof of Theorem 2.3. As indicated in 2.2, many of the arguments in
this section are adaptations of arguments which Arnold [Ar] uses for q 4. We
also note that the symmetry of equation (2) implies that fq(z) z is equivalent
to f(z) e2rip/qz. The latter equation is easier to use for verifying property 1 of
Theorem 2.3, but more difficult to generalize to Corollary 2.4, where the symmetry is
not present. So we stick to solving fq (z) z.

Property 1.
We start with the following lemmas.
LEMMA 6.1. Assume q >_ 1 and

(7) f(z) #(z + Az2+... + Bq- +...),

where the omitted terms are all O(Iz]q+), except those of the form zJj-, 3
which are O(]z] 5) Then2

(8) fn(z)--#n (z+A([tl2k) z2+’"-t-B (l#’-2k-kq)q-1)
\k=0

where the omitted terms are all O(Izlq+l), except those of the form zJ2Y-l,3
+A which are O(}zl)2

Proof. Direct calculation and induction on n.
LEMMA 6.2. Assume the Ck, k >_ 2 family of C maps, f(,), is defined by

(9) f(p,,) (z) e2iP/qe+i"(z + A(p, )z22 +... + B(p, c)q- +...),

where the omitted terms are as in Lemma 6.1. Let A A(O, 0), B B(O, 0), z re.
Assume A O,B O, and q >_ 2. Then the least-period-q points near (p,a,z)
(0, 0, 0) are given by the solutions of the equation

(10) p + ia + Ar2 +... + Brq-2e-qie + 0, r : 0,

where the O-independent omitted terms are O(r4, p2, a2, ap, pr2, at2), and all other
omitted terms are O(rq, prq-2, arq-2).

Proof. Period-q points satisfy f(z) z 0. Use Lemma 6.1 to compute fq(z),
q--1 ]12k q--1 -2k-kqand expand A(p, a), B(p, a), Iq Iq 1, -k=0 and k=0 I/1 with /z
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e2rip/qep+ia to get power series in p and a. Then substitute z rei and divide
through by qre. (Dividing by r eliminates only the origin, which is a fixed point.) It
can be shown (Proposition 3.2 in [CMY] or Theorem 1, part A in [P2]) that solutions
to equation (10) can only have a least period of q or 1. Since period-1 points are only
at z 0, then period-q points with r - 0 must be least period-q points.

Although we cannot solve (10) for the period-q points as a function of the param-
eters p and c, we can solve for the parameters as a function of the phase variables r
and 0. By the implicit function theorem on (10), this is apparently

(11) p + i( -At2 Brq-2e-qo

By choosing r small enough, say less than ro, we can be sure that Ar2 dominates all
omitted 0-independent terms, and Brq-2e- dominates all 0-dependent terms.

For 0 < r <_ ro, 0 _< 0 < 2 equation (11) is an explicit parametrization of the
punctured disk which is the least-period-q surface. Adding r=0, corresponding to the
resonant Hopf point, fills in the puncture point in the disk. This completes the proof
of Property 1.

Property 2. We now use equation (11) to determine the region in parameter
space to which this disk projects. Ignoring the omitted higher-order terms, which are
the same as for equation (10) in the statement of Lemma 6.2, and, for now, the r-2

term, we get p + ic -At2 +..., or equating real and imaginary parts, respectively,

(12) p -A1 ;c -A2r2.

Eliminating r gives

A2 p
(13) c -p, -Ai > 0.

That is, to the lowest-order terms in p and a, the parameter values for which period-q
points exist trace out a ray in the parameter space from the origin in the direction of
(-A1,-A2) as r increases from 0.

If we now include the 0-dependent term from equation (11), Brq-2e-qiO, we see
that for a fixed value of r, and letting 0 vary from 0 to 2r, a circle in the parameter
space is swept out (q times), having center at (p,a) (-Ar2, -A2r2) and radius
IBIrq-2. When q >_ 5, sweeping out all such circles for small r covers a horn-shaped
region in the parameter space. See Fig. 8 where we have drawn two such circles and
the corresponding horn for a resonance region. Since the distance from the origin of
these circles varies with r2 and the width of the horn varies with rq-2, the two sides
of the horn are tangent of order q-2

2
This completes the proof of property 2 of Theorem 2.3, but as a heuristic comment,

we note that the terms on the right-hand side of equation (11), including those not
explicitly written, can be separated into 0-independent and 0-dependent terms. If we
considered all 0-independent terms, the analogue of equation (12) would be a semi-
infinite curve instead a straight ray. This curve we call the "center of the resonance
horn." (This would be well defined if the equation were completely in normal form-
all nonresonant terms eliminated. This, however, would bring up the question of
convergence of an infinite sequence of coordinate changes. Our wish to avoid this
technicality is why these comments are merely heuristic.) The center of the resonance
horn is still, of course, tangent to the vector (-A1, -A2) at the origin. Now adding the
Brq-2e-qi term will cause parameter space circles to be swept out as 0 varies with r
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/q

FIG. 8. "Sweeping out" the resonance horn.

held fixed. The centers of the circles are on the center of the resonance horn. Finally,
including the higher-order 0-dependent terms will cause the circles which are swept
out as 0 varies to be slightly deformed. The horn sides are still tangent to (-A1,-A2)
at the origin, and the order of tangency is still -2 Thus the only parameter values2
near (p, a) (0, 0) for which period-q points near z 0 can exist are inside and on
the boundary of the described resonance horn in the parameter space.

Property 3. (As in Arnold [Ar] for q=4.) From the terms that do explicitly
appear in equation (11), it is apparent that any point in the interior of the horn lies
on exactly two distinct circles, each circle corresponding to a different value of r and
having its respective center at (-Air2, -A2r2). See Fig. 8 again. As 0 varies from
0 to 2, each circle is traced out q times (in the negative angular direction). When
included, the higher-order terms do not qualitatively affect this result. Thus there
are q different phase points which correspond to the same parameter value on the
circle. In fact, together these q phase points form one complete period-q orbit. Thus
each parameter value on the interior of the horn has two distinct period-q orbits for
the associated map. That one is a saddle and the other a node is verifiable using
techniques similar to those used by Arnold for q 4 (35J in [Ar]).

6.2. Proof of Corollary 2.4. The normal form theorem assures us that the
original equation can be brought into the form of equation (1). We would like to
make a change of parameters from # to (p, a) where the relationship between them
has already been defined by 2p + a and equation (1). This is possible if the
change of parameters, which we will call h, is nonsingular at #0. Equivalently, we

must have the vectors Vp(#0) and Va(#0) being independent, which we do because
we assumed the absence of a parametric degeneracy (defined in the introduction).

Renaming fu fh-l(p,) to be fp, brings the equation into the form

(14) f(p,) (z) e2iP/qeP+i(z + A(h-l(p, c))z2 +... + B(h-l(p, c))q- +...).

Now we push through the conclusions and proofs of Theorem 2.3 using the family
of equation (14), which is a generalization of our model family of equation (2). The
lemmas used to prove Theorem 2.3 were actually proved already in the more general
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form of equation (14). Compare equation (14) with equation (9) in Lemma 6.2, in
particular. Since the results of Theorem 2.3 hold for equation (14), both results of
the corollary now follow directly from the fact that the function h-1 is a nonsingular
C map from the (p, () parameter plane to the tt parameter plane.

6.3. Proof of item 1 of Theorem 2.5. Rewrite equation (3), replacing w0
with p/q +

(5) f(p,) (z) e2iplqep+i("+c’p+c22) (z + Az2 + Bq-l).

This is the same as the equation for the nondegenerate Hopf bifurcation (equation
(2)), but with Co +clp+c2T2 replacing c. Since the nondegenerate analysis was valid
for a sufficiently small, the same analysis will hold for ao + tip--C2T2 sufficiently
small. We treat so as a third parameter which is small if wo is sufficiently close to
p/q. Therefore we first consider the five-dimensional phase parameter space, and
then obtain the theorem by restricting to an "so small constant" slice.

The least-period-q set, analogous to equation (10), becomes

p + i((o + cp + c2-2) + Ar2 +... + Brq-2e-qio + 0, r :fi 0.

Thinking of this complex equation as two scalar equations, we see that the Jacobian
with respect to p and r2 at (r2, O,.p, T, S0) (0, 0, 0, 0, 0) is A2 cA1, which was
assumed to be nonzero. So we can solve locally for p and r2 as a function of 0, -,
and Co. This would seem to indicate the period-q surface is always locally a cylinder:
0 S 1, T an interval. But the circle swept out as 0 varies for a fixed value of r2

collapses to a point (a fixed.point of the map) when r2 0 and doesn’t exist if r2 < 0.
So we must determine the topology of the least-period-q set by determining the values
of T which correspond to r2 > 0 and to r2 0. This is what we proceed to do.

By ignoring the 0-dependent terms for now, and eliminating r from equation
(16), we obtain an expression analogous to equation (13) for the "center" of our p/q
resonance horn to lowest order in the three small parameters p, T, and so: Co + alp --C2T

2 A__ZA P, _2___A > 0. This is equivalent to

A1 p
(17) T2 A2 cA (p so ), > O.

c2A A2-cAI -A
Treating Co as small, nonzero, and fixed, we see that there are actually eight cases,
all pieces of parabolas, depending on the signs of (A2 cA)/(c2A), (aoA)/(A2
cA1), and A1. We have sketched the four cases assuming A < 0 in Fig. 9. The
dashed lines are included in the diagram merely for reference--they are the part of
the parabola excluded by __2_ > 0, which corresponds to the side of the Hopf curve

-nl
without the invariant circle. If A were positive, we would get four similar cases, each
a reflection across the T axis of one of the Fig. 9 cases. (It might be useful to compare
Fig. 9a with Figs. 3a, 4d, and the horns near D in Fig. lb; Fig. 9b with Figs. 3b,
4d2, and the horns near D2 in Fig. lb; and Fig. 9c with Figs. 3c, 4d2, and the horns
near D2 in Fig. lb.)

We choose an appropriate neighborhood of phase (p, -) space by first restricting
(p, T, c0) to a small enough neighborhood of the origin so that the terms explicitly
written in equation (16) dominate the (higher-order) unwritten terms. We can choose
this neighborhood as a cube with sides at p :t:, T :t:, S0 :t:-5 by making
small enough choices for p, T, and -5. In cases (a) and (b), we further restrict s0,
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a. (-,-,+) b. (-,+,-)

c. (-,+,+) d. (-,-,-)

FIG. 9. "Centers" of resonance regions near a Hopf bifurcation with an angular degeneracy.
Labels are for the signs of A1, (A2 clA1)/(c2A1), and (aoA1)/(A2 clA1), respectively.

if necessary, so that V/l-/c2[ < /2. This ensures that in an "c0 constant" slice
of our three-dimensional space, the banana "tips" on the - axis are included in the
neighborhood.

From Fig. 9, it is now apparent that the center curve(s) can be parametrized in
the four respective cases (a), (b), (c), and (d) by T E

(b)
(c)
(d) the empty set,

where from equation (17), T+/-

Reintroducing the 0-dependent terms from equation (16) and varying
gives a parametrization of the least-period-q surface as the product of the appropriate
set of the above four for with the unit circle. The puncture points corresponding
to r2 0 in cases (a) and (b) are at -+. This gives us the twice-punctured sphere
for case (a), the two punctured disks for case (b), the cylinder for case (c), and the
empty set for case (d). Including the neglected higher-order terms does not change
the topology of these sets.

For the projections to the (p, T) parameter space, we fix T (a0 is already fixed)
and let 0 vary from zero to 2r. This traces out a closed curve restricted to
constant in the parameter space. Unless the 0-dependent terms all vanish (including
all higher-order terms), the closed curve covers a positive length line segment which
provides the "thickening" of the respective center lines into regions and establishes
the shapes of the respective resonance regions. If the coefficient B 0, the length of
the line segment varies with rq-2 while the distance from the - axis varies with r2,
establishing the order of tangency at the tips.
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P

FIG. 10. Resonance regions in a three parameter space near a Hopf bifurcation with an angular
degeneracy. Labels are for the signs ofnl, (A2-clAI)/(c2A), and (aoA)/(A2-cA ), respectively.

For further illustration we have sketched the resonance regions in the three-
parameter space (p, 7, co) in Fig. 10 for two distinct cases. The sign of A1 is as-
sumed to be negative in both cases; the sign of (A2- clA1)/(c.A1) is assumed to
be positive in the first case, negative in the second. The sign of the third quantity,
(aoA)/(A2 cA), is determined by the sign of a0, which is one of the parameters
in the figure.

6.4. Proof of Corollary 2.6. Restrict a neighborhood of (x0, it0) in phase
parameter space so that it contains no strongly resonant Hopf points. Choose a p/q
with the condition that there is a Hopf point in the restricted neighborhood with
eigenvalues e+/-2rip/q. Delete from this neighborhood any of the Hopf points with
eigenvalues e+/-2rir/s with s < q. On this deleted, restricted neighborhood, we can
change variables to write the equations in the form of equation (1). This defines the
functions p(tto) and (#0).

We define a change of parameters from tt to (p, T) where p(#) is defined by
equation (1) and 7(#) is a linear variable with respect to the # parameter space in a
direction perpendicular to Vp(#0). This makes VT(tto) and Vp(#0) independent
vectors and ensures that the parameter change is nonsingular, and therefore a local
Ca diffeomorphism.

The normal form of equation (1) can now be rewritten, after replacing h- (p, -)
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with (p, T), as

(18) f(p,) (z) eP+(P’)(z + A(p, T)z2 +... + B(p, ’)- +...),

where the series expansion of is (p, T) WO + cp + C2T2+ higher-order terms in p
and . The constant term wo is determined by the eigenvMues at the bifurcation point
tto; the term is absent because of the angular degeneracy; Cl is nonzero because we

dassumed V,(a(tt0)) 0; c2 is nonzero because we assumed that -(#(s))l=0 :/: 0.
Except for the higher-order terms in (p, T), this family is the same as our model
degenerate family of equation (3). The proof of Theorem 2.5 still works for the family
in equation (18) because the higher-order terms in the expansion of contribute only
to terms already considered as higher order in equation (16).

The fact that the change of parameters between (p, T) and tt is a local diffeomor-
phism and the fact that no period-q points can exist arbitrarily close to any of Hopf
points deleted from our neighborhood completes the proof.

Acknowledgments. We are grateful to R. P. McGehee for helpful discussions
and suggestions.
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TRACE FORMULAS AND THE BEHAVIOUR OF LARGE
EIGENVALUES*

VASSILIS G. PAPANICOLAOU

Abstract. Let #1, #2,..., #n,. be the Dirichlet spectrum of the operator -d2/dx2 q acting
on L2(0, b). In the special case where q =_ O, tn 7r2n2/b2. In the early 1950s Gelfand, Levitan

[Dokl. Akad. Nauk SSSR, 88 (1953), pp. 593-599], and others discovered the asymptotic formula

and the trace formula

7r2n2 j0ttn= --- + - q(x)dx + O(n-2)

I r2n2 q(0) + q(b) ]i1 provided that q(x)dx O,

where q E C2[0, b]. These are beautiful formulas with many applications, for example in solving
inverse problems.

Inspired by the above formulas, this paper obtains some results involving the spectra of two
self-adjoint operators L and L0 (where L can be thought as a perturbation of L0). The following
cases are considered:

(i) Lo -d2/dx2 and L Lo + Q(x), with Q(x) being an r x r real symmetric matrix (thus
io and L act on vectors u- (Ul,..., ur), uj L2(0, b));

(ii) LO (--A) with Dirichlet boundary conditions and L Lo + q acting on L2(0, b) or

L2(D), where D (0, bl) (0, b2). The fact that OD has corners, thus it is not smooth, plays an
essential role.

Some.remarks are also made for the case where Lo --A with Neumann boundary conditions
and L --A with boundary conditions of the third kind (Robin).

Key words, higher-order SchrSdinger operator, heat kernel, trace formula, diophantine number

AMS subject classifications. 35J10, 35J40, 35K35, 47A70

Introduction. Consider the classical eigenvalue problem

Lu(x) -u"(x) + q(x)u(x) its(x), o,

where q is a smooth function on [0, b]. Problems of this type have been studied for the
last 150 years. They have very rich mathematical theory and numerous applications.
Two of the most famous results concerning the spectrum {#n}n=l of the above problem
are the asymptotic formula

and the trace formula

7r2n2

52 + - q(x)dx + O(n-2)

E ttn b2 4
n

b

provided that q(x)dx O.

*Received by the editors January 14, 1992; accepted for publication (in revised form) June 8,
1993. This research was supported by National Science Foundation grant DMS-9011641.

Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-
0033.

218



TRACE FORMULAS AND LARGE EIGENVALUES 219

These formulas can be thought of as comparisons of the spectrum of L with the set
{,, 7r2n2/b2}n=l, namely the spectrum of the "unperturbed" operator Lou u".
Their most important application is in solving inverse problems, namely, given some
spectral-related data, how do we reconstruct the (now unknown) function q. The
asymptotic formula, for example, gives a necessary condition for the existence of a q,
while the trace formula, in certain formulations of the inverse problem, actually takes
part in the explicit construction of q. In the periodic case, for instance (see [C]), and
also in the case where two spectra are known (see [B] for a variant of this case), the
solution of the inverse problem is achieved by deriving differential (evolution) equations
of the eigenvalues with respect to the interval! Thus, knowledge of the spectrum for
one interval yields knowledge of it for all intervals and hence q is constructed via a
trace formula.

The main purpose of the present work is to obtain asymptotic and trace formulas
for more general operators L0 and L L0 + q. The formulas we derive reveal certain
interesting quantitative and asymptotic properties of the spectrum of a variety of
eigenvalue problems that appear quite often in mathematical physics, engineering, etc.
In particular, the formulas presented here can be helpful in solving inverse problems.

Finally, there seems to be a theoretical application of the results of this work,
namely, since in some sense L- L0 q, the trace formulas suggest a concept of trace
for multiplication operators (Tf)(x) q(x)f(x), when q is smooth and satisfy certain
zero-average conditions.

1. Preliminaries. Let L0 and L be the operators on L2(0, b) defined by

(1.1) Lou -u" and Lu Lou + q(x)u(x),

where q e C2[0, b] and 0 < b < (x. We assume Dirichlet (i.e., zero) boundary con-
ditions for the functions in the domain of Lo (and L), in order to have a unique
well-defined self-adjoint operator. We call #1 < #2 < < #n < the eigenvalues of
L and l(x),2(x),..., Cn(X),..., the associated orthonormal eigenfunctions. Simi-
larly, 1 < 2 <"" < , <... and 1(x), 2(x),..., Cn(X),..., are the corresponding
quantities for Lo. In fact, for this particular case we have

7r2n2

_
7rrtx

(1.2) Un b2
and ’Dn(x) sin ---.

In the early 1950s Levitan and others proved that

ifoh#n un + q(x)dx + O(n-2).

Their proof can be found in [L-G]. A simpler proof was given later by Hochstadt with
the help of an ingenious transformation (see [H.H]). These methods have the advantage
of giving the full asymptotic behaviour of #n, but the big disadvantage is that they
work only for these particular operators.

From now on (and without loss of generality) we will assume that the average of
q on [0, b] is zero, namely

b

(1.4) q(x)dx 0

(since the average of q causes only a constant shift of the spectrum).
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A simple, general, and convincing (but not rigorous) way of proving (1.3) is by us-
ing the ideas of the WKB approximation (from Wentzel, Kramers, and Brillouin--this
approach was shown to us by Professor Venakides). We discuss this very interesting
method in the next section.

Yet there is a third method of obtaining a result of the type of (1.3). It can
be applied to much more general situations, it is rigorous and abstract, but it yields
weaker results. It is based on the following lemma.

LEMMA. Let A be a self-adjoint operator (bounded or unbounded) acting on L2(D),
where D is a domain in Rd. Consider the family of operators

(1.5) H(s) A + sq(x), s e [0, 1].

For convenience, let us assume that q is in Cr (D), where we can take r as big as we
wish.

We also assume that, for each s, the operator H(s) has a discrete spectrum

(Notice that, given the fact that A(s) is continuous in s, the assumption implies that
the eigenvalues of H(s), being simple for all s, never cross each other. It is, therefore,
a very strong assumption, especially in higher dimensions.)

Then

(1.6) dan
ds

(qXn, Xn)

and

(1.7)
d2An
d82

-2(qXn, Rn(s)qXn),

where (.,-) is the inner product of L2(D), Xn(X; 8) is the eigenfunction of H(s) that cor-
responds to An(s), normalized such that (Xn, Xn) 1, and Rn(s) [I-Pn(S)][H(s)-
An (S)] --1, P,(s) being the (orthogonal) projection onto Xn. (The proof can be found
in JR-S, 13.16].

Now, the standard Taylor’s theorem with remainder gives

(1.8) IAn(1)- AN(O)- A’n(O)l <_ 1/2 sup
0<s<l

In certain cases (for example, see 4), (1.7) can help us to obtain a good upper bound
for the right-hand side of (1,8). For instance, if A is L0 of (1.1) and q is in C1[0, b],
we get easily that this upper bound is O(n-1), which is a weaker version of (1.3), but
requires less smoothness for q (notice that the Riemann-Lebesgue lemma is involved).
For the details see JR-S, Thm. 13.82.5].

Recently, Friedlander (see [F]) and Feldman, Knorrer, and Trubowitz (see [F-K-
T]) obtained some results concerning the distribution of the Floquet eigenvalues of the
operator -A + q, where q is periodic on R2. Their findings remind (1.3), but there
are exceptional zero-density sets of eigenvalues which do not obey the asymptotics.

Few years after the discovery of (1.3), Gelfand (see [G-L]) observed that, assuming
(1.4), i.e., zero average for q, one has the beautiful trace formula

7r2n2 ] q(O) + q(b)
(1.9) tr(L-L0) de2 E n b2 4

n
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The following proof of (1.9) appeared in a lecture given by Douady (see [D-H-V]). It
utilizes the heat kernel in a neat way and it inspired the derivations of the other trace
formulas in the present work. This is why we decided to include it in our introduction.

Let L and L0 be as in (1.1) and, for t > 0, let k(t,x,y) and pb(t,x,y) be the
integral kernels of the (compact) operators e-tL and e-tLo, respectively. In other
words, k(t, x, y) and pb(t, x, y) are the heat kernels of L and L0. If we set

(1.1Oh) p(t,x,y) exp 4t

,1 ( Ix+yl2 )x exp
4t

(which, incidentally, is the heat kernel of L0 acting on (0, ), with Dirichlet boundary
condition at 0), then it can be easily checked that (see, for example, [J])

(1.10b) pb(t, x, y) E p(t, x, y + 2kb), 0 <_ x, y <_ b.
kEZ

Thus, as t $ 0, we have uniformly in x, y E [0, b] that

1[(’x-y’2) (’x+y’2)pb(t,x,y)= exp
4t

--exp
4t

4t +
e-c/t

x/ O(1),

where c b2/4. In particular,

(1.il) pb(t,x,x):
1 [ ( x2) ( ,x-bl2)] e-l

1-exp -- -exp
t + x/ O(1).

Also, it is not hard to obtain the following perturbation expansion for k(t, x, y)

(1.123) k(t,x,y) E kn(t,x,y),
n=0

where

(1.12b) k0(t, x, y) pb(t, x, y)

and, for n >_ 1,

(1.12c)
b

kn(t,x,y) (-1) pb(s,x,z)q(Z)kn-l(t- s,z,y)dzds.

Equation (1.12c) implies

(1.13)
1

Ikn(t,x,y) <_

From (1.13) we get immediately

(1.14) kn(t,x, y) O(tn-1/2), as t O, uniformly in x, y..
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Next we write the eigenfunction expansions of k(t, x, y) and pb(t, x, y)

k(, x, y) E
n

(t,x,) -(z)().
n

Thus, by the orthonormality

b[k(t, x, x) pb(t, X, x)]dx E[e-t’ e-vt] tr(e-tL e-tLo).
n

We need the short-time asymptotics because, at least formally we have

tr(L L0) lim ltr(e-tL e-tLo)
to t

Using formulas (1.12) and (1.14) we get easily (as t $ O)

(1.15) bkl(t,x,x)dx E[e-t e-vt] + 0(t3/2).
n

But by (1.12) and Fubini-Tonelli,

kl (t, x, x)dx pb(s, x, z)q(z)pb(t S, Z, x)dzdsdx

q(z) pb(s, x, Z)pb(t S, Z, x)dsdx dz

q(z) pb(t, z, z)ds dz

-t ,pb(t,z,z)q(z)dz

and thus, because of (1.11)
b

(1.16) k(t,x,x)dx v ( (o ()
v Jo (x)dx + )t + --(t + O(t/),

since, if q is in C [0, b],

(1.17)
1 ]

b

( x2 )4X/
exp --- q(x)dx q(O)4 + O(v/) as t $ O.

If we assume (1.4), namely
b

q(x)dx 0,

and combine (1.15) and (1.16) we arrive at (1.9) by dividing by t and letting t $ 0. We
need (1.3) in order to interchange summation and limit, since (1.3) guarantees that
(#n n) is absolutely summable.
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In what follows, we attempt to extend the formulas and ideas presented above.
In 2 we give the vector analog of (1.3) and (1.16). To be more precise, we

analyze the case Lou (-d2/dx2)u and Lu Lou + Q(x)u, where Q(x) is an r r
real symmetric matrix and u (ul,...,ur) with uj E L2(0, b). We denote this by
u E Lr2(0, b). This is a Hilbert space and L has a unique self-adjoint extension on

Lrl2(0, b) if we prescribe boundary conditions, say, u(0) u(b) 0. The importance
of this problem lies on the idea that, by carefully choosing Q and then letting r -- cx,
we might obtain interesting results for the two-dimensional operator -A + q.

In 3 we examine the case where L0 -A and L L0 + q are acting on L2(D)
and where D (0, 51) (0, 52). We get two trace formulas, but they cannot reduce
to something completely analogous to (1.16) because, to our knowledge, in the two-
dimensional case there is no asymptotic formula as strong as (1.3).

In 4 we let Lo (-d2/dx2) and L L0 + q, acting on L2(0, b). Here we are
able to obtain the complete analogs of (1.3) and (1.16). Formula (4.15) of this section
is not new. It exists in the Russian literature (see, for example, [L-S]), but our way
of deriving it is different and, in our opinion, simpler.

In 5 we extend the results of 4 to the two-dimensional case. Many of the
estimates needed here have been developed in the previous section.

The last section contains some final thoughts. In particular we make some remarks
for the case where L0 -A with Neumann boundary conditions and L -A with
boundary condition

Ou
On (z) + c(z)u(z) 0, z e OD.

Here the trace formula involves the boundary function c(z).
2. The vector-valued function case. We define

L2(0, b) {u (ul,...,u) uj e L2(0, b), 1 _< j <_ r}.

This is a Hilbert space with inner product

(u, v) u v dx (ulvl +’.. + uv)dx,

where u (ul,...,u) and v (vl,...,vr).
For a sufficiently smooth u in L2(0, b) we set

d2u
(2.1) nou

dx2 + Qou and Lu nou + Q(x)u,

where Q0 is an r r symmetric matrix with real and constant entries and Q(x)
[qiy(X)]l<i,y<r is also real, symmetric, and such that each qij is in C2[0, b] and

q  (x)dx o.

We consider the boundary conditions

(.) (0) () 0.

Then L is a well-defined self-adjoint operator on L2(0, b) and, without loss of generality,
Q0 is a diagonal matrix, namely

(2.4) Q0 diag(al,a2,...,a), al _< a _<... _< a
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(since Qo can be diagonalized by an orthogonal transformation independent of x).
The spectrum of L is discrete and has as its only cluster point (since the variation
of parameters method implies that (L z) -1 is compact, etc).

Let us denote by #1,#2,...,#n,... the spectrum of L and by Ul,U2,...,un,...
the spectrum of Lo as usual. Here is the analog of (1.3).

CONJECTURE.

(2.5) tn /2n --O(--2).

Proof (adaptation of the WKB method, shown to us by Stephanos Venakides).
For convenience we assume (essentialy without loss of generality) that the diagonal
entries of Q0 are distinct. Then, the eigenvalues of L0 (which decouples to r very
simple scalar operators) are

-2n2
nk=ak+ b--, l<_k<_r,

with corresponding eigenfunctions

7nx

where ek (0,..., 0, 1, 0,..., 0), i.e., all its entries are zero except for the kth one,
which is 1. The assumption that the ak’s are distinct makes the eigenvalues of L0
simple, at least for all n sufficiently large.

Now we view L as a perturbation of L0 and thus we make the (unjustified)
assumption that for large n, its eigenvalues {#nk; 1 <_ k <_ r, n 1,2,...} and
eigenfunctions {end(X); 1 <_ k <_ r, n 1,2,...} can be written as expansions in
powers of n-1, namely

Lena ( + c-lkn + Cok + Clkn-1 - c2kn-2 +"

and

kj(X) [A0j (x) + Akj(x)n-1 +...] sin[rnx/b + woj(x) + wky(x)n- +...],

where Cnkj is the jth coordinate of Cnk. Substituting this in (2.6) and equating
coefficients of the same powers of n, we obtain after some algebra that C-lk Co
ck 0, which is (2.5). Formula (2.2) and the boundary conditions play an essential
role, as expected.

We continue with the trace formula. The integral kernel of the semigroup e-tL is
given by a formula similar to (1.12), whose probabilistic version (to be a little fancy)
is the Feynman-Kac formula

(2.7) k(t, x, y) Ex exp -tQo - Q(Xs)ds X2t y pb(t, x, y),

where Xs is the Brownian motion process in (0, b) killed at 0 and b and pb(t, x, y) is its
transition density, given by (1.10b). The eigenfunction expansion of this heat kernel
is

(R)

n
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where Cn(X) (R) Cn(y) is the r r matrix whose ijth entry is Cni(X)nj(y), Cni being
the ith component of the (normalized) nth eigenfunction Cn of L. A simple step by
step adaptation of the proof of (1.9) gives

(2.8) lim
1

to t E(e-t" e-t trQ(0) +4 trQ(b)
n

and thus, if (2.5) is true, we can interchange summation and limit and get

(2.8’) tr(L- L0) E(#n l]n)
n

trQ(0) + trQ(b)

Remark. One good reason for studying operators of the type of L is that, by
choosing Qo and Q in a suitable way and then letting r --, c, we might be able to
obtain spectral properties of higher-dimensional operators (for example, -A + q).

3. The case of a rectangle. Consider the rectangular domain D (0, bl)
(0, b2) in R2, where 0 < bl, b2 < c. Let Lo and L be the operators on L2(D) defined
by

(3.1) Lou --Au and Lu Lou + q(x)u(x),

where q E C2(D). We assume again Dirichlet (i.e., zero) boundary conditions for
the functions in the domain of Lo (and L), in order to have a unique well-defined
self-adjoint operator. We call, as in the introduction, #1 < /t2

_ _
#n

_
the eigenvalues of L and 1 (x), 2(x),..., Cn(x),... the associated orthonormal eigen-
functions. Similarly,-1 < 2 <_"" _< , <_... and 1(x), 2(x),..., Cn(x),... are the
corresponding quantities for Lo. Here we have

7rn2x272n 2n22 2 nnlxl(3.2a) = b - b22
and (x)= bv/b-sin bl

sin ,b2

where nl and n2 are integers depending on n so that we always have u <_ un+l. The
asymptotic behaviour of Un for large n is (see [C-HI, vol. 1, Chap. 6, 4)

47
(3.2b) n+ O(v).

bib2

The estimate

follows easily from the standard minimax argument. Stephanos Venakides asked
whether we can say something better than (3.3). We suspect that there must be
a better estimate (except for a set of eigenvalues of zero density) when the averages
of q along the xl and x2 axes are zero. This is suggested by the formulas (3.12) and
(3.16) and by the recent works IF] and IF-K-T] for the case of periodic boundary
conditions.

Let us imitate the analysis at the end of 1. The heat kernel p(t,x, y) of L0 is

given by (separation of variables)

(3.4)
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where, for j 1 or 2, pj(t,x,y) pb(t,x,y) of (1.17). The heat kernel k(t,x,y) of L
is

where

(3.5b) o(t, x, ) (t, x, )

and, for n >_ 1,

(3.5C) kn(t, x, y) p(8, x, z)q(z)kn-1 (t 8, z, y)dzds.

Estimate (1.22) becomes

(3.6)

Thus

1
]kn(t,x, y)] <_

kn(t,x,y) O(tn--1), as t 0, uniformly in x,y.

The eigenfunction expansions give (as in 1)

[(t,x,x) (t,x,x)lx (-. -o).
n

Because of (3.5) and (3.6) this implies

(3.8) J’D[kl(t,x,x) + k2(t,x,x)]dx E(e-,"t e-"t) + O(t21,
n

astl0.

Now the same argument used in 1 for the one-dimensional case gives, as t $ 0,

iD k (t, x, x)dx --t iD P(t, x, x)q(x)dx,

thus, because of (3.4)and (1.17),
(a.)

so So [/o ]k,(t,x,x)dx=-t p,(t, x2,x2) p(t,x,,x)q(xl,x2)dx dx2

( +) [(0) + .()] + [(0) + ()]vbb2Q V/+
4 4/-
q(O, O) + q(b, O) + q(O, b) + q(bl, b) t + O(tv/),

16

where

(3.10)
Q

bb2
q(x)dx, Ql(Xl)- 2 q(xl,x2)dx2,

1 Lbl
Q2(x2) q(x,x2)dx.
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Also, from (1.12) and (1.13)

(3.9b) k2(t, x, x)dx - q(x)2dx + O(tv/), ast$0,

thus, by substituting in (3.8) we arrive at the following.
THEOREM. As t O,

where the Qs are given by (3.10).
Remark. Suppose that q(xl +b,x2) q(xl,x2+b2) q(xl,x2), i.e., q is periodic

with period D. Then the theorem implies that q can be recovered from the family of
Dirichlet spectra {#n()}=l of L, E D, where

Lu(x) -Au(x) + q(x + )u(x).

In the one-dimensional case there are "evolution" equations (in ) for the ttn()’s.
Here this does not seem to be the case.

If in (3.10)

(3.11) =_ =_ Q o

(which is not really a strong assumption on q, since q(x, x2) (Xl, x2) -- Q1 (Xl) --Q2(x2)- Q, where c] satisfies this assumption or, if we consider the Fourier expansion
of q in D, the assumption means that there are no terms in this double series which
depend only on x or only on x2), then the theorem implies

limtto 1 E(e_tnt e_nt)
q(O, O) + q(b, 0) +16q(0’ b2) -t- q(bl, b2)

n

+ - q(x)2dx,

but here we cannot pass the limit inside the sum in order to get the complete analog
of (1.9), because the asymptotics of #n n look messier than in the one-dimensional
case, although formula (3.12) suggests (see also IF] and IF-K-T]) that there we can
expect better than (3.3).

Before closing this section we want to make a final observation. Assume that
(3.11) holds and, for convenience, let the spectrum of L be strictly positive, namely
let

(otherwise we just need to multiply everything below by e-t, where c is a constant
such that c + #1 > 0). Then, if we set

(t, x, y) k(t, x, y) p(t, x, y),
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we have the long-time estimate

(3.13) (t,x,y) O(e-t(,l^l)), as t --, oo, uniformly in x,y.

Of course, as we have already seen

E(e-ut e-’nt) =/D (t,x,x)dx.
n

Let fl > 0. If we replace t by tZ in the above formula, then divide by tZ and finally
integrate with respect to t from 0 to o, we get

(3.14) 1 (e_.nt e-t’) dt - (tZ, x, x)dx dt.

The right-hand side of the above equation is well defined (i.e., converges) for all > 0
because of (3.12) and (3.13). To understand a little better the left-hand side, observe
that, for a, b > 0,

e-at e-bt I r(1/)[b1_1/ a_l/Z] if :/: 1;(3.15) t dt
[ -In b In a, if/ 1.

Next we notice that (3.2b) and (3.3)imply (even without (3.11))

El#X-u-el < for everye>O
n

and therefore, if 0 < < 1, we can interchange summation and integral in the left-
hand side of (3.4) and then use (3.15a) to obtain

(3.16)
tr(Ll_l/ Llo,_1/) r(1/) Er 1--1/ 1--1/

-1 n

The question is whether (3.16) is true for any >_ 1. The hope that some result of
this kind exists comes from the fact that (as we have already pointed out) the right’
hand side of (3.16) makes sense for all > 0. In fact we can even let --4 oo in the
right-hand side of (3.16)

where the first limit is computed by (3.12) and dominated convergence whereas the
second limit is 0 by (3.13).
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4. Higher-order Schrhdinger operators I. We call the operator

(4.1) L (-A)m + q

an ruth-order Schrhdinger operator. Such operators appear in many engineering mod-
els, for example, in the study of vibrating plates or hydraulic flow, to name a few.

To construct the heat kernel of L (namely the integral kernel of the operator e-ti),
we first consider the projection operators E associated to the Laplacian --A, acting
on L2(Rd). It is well known (see IS]) that these projections are integral operators. Let
ed(x, y; ) be the integral kernel of E.x. Since

(4.2) L 1 (.x-y.2 )e-tdxed(x, y;,k) (4t)d/2
exp

4t

the tables for inverse Laplace transforms give
(4.3)

/4
y;

(2 lx yl) l Jdl. (Ix ylvr ),
,d/2

ed(x, x; ) (4r)dl2F[(d/2) + 1]’

where
(_Z2/4)k

Jdl(z) (Z12)d12 E k!F[k + (d/2) + 1]
k=0

is the Bessel function of order d/2. Notice that, if d is odd, Jd/2(z) is an elementary
function. For example,

sin z
J/.(z) x

and therefore

1 sin (ix ylx/X)
(4.3’) el(x,y;,)

We also notice that, for any fixed > 0 (and d), ed(X, y; ) f(Ix- yl), where f is
an even entire function of order 1/2.

In the spirit of the previous sections we set

(4.1’) Lo (-A)m.

The heat kernel of Lo in Rid is given by

(4.4) H(t,x,y) hy(t, lx-yl) e-t’ded(x,y;A),

but now H(t,x,y) =t= H(t, xl,yl)...H(t, xd,Yd), if m > 1. Observe that h(t,r)
is even in r. From the asymptotics of the Bessel functions for a large argument we can
conclude that, if x =/- y then H’(t, x, y) --+ 0 as t 0, but, if x y, then (4.3) gives

(4.4’)

1 e_t.,(d_2)/2dAH (t, x, x)

F(d/2m) 1 1

m(n)dl2F(d/2)t(dle,) C t(dle,-----,
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which blows up when t $ 0 as expected, since it is the kernel of a semigroup.
Remark. Equations (4.4) and (4.3)imply that

H(t, x, y) tall2mf ti/2m

where f(r) is even, entire and, for real r, it is in the Schwartz class, as it follows
from Lemma 4.1 below. Therefore,

iR [H(t, x, y) ldy IRd d
dy < oc.

The fact that H is a heat kernel implies that f must satisfy the equation

r d d
(--1)mAmf2(r) 2m dr f2(r) + -m f2(r)’

being the radial Laplacian in Rd, i.e.,

d-1
+

r

Furthermore, since f(r) Hn(1, 0, y), with r lYl, we obtain from (4.4) (and (4.6))
the integral representation (which is in fact a Hankel transorm)

1 L, (-)/j(_.)/(rx)v/dxh (r)= (2)/r(_)/.
e- x d>2

and

f{(r)-
r

e- cos(rx)dx.

Using steepest descents in the integral representation for f (see [B-O, Chap. 6, 6])
or, better, the method of dominant balance (see [B-O, Chap. 3, 4J--notice that f
is in the Schwartz class) in the differential equation that fn satisfies, we obtain

f(r) K exp (--r2m/2m-lc/) COS (r2m/2m--lco) aS r --+

where K is a constant and

(2m)2m/2m_l,
a COS

4m-- 2
/3 sin 4m

Observe that, unless m 1, f(r) takes both positive and negative values because of
the appearance of the cosine. Thus H(t, x, y) cannot define a probability transition
density, but it still defines a (finite) measure on the functions with domain [0, c) and
range Rd, similar to the Wiener measure (except for the nonnegativity and the almost
sure continuity of the paths). For more details, especially for the case d 1, see [HI.

To continue we need the asymptotics of hy(t, r) of (4.4), as r ix yl - oc.

LEMMA 4.1. As r - oc

d
(4.5)

dr h(t, r) o(r-k), for any k > O, l_>0
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(i.e., h(t, .) is in the Schwartz class S(R)).
Proof. We define

gn+l(A) gn()d, n>l.

Thus, by applying simple integration byparts in (4.2) we obtain

tn(4rt)d/2
exp

4t

hence the tables for inverse Laplace transforms imply

2-1 A/2
gn())

(271.)d/2 I""YJ(Ix Ix Ylvf),

where n + (d/2) 1. Therefore, if we apply integration by parts in the integral of
(4.4) n times, we will get

y(t,) Cn _()j.(),
r

where C is a constant that depends only on n, p(A) grows polynomially in A, and
is as above. [:]

Remark. We also have from (4.2) that

(4.6) ded (x y; A)
1 ,(d-2)/4

d 2(2)/ Ix- Yl(d-)/ J(d-2)/2(Ix [s/), if d _> 2

and, if d 1,

cos (Ix lv)
(4.6’)

dA
(x, y; A)

2r v/

For the remaining of this section we will restrict ourselves to the case d 1.
The heat kernel of Lo in L2(0, b) with ("generalized") Dirichlet boundary con-

ditions (namely, u(0) u(2)(0) u2(’-1)(0) 0 and u(b) u(2)(b)
u2(m-l) (b) 0), can be constructed from .h(t, Ix- Yl) by the method of images as
in (1.10), thanks to the previous lemma.

(4.7a) p’(t,x, y) E p(t,x, y + 2kb), 0 _< x, y _< b,
kEZ

where from (4.4) and (4.6’) we get

(4.7b) f0 cos (Ix- 1)h(t, Ix Yl) e-t’
v/

dA- cos (Ix 1)
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and

(4.7c) pm(t,x,y) h(t, Ix Yl) h(t, Ix /

Then the heat kernel of L in (0, b), with the same boundary conditions is (as in the
previous sections)

(4.8a) k(t, X, y) E kn (t, x, y),
n--O

where

(4.8b) 0(t, x, ) (t, x, )

and, for n >_ 1,

(4.8c)
b

kn(t,x,y) p(s,x,z)q(z)k-l(t- s,z,y)dzds.

In fact there is a Feynman-Kac type of expansion for k(t, x, y) (see [HI).
In our regular notation, let #1,#2,... ,#,... be the eigenvalues of L on (0, b)

with corresponding (orthonormal) eigenfunctions 01,02,..., 0n, The correspond-
ing quantities for Lo are , 2,..., ,.. and , 2,..., Cn, Of course

(4.9) n= and (x) sin
nx
b

n= 1,2,...

and

Then, in the Lemma of 1 we have H(s) Lo + sq and so

(0) ,,, (x) #,, sup I(s)l o(-),
O<s<l

by (1.7), (4.9), (4.9’), and the definition of Rn(s) given after formula (1.7). Finally,
from (1.6) we get

2 foo
b rnx l foo

b 2nx
An(O) - q(x) sin2 ---dx -- q(x) cos b

where we have made our standard assumption, namely

b

(4.10) q(x)dx O.

Thus, (1.8) and the Riemann-Lebesgue lemma imply

(4.11) #n v, O(n-k^(2m-)),
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where k is such that q e Ck[0, b]. If m > 1, (4.11) is quite satisfying, although we
believe it can be improved.

Now we want to derive the trace formula for L.
For any m >_ 2, (4.8) and (4.7b) easily imply

kO(t, x, y) 0(t-1/4), kl(t, x, y) 0(t3/4), k2(t, x, y) 0(t7/4), as t 0,

uniformly in x, y. These are very crude estimates but we do not need any better for
our analysis. As in 1, we have

tr(e-rE e-tLo) (e-, e-Et) k](t,x,x)dx + 0(t7/4).
n

Equation (4.8c) together with bini’s theorem and the fact that p(t,x,y) is the
kernel of a semigroup give

b

k (t, x, x)dx p(s, x, z)q(z)p(t s, z, x)dzdsdx

-t p(t,z,z)q(z)dz.

b

(4.13) E(e-"n e-’nt) -t fo p(t, z, z)q(z)dz + 0(t7/4).
n

Now, from (4.7) we have for all k > 0, 0 _< z <_ b (as in (1.11))

(4.14) p(t, z, z)= C.tl/2m H(t,O, 2z)-H(t,O, 2b-2z)+o(tk), ast $ 0.

LEMMA 4.2. For any f E Cb(Rd) we have

limtt0] H(t, x, y)f(y)dy f(x)

uniformly in x.

Proof. If f is in L2(Rd), then the statement is true in the L2 sense, simply because

H is the integral kernel of a semigroup. Furthermore, in the long remark following
equation (4.4) and in Lemma 4.1 right after this remark, we saw some nice estimates
for H. These estimates together with the L2 convergence immediately imply the
statement of the lemma.

Finally, if we combine (4.13) and (4.14) and then apply Lemma 4.2 and assume

(4.10) (namely, that the average of q on [0, b] is zero), we obtain

E(e-,t e-,t) -t p(t,z,z)q(z)dz + O(t/4),

for q E C[0, b] k >_ 2. Then, because of (4.11) we can divide by t and let t 0 to
conclude

q(0) q(b)
(4.15) E(#n ,)

4
n

Therefore
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by (4.14) and Lemma 4.2.
Remark. Formula (4.15) hints an interesting theoretical implication. It points

out that the trace of the difference [(-d2/dx2)" + q]- (-d2/dx2)m is independent of
rn and, therefore can be thought as the trace of the multiplication operator (Tu)(x)
q(x)u(x). Of course q must be smooth and average-free. The boundary conditions
play a role (in case of Neumann or Robin conditions there is a sign change in (4.15)).
We believe that there are many things yet to be understood.

5. Higher-order SchrSdinger operators II. The diophantine case. In this
section we extend the results of 3. To be more precise, we obtain a trace formula and
asymptotics of eigenvalues for

L=L0+q, whereL0=(-A)m

acts upon L2(D), with D being the rectangle (0, bl) X (0, b2) as in 3. It turns out
that the asymptotics of the eigenvalues improve as rn increases. Intuitively, this means
that, as rn gets bigger, L becomes a smaller perturbation of Lo.

First, let us decide what are our boundary conditions. The quantity

p(t,x,y) Hn(t, xl,x2,yl,y2) Hn(t, xl,x2, yl,-y2)

H(t, xl,x2,-y,y2)+ H(t,x,x2,-y,-y2),

where H(t,x, y) H(t, xl,x2, yl, y2) is defined in (4.4), is the heat kernel of Lo
acting upon the first quadrant Q {(Xl,X2) x, x2 > 0}. The boundary conditions
are

)2jp
Ox2j (t, 0, x2, yl, Y2) 0 and

02jP
Oxj

(t, x O, y y2 O, j=0,1...,m-1.

This follows from the fact that ed(x,y;A) and therefore H(t,x,y) are even and
smooth in Ix-yl, as explained in the beginning of 4. After this simple observation, it is

easy to construct the heat kernel p’(t, x, y) of L0 in L2(D) with "generalized Dirichlet"
boundary conditions, namely vanishing normal derivatives of order 0, 2,..., rn- 1 on

OD, from H(t, x, y) by using the method of images (separation of variables fails if

(5.1b) p’(t,x,y) E p(t,x,y + 2kb), where b (b,b.),

where the convergence is guaranteed by the long remark after equation (4.4/).
Assuming (3.11), which says that the average of q along each segment parallel to

the sides of the rectangle D is 0, we arrive (by the standard heat kernel approach) at
a formula very similar to (3.12) thanks to Lemma 4.2, namely

lim ! 6[q(0, 0) 0) q(0, b2 q(bl b2)].
to t E(e-t" e-t) + q(b, + +

n

The most interesting result of this section is that in certain cases we are able to justify
the interchange of limit and summation in (5.2). It is a direct consequence of the
following proposition.
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PROPOSITION. Let w b2/b be irrational and such that, for some c >_ 2, c > O,
the inequality Iw- P/ql > cq-, where p and q are positive integers, is true for all but
finitely many q (in this case w is called diophantine; in fact, the set of nondiophantine
numbers has Lebesgue measure zero). Then there is a constant A > 0 such that, for
all n sufficiently large, we have Un+l- Un > Anm-a, where n is the nth "generalized
Dirichlet") eigenvalue of no (-A)m on D (0, b!) (0, b2), namely

n= b + b
n1,n2=1,2,3,...

and the labeling is done in the unique way that makes n increasing with n.

Proof. Set

r2n2 r2n22 r2k2 r2 k22
Tn= b + b2

and Tn+l: b
-{- b--2

If n is such that n2 k2, then kl nl + 1 and the theorem is trivially true. Hence,
let us assume that n2 7 k2 so that

Tn+ Tn

Then, our assumption for w together with (3.2b) imply (since, for fixed q, the equation

n2
2 k q has finitely many integer solutions)

71-2 C C
(5.3) Tn-t-1 Tn > >

max(n22, na-l’

where C is a constant. Finally, since

l/n-t-1 l/n T_t_ Tn (Tn+l Tn)(Tnmn nt- -t- Tn--1),

the proof is completed by using (5.3) and (3.2b). S
Remark. If w is algebraic then any c > 2 works. This is the famous Thue-Siegel-

Roth Theorem. In fact, the set of all reals for which this is not true has measure zero

(see [L]).
COROLLARY. If #n is the nth eigenvalue of L Lo+q, with q E C(D) satisfying

(3.11), and everything else is as in the previous proposition, then there is a constant
c > 0 such that

C
I#n unl <_ -, min(r/2, rn- c), for all n sufficiently large.

Proof. The notation is the same as in the Lemma of 1; namely, we set

H(s) Lo +-sq with spectrum {An (s)}n=l

and
R(s) [I- P(s)][H(s) A(s)I] -1,

where P,(s) is the orthogonal projection on the (one-dimensional) eigenspace which
,corresponds to An(S). Thus, because of the previous proposition, if n is large enough
then

C
{{R(0){{ _<,

nrn--c
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with c being a constant. The normalized eigenfunction Cn(X) of Lo is given in (3.2a).
Then (1.7) implies that

Also, (1.6)and (3.11)imply

An (0) i’D q(X)n(x)2dx

q( l

for all n sufficiently large.

2nix1 2n2x2
bl

cos
b2

dx O(max(nl, n2) -r) O(n-r/2),

as n --, c and, therefore, the corollary follows from (1.8).
Using this corollary we can conclude that, if r > 2 and rn a > 1 (in particular,

if (bl/b2) 2 is an algebraic irrational and rn >_ 4), we can bring the limit in (5.2) inside
the summation and deduce

(5.4) -n) 0) + 0) + +
n

The remark at the end of the previous section applies here as well.

6. Final thoughts (epilogue). One of our main tasks in the previous sections
was to find short-time asymptotics for the trace

tr(e-tL e-tLo),
where L and L0 were certain self-adjoint differential operators, L being a perturbation
of L, namely L L0 + q. These asymptotics involved the values of q on the boundary
of the domain on which these operators were acting. On the other hand, this trace can
be written as a sum of the differences of the eigenvalues {et,n } and {e-tun } of e-tL

and e-tLo, respectively. Then we could take the limits as t $ 0. In some cases we were
able to interchange limit and trace (i.e., summation) and thus arrive to a formula for

which, in some sense, is the trace of L- L0. In the other cases the problem remains
open, namely, can we (at least in some "weak" sense) interchange these limiting pro-
cedures?

The approach we followed can be applied to more general situations. Here is a
final example.

Let L0 be the operator -A acting upon the rectangle D (0, bl) (0, b2) with
Neumann boundary conditions (i.e., the normal derivative on OD is 0) and L be again
the Laplacian operator acting upon D, but this time the boundary condition is

Ou
On pu O on0D,

where n is the outward unit normal vector on OD and p is a smooth function on OD
with zero average on each segment of the perimeter of D. The heat kernel of L0 is

pD(t, X, y) bl (t, Xl Yl )Pb2 (t, X2, Y2),
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where

1 (Ix-y+2kbl2) 1 ( 4t
Pb(t,x,y)= E exp + exp

kEZ

(Pb is the Neuman heat kernel of-d2/dx2 acting on (0, b)). The heat kernel k(t, x, y)
of L is given in [P]. Using the same analysis as in the previous cases we arrive at the
formula

tt0 v’t

fO 1limv p(t,z,z)p(z)dz
4

,-[p(O, 0)v’r-
+ p(b,O)+ p(O,b) + p(bl,b.)].

tO D

Here, of course, there is no chance that we can interchange limit and summation unless
p(O, O) + p(b, 0) + p(0, b2) + p(bl, b2) 0.
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on the trace formula, and finally Christopher Jones for helpful suggestions that made
the paper more readable.

REFERENCES

[B] V. BARCILON, Explicit solution of the inverse problem for a vibrating string, J. Math.
Anal. Appl., 93 (1983), pp. 222-234.

[B-O] C. M. BENDER AND S. A. ORSZAG, Advanced Mathematical Methods for Scientists and
Engineers, McGraw-Hill, New York, 1978.

[C] W. CRAIG, The trace formula for Schrhdinger operators on the line, Comm. Math. Phys.,
126 (1989), pp. 379-407.

[C-H] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Vol. 1., Interscience,
New York, 1953.

[D-H-V] A. DOUADY, J. H. HUBBARD, AND J. L. VERDIER, Equation de Hill periodique, Seminaire
de Geometrie AnMytique de l’Ecole Normale Superiure 1976-77, seminar of A. Douady,
Lecture Notes.

IF] L. FRIEDLANDER, On the spectrum of the periodic problem for the Schrhdinger operator,
Comm. Partial Differential Equations, 15 (1990), pp. 1631-1647.

IF-K-T] J. FELDMAN, n. KNORRER, AND E. TRUBOWITZ, The perturbative stable spectrum of a

periodic Schrhdinger operator, Invent. Math., 100 (1990), pp.. 259-300.

[G-L] I. M. GELFAND AND B. M. LEVITAN, On a simple identity for the eigenvalues of a differ-
ential equation, Dokl. Akad. Nauk SSSR, 88 (1953), pp. 593-596.

[HI K.J. HOCHBERG, A signed measure on path space related to wiener measure, Ann. Probab.,
6 (1978), pp. 433-458.

[H.H] H. HOCHSTADT, Estimates on the stability intervals for Hill’s equation, Proc. Amer. Math.
Sou., 14 (1963), pp. 930-932.

[J] F. JOHN, Partial Differential Equations, fourth ed., Appl. Math. Sci. 1, Springer-Verlag,
New York.

ILl S. LANG, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

[L-G] B. M. LEVITAN AND M. G. GASYMOV, Determination of a differential equation by two of
its spectra, Russian Math. Surveys, 19 (1964), pp. 1-63.

[L-S] B.M. LEVITAN AND I. S. SAP(SJAN, Introduction to Spectral Theory: Self Adjoint Ordinary

Differential Operators, Am. Math. Soc. Transl. 39, American Mathematical Society,
Providence, RI.

[P] V. G. PAPANICOLAOU, The probabilistic solution of the third boundary value problem for
second order elliptic equations, Probab. Theory Related Fields, 87 (1990), pp. 27-77.

[R-S] M. REED AND B. SIMON, Methods of Modern Mathematical Physics IV, Analysis of Oper-
ators, Academic Press, New York, 1978.

[S] B. SIMON, Schrhdinger Semigroups, Bull. Amer. Math. Sou., 7 (1982), pp. 447-526.



SIAM J. MATH. ANAL.
Vol. 26, No. 1, pp. 238-262, January 1995

()1995 Society for Industrial and Applied Mathematics
012

NECESSARY AND SUFFICIENT CONDITIONS FOR MEAN
CONVERGENCE OF LA(RANGE INTERPOLATION

FOR FREUD WEIGHTS *

D. S. LUBINSKY AND D. yI. MATJILA$

Abstract. Let Wry(x) := exp(-Ixl),x I,f > 1. Given f" ] ], let Ln[f](x) denote
the Lagrange interpolation polynomial to f at the zeros of the orthonormal polynomial of degree n
for the weight W. Let 1 < p < cx, A 6 ]I, > 0, and & min{ 1, }. Moreover, let

0, p_<4,
T---T(p) := l/p--& + (/3/6)(1- 4/p), p > 4.

It is shown that for

(1) nlim (f(x) Ln[f](x)) W(x)(1 + IXl)--AIIip(R) O,

to hold for every continuous function f" ] satisfying

(2) ixlim_ If()lW()(1 + I1) 0,

it is necessary and sufficient that

/x> T ifl<p_<4;

A > T if p>4 and c-- 1;

A_> T if p>4 and a:l.

Moreover, it is shown that (1) holds for every 1 < p < cx) and every continuous function f satisfying
(2) if and only if A _> --& + max{l,/3/6}. These are special cases of results for more general Freud
weights.

Key words. Freud weights, Lagrange interpolation, mean convergence, Lp norms

AMS subject classifications, primary 42C05, 42C15; secondary 65D05

1. Introduction and results. The convergence of Lagrange interpolation at
zeros of orthogonal polynomials is a classical and widely studied subject. Let us recall
the setting. If da is a finite positive Borel measure on a finite or infinite interval (a, b),
with support containing infinitely many points, and with all power moments

b

xJ dc(x), j 0, 1, 2,...,
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finite, then we may define orthonormal polynomials pn(da, x) (or simply pn(x)), n
0, 1, 2,..., which satisfy

bpn(doz, x)pm(da, x) da(x) 5mn, rn, n O, 1, 2,

We denote the zeros of pn (da, x) by

a Xnn Xn-l,n x2n Xln b.

For functions f" (a, b) N, we denote the Lagrange interpolation polynomial of
degree _< n- 1 to f at the zeros of pn(da, x) by L,[f](x), so that

(1.1) Ln[f](xjr)- f(xj), 1 <_ j < n.

The classical Erdhs-Turan theorem asserts that if (a, b) is a finite interval, then
for each measurable function f" (a, b) --, for which

b

f2 da < oo,

we have L2 convergence"

b

lim (f Ln[f]) 2 da O.

The extension of the Erdhs-Turan theorem to infinite intervals, is due primarily
to Shohat; see [3, Chap. III]. The more difficult extension of the Erdhs-Turan theorem
on a finite interval (a, b) to the Lp, p 2 case has attracted many authors and inspired
research into fundamental properties of orthogonal polynomials. The results obtained
are inherently more special, and necessarily require more knowledge of the orthonormal
polynomials than in the L2 case. We cannot hope to survey this topic here; the reader
may find results and references in [12], [14], and [15].

In this paper, we concentrate on weights on the whole real line. We shall deal
with "Freud weights," that is, weights of the form

da(x) W2(x)dx,

where W I ]R is even and of sufficiently smooth and regular decay at infinity.
(Note that our weight is of the form W2, not W: This simplifies formulation of results.)
Here we shall denote p(da, x) by pn(W2, x), n 0, 1,2, Our results apply in
particular to

llxl xe, fl> 1.(1.2) W(x) W(x) exp(-5

Many of our methods are taken from a fundamental paper of Nevai I13], which
dealt with the Hermite weight, the case/3 2 in (1.2). Nevai provided fairly close nec-

essary and sufficient conditions for Lp convergence of the Lagrange interpolation poly-
nomials, in terms of the decay of the interpolated function. Nevai’s methods pointed
the way of subsequent research: One of Nevai’s students, Bonan, obtained "sharp"
necessary and sufficient conditions for the generalized Hermite weights IxlZ exp(-x2),
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in an unpublished Ph.D. thesis [1]. His decay condition on the interpolated function
was, however, a little more restrictive than Nevai’s.

Mean convergence of Lagrange interpolation is dependent on suitable estimates for
associated orthonormal polynomials, and so it is not surprising that Nevai and Bonan
at the time concentrated on the Hermite weight, for which the relevant estimates
and Plancherel type asymptotics were available. By assuming bounds on orthonormal
polynomials that were known to be true for the weights W,/3 a positive even integer,
Knopfmacher and Lubinsky treated fairly general Freud weights W2 e-2Q [4]. For
the Lp norm with 1 < p < 2, the results there sharpened and generalised those in [1],
and functions with integrable singularities at finitely many points were also discussed,
which extended L2 work in [8].

The possibility of treating weights such as W, > 1 is provided by work of Levin
and Lubinsky [5], where the correct bounds were obtained for orthonormal polyno-
mials over IR for a large class of weights. We also use the Lp norms of orthonormal
polynomials, and these were estimated above and below in [7], using the results of [5].

The following is an important special case of our results.
THEOREM 1.1. Let/ > 1, 1 < p < oo, A E JR, > 0, and

(1.3) & := min{1, c}.

Let

-&, p_<4,
(1.4) -& + 1- p > 4.

Denote the Lagrange interpolation polynomials at the zeros ofpn(W, ") by Ln[.], n > 1,
where W is given by (1.2). Then for

(1.5) lim II(f(x) Ln[f](x))Wz(x)(1 + IXl)-AIILp() O,

to hold for every continuous function f IR IR satisfying

(1.6) lim If(x)lWh(x)(1 + Ixl) 0,

it is necessary and sufficient that

A>r if l<p_<4;

A>T if p>4 and

A>T if p>4 and

Remarks. (a) In the work of Bonan [1], the Hermite weight (/3 2) was treated,
and it was assumed that a 2. In this special case, our sufficient condition is
identical to Bonan’s, and our necessary condition is also identical if we take the
v(x) W/(x)(1 + Ixl)-x in Bonan’s work.

(b) The sufficient condition also guarantees the convergence (1.5) if f is not
necessarily continuous but is bounded and Riemann integrable on each finite interval
and satisfies (1.6). However, we shall not prove this, as it is away from the focus of this
paper, which is sharp conditions relating c and A. The reader may refer to Bonan’s
thesis [1] or Knopfmacher and Lubinsky [4].
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(c) Results such as the previous ones are useful in investigating convergence of
product integration rules (cf. [4]).

(d) When we consider convergence simultaneously for all 1 < p < c, the above
result simplifies substantially.

COROLLARY 1.2. Let > 1, A E IR, a > 0, and & := min{1, a}. For the conver-
gence (1.5) to hold for every 1 < p < oo and every continuous function f IR -+ IR
satisfying (1.6), it is necessary and sufficient that

(1.7) A _> -&+max{1,}.
To formulate our result for more general weights, we need the Mhaskar-

Rahmanov-Saf number au [9], [10]. Let W := e-Q, where Q IR IR is even,
continuous, and xQ’(x) is positive and increasing in (0, oo), with limits 0 and oo at 0
and oo, respectively. For u > 0, the uth Mhaskar-Rahmanov-Saff number au is the
positive root of the equation

atQ’(at) dt/vZl t2.

Under the conditions on Q below, which guarantee that Q(s) and Q’(s) increase
strictly in (0, c), a is uniquely defined and increases with u. It grows roughly like
Q[-1](u), where Q[-1] denotes the inverse of Q on (0, c). Its significance lies partly
in the identity

(1.9)

which holds for polynomials P of degree _< n [10]. For W WZ, one sees that for
u>O,

a Cu1/,

where C depends only on/.
Theorem 1.1 is a special case of the following theorem.
THEOREM 1.3. Let W := e-Q, where Q IR -+ ]R is even and continuous in , Q"

is continuous in (0, oo), and Q’ > 0 in (0, oo), while for some A, B > 1,

d
(xQ’(x))/Q’(x) < B x (0,(.0) A <

Let 1 < p < oo, A IR, a > 0, and & be given by (1.3). Denote the Lagrange interpo-
lation polynomials at the zeros of p,(W2, .) by Ln[.],n _> 1. Then for

(1.11) lim II(f(x) Ln[f](x))W(x)(1 + Ixl)-AIl,() o,

to hold for every continuous function f" ]R -+ IR satisfying

(1.12) lira If(x)lW(x)(1 + I1) O,

if p <_ 4, it is necessary and sufficient that

(1.13)
1

A>-&+-;
P
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and if p > 4 and a 7 1, it is necessary and sufficient that

(1.14) an/P-(a+/X)n(1/6)(1-4/P) O(1), n -- x;
and if p > 4 and a 1, it is necessary and sufficient that

1/p-(a+/x) ( 1 )(1.15) an n(1/6)(1-4/p) O
logn

The paper is organised as follows: In 2, we present some technical lemmas, such
as estimates on orthonormal polynomials and their zeros, and we use these to prove
three quadrature sum estimates, including a very technical one (Lemma 2.7), which
is essentially a bound on part of the Lebesgue function of Lagrange interpolation.

In 3, we prove the results. The proof of the sufficiency part of Theorem 1.3
involves expressing the given function f, for a given n, as a sum of functions, one
vanishing outside [-an/4, an/4] and another vanishing inside (-an/n, an/4) and ap-
proximating f by a suitable polynomial. This is achieved in Lemmas 3.1-3.4. The
proof of the necessary conditions involves the uniform boundedness principle applied
to carefully chosen spaces, and interpolation of carefully chosen functions.

2. Technical lemmas. We first need more notation. Throughout, C, C1, C.,
denote positive constants independent of n, x, and polynomials of degree n. We

shall write C = C(A) to indicate that C does not depend on a parameter A. The same
symbol does not necessarily represent the same constant in different occurrences. We
use in the following sense: If {bn }n-_0 and {Cn }nC___0 are sequences of nonzero real
numbers, we write

bn Cn,

if there exist C1, C2 > 0 independent of n, such that

C1 <_ bn/cn <_ C2, n >_ 1.

Similar notation is used for sequences of functions. We frequently use f’(x) to denote
(f(x))n, even for n -1. Pn denotes the polynomials of degree at most n.

If W2 I --. [0, oo) is a weight, its nth Christoffel function is

(2.1) n(X) An(W2 x):= inf (pw)2(t) dt/p2(x).
PEPn-1

It is well known [14] that

,n (X) 1 pj (x).
!

We also define the Christoffel numbers

jn :’-- n(Xjn), 1 <_ j <_ n.

The leading coefficient of pn(x) is denoted by 7n, so that

pn(X) Q/nXn -
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The Lagrange interpolation polynomial Ln[f] admits the representation

n

Ln[f](x) E f(Xjn)jn(X),
j=l

where the fundamental polynomials gin in turn admit the representation [12, p. 6] or

[, p. ]

(2.2) jn(X) )jn"fn--l"Pn--l (Xjn)
"n X Xjn

Mean convergence of Lagrange interpolation is closely connected to bounds on
orthogonal polynomials and related estimates; accordingly we recall some results from
[5]. Throughout this section, we assume that W is as in Theorem 1.3.

THEOREM 2.1. (a) For n >_ 1 and Ixl <_ an,

(2.3) An(W2’x) a--W2(x)max {n-2/3’l lXl}an

Moreover, we can replace by >_ C for all x E I.
(b) For n >_ 1,

(2.4) IXln/an- 11 <_ Cn-2/3,

and uniformly for n >_ 3 and 2 <_ j <_ n 1,

an(2.5) x_, x+,
n

max{n-2/3, 1 -Ixl/an}-/.

(c) For n > 1,

(2.6) sup Ipn(x)lW(x)[1 -IxI/a.l 1/4 a1/2

and

(2.7) sup Ip.(x)lW(x) nl/6a- 1/2

(d) Let 0 < p <_ x. There exists C > 0 such that for n >_ 1 and P

(e) For n >_ 1,

(2.9) -/ an.

(f) Uniformly for n >_ 2 and 1 <_ j <_ n- 1,

max{n-2/3, 1 -Ixj,l/an} max{n-2/3, 1 -Ixj+l,nl/an}.

Proof. (a)-(d) are, respectively, Theorem 1.1, Corollaries 1.2 and 1.4, and Theo-
rem 1.8 in [5]. (e)is Theorem 12.3(5)in [5]. (f) is (1.10)in [5, p. 521]. [:]
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We recall from [7] the next theorem.
THEOREM 2.2. (a) Given 0 < p < , we have for n > 1,

1,
IIPWllL,()a/P-/x (log n)l/4

n(1/6)(1-n/p)

p<4,
p= 4,
p>4.

(b) Uniformly for n > 1, 1 < j < n, and x E N,

(2.11) W(xjn) max n-2/3 ,1
1/4

X Xjn

(c) Uniformly for n > 1, 1 < j < n, and x N,

(2.12) Ig(x)IW--I(Xyn)W(x) < C.

[7].
Proof. (a), (b), and (c) are, respectively, Theorem 1 and Lemma 2.6(a), (b) in

LEMMA 2.3. (a) Given 0 < a < b, we have uniformly for n >_ 1 and x [a, b],

(2.13) Q(anx) anxQ’(anx) n.

(b) If A, B are as in (1.10), then

(2.14) UlIB < au/al < ul/A, u [1, c).

(c) Given A > 1, we have for v (0, ca), and u

Proof. (a) This is Lemma 5.1(c) in [5].
(b) This is Lemma 5.2(b) in [5].
(c) This is Lemma 5.2(c) in [5].
There is an old result of Shohat [3, Chap. III] that establishes the equivalence

of convergence of Gauss quadratures and L2 convergence of Lagrange interpolation.
So it is not surprising that quadrature sums play a role here. In the remainder of
this section, we prove three quadrature sum estimates. The first is a quadrature sum
similar to that in Theorem 6 in [4, p. 85]. In the sequel, we set

(2.16) xon := xln(1 + n-2/3); Xn+l,n :-- Xnn(1 A- n-2/3).

LEMMA 2.4. Let . Then uniformly for n >_ 1,

(2.17)
n {1,E AJnW-2(xj")(1 + Ixy l) logn,

j=l tin

Proof. We first show that uniformly for n >_ 1 and 1 _< j _< n,

1 + IXjnl 1 + Itl, t e [Xjnt-l,n Xj--l,n].
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To this end, note that (2.5) holds even for j 1 and n, with the definition (2.16) of
x0n and Xn+i,n. First, if IXj+l,nl < an/2, then (2.5) shows that

Xj--l,n Xj+l,n an/n,

so that for t in the range (2.18),

1 + IXn]
-1

t Xjnl <__ Xj--l,n Xj+l,n <_ Clan/n --+ 0,

(See (2.14) and recall that A > 1.) On the other hand, if IXj-FI,nl > an then (2.5)
shows that

1 + ]tl < It-
1 + IXjnl 1 -nt- IXjnl

<_ C2(xj-i,n Xj+l,n)/an _< C3-1 (max{n_2/3, 1 --Ixjnl/an}) -1/2
n

<_ C4n-2/3--+0 aSh--,

So (2.18) holds in all cases. Next, (2.3) and (2.5) imply that

)jnW-2(Xjn) Xj--l,n XjH-I,n

for 2 < j < n- 1. By (2.16) this holds for j 1,n also. So for 1 < j < n,

AjnW-2(Xjn)(1 + Ixjnl)u (Xj-l,n Xj+l,n)(1 + IXjnl)

(1 + Itl) dr.
XjH-I,n

Summing for j 1 to n, and using

XOn --Xn+l,n an,

we obtain (2.17).
In several places, we shall need to replace (1 + t2) by an equivalent polynomial

on a suitable interval. This is achieved in the following lemma.
LEMMA 2.5. Let u R. There ezists C > 0 such that for ; >_ 2, there ezist

polynomials .ix of degree <_ CA log , such that

(2.19) /(t) (1 + t2),
uniformly for t [-A, A] and A > 2.

Proof. Let/(t). := log(1 + (At)2),t e [-1, 1]. Then

If’(t)l
1 + (At)2

t e [-1,1].

By Jackson’s theorem, there exists a polynomial Ra of degree at most , such that

Ill- R,IIL[-1,1] CIlIf’IIL[-1,1]/j <-- C1.
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Here C1 is an absolute constant. Next, let

n

S(u) "= E uJ
j=0

be the (n + 1)st partial sum of the Maclaurin series of e. It is well known and easy
to see that

n() , I1 <-- n/9.
Next, from (2.20),

IIRxlIL[_I,I] <_ C1 -IlfllL[-1,] <-- C1 -}-log(1 + A2) _< C. log A.

Let Ix] denote the greatest integer <_ x. Then, if we set

/Sx(t) Sl0[lu]C2 log,] (P/,(t//)),

we have for lulC2 log A >_ 1 and t E [-/k, A] that

x(t) exp(uR(t/A)) exp(pf(t/A)) (1 + t2).
For small A, we can set/5 1; Finally,/Sx has degree _< 10llCe/X log A.

We can now prove our main quadrature sum estimate.
LEMMA 2.6. Fix cr (0, 1) and an integer L >_ 3, and let N. Then for

P 7)L, and n > 1,

(2.21)
E zJnlP(xjn)lW-l(xjn)(1 -4c- xn)u

C1 IPWl(t)(1 + t2) dt.
--aLn

Here C 7 C1 P, n).
Proof. Our method follows that of [6]. Now by definition of the Christoffel func-

tion, and by Theorem 2.1(a), we have for P 7)n and x ]R that

(PW).(x) <_ C.n (PW)e(t) dr.
an c

It follows that

IIPWII < C2--IlPWIIL(e) IPWl(t) dr,Lc(N) an

and so, using the infinite-finite range inequality Theorem 2.1(d),

(2.22) [[Pwl[=() < c n r/ }PW](t)dt.
an J_an

Next, let
v(t) (1 t2)-/2, t E (-1,1),
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be the Chebyshev weight, and let

n--1

j=O

be the corresponding kernel function. It is well known [12, p. 108] that

(2.23)

(2.24)

Kn(x,x) n, Ixl < 1;

IKn(x,t)l < C4 min n,
ix_ tl

x, t E [-1, 1].

Next, let/Sa2L be the polynomial of Lemma 2.5 of degree O(a2Ln log a2Ln) o(n) by
(2.14) (recall A > 1). We now fix x s.t. Ixl < con and apply (2.22) to the polynomial

R(t) P(t)a2L (t)K2 (--x t )a2Ln a2Ln

where P PLn. Note that R has degree at most Ln + o(n) + 2n < 2Ln, for n > nl,

say. By (2.22),

By Lemma 2.5 and (2.23), we obtain for Ixl < Can(< a2L)

(2.25) IPWl(x)( + x.) <_ c41fa" IPWl(t)(l + t2)’K2n ( x t ) dt.
nan --a2Ln a2Ln a2Ln

Then by Theorem 2.1(a) and as a < 1, we have

/jnlP(xjn)lW-l(xjn)(1 -f- Xn)

< c5an E IPWI(xjn)(1 + x)"n

< C5 IPWI(t)(1 + t2)T(t)dt,
ma2L

where by (2.25),

T(t) n-2 E g2n ( xJn t)
ixl<a

a2Ln a2Ln

E{ a2Ln}
2

< C6n-2 min n,
]xjn t]

by (2.24). Now for Ixjn] < can, we have (see Theorem 2.1(b)) uniformly in j and n,

an
Xj-l,n Xj+l,n

n
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It follows that by reordering the Xjn in terms of increasing distance from t, and splitting
into sums involving even and odd j, we can bound T(t), uniformly for t E N, by

{( a2Ln /
2 }T(t) <_ CTt-2 n2 -b

j=l
jan/n

{ }_<Cs 1+ j- <C9.
j--1

Here we have used a2Ln/an O(1). Substituting into (2.26) yields the lemma.
Our last quadrature estimate in this section is essentially an estimate for part of

the Lebesgue function of Lagrange interpolation.
LEMMA 2.7. Let 3 E (0, 2), u I, and

:= Itkn(X)lW-l(Xkn)(1 + ]Xknl) -.

Then

1,
W(x) E(x) <_ Ca Cn-l/21pnWl(x -[- 1ogn,

Ix]

_
13an/2,

an/2 <_ Ixl <_ 2an,
Ixl >_ 2an.

Proof. We first observe that IXknl an uniformly for Ix[ >_ lan, so it suffices to
consider the case 0. Next, with the definition (2.16), we note that (2.5) persists
for j 1 and n. So

(2.29)

3/2an

Ixknl>_a

1/2__< an E
1/2 _3/2

_
an 2Xln Cln

(max{n-2/3, 1 -Ixkl/an})-l/4

(Xk-l,n X+l,n)(max{n-2/3, 1 -Ixknl/an})l/4

(Xk-l,n Xk+l,n)

by (2.4). We now consider three ranges of x, and use (2.12) for Xjn close to x, and
(2.11) for xjn not close to-x.

Case I. Ix[ <_ 3a/2. For this range of x, we have

Then (2.11) yields
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(recall 0) by (2.29) and the bound (2.6) for Pn, since //2 < 1. Hence (2.28).
Case II. an/2 <_ Ixl <_ 2an. This is the most complicated case, and we need to

split

(2.30)

For k in -1, we have Ixkn x Ixl an, and so by (2.11),

..3/2
(X) <__ C4 n E (max{n-2/3, 1-IXkn]/an}) -1/4

n an

by (2.29).
E2" Choose g- g(x) such that x [Xe+l,n, Xln] and split

where E21 sums over those k in E2 for which k E [t(x)- 3, t(x)+ 31 and -22 contains
the rest. Here, if Ixl > x0n the term -2 is taken as zero. Now by (2.12), we see that

E21(X) _< C6W-l(x).

Next, if the sum below is over those k considered in ’22, we can use (2.11) and then
(2.5) to deduce that
(2.32)

E22(x) _< C7 anon E(max{n-2/3’ 1 -IXknlan})-l/4
ix xknl

< 1

with obvious modifications, both here and below, when Ix > x0. In the last step we
used Theorem 2. l(f) and

Ix tl Ix Xk+/-l,l Ix xknl, t [Xk+l,n, Xk-l,n],

provided k .[e(x)- 3, e(x)+ 3]. This is an easy consequence of (2.5)"

x-t
X Xkn

X Xkl,n
X Xkn

=1+
Xkn XkCzl,n

X Xkn

<1+ Xkn Xk+/-l,n

Xk+/-2,n Xkn
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by (2.5). Similarly we may derive a lower bound. We proceed to estimate the integral
in the right-hand side of (2.32). Let us suppose, as we may, that x >_ 0 and set
T x/a,. Note that for the current range of x, T [//2, 2]. Then we see that the
integral in (2.32) equals

I := (max{n-/a, 1 -Isl})l/ IT_ s--------"2,21 \ [x+3,n/an ,x-3,n/an

In view of the spacing (2.5), we have

X+3,n/an T- n; X--3,n/an 7" -}-

where

n n(X):= C
1
max{n_2/3 1 -Ixl/an}-/2

n
and C is independent of n, x, and hence/. So

(2.33) I < 2 ff[i (max{n-2/3 1- 8}) 1/4
ds

-r +1. Then the substitutionSuppose first that l1- l > n-2/a and set a := I-l
(1 s) [1 ]u gives

I < 2]1- 1/4 max u
-1/11-1),(/11-I)]\[-(./1-1),+(./11-1)1 I1 T[’

du

< Cl111 TI1/4 [[ du

-l/2,a-(a./ll-l)l a ul
-F j[2 u-3/4 du],(1/ll-’rl)]

(with appropriate replacements for the lower limits a- , 2 if necessary)

<C12 [11-7"1/41g([1-7"[)+1]-
(2.34) _< C13 [I 1 -]xl/a,l 1/4 log(nil -Ixl/al1) + 1]

C14111 -[xt/a]/4 log n + 1].

If [1- T[ < n-2/3, then note that 5, Cn-2/3. Set a := n2/3(1- T) and note that

a < 1. Here we use the substitution (1 s) n-2/3u in (2.33) to obtain

I < 2n-/_ max{1 u}/4 d

_n2/3

Cln-1/a] u-a4 du C1.

Of course as C is independent of , so is C1. So also in this case, we have the estimate

(2.34). Summarizing, we have from (2.32) to (2.34) that

/(.a) C[1 + lpWl(m){l -Iml/ll/4 log + 1}]
/
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Here we have used the bound (2.6) for the orthonormal polynomials.
-:3: For this range of k, we have IXkn X IXknl an, SO

(2.36)
E3(x) -< Cl8n E (max{n-2/3, 1 -IXknl/an})-l/4 Ipn(X)l

n
I,1>,

an

_/2C19n pn(X)]

by (2.29). Substituting the estimates (2.31), (2.35), and (2.36) into (2.30) yields the
result in this case.

Case III. ]x 2an. For this range of x, we have xk- x ]x], (reaM1 that
Xln an[1 + O(1)]) SO

n3/2
(x) < c0 (mHn-/, 1 -lxl/a})-/4 In(X)]

n
]xkn]an

X[

a32

c (x),

by (2.29). FinMly, (2.6) of Theorem 2.1(c) yields

pnW(x) C22a/2, ]x] >_ 2an.

3. Proof of the theorems. In proving Theorem 1.3, we shall split our function
into pieces that vanish inside or outside [--lan, an], some / > 0. The proof requires
several preliminary steps. Many of the ideas have been taken from Nevai’s fundamental
paper [13], though the fact that an may grow slower than nil2 forces a completely
different approach in the following lemma, and elsewhere. Throughout, W is as in
Theorem 1.3, and throughout 1 < p < x, a > 0, A E I, and & is given by (1.3).

LEMMA 3.1. Assume that/fp _< 4, (1.13) holds and if p > 4, (1.14) holds. Let
> 0,/ E (0, 2) and assume that {fn}n=l is a sequence offunctions from I to such

that

(3.1) fn(x) O, Ixl < an,
and

(.) IfWl(x) < ( + Ixl)-", x e ,
Then

n>l.

(3.3) limsup IlLn[fn](x)W(x)(1 + IXl)-AIILp() <_ C.

Here C is independent of , n, and {f }.
Proof. Now by Lemma 2.7, and (3.1)-(3.2),

(3.4)
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Then
Tn
(1) :__= IlLn[fn](x)W(x)(1 --[-

1, Ap > 1,
<_ C2a (log n)l/p, Ap 1,

al/p- Ap < 1

Here, if Ap >_ 1, this term is o(1) as a > 0 and an grows faster than some positive
power of n. Suppose now that Ap < 1. Note that if p > 4, then the power of n in
(1.14) is positive, so the power of an there, namely lip- (& + A), must be negative.
Hence (1.13) holds for all p > 1. (We shall use this repeatedly.) So if Ap < 1, (1.13)
shows that

--o+l/p--A --&+l/p--A o(1).an

_
an

Hence in all cases

(3.6) lira T
(1) 0.

n---

Next, from (3.4),

T
(2) := [[Ln[f](x)W(x)(1 +

1/2--A

_
C2aa{an IlpnWI]Lp[an/2,2an] "- (logn)an/p-A}

<_ Caea(++/ (logn)/4, p 4 + Cae(log
n(1/6)(1-p/4), p > 4

by Theorem 2.2(a). Recall that for all p > 1,-(a + A) + 1/p < 0 (see (3.5)) and an
is of polynomial growth, so the second term in the last right-hand side is always o(1).
By the same token, for p <_ 4, this entire last right-hand side is o(1). When p > 4 and
a > 1, then a > & (see (1.3)) so (1.14) shows that this whole last right-hand side is

o(1). When p > 4 and a _< 1, our assumption (1.14) shows that this last term is O().
So in all cases,

(3.7) lim supT
(2) <_ C4e.

n---,o

Finally, from (3.4),

(3) := IIL, [fn](x)W(x)(1 +
C5a a+llllxl-l(1 nt-

Now from (1.13),

so

1 1
A> --&>_ --1,

P P

p(A + 1)> 1,
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and hence
Tn
(3) _< C6a+lan/P-(i+A) o(1),

by (3.5). Together with (3.6) and (3.7), this yields the result.
Note that we needed only the weaker (1.14) and not (1.15) in the above lemma.

Having dealt with functions that vanish inside (-an,/an), we turn to functions that
vanish outside this interval. First we estimate the Lp norms of such functions outside
[-2/an, 2an] and in Lemma 3.4 below, we shall use Hilbert transforms to estimate
their Lp norms over [-2an, 2an].

LEMMA 3.2. Assume that ifp _< 4, (1.13) holds; ifp > 4 and c - 1, (1.14) holds;
and ifp > 4 and c 1 (1 15) holds Let e > 0, E (0,1) and assume that {n}n=l
is a sequence of functions from to N such that

(3.9) (x) O, Ixl > an,

and

(3.10) I(W)l(x) <_ e(1 + {xl)-, x e N, n > 1.

Then

(3.ii) limsup IlLn[%bn](x)W(x)(1 + Ixl)-/XllL,(laI>_2Za.) <_ Ce.

Here C is independent of e, n, and {n}.
Proof. First note that for Ixl > 2an and IXknl <_/3an, ]Xkn--Xl IXl. Then, from

Theorem 2.2(b), we have for Ixl _> 2/3an

[en(x)lW-(x.)(1 + {x.l)

<_ C2eal/ IPn E (Xk-l,n Xk+l,n)(1 + Ixkl) (by (2.5))
Ixnl<a

< C3ea/2 ipn(X) 2Z,

(1 + Itl)- dt;
IXl J--2an

recall that/3 < 1 and see (2.18). Let

log n,(logn)* :=
1, otherwise.

We see (by examining a <, =, > 1) that

(1 + [tl)- dt < C4a-a(log n)*,
219an

n>2.
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Then

]]Ln[n] (x)W(x) (1 -P_
I/2--&--&<_ 5ean (log)*[pn(x)W(x)L() (recall A + 1 > 0;see (3.8))

1, p< 4,
/P-(a+) (log n)l/4, 4,C6ea (log n) p

n(1/6)(1-4/P), p > 4,

by Theorem 2.2(a). Now if p < 4, we know that (1.13) holds and an is of polynomial
growth, so the last right-hand side is o(1). If p > 4 and a = 1, our hypothesis (1.14)
ensures that we obtain O(); if p > 4 and a 1, our hypothesis (1.15) ensures that
again we obtain O().

Before proceeding to our third lemma on the Lp norms of Lagrange interpolants,
we need the Hilbert transform H[f](x), and its boundedness in suitable weighted Lp
spaces. Recall that

H[f]x := lim fit f (t)
dt,

e--,o+ -xl>_ t- x

and if f E L1 (IR), then this limit exists a.e.
LEMMA 3.3. Let 1 < p < , s < 1 l/p; S > -l/p; s < S. Then for measurable

f IR 1, for which the right-hand side is finite,

IIH[f](x)(1 + Ixl)sllL() <_ cllf(x)(1 + Ixl)sllL().

Proof. This is the special case R r 0 of Lemma 8 in [11, p. 440]. vl

LEMMA 3.4. Assume that (1.13) holds. Let > 0,/3 E (0, 1/2), and assume that
{n} is a sequence of functions from I to I such thatn=l

(3.13) Cn(x) 0, Ix] _>/3an,

and

(3.14)

Then

(3.15) limsup IIL.[.](x)W(x)(X + IXl)--A}lLp(Ixl<_2an)

_
n--+o

Here C is independent of , n, and {2}.
Proof. Define

G(x) := W(x)-l(1 + Ixl)-, xEI.

Furthermore, for f" ]R -- I such that fW e LI(]), we let Sn[f](x) denote the nth
partial sum of the orthonormal expansion of f in {p/} (so that Shill(x) is a linear
combination of p0, pl,. Pn- 1). We first show that

(3.16)
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Let Xn denote the characteristic function of [-2/an, 2/a], and for n _> 1, let

gn(X) :-- sign{Ln[n](X)}lLn[n](x)lp-lxn(x)WP-2(x)(1 + Ixl) -Ap.

Observe that

IlLn[](x)W(x)(1 + IXl)-AIIPLp(iXl_2an)

(orthogonality of 9 S [9] to

_
)

(z)S[9](zk) (Gauss quadrature)
k=l

knlSn[gn](Xkn)lW-l(Xkn)( 1 + IXknl) -a

C3e ]Sn[gn](x)]W(x)(1 + Ixl) dx

(by Lemma 2.6 and as (1 + ]t[) (1 + t2)-/2)

(by (3.14))

where we have set h(x) := sign(Sn[gn](x)), and we have used the definition of G.
Then orthogonality and Hhlder’s inequality (with q p/(p- 1)) show that this last
expression can be continued as

In the last right-hand side we have used the definition of gn. Cancelling the (p- 1)th
power of the norm in the last right-hand side, and in the left-hand side after the
definition of gn gives (3.16). Next, it is a well-known consequence of the Christoffel-
Darboux formula that for f : , for which fW e L1 (),

n f (x) "n- l {pn (x)H[pn-lfW2] (x) Pn-1 (x)H[pnfW2] (x) },

where H denotes the Hilbert transform, as above. Then using Theorem 2.1(c) and
(e), we have for Ixl <_ 2an (recall 2 < 1) and h e L() that

(3.17)
n

1/2ISn[hG](x)W(x)I

_
4an E IHgjhGW2I(x)I"

j--n--1
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Choose a (2, 1), and let )/ be the characteristic function of [-aan,aan], n >_ 1.
Moreover, let IlhllL() _< 1. In estimating the Hilbert transform for Ix 2an, we
write

HjhGW2] Hj(1 x)hGW2] + HjxhGW2].
Now for x 2a, and j n- 1, n,

[H(1 x)hGW2](x)[ t]e[aan,) P(t)(hGW2)(t)x t dt
C IpjWl(t)t-1- dt

a

( )i/2 ( )1/22(t)W2(t) dt t-2-2" dtC5 pj

C6a1/2--a.

This last estimate and (3.17) give for [x 2an,
n

/2(3.18) Sn[hG](x)W(x)] C4an ]H[pjxhGW2](x) + CTa.
j=n--1

Now let us set for some small 5 > 0,

’= min{A, 1/p 5}.

We now use Lemma 3.3 with s S -. Note that

s - mx{-,- /} > -l/p;

also, (1.13) (which, the reader may recall, holds for all p > 1) gives

-A < -1/p + -1/p + 1,

so if 5 < 1, then
s - max{-A, 5- l/p} < 1- lip.

Thus the requirements of Lemma 3.3 are met. Then as A, (3.18), and Lemma
3.3 yield

IIS[hG](x)W(x)(l + lxl)-IL(l2a)
n

/2C4a llHyxhGW2](x)(1 + lxl)-hllL,(e)
j=n--1

+ CTall(1 + lx])-llL,(I2Z)
n

1/2.a II(xahaw)(x)( + )-()(a.19)
j=n--1

1, Ap > 1,
+ Csa (log n)l/p, Ap 1,

"I/P-, Ap < 1,
n

1/C8 ]](pjW)(x)(1 + IX[)-(+)[[L(lla + O(1),
j=n--1
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since a > 0, and an is of polynomial growth, while also by (1.13)

(3.20) -a + l/p- A < -& + l/p- A < O.

Then using the bound (2.6) (recall a < 1), we can continue (3.19) as

<_ C911(1 + IXl)-(+A’)llLp(IXl<_a,,n "n
t O(1)

__< C10,

as again (3.20) implies that

(3.21) p(a +/) > 1.

Finally, this bound and (3.16) yield the result, cl

Proof of the suJficient conditions of Theorem 1.3. We remark first that the suffi-
cient conditions in Theorem 1.3 imply those in Lemmas 3.1, 3.2, and 3.4. (Recall here
that (1.15) implies (1.14).) Let e > 0. We can find a polynomial P such that

(3.22) If- Pl(x)W(x)(1 + Ix[) <- , x e I.

(Cf. [2, p. 180].) Then for n large enough,

[l(f Ln[f])(x)W(x)(1 +
<- I[(f P)(x)W(x)(1 + [X[)-A[[Lp(I) nt- IILn[P- f](x)W(x)(1 +

Here p(a+A) >_ p(&+A) > 1 (see (3.21)), so the first norm in this last right-hand side
is finite. Next, let Xn denote the characteristic function of I-an/4, an/4] and write

P- f (P- f)Xn + (P- f)(1 X.n) )n - fn.

We can apply Lemma 3.1 to {fn}n__l with/- 1/4 to deduce that

limsup IILn[fl(x)W(x)(1 + Ixl)-zXllLp() <_ CIE.

Next, in view of (3.22), {n}n=l satisfy (3.9)-(3.10) and (3.13)-(3.14) in Lemma 3.2
and 3.4 with fl- 1/4, so those lemmas yield

limsup I]Ln[n](x)W(x)(1 + Ixl)- IIL < > c2 .
n---cx

So

(3.24) limsup IILn[P- fl(x)W(x)(1 + Ixl)-IIL<> 63.
n----+

Combining (3.23) and (3.24), we have

limsup II(f Ln[f])(x)W(x)(1 + Ixl)- llL,( ) c4 .
n--+ cx3

Letting -+ 0+ yields the result.
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In the converse direction, we need the following lemma.
LEMMA 3.5. Let a E (0, 1), /E (0, 1- a), 1 < p < x. Then there exists C such

that for n > 1 and P of degree at most ln, we have

(3.5)

Proof. Choose a’ e (a, 1- r/). Let 5 e (0, 1) be such that 5a’ > a. For m large
enough, Theorem 2.1(a) shows that

nl(W,x) ?Tt
W-l(x), Ix a25m.

am

Moreover, we can replace by _< C for all x it(. (We have replaced W by W1/2 in

(2.3) and used also a,(W1/2) a2m(W). Of course our at above is at(W).) Applying
this with rn := [a’n/2] and using

25m 25[a’n/2] > an,

with n large enough, yields

n/an, Ixl < an,(3.26) -1 (W,x)W(x)[o’n/2] <_ Cn/an, x

Let P be of degree

_
tin, and

(3.27) R(x) an p(x)A_ (W, x)[’/1

Then R has degree <_ tin + 2[a’n/2] <_ (l + cr’)n < n 1, for n large enough, by choice
of a. Next, with the definition for Sn in Lemma 3.4,

R(x) Sn[R](x) 7n-1 {pn(x)H[Rpn-IW2](x) pn-(x)H[RpnW2](x)},
7n

by the Christoffel-Darboux formula. Using our bounds in Theorem 2.1, we obtain for

n

IRWI(x) <_ ClalJ2 E IH[RpW](x)I"
j--n--1

Using Riesz’s theorem that H is a bounded operator from Lp() to Lp(I) (the special
case S s 0 of Lemma 3.3), we obtain

n
1/2IIRWllLp[_an,a] < L2an E

j--n-1

where we also used the infinite-finite range inequality (2.8) for the weight W2. Now
(3.26) shows that

IP(x)l, Ixl _< aan,IRWl(x) < clP(x)l, x .
Then (3.25) follows.
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Proof of the necessary conditions of Theorem 1.3. Let A E I, c > 0. We assume
the convergence (1.11) for every continuous f" satisfying (1.12). Let (x)"
I --, (0, cx) be an even continuous function that is decreasing in [0, ), with

(3.28) (x) >_ (log(2 + Ixl))-/(.), e [o, ),
but

(3.29) lirn (x) 0.

We let X be the space of all continuous functions f" --, I1 with

]If]Ix max If(x)lW(x)(1

Furthermore, let Y be the space of all measurable functions f" --, with

[[fl[y "= [l(fW)(x)(1 +
Now each f E X satisfies (1.12), so our hypothesis ensures that

lim [[f- Ln[f]llr O.
n--,x

By the uniform boundedness principle (recall that X is a Banach space), there exists

C1 > 0 such that

IIf n,[f]ll < Cllfllx Vn > 1, Vf e X.

In particular, as L[f] f(0) (recall pn(W,x) x) we obtain for every continuous

f" with f(0) 0, that

Ilftt -< Cllfllx,
provided the norm on the right-hand side is finite. Hence, for every n _> 1 and every
continuous f with f(0) 0 for which the right-hand side is finite,

(3.30) IIL,[f](x)W(x)(1 + Ixl)-llL() _< C.II(fW)(x)(1 /
Now choose g,n > 1, such that g is continuous in/1(, g 0 in [0, oc) t2 (-oc, -a/2);
(3.31) IIgllx -II(gnW)(x)(X /

and for Xjn [-a/2, 0),
(g,W)(xy,)(x / IXSni)"(xj,)-sign(p(xj,)) 1.

Then for x > 0, our choice of gn and then (2.11) yield

x,E[-a,/.,O)
gn(Xjn)

ptn(Xjn)(X--Xjn)

p(x)
p’()(x-x) w-(x)( + Izl)--o(x)

Iy(x)lW-l(xy)(1 +

3/2

n
Xjn[--an/2,0)

Ipn(X)[
(1 +

>_ C4l(an)an/21pn(x)l Xj- 1,n Xj+l,n

x + IXjn]
(1 --IXjnl)-a
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by (2.5). At least for x >_ 1, we have (see (2.18))

x + Ixyl x + Itl, t (Xj+l,n, Xj--l,n),

so for x >_ 1,

1/2 [a/4 (1 + t)ILn[gn](X)l > C5rl(an)an Ipn(X)l dt
Jo x+t

1/2 fmin{an/a x} (1 + t) -a> C5r(a)an Ip(x)l ! dt
o 2x

{1,>_ c6(a)a/21p’(x)l og(1 + min{an/4, x}),
x (min{a,/4,x})_,

a>l,

a<l.

Let us set

(log x)* := log(1 + x)
1

if a= 1,
otherwise.

By considering x E [1, an and x [an 2a] separately, we see that we can rewrite
the above as

(3.32) IL[g](x)l >_ CTrl(an) 1/2.n IP(x)lx-OOg X)*

for x e [1, 2an] (recall the definition (1.3) of &). Then we obtain from (3.28) that for
x e [1, 2a],

/2Inn[l(x)l > C(og)-/() I(x)lx-.
Hence, using (3.30)-(3.31),

62

_
]lLn[gn](x)W(x)(1-1- [Xl)-AllLp[1,2ar]

1/2>_ Cg(logn)-l/(2P)an [[(pnW)(x)(1 + [xl)-(a+zX)[lLp[1,2a]
_> C0(log It) -1/(2p)1/2 II(pW)(x)(1 / Ixl)-(+)llL,[0,2al 611(logn) -1/(2p)

where we have used the bound (2.6) for p in [0, 1]. So

1/2C12(logn) 1/(2p) >_ an [[(pnW)(x)(1 + IXl)-(&+A)lILp[_2an,2an].

Now let/52a be the polynomial of Lemma 2.5 of degree O(an log an) o(n) such that
for Ix <_ 2an,

/52a (x) (1 + x2)-(&+zx)/2 (1 + Ixl)-(a+).
Then we obtain from Lemma 3.5, (with a 1/2, and for example r 1/4)

n
1/2C13(logrt) 1/(2p) >_ an E

j=n--1

C1411-)2an (X)llLp[-a/2,an/2]
> Clsll(1 +

_l/p-(&+A)
an A < 1/p-&,

C16 (log ’n) 1/p, A 1/p &,
I, > l/p-&.
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This is not possible for all large enough n, unless A > lip- &. So we have proved
(1.13) for all 1 < p < cx) and in particular, for p <_ 4. This establishes the necessary
conditions for p <_ 4. To prove the necessary conditions for p > 4, we return to (3.32).
First, for small enough E (0, 1), it is an easy consequence of Theorem 2.1(c) and (d),
that

Then by (3.30)-(3.32),

-(a+a) (log n),

_
C17?(an)aln/211pnWllLp[ha.,2a,]an

>_ Clsri(an)an" 1/p-(a+A)(logn),n(i/6)(l_4/p),

by (2.10) as p > 4. Thus

(3.33) lim sup (an)an/p-(+A (log )*Tt(1/6)(1-4/p)

for every function r] satisfying (3.28)-(3.29). If

lim sup al/p-(c+A (log n)*n(1/6)(1-4/p)
n--+ cK3

then it is easy to construct (x) decreasing slowly enough to 0 to contradict (3.33).
So

limsup al/p-(+A) (log n)*n(/6)(-4/p) <
n--(x)

and it follows that (1.14) is necessary if c : 1 and (1.15) is necessary if ( 1.

Proof of Theorem 1.1. For W WZ, an Cn//, n >_ 1, and the necessary and
sufficient conditions in Theorem 1.3 are very easily seen to become those in Theorem
1.1.

Proof of Corollary 1.2. Let

T(p) - P <- 4,

p>4.

For the convergence (1.5) to hold for every 1 < p <_ and every continuous f
satisfying (1.6) with a given A E I (independent of p), the necessary conditions of
Theorem 1.1 imply that

A >_ T(p), 1 < p < oc.

Hence

A>_ lim T(p)=l-&;
p--- 1+

A_> lim T(p)=__, -.
So it is necessary that (1.7) holds.
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Conversely, for the convergence (1.5) to hold for every 1 < p < and every
continuous f satisfying (1.6), the sufficient conditions of Theorem 1.1 show that it
suffices that

(3.34) A > (p), 1

First, (1.7) shows that

A >_ 1-& > 1/p--&=T(p), 1 <p<_ 4.

So for 1 < p 4, (3.34) is fulfilled. Next, we can write for p > 4,

P

If i (2fl/3) O, then for 4 < p <

T(p)T(4)=--+ 1-- =-+<l-dA,
by (1.7) so gain (3.34) is fulfilled. FinMly, if 1 (2fl/3) < 0, then for 4 < p <

<

by (1.7). So we have shown that (1.7) implies (3.34) for all 1 < p < , nd this
establishes that (1.7) is sufficient.
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INVERSE PROBLEMS AT THE BOUNDARY FOR AN ELASTIC
MEDIUM *

GEN NAKAMURAf AND GUNTHER UHLMANN$

Abstract. In this paper, it is proven that one can determine the full Taylor series of the
elastic tensor of an elastic, isotropic, inhomogeneous medium in all dimensions n >_ 2 and for a

generic anisotropic elastic tensor in two dimensions by making measurements at the boundary of the
medium of the displacement vectors and corresponding stresses. This information is encoded in the
so-called Dirichlet-to-Neumann map.

Key words, inverse boundary problems, elasticity tensor, Dirichlet-to-Neumann map

AMS subject classifications. 35R30, 35P05, 35J05

1. Introduction and statement of the results. Suppose we have a linear,
inhomogeneous elastic medium. The inverse problem we address in this paper is
whether knowledge of the displacement and the corresponding stress at the boundary
of the medium determines its elastic parameters. In IN-U], the authors proved that
the answer is in the affirmative in two dimensions in the case that the medium is
isotropic and the Lam parameters are close to constant in an appropiate topology.
In this paper, we prove that from the boundary information given one can determine
the Taylor series of the Lam4 parameters at the boundary in the isotropic case in
all dimensions. We also prove a similar result for anisotropic conductivities in two
dimensions which satisfy additional conditions. The boundary determination of the
elastic parameters in the isotropic case in two dimensions has been proved earlier in JA-
N-S]. In a forthcoming article, we prove that one can determine the Lam parameters
in the interior by making the same type of boundary measurements in all dimensions
n _> 3 (see IN-VII). The result proven in this paper is a necessary ingredient in the
proof of the identifiability result in the interior.

Now we state more precisely the problem and the main results. Let n >_ 2 be an
integer and t C In be a bounded domain with smooth boundary 0t. Physically, t
is considered as a linear, inhomogeneous, elastic medium. The deformation of t due

to the displacement vector f E C(Ot) given on 0 is expressed by the following
Dirichlet boundary value problem in terms of the displacement vector u u (x)"

(1.1)
Lc u div a(

u [0 ----f,

where a() is the stress tensor given by the generalized Hooke’s law:

(1.2)
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The componentwise expression of (1.2) is

n

(1.3) crij(-) E Cijkk(-) (1 < i, j <_ n).
k, --1

Here e() is the linear strain given by

(1.4) e(’) :-- SymV ’ 2-1(V ’ -t-(V )T),

where C C(x) (Cijk(X))l<i,j,k,<n E C(-) denotes the elastic tensor and

(V u)T denotes the transpose of V u.
We shall assume throughout the paper that the elastic tensor satisfies the following

symmetries and strong convexity, which are physically natural conditions:

Symmetries. For any i, j, k, t (1 <_ i, j, k, g _< n),

(1.5) (i) Cijk Cije, (ii) Cii Cyik, (iii) Ciyke Ckiy.

Strong convexity. There exists 5 > 0 such that

(1.6) trace((C)) >_ 511112

on Ft for any n x n matrix e.
It is well known that (1.1) admits a unique solution E C() if C satisfies

(1.5) and (1.6). We define Ac(f) G C(O) by

(1.7) Ac(f) a(’) Io,

where is the solution of (1.1) and denotes the unit outer normal field to 0f.
DEFINITION 1.8. We call the map

Ac C(Oa) f Ac(f) e

the Dirichlet-to-Neumann map (D-N).
The problem we consider in this paper is whether we can recover C and all of its

derivatives on 0f from Ac. In this paper, we prove that this is the case for isotropic
n-dimensional medium and for a "generic" class of anisotropic elastic tensors in two
dimensions.

DEFINITION 1.9. We call the elastic medium ft or its elastic tensor C isotropic

if C (Cj)I<_,j,,<n is given by

with Lamd moduli ), # C(t), where 5ik is the Kronecker delta.
THEOREM 1.10. For any n >_ 2, for any isotropic elastic medium there is an

inversion formula for identifying C and all of its derivatives on O from Ac.
Remark 1.11.

(i) The inversion formula can be seen in the proof of Theorem 1.10, which is given
in 3.
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(ii) Akamatsu, Nakamura, and Steinberg [A-N-S] proved Theorem 1.10 for n 2.
We now describe a corresponding result for anisotropic C in two dimensions under

some conditions that we formulate below.
Let (x,... ,x) denote local coordinates and (x,... ,Xn) denote cartesian coor-

dinates. Set
n

a, b, c, d--1

n

a, b’-"l

where
Ox, Ox

r--1

Assume that there exist scalar functions C() (1 a 2n) satisfying

n(n+l)/2 n(n+l)/2

(1.12) C",ZsaZ= A
a,=l a=l

for any covariant symmetric tensor () and the associated contravariant symmetric
tensor (a). Here (C,), (a), (a) are defined by renumerating the double indices
(i, j), (k, g) of (CYk), (sy), (Y) into single indices a, .

THEOREM 1.13. Let n 2 and C satisfy (1.12) and the generic condition in

Definition (2.5). Then there is an inversion formula for identifying C and all of its
derivatives on O from Ac.

Remark 1.14. The inversion formula can be seen in the proof of Theorem 1.13 in

3.
The proof of the min results follows from the ymptotic formula for the full

symbol of the D-N map proven in 2. We write the full symbol of the D-N map in terms
of the surface impedance tensor. In the isotropic cse we can easily recover the elastic
tensor from the surface impedance tensor (see 3). For the nisotropic case in two
dimensions the surface impedance tensor has three components and the elastic tensor
has also three components under the ssumption (1.12), so that it becomes possible
to determine one from the other. This is the main reason to assume condition
like (1.12). The computations in 2 rely on Stroh’s formalism which cn be seen,
for instance, in [C-S] for the three-dimensionM case. We include in the appendix an
extension of Stroh’s formalism to the n-dimensional cse.

We Mso note that the problem considered here is direct analog of the inverse
conductivity problem. Theorem 1.10 is the analog of a corresponding result proven
by Kohn and Vogelius [K-V] for the inverse conductivity problem. Another proof of
this result using the full symbol of ther D-N map was given in [S-U]. The boundary
determination in the anisotropic ce was proven in [L-U].

2. 11 symbol of the D-N map. h, what follows we identify the orthogonM
complement N*(O) of the conorml bundle N*(O) of0 and the cotangent bundle
T*(O) of 0 by giving the Euclidean metric to and its induced metric to 0.
The identification is done via the unitary map
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for each y E OFt. Moreover, we assume that the elasticity tensor C satisfies (1.5) and
(1.).

Let s(x) be a local defining function of 0 such that ]ds(z)] 1 on OFt and z
(X zn--1 Xn) (yl,... yn-1, s) y be local coordinates such that dyJ_kds(1 <_
j < n-1) near a fixed point y0 E 0. We assume that is locally given by {s(x) > 0}.

DEFINITION 2.1. For any (y, 7) T*(O), we define the surface impedance tensor
z( ) @

(2.2)

z(u, v)

Q(u, v)

s(u, v)

=-Q-(y, 7)- v/Q-(y, 7)S(y, ),

(271") -1 ,f: (W, w>-ld,

-(271-) -1 f: (w, w> -1 (w,

where the (j, k) component (, w> of the mixed tensor (, w) is given by

n

(,> (), ()=
i,g=l

n

E gai(y)gb(y)gCk(y)Cajbc(Y)’
a, b,

where
n

(cos a)]l-lr + (sin a)ds(y) E i(dxi)Y’
i=1

n

-(sin )ll-l + (cos )ds(y) E wi(dxi)y"
i--1

Similarly, we can define the surface impedance tensor Z(y, ) for every surface
F()" s(x;) := s(x)- s(y) 0, where is close to y e 0t and (y,’) e T(F(y)). By
the natural identification T(O)---T(F())-In, we can fix 1 e T(O)--T-*y (F())
and let Z(y, r/) depend smoothly on y near y y. If any variation along the normal
direction of 0t is necessary, we interpret the surface impedance tensor in this manner.
For example, in Theorem 2.6 we consider the derivatives of Z(y, 7) with respect to s.

DEFINITION 2.3. For any (y, 7) E T*(0gt)\0, we define Ks(y, 7) C([0,);
Hom(.=., S)) by

), CF(,,)] ( e [0 ))(2.4) Ks(y, 7) K2(y r/), K22(y, 7)

with

Ks (Y, 7) -(ds(x), ds(x)) -1 (ds(x), 7)

gj2(y, ) -Iwl<ds(x), ds(x)>-
K2(Y, 1) -I11-{(1, ds(x))<ds(x), ds(x))- (ds(x), ) (, ?}}

K2s2(y, 7) -(7, ds(x)>(ds(x), ds(x)> -1

1From now on, C(U; V) (resp., C(U,V)) denotes the set of smooth V-valued functions
(resp., sections U V).
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and .. r*(T*(a)c*(T*(O))c with the natural projection r: T*(O) O.
Here "@," "C," and "Hom" denote the Whitney sum, complexification, and the vector
bundle of homomorphisms, respectively. Moreover, x (y,s) and (ds(x),ds(x)},
(ds(x), 7) are defined similarly as the above (, w) by using the identification 7 e
T(a) -=T (r(x)).

DEFINITION 2.5. We say that the elasticity tensor C is generic at (yo,7) E
T*(O)\O if all the eigenvalues of Ks(y, 7) are distinct for each s e [0, e) and (y, 7)
in a conic neighborhood (y0, 70).

It is well known that the D-N map

Ac C(Oa, T* (0a)c T*(Oa)e) C(Oa, T* (0a)c T*(Oa)c)

is a classical pseudodifferential operator of order 1.
In terms of the above local coordinates (xl,..., xn-l,xn) (yl,..., yn-1, S), we

have the following asymptotic representation formula for the full symbol (Ac) of Ac.
THEOREM 2.6. Assume that either (i) or (ii) is satisfied.
(i) C is generic at (yo, 70).
(ii) C is isotropic near yo.
Then we have the following formula for (Ac)(y, 7):

(Ac)(y, 7) - -17[Z(y, 7) + E 171-JWj(DJZ)(Y, 7)

1in a conic neighborhood of (y0, 7) where Ds -gr- and each Wj is a linear
bijective map on the set of all n n matrices which do not depend on the s derivatives
of C. The meaning of _" in (2.7) is as follows. For each k N,

k-1

Y(Ac)(y, 7) + 17[Z(y, 7) E 17[-YWy(DZ)(Y’ 7) 0
j=l

mod (k-1, S-k+)

in a conic neighborhood of (Y0,7). Here mod(Tk-,S-k+) means that we are ne-
glecting the terms in S-k+ in a conic neighborhood (y0, 7) and the term S-k+ in
a conic neighborhood which depend only on the s derivatives of C up to order k- 1.
Moreover, S-k+ is used to denote either the usual class of classical symbols or the

n--1associated class of pseudodifferentiM operators and k= does not exist for n 1.

Proof. We first give an outline of the computation of (Ac)(y, 7).
Step 1. We write (1.1) locally in the following form using tensorial notation.

(e.s)
Mu =0 in f,

where

(2.9) M. (i,g__lVi (ck(x)Vg ")

B. (X)V 
i,--1

j$l n |

k--,1,...,n)

k--l,...,n)
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and Vi is the covariant differential with respect to
Step 2. We transform (2.8) into the following boundary value problem:

(2.11)
DU NU ins>0,

[In, On]Uls=o =A f,

where

(2.12) U= [A] y(A)(y, r]) irv

v -(ds, ds)Ds u -(ds, Dr) -, "5( (ds, Dy) (ds, r]),

(2.14) Ks(y, r) a(Ns)(y, r]) (i.e., the principal symbol of N)

and [In, On] denotes the matrix whose first n rows and columns is the identity matrix
and whose last n rows and n columns is the zero matrix.

Step 3. We diagona_lize the system. There exists classical pseudodifferential op-
erators Qs(y, Dr) and N(y, Dv) of order 0 and 1, respectively, depending smoothly
on s E [0, e), such that

(2.15) LQ QL 0 mod S-,
where

(2.16) L=D-N, L=Ds-N,
On, N-

with =t= (the imaginary part of each eigenvalue of a(/)) > 0, and

(2.17) (Qs) a(Q) + E R-j) (Y’ 7), ord R-j) -j
j=l

and the order of the s derivatives of C in each R(ffj) is not greater than j.
Consider the well-posed Cauchy problem:

ins >0,

We define the map T by

__,+
(2.19) T h := w

Step 4. We write the D-N map in terms of Qs. Clearly,

[ ]U:=QJ-Th = In
On
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satisfies

Moreover, if h satisfies

(D N)U 0 mod C.
(2.20) R h A f, R ([In, On]QsJT)ls=o,

then U satisfies the boundary condition of (2.11). Hence the Poisson operator P is
given by

(2.21) P- QsJTR-1A mod S-.
Therefore, the D-N map Ac is given by

Ac -x/--l[0n, In]PIs=0 mod S-.
Although (2.22) is a global formula for Ac, we only have to compute Y(Ac) in a conic
neighborhood of (y0, T) (i.e., microlocally at (y0, r)). Hence in the following we
assume that all pseudodifferential operators are defined microlocally at (y0, r) and the
the notation for pseudodifferential operators and their symbols such as ". E S-k+1,
". =-- mod S-k,’’ ". .," ".

_
.," ". .," "mod(Tk-l, S-k+1), etc. are understood

to be microlocal at (y0,
We now go into detail of the proof of Theorem 2.6. To start with, we explain

more precisely the choice of Qs and N.
For simplicity we drop the subscript "s" from now on. So for example, we will

simply write Q instead of Q.
Since L inherits the ellipticity from that of M, there exists a homogeneous elliptic

symbol Q(y, 7) of order 0 such that

(2.23) K(y, 7)Q(y, 7) Q(y, ri)a(N)(y,

Hence there exists D E S such that

(2.24) LQ QL’ =_ 0 mod S,
where

(2.25) L’= D8 A- D, A a(N)(y, Du)

(2.26) a(D) =_ -Q-IDsQ mod (T, S-).

Next we seek a pseudodifferential operator (I) SO such that

(2.27) b- I2n S-1 L’(I:’ (I)L 0 mod S-.
Hence Q can be chosen as

(2.28)

and N is constructed in the process of choosing Q.
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(2.29) (I)(-J) [ (i)(20j)
and

In order to construct Q and N we define

(I)J) ]0n
E

(2.30) E(-Y) [ E(j)On
inductively as follows. Set

Define (I)(- 1) and E() by

(2.32)

and

(j= 1, 2,...)

(j 0,1,2,....)

(2.33) E(O)=_[a(Jl)) 0n ]
Having constructed q)(-J)(1 _< j <_ k), E(-J)(0 < j < k), we define O(-k-1), E(-k) by

(2.34)
(-k-l)+

J-- ()(2T k-l)

(2.35)
a(J-k)) On

E(-k)

where

(2.36) j(-k) [ j[k)j2(-k> j;k)ja(;k) ]
k k k-1

j=l j=l j=O

Here we note that (2.32) and (2.34) are uniquely solvable for (I) ), (I)(2 1), and

(I)k-), (I)k-), because/+ and 2- do not have any common eigenvalues.
We prove now the first key lemma.
LEMMA 2.37.

(2.38)
SO j(o) =_ Q-IDsT mod (T, S-),

S-k j(-k) --= Ds(i)(-k) mod (Tk, S-k-i) (k 1,2,...),
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and

E Tk+l S-k-1

T+ S-k

for any k 0,1,2, Here, for any 0 <_ Z, m Z, T.S" denotes the
homogeneous classical symbols of order m which depend only on the s derivatives of
C up to order .

Proof. It is easy to see that

SO j(o) =_ Q-1DsQ mod (T, S(-1)),

(-)(Y, 7) 1. S-, E(O)(y, 7) " SO.

Then

S-k j(-k) =_ DsO(-k) mod (Ta, S-k-),
(I)(-k-1) (y, r]) E Tk+l S-k-l, E(-k)(Y, 7) Tk+ S-k

for any k 1, 2,... is proved by induction on k.
Since it is easy to prove that (2.40) is already valid for k 1, we only need to

prove (2.40) for k + 1, assuming that it is already valid for k. Observe that

j(-k-1)

( )( )( )L’ I2n + E (-J) I2n + E O(-J) Ds A- E E(-J)
j= j= j=o

k k k-1

{nt(X2n-]--EO(-J)) (I2n---E(-J)) (Ds-A-EE(-J))}-"LtrYP(-k-l)

j= j= j=o

j=o j=l

k

j=0

+ E ffP(-J) E(-k)
j--1

Hence
S-k-1 J-k-1 =_ Ds(-k-1) mod (Tk+l, S-k-2).

The facts that (I)(-k-2)(y,r) Tk+2. S-k-2 and E(-k-1)(y,) Tk+2. S-k-1 are
clear from (2.34)and (2.35).

Now let N and O8 be pseudodifferential operators of order 1 and 0, respectively,
depending smoothly on s [0, e) such that

E!-j) I2n -}-(2.41) Y(N) A +
j--0 j=l
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Then, using (2.36) and (2.38), it is easy to see that Qs and Ns satisfy (2.15)-(2.17).
xn-1 xn so thatNow we arrange our local coordinates (x1,

, o/I, Ol o,..., o), ds(yo) (0,..., 0, 1)

and dxJ (1 G j <_ n) are orthonormal at y0 in terms of these special local coordinates.
Then, as in IN], K(y0, /0) is related to N(0), which is defined by (4.45) in the Appendix
through the relation

(2.43) K(yo, 7) On In N(O)

in terms of these coordinates. By using (2.43), we normalize the eigenvectors and
the generalized eigenvectors (-aa,fa) (1 <_ a <_ 2n) of K(yo,l) in terms of these
coordinates using (4.8) in [C-S]. Here as, fs are similar to those in (4.14) of [C-S].

Let As, Ls(1 <_ a <_ 2n) be covariant vectors such that

(2.44)

in terms of the special local coordinates, and define the n x n matrices A, L by

(2.45) A [A1,...,

Then we can define Q by

(2.46)

where "-" denotes complex conjugate..
Let As, Ls (1 _< c _< 2n) be the contravariant vectors associated with As, Ls (1 <_

a _< 2n) and define the n x n matrices A, L by

L’ [L .,Ln].(2.47) A’= [A, .,An],

If we interpret (4.8) in [C-S] by using the tranformation rule of covariant and con-
travariant vectors under change of local coordinates, we have

(2.48) QTjQ, I,

where

(2.49) Q’= J=
L’ -’ In 0,

Hence

(2.50) Q-. (Q,)Tj.
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It is convenient now to introduce the following definition.
DEFINITION 2.51.

(i) For a given matrix F (Fjk)l<_j,k<_n, We denote the unique solution X of the
equation N+X XN- F by X W(F).

(ii) For a, b E Z, a >_ O, we define =oT+a’Sb- { classical symbols rs(y, rl) which
depend smoothly on s [0, e) and admit an asymptotic expansion rs(y,l)
y4=0 rb- (y, r/) such that rs (y, rl) - -4o rb- (Y, r/) }.
Here " means that each rbs- (y, rl) depends only on the s derivatives of C up to

k-1 (rknt-a-1, Sb-k) for each k N In particular,order g+ a and rs-=o rb- --0 mod
+a Sb- {homogeneous classical symbols rbs-(y, rl) of order b- which depend
smoothly on s [0, ) and only on the s derivatives of C up to order + a}.

The following is also a key lemma.
LEMMA 2.52. For each j 1, 2,..., we have

(-J)12 =- -WJ ((L’)TDJsfit + (A’)TD{L) mod (fij-1, S-J-l)

and

(2.54) (I)(2j)-- (-1)Y(I)) mod (/j-1, S-J-l).

Proof. Both statements are proved by induction on j at the same time. From
(2.3S), (2.48), (2.50), we have

(2.55)
=_ -((L,)TD- + (A’)TD-)
=_ -((-’)TDsA + (-’)TDL)

mod (T, S-1 ),

mod (T, S-1 ).

Since N N-,J)-- -(2 mod (,S-1), (2.32)and (2.55)imply

(2.56)
(I)(-1)

12

(I); 1)

W((L,)TD- + (A’)TDff)

--(I)1) mod (o, S-2).

mod (T0, S-2),

Now assume that (2.53) and (2.54) are valid for j. From (2.40) and the induction
hypothesis, we have

(e.57) JJ) =- -W ((L’)TDJ+I- + (A’)TDJ+-) mod (J, S-J-1).

Then (2.53) for j + 1 follows from (2.34) and (2.57).
From (2.34) and N+ N-, we deduce

J+(I)--j-l) (I)(2-J-1)J 7(J(2-j)) O.

By using (2.38) and the induction hypothesis, we have

+(-J-) (-J-)l- (-1)J+a(Jl) =_ 0 mod (J,S-J-1).

Comparing (2.58) with (2.34), we deduce (2.54) for j + 1.
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LEMMA 2.60. Let

(2.61) 8 Os I2n.

Then we have
(2.62)

() -A Z A-I[Z 0](oo) 0n

O - -,j=IA-I[I,O]Qo-y) 0I e =0 S-Y

(-[o z]>l=o)--=[o zlo-
Proof. By the formula for the full symbol of the composition of two pseudodiffer-

ential operators, we have

(2.63)
k=0

Frow now on we denote, for convenience, the right-hand side of (2.63) by Q0 (D G0. By
using (2.39) and(2.41) in (2.64), we conclude

(2.64)

Then (2.62) follows immediately from (2.20)and (2.63).
LEMMA 2.65.

(2.66)

Proof It is easy to prove that g(R)k Y]j=0 TJ+I" S--k for each k (2 < k N)
if 9 Y’=o Tj+I S-j-1 Here 9(R)k denotes the kth power of 9 with respect to the
product "(R)." Then, by (2.39),

ET+I. S-Y-k
j=0

for each k e N. Hence we get (2.66) from (2.62).
LEMMA 2.68.

(2.69)
j=l
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Proof. It is easy to prove that

gl @ g2 gO)gO) + g-j)gO) + 2 E TJ
j=l j=0

for gk -- j=O g(k-j) e =0j S-J (k 1, 2). Then from (2.22), (2.62), and (2.66),
we conclude

Y(Ac) ILA-[[

(.o + {o o +-i oo}- z _1
j=l

LA-

j=l
0n

Using the transformation rule for tensors under change of local coordinates, we have
from (2.44) and (4.31) in [C-S] (see the Appendix) that

(2.71) Z -1 LA- _Q-1 1 Q-S.

Hence, by using (4.32) and (4.33) in [C-S] and the fact that Z- Z*, we conclude

(2.72) L- LA- 2Q-.

By substituting (2.71) into (2.70), we get (2.69).
Now from (2.53), (2.54), and (2.69), we get

(.) () -z,- :(-1)+Q-w ((,)D +

By using (2.71), we can replace (L’)TD + (A’)TDL by -I(A’)T(Dg2). Thus
we obtain

finally proving (2.7).
3. Proofs of the theorems.
(I) Proof of Theorem 1.10. Observe that

(3.) Q -s:, s s
in terms of the special local coordinates introduced in 2. Then by using (4.52) and
(4.53) in the Appendix, we have

(a.e) z(0,,0) 0 ". O
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in the special local coordinates.
Hence

(3.3)
t 2-1 (Zll + --Zln), ,’ -2-1’Z-n (Zll 2--Zln)(Zll +

in these special local coordinates.
Since the choice of these coordinates is stable near y0 for the fixed r/, Theorem

1.10 follows directly from Theorem 2.6 and (3.2).
(II) Proof of Theorem 1.13.
Let

0 0
0 0 As

in terms of the local coordinates introduced in 2. For simplicity we set

(3.4) a A, b A2, A3 2-1d

and assume the following technical condition:

(3.5) a>0, b>0, d>0, .ab-d2>0 neary0.

Using (4.32), (4.33) in page 320 of [C-S], we have, after tedious computations, the
following formula for

(3.6)

in local coordinates:

(3.7)

Zll

Z12

[ ]Zll Z12
Z=

Z21 Z22

=AB(A + B)v/A2 + B2/{v/D(A2 + AB + B2)}

=-vf-ABv/A2 + B2/{2(A2 + AB + B2)}

Z21 --Z12

Z22 =D(A + B)v/A2 + B2/{v/(A2 + AB + B2)}

where

(3.8) A ab- x/’a2b2 -abd, B lab + x/a2b2 -abd2,

We note that a, b, d can be expressed in terms of A, B, D.
manipulations, (3.7) implies the following formula for A, B, D"

(3.9)

By simple algebraic
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Here the double signs 4- and : should read according to the convention that the upper
signs and lower signs are grouped together.

Next we show how to recover the derivatives of C at the boundary from the
derivatives of Z. By recalling the transformation rule of tensors under change of local
coordinates and the stability of the choice of the special local coordinates, we only
have to consider (Zjk) and its derivatives.

From now on we simply denote by 0 any kind of differentiation. Then we have

D30 (z D-2BOA + D-2AOB 2D-3ABOD

Z12\ /(3.10)
(A2 / B2)1/2 (A2 + AB + B2)2cO(v/Z12)

B2(A3 + A2B + B3)OA + A2(A3 + AB2 + B3)OB.
The determinant of the coefficients of OA, OB, OD in the right-hand side of (3.10) is

-ABD-4(A3 B3)(A2 + B2) 0. Hence we can recover OA, OB, OD from Zjk, OZjk
(1 <_ j,k <_ 2).

Since the coefficients for OmA, O’B OmD (m > 2)in0m(Z) 0m(--2Vf-A--Z)Z22
Om(/Z12 are the same as that of OA, OB, OC in 0( 0( 2vzLz-Z12 0(--Z12)’
we can also recover0mA, 0mB, 0mD (m>_2) from0tZyk (l _< j, k <_ 2, 0<_<_
m).

Therefore we have proved Theorem 2.6.

Appendix. In this appendix we point out the modifications which are necessary
to generalize Chadwick and Smith’s [C-S] results to n-dimensional generic, anisotropic
media and n-dimensional isotropic media. We shall write the formulas that need to
be changed in [C-S] with the same numbers.

The most important formulas from [C-S] that we have used in the previous sec-
tions are (4.31)-(4.33) for n-dimensional, generic, anisotropic media and (4.31)-(4.33),
(4.52), (4.53) for n-dimensional, isotropic media.

For n-dimensional, generic, hyperelastic, anisotropic media everything which leads
to (4.31)-(4.33) in [C-S] remains basically the same except for the definitions of Q()
and R().

Let ey =t (0,...,0,1,0,...,0) E Cn(1 _< j _< n) and set m (sin)el
(cos)en t(ml,... ,mn),n (cos)ei + (sin)en =t (n,...,nn). Then we define
Q() and R() by

Q()= (Qii(n); i $1, n)j-- l,...,n

where
n

Qij(n)-- E Cpiqjnpnq,
p,q=l

R(o) Rii(m, n);
n

n

Rij(m,n)- E Cpiqjmpnq.
p,q=l

For n-dimensional, isotropic media, we first discuss (4.52) and (4.53) in [C-S] and
their related formulas, and then we will discuss (4.31)-(4.33) in [C-S].

The formulas leading to (4.52) and (4.53) need some nontrivial modifications. We
define

N1 (0), N2(0) ](4.45) N(0)
N (0)
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where

N(0)=- 0 ""

N(0)

Ns(0)

A
A-{-2

-1

A+2

O ,o,

0

(4.47) N(0)=i (l_<c_<n-1). N(O)n=in+._l.

(4.48)

(4.50) NT(O)7 -i7 (1 _< c <_ n- 2. c n).
NT(O)?]n-1 --i]n-1 + ]n,

r/a+n (1

(4.51) a K. (1 _< a _< n- 2). /n-1 Kn. 7In Kn_1,

Ta+n ga+n (1 _< o _< n- 2). /2n-1 g2n, 72n K2n_l,

(4.52)
1

$1 - {(1 2u) / (1 u)) ((1 () (n (n (
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(4.53) s ,- (z 4.)/( .) ( (R) + (R) ) + (R)

j=2

Now in order to discuss (4.32) and (4.33), we set

We note that and g are not always the complex conjugates of a. and g. Then it
is not so difficult to prove (4.32) and (4.33).

Formula (4.31) can be proved in the same way as in [C-S] (see especially p. 324),
because the length of the Jordan chain of our N(0) is also 2.
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LOCAL INVERTIBILITY OF SOBOLEV FUNCTIONS*

I. FONSECAt AND W. GANGBOt

Abstract. A local inverse function theorem is established for mappings v E wI’N(’,]IN),
Q Q ]N open set, such that det Vv(x) > 0 almost everywhere in x E 2. Regularity of the local

adj(Vv) Linverse v is obtained provided that her xTv det Vv () for some 1 _< s < Tcx). The local
invertibility property is used to study the weak lower semicontinuity of a functional involving variation
of the domain.

Key words, local invertibility, topological degree, weak lower semicontinuity

AMS subject classification. 49

1. Introduction. The aim of this paper is to give a simple proof of local invert-
ibility of continuous functions v E WI’N (,]N), where C ]1N is an open set and
det Vv(x) > 0 almost everywhere in x E (Theorem 3.1). We show that the local
inverse function w is W1’ and under suitable hypotheses we improve regularity of
w to W’s for some s > 1. Precisely, it is shown that v is locally invertible almost
everywhere in the sense that for almost every x , there is an open neighborhood
D of x and there is a function w e W’l(v(D), D) such that v(D) is an open set,

(1) v o w(y) y a.e. y e v(D),

w c) v(x) x a.e. xD,

and

(3) Vw(y) (VV)--I(/)(y)) a.e. y e v(D),

where (V’V)--I(w(y)) is the inverse matrix of Vv(w(y)). Moreover, if we assume that

detVvs detVv E L() for some 1 < s < +oc, then, as in [Sv], we prove that
w W ’(v(D), D). One can then dede easily that if det Vv(x) 7 > 0 a.e. x
n, v w,q(n), and q N(N- 1), then v D v(D) and w" v(D) D
are homeomorphisms, (1) holds for every y v(D), (2) holds for every x D,
w w’N(v(D),D), and v is an open mapping on n L for a suitable L c RN

which has zero meure (see Corollary 3.3). In particular, we conclude that if N 2,
V Wl’2(n)2, and det Vv(x) > 0 a.e. x G , then w Wi,2(v(D),D) and there
is a set of measure zero L C N such that v is an open mapping on L and a weaker
version of [IS] is obtained. Recently, we became aware of a result by Heinonen and
Koskela [HK], where they show that if a mapping is in W’q for some q > N(N- 1),
its jacobian is positive almost everywhere and N 3, then the mapping is open and
discrete, and so L 0.

Conversely, if v W’q()g for some q > N, det Vv(x) 0 a.e. x G and if for
almost every x0 G v is locally almost invertible in a neighborhood of x0 in the sense
of (1)-(3), then there are open sets l, 2 C g and a set of measure zero N C N
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Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

280



LOCAL INVERTIBILITY OF SOBOLEV FUNCTIONS 281

such that f Ftl U gtl k) N, det Vv(x) > 0 a.e. x E 1 and det Vv(x) < 0 a.e. x E ft2
(see Corollary 3.2).

Note that a homeomorphism v W’(t2)N does not need to satisfy det Vv(x) -0 a.e. x t2. Such an example is provided in [MZ] (see Remark 3.4).
The result in this paper is in the same spirit as the work in [Ba], [CN], [Sv], and

[TQ]. As far as we know, the existence and the regularity of the local inverse function w
is not an immediate consequence of these earlier results where assumptions are placed
either on the trace vlo or on Iv(f)l. By an elementary lemma (Lemma 3.5) and the
invertibility result found in [TQ], one can obtain the existence of the local inverse
function w and then deduce its regularity. Due to his relaxed assumption q :> N- 1
(here we have q >_ N), Tang used an elaborated method to obtain the existence of an
inverse w Wllo’c under the condition introduced by [CN], f det v(x)dx <_ Iv(f)l.

The proof that we present here concerning the local invertibility of v is indepen-
dent of the work by [Ba], [CN], [Sv], and [TQ], and the method employed relies on
basic properties of the degree theory.

In the sequel of this paper, we fix a bounded, open set ft c IN and consider a
function v Wl’q(f)N. We denote by Vv the gradient of v, i.e., the N N matrix
of the partial derivatives of v, and by adj Vv the adjugate of Vv.

As an application of the local invertibility property, we study the weak lower
semicontinuity of functionals E of the form

defined on the set

Bp,q {(u, v) e WI’P(fI, IN) Wl’(,Ig) det Vv(x) 1 a.e. x e t2}

N-I < 1. When N 3, Vu(x)where 1 _< p < +cxz, N _< q _< +oe, +
(Vv(x))- represents the lattice of a neutral elastoplastic change of state of a perfect
cubic crystal, u is the elastic deformation, and v corresponds to the slip or plastic
deformation. (For details, see Ericksen [Er], Davini and Parry [DP], Fonseca and
Parry [FP], and Dacorogna and Fonseca [DF].) We prove that under some convexity
and growth assumptions on the function W, E is weakly lower semicontinuous on Bp,.
If r > 1 and q :fi +cx, we rely on the div-curl lemma (see Tartar [Ta]) to prove that

Vlt (We)-1 Vlt" (Vv)-lweakly in L

whenever

(ue, v) (u, v) weakly in Bp,q.

We notice, however, that the growth condition ofW and the weak lower semicontinuity
of E on Bp,q do not always imply the existence of the minimum of E on Bp,q. Indeed,
{(Vu. (Vv)-1} being relatively compact in Lr does not imply that {(Vu)} or

{(Vv)- } are relatively compact in, respectively, LP, Lq/(N-1) (see [DF], Proposition
4ol)o

We recall that if A is a N x N matrix and det A : 0, then adj A is the N x N matrix such that
A. adj A IN det A. In general, the entries of adj A are certain homogeneous polynomials of degree
N- 1 of the entries of A.



282 I. FONSECA AND W. GANGBO

The paper is organized as follows: In the second section we fix notation and recall
some definitions and well,known properties related to the Brouwer degree. In the third
section we prove the local invertibility property of the mappings v E Wl’q(t, N), q >_
N, under the condition det Vv(x) > 0 a.e. x E Ft. In view of our applications, in
addition we prove that if v v weakly in W,q q >_ N, det Vv(x) > 0 a.e. x gt

and det Vv(x) 1 a.e. x t then, up to a subsequence, ve and v are, respectively,
locally invertible on open sets D(x) and D(x) for almost every x F/, where n(x)
and D(x) are neighborhoods of x such that we(De(x)) v(D(x)) does not depend
on e. The last section is devoted to the applications, where we obtain the weak lower
semicontinuity for a class of functionals E on Bp,q.

2. Preliminaries. In the sequel we will use the following notation.
For x (x,...,XN) N, IX stands for (Ixl 2 +... + [XNI2)/2 and [xl "=

max{ Ixi I,..., IXNI }. If A C ]N IA denotes the Lebesgue measure of A, Ac denotes
its complement, dist(x,A) is defined by inf{Ix- YI" Y E A }, and p(x,A) is given
byinf(Ix-yl" YEA}.

If Yt C ]1g is an open set, v W’I()N, then Vv is the N N matrix of
the distributional derivatives If, furthermore, Vv LN then det Vv is theOxj
determinant of Vv.

We recall some properties of mappings.
LEMMA 2.1. Let be a bounded, open set in ]N and v e (Wlo’cN(f))N such that

det Vv(x) > 0 a.e. x . Then v is a continuous mapping on gl. Futhermore, if K is
a compact set and V is an open set such that K C V CC , then there is a constant
CN depending only on N, such that

Iv(x) v(y)l <_ M- CNO([x

for every x, y K that verify Ix- Yl <- 5, where

M fy IVv(x)lNdx’

0(t)=
lo

and

l(dist(K,lN }.6=min 2, \V))2

Proof. This lemma is an immediate consequence of Theorem 3.5, p. 294, and
Proposition 3.3, p. 292 in [GR] and Theorem 4.4, p. 339 in [Re] (see also [Man]). It
can also be shown that, under the above hypotheses, v is a monotonic mapping (see
the definition of monotonic mapping below).

DEFINITION 2.2 ([GR]). Let t be a bounded, connected, open set in N and
v W’N (gt)N. We say that v is monotonic at the point x if there is a number
0 < r(x) <_ d(x,Ot) such that for almost every r (O,r(x)) the pre-image of the
intersection of the set v(B(x,r)) with the ’unbounded connected component ofN \
v(OB(x, r)) is of measure 0 in B(x, r). We say that v is a monotonic mapping in gt

if v is monotonic at every point x .
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We make some remarks on the Brouwer degree theory. For details we refer the
reader to ILl], [Sc].

Let gt C ]1N be a bounded, open set and let v t -- ]1N be a continuous function.
For every p e IN \ v(Ot) the Brouwer degree d(v, , p) of v with respect to at p
is a well-defined integer depending only on the boundary values of v. In particular, if
V E cl(=)N and p e N \ (V(O)[_J v(Zv)), we have

where

d(v,,p) E sign detVv(x),
xev-l(p)

t
1 if t > 0,

sign
-1 ift <0,

and v(Zv) denotes the image of the set {x e gt: det Vv(x) 0}.
We give some additional properties of the degree.
PROPOSITION 2.3 ([GR]). Let C ]1N be an open, bounded set, v C(()N,

and let p IN \ v(O). Let Cp be the connected component of ]N \ v(O) containing
p. Then we have the following properties:

(4) d(v,,p) d(u,,p) ifu e C(()g and In- v] < dist(p,v(O)),
(5) d(v,,p) O x e such that v(x) p,

(6) d(v,,p) d(v,,q) V q e Cp,
(7) d(v,,p) d(, t,p)/re C(()N and v onO.

Moreover, the degree is invariant under homotopy, i.e.,

(8) d(H(., t), gt, p) d(H(., 0), gt, p),

for every homotopy H e C( [0, 1])N such that p H(Ot, t) for every t e [0, 1].
Finally, if K c is a compact set and p v(K) then (excision property)

(9) d(v, , p) d(v, t \ K, p)

and if t U+__i, mutually disjoint open sets then (decomposition property)

Proof. We refer the reader to ILl].
LEMMA 2.4. Let C IN be a bounded, connected, open set and v W’N()N

such that det Vv(x) > 0 a.e. x . Let f IN - be a measurable function. Then
(i) for every measurable set E C , x - f o v(x), and y -- N(v,E,y) are

measurable and

(11) f f o v(x)] det Vv(x)]dx f N(v, E, y)f(y)dy,
N

where N(v,E, y) is the cardinality of the elements of the set {x E: v(x) y}.
(ii) I] in addition, f is a continuous, bounded function, then for every open set

U Cc Vt such that IOU 0

(12) f f o v(x)det Vv(x)dx f d(v, U, y)f(y)dy.
\v(ou)
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(iii) If U CC is an open set such that IOUI 0 and p E IN \ v(OU), then

(13) d(v, U, p) Iv f(v(x)) det Vv(x)dx

for any f nonnegative, continuous real-valued function that satisfies fN f(x)dx
1, with compact support in V, where V is the connected component of ]N \ v(OU)
containing p.

Remark 2.5. A function v gt -- lN is said to satisfy the N property (Lusin’s
property) if

Iv(E)]- 0

whenever E C t is a measurable set such that ]E 0, and v is said to satisfy the
N-1 property if

Iv-X(A)l--0

whenever A c ]N is a measurable set such that ]A 0.
(a) It is known that if v WI’N (t)N, det Vv(x) > 0 a.e. x t, then v satisfies

the N and the N-1 property. (See [GR], pp. 296-297.)
(b) Also, if v W,q()N with q > N, then v satisfies the N-property. (For

details we refer the reader to [MM].)
Proof of Lemma 2.4. We refer the reader to [GR], Theorem 1.8, p. 280, Theorem

2.6, p. 288, or also to [Sv] for the proof of (11) and (12) in the case where V is a
domain.

First we prove that (12) is still valid even if U is not connected and (13) is a

by-product of this fact. To achieve this, we remark that by Vitali’s covering theorem
there are {Di}, a countable family of open balls mutually disjoint, and a set N of
measure zero such that (2iDi) N N 0 and

(t2iD) t2 N U.

Setting B UiD, we have UiODi COB. If y g \ (v(OB) v(OU)), then by the
decomposition formula (10)

(14) E Xv(ni) d(v’ Di, y) E d(v, Di, y) d(v, B, y).

Let K U \ B. As K is a compact set and K C OU U N, if y v(K) then, by the
excision property of degree (9), we obtain

(5) d(v, U, y) d(v, U \ K, y) d(v, B, y).

By using the fact that v has the N property (see Remark 2.5), D CC , [OU]
INI- IODI 0, by (12), (4), and (5)we obtain

:
f o v(x) det Vv(x)dx= ] f o v(x) det Vv(x)dx

E. /D f 0 V(X) det Vv(x)dx
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]i d(v, Di,y)f(y)dy
(D)\v(OD)

f d(v, B, y)f(y)dy
Jv(B)kv(DB)

Ji(v)\v(ov) d(v, U, y)f(y)dy,

and so we obtain (12).
If, furthermore, fN f(x)dx 1 and the compact support of f is included V, using

(12) and the fact that d(v, D, .) is a constant on V, we conclude that

D
f o v(x) det Vv(x)dx d(v, D, p).

DEFINITION 2.6. Let C ]g be an open set, let v ][N be a function and
xoE.

1. We say that v is differentiable at xo if there is a number Ro > 0, a function
I I, and a N N matrix Vv(xo) such that

V(Xo + h) v(xo) + Vv(xo)h + Ihle(Ih[)

for every h B(0, Ro) and limt_o(t) 0. In this case we call detVv(xo) the
Jacobian of v at xo.

2. We say that v is approximately differentiable at xo if there is a set A c I and
a N N matrix Vv(xo) such that limr--.o IAn[’!l 1 and

lim inf Vxo (t) 0,
t--O,tEA

where

/x(t)=sup{ v(x + tz) v(x) Vv(x)z ’z’ 1}.
In this case we call det Vv(x0) the weak Jacobian of v at xo.

LEMMA 2.7. Let be a bounded open set in IN.
(i) If v W1,N (gt)N is a monotonic mapping, then v is almost everywhere in

differentiable.
(ii) If v W,q()N, q > N, then v is almost everywhere in t differentiable.
(iii) If v W1,q ()N, q > N- 1, then v is almost everywhere in approximately

differentiable.

Proof. We refer the reader to [GR, Thm. 5.4, p. 175], to [Re], and to [MZ].
3. Local invertibility in W,q We first state the main result of this section

(Theorem 3.1) and some of its corollaries.
THEOREM 3.1. Let C IN be a bounded, open set and let v WI’N()N be a

function such that det Vv(x) > 0 a.e. x . Then for almost every xo t, v is locally
almost invertible in a neighborhood of x0, in the sense that there exists r =_ r(xo) > O,
an open set D D(xo) Cc , and a function w" B(y0, r) -- D with Yo v(xo) such
that

W wl’l(B(yo, r))N,
w o v(x) x a.e. x D,
v o e B( o,
Vw(y) (Vv)-(w(y)) a.e. y e B(yo, r).
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dj(Vv) 18 det Vv E LIf, in addition, det Vv (gt) for some 1 <_ s < +cx) then w e W’8(B(yo,
r), D).

Before proving Theorem 3.1, we list some of its consequences.
COROLLARY 3.2. Let f C ]N be a bounded, open set, q >_ N, and v Wl’q(gt)N

be a function such that det Vv(x) 0 a.e. x .
(a) Assume that , f2 c IN are two open sets and N C g is a set of measure

zero such that t gtltgtlUN, detVv(x) > 0 a.e. x tl, anddetVv(x) <
0 a.e. x f2. Then for almost every xo v is locally almost invertible in a
neighborhood of xo in the sense above.

(b) Conversely, if q > N, v w’q()N and iffor almost every xo t v is locally
almost invertible in a neighborhood of Xo, then there are open sets t, 2 C N and
a null set N C N such that g/ f t2 t2 t2 N, det Vv(x) > 0 a.e. x 1-/1, and
det Vv(x) < 0 a.e. x 2.

COROLLARY 3.3. Let q >_ N, let 12 C IRN be a bounded, open set and let v
wI’q()N be a function such that det Vv(x) 1 a.e. x t. Then the inverse function
w of Theorem 3.1 is such that

w W’N-- (v(D))N.

If, in addition, q >_ N(N- 1) then w o v(x) x for every x D, v o w(y) y for
every y B(y0, r), v is a local homeomorphism and v is an open mapping on \ L
for some set L C f of zero measure. In particular, if N 2 then N(N- 1) N 2
and v is a local homeomorphism at xo.

We make some remarks and state some lemmas needed for the proofs of Corollaries
3.2 and 3.3, which will appear at the end of this section.

Remark 3.4.
1. As mentioned in the introduction, it has been proven recently by Heinonen

and Koskela [HK, Cor. 1.10] that if a mapping is in W’q for some q > N(N- 1) and
if its jacobian is positive and N >_ 3, then the mapping is open and discrete and so

2. Recall that v W,N()N is said to be a mapping of bounded distortion (or
usually a quasi-regular mapping) if IVv(x)lN <_ K(det Vv(x)) for almost every x e Ft
and for some constant/4. It is well known that every mapping of bounded distortion
v Wl’N()N is locally a homeomorphism at almost every point x0 . (See IRe,
Thm. 6.6, p. 187].) Moreover, mappings of bounded distortion are open mappings or
constant in ft. (See IRe, Thm. 6.4, p. 184].)

3. Note that even if v CI()N is such that det Vv(x) > 0 Vx , we
cannot expect a global invertibility of v without any regularity assumptions on the
trace of v (see [Ba.]).

4. Under the assumptions of Theorem 3.1, we cannot expect v to be locally
invertible everywhere (see [Ba]).

5. An example of a mapping v W’(fl)2, ( C 2), is exhibited in [Ba], With
det Vv(x) 1 a.e. x , for which there is no sequence v C())2 such that
v v uniformly and J(x) > 0 a.e. x ft. Therefore, to prove Theorem 3.1, one
cannot approximate the function v by a sequence of smooth functions v, expecting
the functions v to be locally invertible.

6. Note that for every bounded, open set C N, there exists a, measurable
set E C f of nonzero measure and a homeomorphism v WI’()N such that
det Vv(x)= 0 for every x e E. (See [MZ, Remarks 3.7].)
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7. Due to the previous remark, the assumption det Vv(x) - 0 a.e. x E in
Corollary 3.2 is essential.

LEMMA 3.5. Let C ]N be an open set and let v C()N and xo 12 be such
that v is differentiable at Xo. Assume that det(Vv(x0)) = 0. Then there is ro > 0 such
that for every 0 < r

_
ro the following assertions hold:

(16) v(xo + h) v(xo) for every h e B(0, r) \ {0},
d(v, B(xo, r), V(Xo)) sign(det Vv(xo)).

Proof. We refer the reader to [Re].
Remark 3.6. The relation between differentiability and topological degree was

first observed by Reshetnyak [Re].
LEMMA 3.7. Let C ]tN be an open set and let v wI’N()N be such that

detVv(x) > 0 a.e. x . Then for every xo such that v is differentiable at
xo and det Vv(xo) > 0, there is Ro =- Ro(xo) such that for every 0 < R < Ro the
following hold:

(18)
(19)

N(v, B(xo, R), y) 1 for almost every y e CR,
d(v, B(xo, R), y) 1 for every y e CR,
d(v, B, y) 1 for every y e v(B) \ v(OB),
for every nonempty, open set B C v-l(cn)f3 B(xo, R) such that IOBI 0,

where CR is the connected component ofIg \ v(OB(xo, R)) that contains Yo := v(xo)
and N(v, E, y) is the cardinality of the set {x e E: v(x) y}.

Proof. By Lemmas 2.1 and 2.7, v is continuous and monotonic on t and is
differentiable at almost every point x E gt. Fix xo such that v is differentiable at
xo and det Vv(xo) > 0.

Proof of (19). By Lemma 3.5 there is Ro > 0 such that B(xo, Ro) cc gt and
d(v,B(xo, R), Yo) 1 for every 0 < R < Ro and (19) follows from (6).

Proof of (18). By using the fact that det Vv(x) > 0 a.e. x e , we have that (11),
(12), and (19) yield (18).

Proof of(20). Since v satisfies the N property (see Remark 2.5), Iv(OB(xo, Ro))l
0 and Iv(OB)l 0. Since B is a nonempty open set, by (11) we have that Iv(B)l O,
so Iv(B) \ v(OB)l O. Let y e v(B) \ v(OB) and C be the connected component of
Ig\v(OB) containing y. As Iv(OB(xo, Ro))l 0 and since d(v, B, .) is a constant on C,
we may assume without loss of generality that y v(OB(xo, Ro)). Let p C(IN)
be such that

0 <_ p(y), Vy E ]N V > 0,

< e B 0,

suppp C B(0, e) Ye > 0,

p(y)dy 1 Ve
N
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Since y e v(B), there is x e B such that y v(x). By (6) we have

(22) --.olim/B p(v(z) y)det Vv(z)dz d(v, B, y)

and by using the continuity of v at x, we deduce that for every e > 0 there is 5 > 0
such that Iv(z)-Yl <- for every z e B(x, ). By recalling that det Vv(z) > 0 a.e. z e
B(x, ), by (21) and (22)we obtain

(23) d(v, B, y) > O.

Finally, since the degree d(v,., y) is a nondecreasing function of the set, by using (19)
and the fact that B C v-I(CR)C B(xo, R), we obtain

(24) d(v, B, y) <_ d(v, B(xo, R), y) 1,

which, together with (23) and the fact that the degree is an integer number, yields
(0).

LEMMA 3.8. Let t, v, Ro and xo be as in Lemma 3.7, (18), and (19). Let CRo be
the connected component ofNN\v(OB(xo, Ro)) containing yo := v(xo). Then for every
r > 0 such that B(yo, r) CC CRo, if 0 := v-l(B(yo, r))N B(xo, Ro) CC B(xo, Ro)
then

(25) (o) B(vo, ), (00) c 0(0) OB(o, ).

Proof. It is clear that v(O) C B(yo, r). Conversely, if y e B(yo,r), by (19)
d(v, B(xo, Ro), y) 1 and so by (5) there exists x e B(xo, Ro) such that y v(x),
which implies y e v(O). Let x e 00 and let {an} C O, {bn} C B(xo, Ro) \ O be such
that

lim an= lim bn--x.n-+x n--+x

We have V(an) e v(O) v(v-l(B(yo, r))) B(yo, r) and v(bn) v(O) B(yo,r).
By using the continuity of v at x, we have

v(x)= lim v(an)= lim v(bn),

which gives x E Ov(O).
LEMMA 3.9. Let v wI’N(’)N, det Vv(x) > 0 a.e. x f and let Xo e

D be such that v(x) v(xo) for every x e B(xo, Ro) \{xo}. Let 0 < R < Ro
and let C be an open set containing Yo v(xo). Then there is r > 0 such that
v-l(B(yo,r)) C B(xo, R) Cc B(xo, R).

Proof. Define

d(5) sup{Ix xol" x e/)(xo, R), Iv(x) v(xo)l <_ }.

Since v(x) 7 v(xo) for every x e /)(xo, R)\ {xo} and v is uniformly continuous on

B(xo, R), we have

lim d(5) 0.
5--,0

Take now r > 0 such that d(r) < . We have

v-(B(yo,r)) NB(xo, R) c B (xo, ) cc B(xo, R).
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Proof of Theorem 3.1. Let ’ be the set of points xo E gt such that v is differen-
tiable at xo and det Vv(xo) > 0. By Lemmas 2.1 and 2.7 we obtain Igt \ t’ 0. In
the sequel, we fix xo E t’, set Yo v(xo), and show that v is locally invertible at xo.
By Lemmas 3.5 and 3.7 there is Ro > 0 such that B(xo, Ro)

(26) N(v, B(xo, Ro), y) 1 a.e. y e CRo,

where CRo is the connected component of ]N \ v(OB(xo, Ro)) containing Yo, with
N(v, B(xo, Ro), yo) 1. By Lemma 3.9 we deduce that there is r > 0 such that

() -(B(o, )) B(xo, Ro) cc B(xo, Ro)

and

(28) B(yo, r) cC CRo.

Setting D v-(B(yo, r)) B(xo, Ro), by (27) and (28) we have D C v-(Cto)
B(xo, Ro) and by Lemma 3.8

(29) v(D) B(yo, r), v(OD) C Ov(D) OB(yo, r).

By the N- property of v (see Remark 2.5 and (29)), we have IODI 0, which
together with (20) yields

(30) d(v, D, y) 1 V y e v(D) \ v(OD).

By using the definition of D, the fact that D C B(xo, Ro), (26), and (28), we obtain

(31) N(v, D, y) 1 a.e. y e v(D).

Let N {y e v(D) B(yo, r)" d(v,D,y) 1} and define the candidate for local
inverse function, w, by

(32) w(y) x if y e v(D) \ N and v(x) y, x e D,
(33) w(y) x, if yeN, v(x) y,

x D being chosen by the axiom of choice.
Claim 1. w e L(B(yo, r)) g. We have w(y) e D C t for every y e v(D) and so

w is uniformly bounded in v(D). To prove that w is Borel measurable, fix c and
show that the set

A "= {y e v(D) w(y) >_ }

is measurable. We obtain A A1 t2 A2 where

A:={e(D)\N" ()>_

A2"= {y N" w(y) >_

Since IA21 0, we deduce that A2 is measurable. By using the fact that the restriction
of v to v-(v(D) \ N) is one-to-one, one can see that

AI= {v(x)" x e v-(v(D)\N), x >_ c}

((D \ at)c =o{ e (o,o + _< _< + + 1}
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By using the fact that for everynE1N, {xEB(x0, R0)" c+n<_xi <_c+n+l}
is a compact set, v is a continuous function, and v(D) \ N is measurable, we obtain
that A1 is measurable and we conclude that w L(B(yo, r)) N.

Claim 2.

(34) v o w(y) y for every y e v(D) B(yo, r),
w o v(x) x for every x e D \ v-1 (N).

This follows immediately from (32) and (33). One notices that, due to (30) and
Remark 2.5, Iv-(N)l O.

Claim 3. f o w is measurable for every f D --, measurable.
We know that every Lebesgue measurable set is a union of a Borel measurable

set and a set of measure zero. To show that f o w is measurable, by Claim 1 it suffices
to show that w-I(R) is measurable for every R C D such that ]R 0. Let R be a
subset of D such that IRI--- 0. We have by (34) that

w-(R) C v(R),

and since IRI 0, by the N property of v, we obtain that Iw-(R)l 0. Thus w-(R)
is measurable.

Let g’v(D) B(y0, r) be defined by

I djVv( ( ))lg(Y)
det Vv(w(y))

Claim 4. g e LI(v(D)).
By Claim 3, g is measurable. By Lemma 2.4 and (11), where we set f X(D)

the indicator of the set v(D), and by Claim 2 and (31) we obtain

f
] Ig(y)ldY ] Ig o v(x)l det Vv(x)dx [ ladjVv(x)ldx.
Jv(D) JD JD

Therefore g LI(v(D)).
adjVv(w(y)) )TClaim 5. w e W’(v(D))N and Vw(y)- (detVv((y))

To prove Claim 5, we fix C(v(D)) and set K supp. We show that

(D) w(y) 0 (y)dy
(adj Vv(w(y)))j

O-j (D) det Vv(w(Y))
" (y)dy"

Set 5 dist(K, Ov(D)) > 0. By using the uniform continuity of v on D c B(x0, R0),
we choose e > 0 such that

(36) Iv(x)-v(x’)l< for every x, eD Ix-x’
Let {Vn} C C be such that

(37) Vn --* v in C(D)g

and

Vn V in WI’N (D)N.
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By (37) we can assume without loss of generality that

(38) Iv- Vnloo <_ - for every n e IN.

By the fact that v(OD)C Ov(D) (see (29)), and by (36) and (38), we have that

dist(x, OD) < e implies (vn(x))= 0

and so

0 Vn e C (D).

In the sequel we denote by A the component of the j row and the c column of the N
N 0(adjVvn)N matrix A. By (11), (31), (35), and the fact that for every n E N, -=1 ox

0 for every j 1,..., N, we have

/ /D O(v(x))detVv(x)dxw(y)
(D) Oyi

lim z (v(z)) det Vv(z)dz

N

lim
n+ a(v(x))dx

k=l

lim f(adj VVn(X))J(v(x))dxn+JD.(Vv(x)).((x))x
(j Vv( (z)))
act Vv(w v(x)) (ov(x))det Vv(x)dx

f (dV(w()
(D) detVv(w(y))

(y)dy.

This equality, together with Claim 4, yields Claim 5.
Claim 6. Vw

s < +. Recall that g(y) [adjV(w(y))l and that wdetVv(w(y))
W,(v(D)) if and only if Vw e n(v(D)). The result now follows from Claim 5 and
(11).

Remark 3.10. It is possible to show that if v
N
L(), det Vv(x) > 0 a.e. in and if v is cominuous, then there is local invert-

ibility a.e. in , i.e., for a.e. x0 there exists r > 0 such that V]B(o,) is almost
everywhere injective with the inverse w e BVioc(v(B(xo, r)),N) and there exists a
set E C v(B(xo, r)) such that

E is an open set of v(B(xo, r)),
Iv(B(xo, r) \ El O,
W E W1’1 (E, ]lN),
v o (v) v .. e (B(xo,,.)),
w o v(x) x a.e. x . B(xo, r).
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To see this, we recall that by Lemma 2.7 (iii) v is approximatively differentiable a.e.
in 2 and by adapting the proof of Lemma 3.5 accordingly, it is possible to show that

d(v, B(xo, r), v(xo)) 1

for some r > 0. Let Co be the connected component of ]RN \ v(OB(xo, r)) which
contains v(xo). Then

(39) d(v, B(xo, r), y) 1

for every y E Co, so if we choose 0 < r’ < r such that

B(xo, ’) c B(xo, ) -(Co),

then by (39) (and since det Vv > 0 a.e.) we have

d(v, B(xo, r’), y) < 1

for every y e RN \ v(OB(xo, r’)). It suffices now to use the results in [TQ], (1.3)-
(1.5), (2.26), and Theorem 3.7 (i). Note, however, that in [TQ], it is assumed that

Nadj Vv e Lr, r >_ and if N- 1 < q < N, then > N--l"
NAs it turns out, [TQ] s results still hold for r N-1 as remarked by [MTY] (see

Theorem 5.3 in [MTY]).
Proof of Corollary 3.2.
Proof of (a). We have

v Wl’N(ftl)N, detVv(x)>0 a.e. x

and

V Wl’N(’2)N, det Vv(x) < 0 a.e. x E t2.

It suffices to apply Theorem 3.1 to v and to Rov in Ft2, where R0 is a constant rotation
with det Ro 1.

Proof of (b). We now assume that v Wl’q(t)N, q > N, detVv(x)
0 a.e. x gt, and for almost every x0 gt, v is locally almost injective in a
neighborhood of x0 in the sense that there is an open set D =_ D(xo) CC and there
is a function w:v(D) D such that

(40) w o v(x) x a.e. x D.

By Vitali’s covering theorem there is a countable family of nonempty, open, mutually
disjoint balls {Bi, N} and there is a sequence of functions wi v(/)) -- ft such
that/) C ft and

(41)
Ui=1B] 0,

wov(x)=x a.e. xE

The task ahead will be to partition Bi into three subsets B, B/2, and Ni such that
B,B are two open sets, Ni is a set of measure zero, and

det Vv(x) > 0 a.e. x Be,
det Vv(x) < 0 a.e. x e B/2.
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Using the fact that v c wl’q(Bi)N, q > N, by Lemma 2.7 and (41) we deduce that
there is a set Ai C Bi of measure zero such that v is differentiable at every x C B \A,

(42) w o v(x) x for every x B \ A,
det Vv(x) 0 for every x Bi \ A.

Let {Cj } be the countable collection of the (open) connected components of IRN \
v(OB). By Remark 2.5 (a), (b) we have

(43) Iv-(v(OB U A)) O.

We have the following claim.
Claim 1. d(v,B, v(x)) sign det Vv(x) for every x Bi \ v-(v(OB U A)).
Fix x B \ v-l(v(cgBi tO Ai)).
Step 1. We prove that d(v,B(x, ro),V(X)) -sign det Vv(x) for r0 small enough.

By using the fact that v is differentiable and det Vv(x) - 0, by Lemma 3.5 we deduce
that there is ro > 0 such that for every 0 < r <_ ro we have

d(v, B(x, r), v(x)) sign det Vv(x).

Step 2. We show that d(v, B, v(x)) sign det Vv(x). Indeed, by setting K Bi \
B(x, r0), we have that K is a compact set included in B, and by (42) we have v(x)

_
v(K) because v(x) v(A). By the excision property of the degree (see Proposition
2.3), we obtain

d(v, B,, v(x)) d(v, B(x, ro), v(x)) sign det Vv(x).

Claim 2. sign det Vv(x) sign det Vv(x’) for every x,x’ e v-l(CJ)\v-(v(OBiU
Ai)). Assume that x,x’ e v-(C) \ v-l(v(OBi Ai)). Using Claim 1 and the fact
that the degree d(v,B, .) is constant on each Cj, we obtain that sign det Vv(x)
sign det Vv(x’).

We now conclude the proof of Corollary 3.2(5). Let I {j e N: det Vv(x) >
0 a.e. x e v-l(CJ)} and J {j e N: detVv(x) < 0 a.e. x e v-l(CJ)}. Set

B2i v- (cj) A Bi[-JjEJ

and

B, \ (Be u

Then Bi Be U B2 tO N. Set ’1 [-JiB}, 2 [-JiB and N \ (Ft U Ft2), then

INI 0 and t2, ’2 have the required properties. [:]
qProof of Corollary 3.3. To obtain that w Wl’q/(N-) (v(D), D) we take s g-1

in Theorem 3.1. If q > N(N- 1), then w W’N,
1

det Vw(y)
det Vv(w(y)) > 0 a.e. y e v(D)

and so, by Lemma 2.1 we deduce that w is continuous. Hence v and w are homeo-
morphisms and v is an open mapping in t’ for some t’ c Ft open, where ICt \ t’ 0.
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4. Semicontinuity involving variation of the domain. The variational treat-
ment of crystals with defects leads to the study of functionals of the type

where 12 C N is a reference domain, W is the strain energy density, u is the elastic
deformation and v represents the slip (rearrangement) or plastic deformation with

det(Vv(x)) 1 a.e. x 6 . The underlying kinematical mode for slightly defective
crystals was introduced by Davini [Dav] and later developed by Davini and Parry
[DP]. As it turns out, matrices of the form

represent lattice matrices of defect-preserving deformations (neutral deformations)
and by taking the viewpoint that equilibria correspond to a variational principle,
Fonseca and Parry [FP] studied the structure of some kind of generalized minimizers

(the Young measure solutions) for the energy E(., .). (Related variational problems
were also investigated in [DP].)

Using the div-curl lemma, it follows that if un u in W1’ w, and vn v in
W1’ w,, then

Vltn(VVn)-1 Vlt(VV) -1 in L w ,.
Lower semicontinuity and relaxation properties of E(., .) were addressed only under
additional material symmetry assumptions on W. Existence and regularity properties
for minimizers of E(., .) were obtained in [DF]. Following this work, we stress the fact
that the direct methods of the calculus of variations fail to apply to this problem,
as sequential weak lower semicontinuity of E(., .) is not sufficient to guarantee the
existence of minimizers. Indeed, with W(F) [Elr, it is shown in [DF] that there are
no minimizers in {(u, v) e W1’ WI’: u(x) x on 0t, det(Vv(x)) 1 a.e.} if
0 < r < N 2, while for r > N existence is obtained for smooth (u, v) (see Theorem
2.3 in [DE]).

It is clear that if {(Un, Vn)} is a minimizing sequence and if [Vun(Vvn)-ll is
bounded in L1, then

VUn(VVn)- L in L", ltnlOfl lt0, det(Vv,) 1 a.e.

and so if some type of lower semicontinuity prevails, then

(44) W(L)dx <_ lim inf/ W(Vn(VVn)-l)dx.
It would remain to show that L would still have the same structure, precisely

L Vu(Vv)-,
where ulofl uo, det(Vv) 1 a.e. Note that (44) is always satisfied if W is a convex
function. On the other hand, formally, as det(Vv) 1 a.e. and setting w u(v-1),
the energy becomes

W(Vw(Y))dy,
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which is now an energy functional involving variations of the domain. Hence, under
this new formulation, quasi convexity seems to be more appropriate than convexity
(see [AF], [Ba], IDa], and [Mo]).

Suppose that W is a quasi-convex function, i.e.,

W(F) <_ W(F + V(x))dx,

where Q (0,1)N, e W’C(Q)N, and Vltn(VVn) -1 L in Lr. Can we say that

W(L) <_ liminf fa W(Vitn(VVn)-l)?

As an example, consider

W(F) IFI + Idet(F)l.

Although we are unable to answer this question, we prove the following result which
is the main theorem of this section.

THEOREM 4.1. Let W MNN ] be a quasi-convex function such that

-C1(1 + IAI 8) <_ W(A) <_ C2(1 + IAIr)
N-1for some constants C1,C2 > O,r > s >_ 1, p >_ 1, q >_ N, - + q - ( W >_ O if

r "-8-- 1).- If ltn--" it in WI’P() Vn---" v in w’q(vI) and det(VVn)- 1 a.e. in
fl, then

W(Vit(Vv)-1)dx <_ lim inf W(Vun(VVn)-l)dx.

Before proving Theorem 4.1, we make some remarks.
Remark 4.2.
1. It is clear that if u E W’p, v W1,q, and det Vv 1 a.e., then Vu(Vv)-1

Lr

2. If r > 1, then s < r is a necessary condition as the following counterexample
shows. This is an adaptation of an idea of Tartar by Ball and Murat IBM]. Here
r s 2 N, fl (0, 1)2, W(F) det(F), un u in Hl(fl), vn(x) x and

det Vu ; lim inf Ja det Vu,.

3. The growth condition cannot be dropped even if W is polyconvex and non-
negative. More precisely, if the relation between p, q, r, and s does not occur, the
conclusion of Theorem 4.1 may be false. Indeed, using the example by Mal [Ma]
with q +oc,p.< N- 1, W(F) det F, N r s, we may find Itn it in WI’p,
u(x) x with v,(x) x, and

det(Vu) > lim inf fa det(VUn

Moreover, the growth condition prescribed in Theorem 4.1 is the well-known growth
condition ensuring weak lower semicontinuity of E(u, id) in W’p (see [AF] and IDa]).
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N4. We may ask if these results can be extended to the case N-4-f < q < N, since,
due to Miiller’s result ([Mu]), if we assume that DetVv 1 a.e. then DetVv det Vv
a.e. inf,.

5. Since lower semicontinuity of the energy is obtained in Theorem 4.1, the ques-
tion now amounts to showing that one can find a minimizing sequence {Vun(VVn)-1}
where {Un} is bounded in W1,p and {vn} is bounded in W1,q. Actually, one only needs
to show that there exists a sequence {fn} C Wl’C(f, f) such that vn o f is bounded
in W1,q and

detVf(x) 1 a.e. xE
f(x) x x

Due to the examples provided in [DF], we know that this may not be possible since the
infimum of E may be zero, which may prevent the existence of minimizing sequences
bounded in WI’p W’.

As usual in variational problems for which existence of minimizers is not guar-
anteed (such as variational problems for material that change phase and, here, for
slightly defective materials), we focus on the properties of the minimizing sequences
rather than study the macroscopic limit of Vun(Vv)-1.

What follows may help to understand better why boundedness of {VUn(VVn)-1 }
may not entail the boundedness of {Vu} and {Vvn}. Using Theorem 4.1, we show
that we may construct a minimizing sequence {Vuc(Vv)-1} with IVUlp 0(),
[7Ve[q O(B- ), for any a, Z > O.

Consider the "perturbed" family of variational problems

Ee(u, v) W(Vu(Vv)-l)dx + aPlVue]Pp +

where u]oa u0, det Vv 1 a.e., fa .v(x)dx 0. Using the direct method of the
calculus of variations, Poincar’s inequality, and Theorem 4.1, it follows immediately
that there exists (u, v) WI’p W’q such that

E(u, v)= inf{E(u, v) (u, v) e WI’p W’, det Vv 1 a.e.}.

Then, given an admissible pair (u, v)

E(u, v) lim Ee(u, v)
e---,O+

__> lim sup Ee (u, vc)
e--*O+

>_ lim sup E(u,v),
e--*O+

> inf E..

Doing the same with liminf_0+ E(u, v) and taking the infimum in (u, v), we con-
clude that

inf E lim E(u, v)
e--,O+

0(5).and IVUclp O(-i-z), IVVlq
The following two lemmas will be useful to prove Theorem 4.1.
LEMMA 4.3. Let ft, f be two open sets of IN such that t CC ft; let q >_ N

and v, Vn e wI’q(ft)N be such that det Vv(x) det VVn(X) 1 a.e. x e f. Assume
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that vn v in wl’q(ft)N. Then there exists a subsequence of {Vn} (tot relabelled)
such that for almost every xo E t, there exist open sets D, On C containing xo,
there exist no N, ro =- r(xo) > O, w" B(yo,ro) --* D, Wn B(yo, ro) -- Dn with

Yo v(xo) such that for n >_ no,

Wn OVn(X) X a.e. x

Vn o Wn(y) y for every y e /(Yo, ro) and vn(Dn) B(yo, to),
wov(x) x a.e. x e D and v(xo) # v(x) for x e D, x # xo,
v o w(y) y for every y e B(yo, ro) and v(D) B(yo, ro),

Proof. By using Lemma 2.1 and the Ascoli-Arzela theorem we obtain that, up to
a subsequence, Vn converges to v uniformly in ft. By Lemmas 3.7 and 2.7 for almost
every xo fF, there is Ro > 0 such that

B(xo, Ro) ’,
N(v, B(xo, Ro), y) 1 for almost every y CRo,
d(v,B(xo, Ro), y) 1 for every y CRo,
d(v, B, y) 1 for every y e B \ v(OB),
for every nonempty open set B C v-l(CRo) ;3 B(xo, Ro) such that Iv(OB)l O,

where CRo is the connected component of ]N \ v(OB(xo, Ro)) containing Yo :-- V(Xo).
Since v is differentiable at xo and det Vv(xo) # 0 we may assume without loss of
generality that N(v,B(xo, Ro), Yo) 1. Fix 0 < e < d(yo, v(OB(xo, Ro))) and choose
no N such that Ivn vl < e. Set

A := {y e CRo dist(y, v(OB(xo, Ro))) > }.

It is obvious that A is a nonempty open set.
Claim 1. d(vn, B(xo, Ro), y) exists and is equal to 1 for every y e A, and every

n >_ no. By Proposition 2.3 (4), together with the fact that d(v,B(xo, Ro), y) 1 for
every y Cno, we have

(45) d(vn, B(xo, Ro), y) 1

for every y E A and every n >_ no.
By Lemma 3.9 there is 0 < ro < Ro such that

(46) B(yo, ro) CC A and v-(B(yo, ro))NB(xo, Ro) CC B(xo, Ro).

Claim 2. We claim that

(47) B(yo, to) CC Co,
where Cn is the connected component of IN \ Vn(OB(xo Ro)) that contains YoRo

We prove first that A c Rg\ Vn(OB(xo, Ro)). Assume on the contrary that
there is y A gVn(OB(xo, Ro)) and choose x OB(xo, Ro) such that y Vn(X). We
would have IVn(X) v(x)l lY- v(x)l > > Ivn -vl, which yields a contradiction.
Fix r’ > ro such that B(yo, r’) C . We have that B(yo, r’) is a connected set
included in N \ Vn(OB(xo, Ro)) and containing Yo. We deduce that B(yo, r’) C Co
and B(yo, ro) CC Co.



298 I. FONSECA AND W. GANGBO

Set D v-l(B(yo, ro))NB(xo, Ro) CC ’ and Dn vI(B(yo, ro))glB(xo, Ro)
’. By using (45)-(47) and arguments similar to the ones of the proof of Theorem 3.1,
together with Corollary 3.3, we deduce that for n > no there is Wn" B(yo, ro) --+ Dn,
there is w"/(Yo, to) --+/7) such that

Ln, W E W1’ N--- (B(y0, to))N,
wno vn(x) x a.e. x Dn,
Vn 0 Wn(y) y a.e. y e/(Yo, ro),
wov(x) x a.e. xeD and v(xo) v(x) for x e D, x C xo,
v o w(y) y a.e. y e B(yo, ro).

Finally by Lemma 3.8, vn(Dn) v(D) B(yo, ro).
Remark 4.4.
1. It follows from the proof above that if the conclusion of Lemma 4.3 holds for

r r(xo) > 0 then it holds also for 0 < r’ < r. Thus, as v is continuous on D,
v(x) v(xo) for x e D and x -J= xo, we deduce that

lim max{Ix- xol x e D, v(x) e B(yo,ro)} O.
r--+0

2. It is possible to show that limn_-++a IDADI 0. We divide the proof into
two cases.

Claim 1. limn_-++ D \ D 0.
Let F B(yo, ro- e) and O v-(F)f D. We prove first that for each e fixed

there exists no no(e) N such that n > no implies O C Dn. Indeed, since {v}
converges to v uniformly, there exists no no(e) N such that Iv- vnl <_ for
every n >_ no. If x E Oe, we obtain

Iv (x) < I (x) + I (x) <

and so x Dn. As (OO D and the sequence (O) is nonincreasing, we have

lim ID \ O 0
e--+0

which, together with the fact that ID \ Dnl < ID \ 01 for n > n0, yields Claim 1.
Claim 2. limn--++o IDn \ D O.
For e > 0, take no n0(e) N such that Iv- v,l < for every n > no. For

n >_ no, we have

x B(xo, Ro)’r- - < IVn(X)- Yol < r C {x B(xo, Ro)’r-e < Iv(x)-yol < r+e}

and since v has the N- property (see Remark 2.5) we obtain

e B( o, Ro) < Iv(x)- 01 < I{x e B( o, Ro)’l (x)- ol O.

To conclude the proof of Claim 2, it suffices to remark that for n >_ no we obtain

On \ D C {x e B(xo, Ro) r e <_ Iv(x)
N-l_ AssumeLEMMA 4.5. Let p > 1, q > N, r > 1 be such that

that C N i8 an open, bounded set, Un, U e wI’q()N, Un u in WI’P()N,
Vn, V w’q)N, detVvn detVv 1 a.e. in and v v in wI’q()g. Let
xo , .and wn, w be, respectively, the local inverse function of Vn, v, in the open
neighborhoods On, D of xo, let Yo v(xo) and B(yo, ro) be as in Lemma 4.3 and
Remark 4.4. Then the following conditions hold:
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(i) ShoWn e wl’r(B(yo, ro))N andV(unOWn)(y) V?n(Wn(y))(VVn(Wn(y)))-1
a.e.,

(ii) un own u o w in Wl’r(B(yo, to))N if r > 1,
(iii) UnOW --* sow in L(B(yo, ro))N and (UnOWn) is bounded in W’(B(yo, to))N

ifr-1.
Proof. We recall that by Lemma 4.3 we have

(48)
(49)
(o)
(51)

Wn, W e WI’ N-- (B(yo, to))N v(D) B(yo, ro) v(D) B(yo, ro)
Vw(y) (Vv(w(y)))-1, VWn(y) (VVn(Wn(y)))-1 a.e. y e B(yo, ro),
g(v, D, y) g(vn, On, y) 1 a.e. y e B(Yo, ro),
wov(x) x a.e. x e D, Wn OV(X) X a.e. xe

First step. We prove that u o w, un o wn E W’r(B(yo, ro))N.
In fact, by the change of variables formula (11), (48)-(51) we have

/S(yo,o) f
lU o w(y)ldy ] lu o w(y)lN(v, D, y)dy

Jv(D)

/lu(x)ldx <
JD

Thus

u o w, un o Wn e Lr (B(yo, ro))N.

Let e C(B(yo, ro)). By (11), (4S)-(51), and the fact that each vector row of adj Vv
is divergence free, we have

Thus

u o e W,(B(o, o))

and

Vu o w(y) Vu(w(y))(Vv(w(y)))- a.e. in B(yo, ro).

We have a similar result for u o

Second step. We conclude that {un own} is bounded in Wl,(B(yo, to))N. Indeed

lUn Wn(y)l’dY= /D lu’(x)l"dx <- /
Since r <_ p and {Un} is bounded in WI’p(a)N we deduce that {n 0 Wn} is bounded
in L(B(yo, ro))N.
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IVUn o Wn(y)lrdy JD IVUn(X)(VWn(X))-llrdx

for some constant C which does not depend on y0, r, and n. Thus {Un OWn} is bounded
in Wl’r(B(yo, ro))N.

Third step. We prove that, up to a subsequence, un o Wn converges strongly in
L(B(yo, ro)) to u o w. Let f e C(/(y0, r0)). By Remark 4.4, limn-+oo IDADnl 0
and so

XD. (X) XD(X) a.e. x e .
By using the fact that un u in W’p()N, Vn V in W’q (Ft)N and assuming,
without loss of generality, that Un u a.e., Vn "--* v a.e., we obtain by (11) and the
Lebesgue dominated convergence theorem that

Therefore Un o Wn converges strongly to u o w in measure and by applying the Sobolev
imbedding theorem to the bounded sequence {un own} in W’(t), we conclude that,
up to a subsequence, un own converges strongly in Ll(B(yo, ro)) to u o w.

Fourth step. Using the second and the third step we conclude that {VUn o Wn} is
bounded in W1,r (fl)N,

Un o Wn u o w in WI’(’)N if r > 1,

and

Un 0 Wn U 0 W in L (gt)N if r 1. [:]

We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. Without loss of generality (and, if necessary, after extract-
ing a subsequence of { (un, Vn) }), we assume that

liminfn__,+oo/ W(Vun(X)(Vvn(x))-)dx lim /a W(Vun(x)(Vvn(x))-)dx < +oo.

Fix e > 0 and let te CC t be an open set such that It \ Ft < e. By Lemma 2.1 and
the Ascoli-Arzela theorem, without loss of generality we assume that vn converges to
v uniformly in te. Set

C {x E gte v is differentiable and almost invertible at x},

A {D(x)’x e C, D(x)is an open set of ,, v(D(x))is an open ball},
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and

’le (JDAD.

As in the proof of Lemma 3.9, it is easy to see that

inf{diamD(x) D(x) E A} 0

for every x E C. By Lemma 4.3 and Vitali’s covering theorem (see [Fe], Theorem
2.8.17, p. 151) there exists {xJ j N} c gt, {DJ j N}, a family of mutually
disjoint, open neighborhoods of, respectively, xj, and a set of measure zero N such
that

t N UjeN DJ,

and v Dj -- B(yJ,rj) admits an inverse wJ wI,q/(N-1)(B(yJ,rJ),DJ), in the
sense of Theorem 3.1, for some rj > 0 and with y v(xJ). Recall that

v(. o

wjov(x)=x a.e. xeD,
v o wj(y) y a.e. y e B(yJ,rJ),

a.e. y B(y, r),

and DJ v-l(B(yJ,rY))N B(xJ,RJ) for some Ry > 0. Fix k N. By Lemma
4.5 we obtain, for each j 1,...,k and up to a subsequence, the existence of

Wn e Wl’q/(N-)(B(yJ,rJ))N, which is the inverse function of VnlDn where D
vnl(B(y r))[ B(x R). Recall that + A and also

WJnOVn(X)=X a.e. xD{,
Un o Win e wl’r(B(yj, rJ))N,
V(tn 0 Wn)(y) Vtn(WJn(y))(VVn(WJn(y)))-I a.e.,

Un o win t o Wj in W]’r(B(y, rJ))N if r > 1,

u o w --. u o wy in L(B(yY,rJ))N,
{Un o w} is bounded in wl’l(B(yJ,rJ))N if r 1,
lim ID{ADJ 0.

Fix

0 < r/< min{rj j 1,...,k}.

There exists n(r]) N such that for every n k n(r]) we obtain

max{Ivy(x)- v(x)l x e t} < r.

Since DJ v-l(B(yY,rY)) B(x,R), we deduce that for every n _> n()

D(r) "= D{ g v(B(yJ,r r)) c D,
and so D/n N D 0 if =/= j. Set

DY r "= Dj v- B yJ r r
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We divide the rest of the proof of Theorem 4.1 into two cases.
First case. We assume that 1 r p - and that there is a constant

C such that 0 <_ W(F) <_ C(1+ IFI) for every F E MNN. Since W >_ 0 and
{DJ (7)}, {D(7)} are mutually disjoint for every n E N, we have by [FM]

k

fu W(Vu(x)(Vv)-l(x))dx E/D W(Vu(x)(Vv)-l(x))dx
=D(r/) j=l (r)

k

jl JB W((Vu wJ)(Y))dY
.= (y,r-n)

k

(52) <- E liminfn.-,Tcx: ] W((Vltn o Wn)(Y))dy
j= (y,r-v)

k

E liminfn---,Tcx/D W(Vun(X)(VVn)-l(x))dx
=

k

<_ liminfj]n__,+cx W(Vun(X)(VVn)-l(x))dx

<_ liminfn+o/1 W(VUn(X)(VVn)-I(x))dx"
By letting r/go to zero, k go to infinity, and e go to zero, we have

E(u, v) <_ lim inf E(u,, Vn).
n.--.+oo

N-1 and that there are some constantsSecond case. We assume that 1 < r + --C1,C2 > 0, 1 <_ s <_ r such that -C1(1 + IFI) <_ W(F) <_ C2(1 + IFI) for every
F MNN. The proof follows as in the first case, where on step (52) we use the lower
semicontinuity results of IDa] instead of [FM]. Since {VUn(X)(VVn)-l(x)} is weakly
relatively compact in , we have

k

W(Vu(x)(Vv)-I(x))dx E JDj--1

W(Vu(x)(Vv)- (x))dx

w((v o

k

<- E lim inf
=1 (y,,’-n)

W((Vn o wz)(y))dy

k

E lim inf

= (1
W(Viin (x)(Vvn)-1 (x))dx

k

Eliminf[ W(Vun(X)(VVn)-l(x))dx
j=l

n-.+c

W(Vltn (x) (Vvn -1 (x) )dx
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JD W(Vun(x)(Vv’)-l(x))dx]
J\Dn(r$)

k

<-- Z liminfn--*+ W(Vun(X)(VVn)-l(x))dx
j-1

D
(1 -t-[VUn(X)(VVn)-l(x)lS)dxnt-C1

AD
k

<_ liminfn__.+Z W(Vun(x)(Vvn)-(x))dx
j-1

_< liminfn_.+x) W(Vun(X)(VVn)-l(x))dx"

By letting go to zero, k go to infinity, and e go to zero, we conclude that

E(u, v) < lim inf E(un, Vn).
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MATHEMATICAL ASPECTS OF THE COMBUSTION OF A SOLID
BY A DISTRIBUTED ISOTHERMAL GAS REACTION *

JESUS ILDEFONSO DIAZ AND IVAR STAKGOLD$

Abstract. When a diffusing gas reacts isothermally with an immobile solid phase, the resulting
equations form a semilinear system consisting of a parabolic partial differential equation for the gas
concentration coupled with an ordinary differential equation for the solid concentration. Existence
and uniqueness proofs are given which include the important case of nonlipschitzian reaction rates
such as those of fractional-power type. Various qualitative features of the solution are studied:
approach to the steady state; monotonicity in time; and dependence on initial conditions, on the
porosity, and on the geometry.

The relationship between the original problem and the pseudo-steady-state approximation of
zero porosity is investigated. When the solid reaction rate is nonlipschitzian, there is a conversion

front separating a fully converted region adjacent to the boundary and a partially converted interior
core. Estimates are given for the time to full conversion. If the gas reaction rate is nonlipschitzian
the gas may not at first fully penetrate the solid. Estimates are given for the time at which full
penetration occurs.

Key words, gas-solid reactions, reaction-diffusion, combustion, pseudo-steady state

AMS subject classifications. 35K57, 35R35, 35K50, 35K55

1. Introduction and preliminary results. Many problems of current interest
in chemical engineering and metallurgy involve the interactions of diffusing substances
with immobile solid phases (see [1] and [16]).

Here we consider the combustion of a porous solid, known as the pellet, as it
reacts with a gas diffusing through its pores. The reaction, involving only one species
of gas and one of solid, is taken to be simple, irreversible, and isothermal. Structural
changes during the reaction are neglected. The state variables are the nondimensional
concentrations C of the gas and S of the solid. These concentrations are regarded
as continuous functions of time t and of a macroscopic position vector x. Unlike the
"shrinking core" model, the reaction is not confined to a thin surface, but is distributed
throughout the solid at a rate proportional to the product of a function of C and of
a function of S. We assume that the medium can be characterized by effective values
of diffusivity and porosity that are independent of position, time, and concentrations.
These assumptions can be reconciled with models, such as the Sohn-Szekely model
(see [29]), based on a grainlike microstructure for the pellet, with the reaction confined
to the surface of the grains.

Mass balances for the solid and gas yield the nondimensional equations

St =-f(S)g(C) in (0, oc) x fl,

C AC ASs -Af(S)g(C) in (0, oc) x $2.
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We are therefore dealing with a semilinear system consisting of a parabolic partial
differential equation coupled with an ordinary differential equation. Since (1.2) was
obtained by dividing the corresponding dimensional equation by the diffusivity, both
e and are inversely proportional to the diffusivity. In the problems of interest here,
the porosity e falls in the range (0.01, 0.1), and the Thiele modulus in the range (1,
100). The nondimensional reaction rate f(S)g(C) is only defined for S >_ 0 and C _> 0
and vanishes when either S or C vanishes. By nondimensionalization we have also
made f(1) g(1) 1. In applications, it is important to consider cases where f and
g are only Hblder continuous but not differentiable at 0 +. For instance, successive
reactions in which the intermediate steps have special properties may yield an overall
reaction rate which is a fractional power of the concentration of one or both of the
reactants. Another example is the Sohn-Szekely grain model which, when translated
to our variables, leads to f(S) S2/3 and f(S) $1/2 for three- and two-dimensional
problems, respectively. With this in mind, we make the following assumptions on f
and g:

(1.3)
f Hblder continuous on [0, 1], f(0) 0, f(1) 1;
f(S) positive, monotone increasing for S > 0;
Same conditions on g with C replacing S.

The special cases f(S) Sm, g(C) Cp play a particularly important role in appli-
cations. The nonlipschitz cases m < 1 and p < 1 yield interesting behavior, such as
conversion in finite time, dead cores, and moving fronts [10], [13], [28]. The exponents
m and p are known as the orders of the solid and gas reactions, respectively.

We take Ft to be a smooth, bounded domain in RN. As initial and boundary
conditions associated with (1.1) and (1.2) we choose

s(o, x) So(z), (b) c(o, x) Co(x),
(1.a) c + .c. x e on, > 0.

In the rest of the paper we shall assume, at least, that

So e L(t), Co e H2(f)V
(H0)

0<_C0(x)<_l fora.e, xEFt.
and 0 <_ So(x) <_ 1,

By nondimensionalization we can choose IIS0[[ 1, IIC011 _< 1, where 11 stands
for the sup norm. In (1.4), u is the outward normal derivative and a >_ 0 is a constant
measuring the boundary resistance to mass transfer from the ambient region where
the gas concentration is maintained at a uniform value (which has been taken to be
unity through nondimensionalization). The special case a 0 leads to a Dirichlet
problem.

The problem (1.1)-(1.4) will be referred to as problem (P). We seek a solution
(S(t,x), C(t,x)) with S _> 0 and C >_ 0.

Since is small, the term eCt in (1.2) is often neglected in the chemical engineering
literature. This changes (1.2) to an elliptic equation for which no initial condition can
be imposed. We are thus facing a singular perturbation whose effect cannot be judged
a priori. The new problem is known as the pseudo-steady-state (p.s.s.) problem, which
we denote by ():
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(1.7)

&
a&

(0, x)- 0(x) _> 0, I1011 1,
+a=l, xEOt, t>0.

The same nondimensionalization used to obtain (P) gives ()). No initial condi-
tion is imposed on 7 since u(x) (x, 0) is determined as the unique, necessarily
nonnegative, solution of the elliptic problem

(1.9) --Au --Af(o)g(u), x e gt; u + cu, --1, x e Ogt.

In previous papers [25], [27], it has been shown that the solution of (15) provides
a reasonable approximation to the solution of (P) when e is small. Specifically, the
following result was obtained for the case f(S) STM and g(C) Cp"

(1.10) ( C)dT <_ 11,11,

where w(x) is the solution of the simple Poisson problem

(1.11) -Aw=l, xEFt; w+cw=0, xEOFt.

For a 0, this is the so-called torsion problem about which a great deal of
information is available (see, for instance, Bandle [2] and gcNabb and Keady [20]).
The uniformity of (1.10) in time is perhaps unexpected because C(O,x) and C(O,x)
are not within 0() of each other. In 3 of the present paper we shall extend (1.10) to
general f and g obeying (1.3).

It is of particular interest to know if the solid is fully converted in finite time. We
observe from (1.1) that S(t, .) is monotonically decreasing; if for some point x ,
we have S(T, ) 0, then S(t, ) 0 for t >_ T. This property does not hold for C
since diffusion from neighboring points may raise the gas concentration. If a 1, S
on the boundary obeys the ordinary differential equation St -f(S), which can be
explicitly integrated. If the integral

ds
(1.12) f(s)

I

is finite (as is the case when f(S) STM with rn < 1) we find that S vanishes on
the boundary for t _> I. It then turns out that S(t, x) is identically zero in for all t
sufficiently large. The infimum of such times is the time tl to full conversion. We shall
estimate that time in terms of the corresponding quantity/1 for the pseudo-steady-
state problem. Section 4 is devoted to this and related questions.

To prove existence of a solution to (P) and () we first reformulate the problem
in 2 by introducing the new variable X 1 S, which now places the problem
in a quasi-monotone framework. A number of authors have used quasi-monotone
methods for reaction-diffusion systems (see, for instance, [18] and [22]). Because of
the nonlipschitzian character of our nonlinearity and the absence of diffusion in one
of the equations, the existence proofs in the literature are not directly applicable to
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our problem. Our proof is based on a constructive nonlinear iteration scheme which
preserves qualitative properties at each step.

We first prove existence by the method just described. Continuous dependence
and uniqueness are then proved by an L technique typical of degenerate quasilinear
parabolic problems. Some remarks are made about weakening the regularity assump-
tions through more abstract approaches. The results in this section were already
sketched out in our paper [10].

In 3, we consider the asymptotic behavior of the solution as t --, ec and the
relation between (P) and (15) when is small. We show that S, tend monotonically
to zero as t --, oc and that C, ( tend to 1. The approach to 1 is monotonic for C and
will be monotonic for C if Co obeys a certain natural condition. The dependence on

is discussed in a number of theorems. If (Se, C) is the solution of (P) for e > 0 and
(, ) the solution of (t5), we show that, under expected conditions on Co and So,
we have monotonic convergence of Se to and of Ce to as e --, 0. Other theorems
in this section deal with the behavior as -- 0 of fn IS SeI dx and f( Ce)tiT.
These theorems provide a strong generalization of (1.10).

In 4, we discuss the conversion of the solid and, to a lesser extent, the penetration
of the gas. For many practical purposes the quantity of interest is the fraction of solid
converted up to time t,

/(t) 1 f S(t, x)dx
fa So(x)dx’

with a similar definition for -(t). Both of these increase monotonically to 1 as t --. cx.
Estimates are given for 7(t), particularly in the case of full conversion in finite time
(I finite in (1.12)) when the quantities of principal interest are the times tl and {1 to
full conversion. Comparison between different types of reaction is also considered.

For certain g(C), for instance if g(C) Cp with p < 1, the gas may not fully
penetrate the solid for small t. It is easy to see that this "dead core" must disappear
in finite time so that C, ( are strictly positive for t >_ T. We obtain estimates for this
dead core as well as for T.

2. Existence uniqueness and continuous dependence. In order to use
quasi-monotone methods in their simplest form, we begin by replacing S(t, x) by

(e.1) X(,x) * S(,x).

Since S(t,.) is monotonically decreasing, X(t,.) is monotonically increasing. Note
that if So(x) 1, as is often the case in applications, then X is the local fraction of
solid converted by time t.

Problem (P), considered on a finite interval (0, T) then becomes the problem (P’)"

(2.2) X F(Z)g(C) in QT,
(2.3) Ct- AC -AF(X)g(C) -AX in QT,
(2.4) X(O,x) 1- So(x), C(O,x) Co(x) on a,
(2.5) C-t-cC 1 on -T,

where QT (0, T) 12,T (0, T) 012, and F(X) =_ f(1-Z) is monotone decreasing
in X with F(0) 1, F(1) 0.

Similar considerations apply to the p.s.s, problem ()); see (1.5)-(1.8). Setting- 1- , we obtain problem ()’):
(2.2a) )t F(f)g() in QT,
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(2.3a)
(2.4a)
(2.4b)

(0, x) 1- o(x) on

+ atv 1 on ]T.

in QT

If (2.2), (2.3) is regarded as a system for the vector (X, C), the forcing term
(F(X)g(C),-AF(X)g(C)) is nondecreasing in the off-diagonM variables, i.e., quasi-
monotone. The system is then in a form which makes it relatively simple to use the
notions of sub- and supersolutions.

DEFINITION 2.1. Let

X e WI,(O,T’L()) and e HI(O,T’L2(fl))
V L2(O,T" H2())V L((O,T) ).

The pair (X, C) is said to be a supersolution to (P’) if

f(t >_ F(f()g() in QT,
aCt AC >_ -AF(X)g(C) in QT,
C + aCv >_ I on ET,
X(O,x) >_ Xo(x) 1-So(x) in gl,

(O,x) >_ Co(x) in ,
at almost every point of the corresponding domain. A subsolution (X,__C) satisfies the
same conditions with all five inequalities reversed. If (X, C) is both a supersolution
and a subsolution we say that (X, C) is a solution.

We observe that (0, 0) is a subsolution and (1, 1) is a supersolution.
Next, we introduce the following iteration scheme: given a pair of smooth func-

tions (Xk-, Ck-),k > 2, we define the pair (Xk, Ck) as the solution of the uncoupled
nonlinear equations

i. Qr,
Xk(O,x) Xo(x) in

eCt ACk -AF(Xk-1)g(Ck) in QT,
Ck+aCk=lonET, Ck(O,x)=Co(x) in

The existence and uniqueness of the solutions Xk, Ck of these uncoupled problems
satisfying

Xk e and Ck e HI(O,T’L2(fl))
N L2(O,T’H2())V L((0, T) gt)

can be found (for instance) in Vrabie [31] (see Theorem 3.10.1).
We are now in a position to prove existence for the equivalent problems (P) and

(P).
THEOREM 2.1. Assume (1.3) and (Ho). Let Xo 1- So. Let (X, C_C_) be a subso-

lution and (X, C) a supersolution with (X, C) <_ (X, C). Then there exists a solution
(X, C) of (P’) satisfying (X, C) < (Z, C) < (X, C).

k k -Proof. Consider the sqenes (X ,_C_C-) and (f(k Ck) obtained by applying our
iteration scheme to (X,C) (X, C) and (, q) (, (), respectively. By
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repeated application of the comparison principle for the uncoupled equations, we
see that the sequence (Xk, Ck) is monotonically increasing while (2k, (k) is mono-
tonically decreasing. From the hypothesis (X,__C) <_ (X, C) we can also show that
(Xk,Ck) <_ (.k, k). The monotonically increasing sequence (Xk,Ck) is bounded
above and must therefore converge as stated to (X, C). To show that (X, C) is a
solution it is enough to use the following a priori estimates:

]lXtkI]L((0,T)a) <_ 1,
1/2IIgCllL2(O,T:L2(a)) II/F(Xk-I)g(ck)IIL2(O,T:L2(n)) q- IICOIIHI(f2) M(T, t)

for some constant M(T, f) > 0 independent of k (this follows from a well-known result
due to Brezis; see Theorem 1.9.3 in Vrabie [31]); and

ilACklIL2(O,T:L2(Ct)) <_ M(T, ) + I[1/2.

Standard arguments show that (X, C) is a solution with the regularity mentioned in
Definition 2.1. Similarly ()k,) converges downwards to a solution (, (7); clearly
(2, O) > (x_, _c).

Remark 2.1. Under the additional assumptions

Co 6 C2+5(gt) and S0 6 Ch(f),

it is possible to show that the functions (X, C), (X, C) obtained in Theorem 2.1 are, in
fact, classical solutions. Indeed, we point out first that the (unique) solutions (X, Ck)
of the uncoupled problems are classical solutions as follows from an existence result due
to PRo [21]. In order to show that the limit (X, C) is a classical solution we can proceed
as follows: since (Ct- AC) e L((O,T) x f) we deduce by well-known regularity
results (see, e.g., references in [15]) that C e Ct*([0,T] x Ct). Thus g(_C) is a Hhlder
continuous function. Using the explicit formula (4.4) for X we conclude that X, and
hence F(X), is a Hhlder continuous function. Finally, from the equation, e(_C -AC) is
a Hhlder continuous function, which implies that C 6 Ctl,((0, T) x t)CC0([0, T] x )
and satisfies the equation in the classical sense.

Remark 2.2. The existence of solutions for the coupled system can also be ob-
tained by means of fixed point arguments using the compactness of some suitable
"Green operator." This approach is developed in the article by Diaz and Vrabie [11],
where the case of f and g discontinuous at the origin is also considered.

The existence proof of Theorem 2.1 constructs two solutions (X, C) and (J, ).
The following theorem, using an L technique typical of some degenerate quasilinear
parabolic equations, proves continuous dependence and uniqueness for a general class
of solutions (including the ones obtained in Theorem 2.1).

THEOREM 2.2. Let f and g be continuous nondecreasing functions with f(O)
g(O) O. Let (S,C),(S*,C*) be solutions of (P) (in the sense of Definition 2.1)
corresponding to the initial data (So, Co), (S, C). Then for any t > 0 we have that

e lC(t,x)-C*(t,x)l dx + A 1S(t,x) S*(t,x)l dx

+ IC(r, a) C*(r, a)l dT da

/ ,Co(x) C* /2o (x)l dx + ISo(x) Sa(x)I dx
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In particular, a solution (S, C) (in the sense of Definition 2.1) is unique.
Proof. We start by assuming f and g strictly increasing. We have that

(s- s,), + (f(s) f(s,))(c,) -f(s)((c) (c,)),

(2.s) (c c,), A(c c,) + af(s)(a(c) (c,)) -a(f(s) f(s,))(c,).

Now, multiplying (2.7) by sign (S S*) and using

io’i. io(2.9) ht(T,x)sign(h(T,x))dxdT Ih(t,x)ldx- Ih(O,x)ldx

for any h e W1,1(0, T’LI(fl)), we have that

io IS(, )- s’(, )1 + (C’)l/(S)-

(2.0) <_ ISo(x) S(x)ldx + f(S)lg(C) g(C*)ldxdr,

where we have used the fact that I(S) >_ 0 if S >_ O, g(C) >_ 0 if C >_ 0, sign(S- S*)
sign(f(S)-f(S* )), and (f(S)-f(S* ))sign(f(S)-f(S* )) II(S)-f(S* )I. Analogously
multiplying (2.8) by sign(C- C*) and using the fact that

(2.11) j2 A(C C*)sign(C C*) dx >
l

ale-C’Ida’
we conclude (as before) that

ioe IC(t,x) c*(t,x)l dx + IC C*l da

+ f(S)lg(C) g(C*)l dx dT

So’So(2.12) <_ e IC0(x)-C(x)ldx + If(S)- f(S*)lg(C*)dxdm.

Multiplying (2.10) by /k and adding the result to (2.12) we obtain the conclusion
(2.6). Inequalities (2.9) and (2.11) are justified as usual in the L theory of evolution
equations by regularizing the sign function. Finally, if f and g are not strictly increas-
ing functions we approximate them by strictly increasing functions and pass to the
limit. [:]

Note that in the case of 0, the boundary term is absent in (2.6).
For the case of the pseudo-steady-state problem we have the following theorem.
THEOREM 2.3. Let f and g be continuous nondecreasing functions with f(O)

g(O) --O. Then the problem () has a unique solution (;, ).
Proof. By the same arguments as in Theorem 2.2 we deduce that if (, () and

(*, C*) are two solutions then

j; lio’S.ID(t, x) D,(t, x)l dx -t- I(, ) *(-, )1 dadT

< [ ID(0, x)- D,(0, x)l dx.
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In particular, as (0,x) *(0, x) we conclude that _= * and that ( and * are
solutions of the elliptic problem

Au + Bt(x, u) 0

Ou
a+u=l oncOgt,

in t,

where Bt(x,r) f((t,x))g(r) for any r e ]l(,x e t, and t e (0, T) (here t is a
parameter). The uniqueness of u * is now a well-known result since B is
monotone nondecreasing in r. [:]

Remark 2.3. Theorem 2.2 improves a previous result due to PRo [22] where the
nonlinearities are assumed to be Lipschitz continuous. Some papers where an L1

technique is used for parabolic systems are [6], [15], and [33].
Remark 2.4. Basing themselves on our earlier paper [10], DiLiddo and Maddalena

were able to prove existence for a different type of problem arising in chemical engi-
neering [12].

3. Asymptotic behavior and monotonicity.

3.1. Monotonicity in and initial data. Monotone behavior of the solution
of (P) with respect to initial data and with respect to A are easy to prove. Mono-
tonicity in time and with respect to s will require a condition on Co(x).

PROPERTY I. For fixed A and , the solutions of (P’) are ordered according to
their initial values: if (X0(1), C0(1)) <_ (X0(2), 60(2)) then the respective solutions of (P’)
satisfy

< x,t.

The result follows from the observation that (X(2)(t, x), C(2)(t, x)) is a superso-
lution of problem (P’) with initial data (Xo(1), C0(1)).

PROPERTY II. For fixed and initial data, the solutions of (P’) are ordered in-
versely with A:

> <

Again, the proof consists of noting that (X(2), C(2)) is a supersolution of (P’)
with A 1.

Monotonicity with respect to t is a bit more subtle. It is obvious from (2.2) that
X(t, .) is monotonically increasing. Since Co(x) _< 1 and the steady state is Co(2) 1,
we can only hope to show that C(t, .) is monotonically increasing, but, unfortunately,
this cannot be true for all Co(x). Indeed at t 0, Ct >_ 0 only if

-/XCo + < o.

Rather than (3.1) we prefer to use the condition

(3.2) -AC0 + AC0(x)

which clearly implies (3.1). We also need a condition on the boundary values of C0(x):

(3.3) Co + C0,v 1 _< 0, x E 0gt.

We can then conclude with the following property (see Theorem 3.1).
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PROPERTY III. If Co(x) satisfies (3.2) and (3.3), then t (X(t,x),C(t,x)) is
monotone increasing for each x.

We shall also show (see Lemma 3.1) that under the same conditions on Co(x) we
have monotone behavior with respect to e. As expected on physical grounds, (X, C)
increases as e decreases.

PROPERTY IV. For fixed ) and initial data, suppose that 1 > 2 > 0 and Co(x)
satisfies (3.2) and (3.3); then the respective solutions of (P’) are ordered so that

< (t,x).

For the pseudo-steady-state problem only the initial value o is at our disposal
since the initial value o of the gas concentration is determined from )0(x) as the
solution of the elliptic problem

(3.4)
+ 0,

0 + 0,, 1, xEOa.

The following results are then easily obtained.
PROPERTY I*. For fixed , the solutions of ()) are ordered according to the

initial values of 2: if 2(o1)

_
2o(2), then

o(1)

_
(o(2) and (2(1) (t, x), (1)(t,x)) (2(2) (t, x) (2)(t,x)) for all (t,x).

This follows from the maximum principle or by observing that (0(1) is a subsolu-

tion to the scalar elliptic problem for o(2).
PROPERTY II*. For fixed initial .0, the solutions of ()) are ordered inversely

with :
A1 >_ A2 (2(1), ((1)) <_ (2(2), d(2)) for all (t,x).

Monotonicity with time is now automatic (see Theorem 3.2).
PROPERTY III*. t -- ((t,x), (t,x)) is monotone increasing for all x.
In this section we also discuss the behavior as t --, c. At the simplest level we

show that (X, C) (1, 1) and (, () (1, 1) as expected. We also discuss the
asymptotic limit of (P) as e 0 and show the various ways in which the solution of
(P’) tends to the solution of the pseudo-steady-state problem (15’). This relationship
requires us to take into account the fact that since Co(x) C0(x), the limit cannot
hold for t 0.

THEOREM 3.1. Let 0 <_ Xo(x) <_ 1, and let 0 <_ Co(x) <_ 1, with Co(x) satisfying
(3.2) and (3.3). Then the solution (X, C) of (P’) has the properties

t --. (X(t,x), C(t,x))is monotonically increasing for any x t

and
lim (X, C) (1, 1) c([o,

Proof. It is easy to see that (X0(x), Co(x)) is a subsolution of (P’). We conclude
from Theorems 2.1 and 2.2 that

Xo(x)

_
X(t,x)

_
1, Co(x) <_ C(t,x) <_ 1.
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From these inequalities, we see at once that, for any h > 0, (X(t + h, x), C(t + h, x)) is
a supersolution of (P’) so that X(t + h,x) >_ X(t,x) and C(t + h,x) >_ C(t,x). Hence
(X, C) increases monotonically in time. By the monotone convergence theorem there
exists (X(x), Co(x)) with 0 <_ X <_ 1, 0 <_ Co <_ 1 such that limt-(X, C)
(X, C) in Lp(f) for any p with I _< p _< oc. On the other hand, using the definition
of weak solutions and the monotonicity of F and g, it is not difficult to show (see the
argument in Sattinger [23]) that (X, C) must be the solution of the stationary
problem.

COROLLARY 3.1. If 0 < Xo(x) < 1 and 0 <_ Co(x) <_ 1, then the solution of (P’)
satisfies limt-o (Z, C) (1, 1).

Proof. Since Co does not necessarily satisfy (3.2) and (3.3), C(t, .) may not be
monotone. Consider, however, the solution (X#, C#) of (P’) with initial data (X0, 0).
Then (X#, C#) is easily seen to be a subsolution of (P’) with initial data (X0, Co) so
that

0<__" X# X_< 1, 0<_C# <:C 1.

By Theorem 3.1, (X#, C#) tends monotonically to (1, 1) as t -- oo, so that (X, C)
also tends to (1, 1) as -- oo (but perhaps not monotonically).

For the pseudo-steady-state problem (), the monotonicity in time of ) and
is always guaranteed. The straightforward proof is omitted.

T. O. M 3.2. (/:.  o ution o/ th n

--. monoton  .   

for ny t2 nd limt-oo(, ) (1, 1).
3.2. Monotonicity in and the relationship between (P) and ()). Con-

sider problem (P’) for fixed A and fixed initial data (X0, Co), but with different values
of . To emphasize the dependence on we relabel the problem (P’) as (P’) and its
solution as (Xe, Ca). When is there monotonicity of (P’) with respect to e? In practice,
e is often small and problem (P’) with initial value X0 X0 (and 0 determined from
(3.4)) is used to approximate (P). In what sense, if any, is this a good approximation?

We begin with two simple lemmas.
LEMMA 3.1. Let 1 > 2 > 0; let Co(x) satisfy (3.2) and (3.3); and let (Xi, Ci),
1, 2 be the solutions of (P) corresponding to and initial data independent

of i. Then
(X C (Z2 C2) for any (t, x).

Proof. Since Xt _> 0 and, by Theorem 3.1, Ct >_ 0, we have e2Ct -AC +
,F(X1)g(C) (e2- el)Ct <_ 0, so that (X1, C) is a lower solution to (P) with
e e2. Hence, for all (t, x), we have

(Xl(t,x),C(t,x)) <_ (X2(t,x),C2(t,x)) <_ (1, 1). [-1

Remark 3.1. If, for instance, (3.2) does not hold at some point x, then we can
have C(t,x) > C2(t,x) for small t.

LEMMA 3.2. If (Xo, Co) <_ (2o, o) then (X(t,x), C(t,x)) <_ (ff(t,x)(t,x)).
Proof. We have

+ >_ O,

where the last inequality follows from Theorem 3.2. In view of the assumption on the
initial values, (7, ) is a supersolution of (P) and the result follows. [
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Remark 3.2. If Xo go and Co d?o, we conclude that problem (’) converts
solid more quickly than (P’), as expected.

These two lemmas lead to the following theorem, which deals with the limit as-- 0 of (P).
THEOREM 3.3. /f ^(Xo, Co) _< (’o,o), then (X, C) <_ (f(, ) and

limo(X, C) (X,C) in C((0, o) fl). Moreover --, X(t,x) is monotone
increasing for any t,x, and if Co(x) also satisfies (3.2) and (3.3), C(t,x) is
monotone increasing as well.

Proof. Suppose Co satisfies~(3._2), (3.3); then, by Lemma 3.1, (Xe, C) is mono-
tone in e and so converges to (X, C) as e --* 0+, uniformly on tT; moreover, _(), 0)
clearly satisfies the pseudo-steady-state problem (’) and therefore g ,C C.
Now let (X,C) be the unique solution of (P) with initial data (Xo,0); then

(Z, C) is seen to be a subsolution to (P) for the same e and initial data (Zo, Co).
It then follows from Lemma 3.2 that

(x, c) < (x, c) < (2,

But (X, C) satisfies the conditions of Lemma 3.1, so it is monotone increasing in

and therefore tends to (g, ) as e --, 0+. Hence, so does (X
In the following theorem we provide other measures of how well (15) approximates

(P[) for e small. The initial data for (P[) is (X0, Co), and for (") is (go Xo, 0o),
where (0 is determined from (3.4).

THEOREM 3.4. Let Xo E C() for some 5 E (0, 1) and let Co C2+(f) with
(0, 0) <_ (Xo, Co) <_ (1, 1). Then the estimate (2.6) holds replacing (S* 1 Z*, C*)
by S 1 X, C). In particular,

(3.5) IlXe(t,x) f((t,x)llLl(n <_ Me

for any t > 0 (i.e., X --, 2 in C([0, oo) Ll(fl)) as e --, 0), where M
1 IICo dollL<a> Moreover, ifA

(3.6) IICo -OllL(a) Le’ for some L > 0 and 7 > O,

then

(3.7) [IX(t,x) 2(t,z)[[,(a) < e"+IL
and

(3.8) IICs(t,x) d(t,x)llL(n <_

for any t > 0 (i.e., (Xe, C) - (2, d)^ in C([0, oo)" L1(ft))^ as e 0):
Proof. By Theorem 3.2 we have Ct >_ 0 so that eCt A + AF(X)g(O) >_ 0 and

the proof of Theorem 2.2 gives the inequality

.] ICe(t, x) C(t, x)l dx + A .]o IX(t, x) 2(t, x)l dx

1L’/o I.+ IC(-, o-) d(-,-, o91 d,,- do-

_
ICo() dO()l d,
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which leads to the-desired results (3.7) and (3.8). [:]

The next result_ shows the convergence of (X, Ce) to (), () as e 0 in the
space LI(0, t" C(t)) independently of the initial difference IIC0 C011L(a).

THEOREM 3.5. Let X0, Co be as in Theorem 3.4 and let Co <_ o. Let w E C()
be the (unique) solution of the linear problem (1.11). Then, for any t > 0 and any
x (,

and

’o
0 <_ (O(T,X)- C(T,x))dT <_ w(x)

f
(3 0 < 1(2(t x) x (t x)) dx <

so that

and

C -- in Ll(0, t" C(t))

X - ( in L(0, t LI()).
Proof. Integrate the equations for C and with respect to time; use Lemma 3.2

and the comparison principle to obtain (3.9). Inequality (3.10) follows from Green’s
formula.

4. On the conversion of the solid and the penetration of the gas.

4.1. Solid conversion. The behavior of f(S) near S 0 will determine whether
or not the solid is fully converted in finite time.

THEOREM 4.1. Consider problems (P) and ()) and let

(4.1) R(S)
da

f(a)’
I- R(O+).

Then if I < oo, the solid is fully converted in finite time; if I oo, S(x, t) and (x, t)
are positive for all t at every x where the initial solid concentration is positive.

Proof. We carry out the proof for problem (P), the reasoning being similar for
()). We write (1.1) with its initial condition (1.43) as

(4.2) St -#(t, x)f (S), t > 0, S(0, x) So(x),

and treat each x individually. If S0() 0, then S(t,) 0 for all t, so we confine
ourselves to points x where So(x) > 0. In that case, S(t,x) will itself be positive for
some initial time interval, and we can divide (4.2) by f(S) to obtain

d
R(S) #(t, x),(4.3) d-

where R(S) is defined by (4.1). Note that R(S) is positive and decreasing on 0 < S <
1. Therefore, R-I(S) is positive and decreasing on [0, I). Integrating (4.3) from 0 to t
gives

R(S) R(So) + #(T, x) dT,

lIn this section I1’11 will stand for the usual sup norm on the x variable, [[u(t,x)l supxe Ilu(t,x)ll.
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and therefore

(4.4) S(t,x) R-1 [fo #(-,x) dT + R(So(x))]
is the solution of (4.2) as long as S > 0. If I c, the positivity of R-1 on [0, cx)
guarantees that S(t, x) > 0, so that the second part of the theorem is proved. If I is
finite, (4.4) furnishes a positive solution of (4.2) for t < T(x) where T(x) is defined by

R(o(x)) + fo #(T, X) dT I.

At t T(x),S(x,t) 0 and remains equal to zero for t >_ T(x). Since R-I(I) O,
it is useful to extend the definition of R-1 through the rule R-(z) O,z >_ I. With
that agreement (4.4) remains valid for all t even if I is finite.

Returning to (1.1) we can then write

(4.5)
(c(,x)) d + R(So(x))]
g(C(T,x))d-]

We have proved in 3 that C(t,x) tends to 1 as t c, uniformly for x E t, so that
g(C(T,x))d- >_ I for all x if t is sufficiently large. Therefore, there exists T such

that S(t,x)- O, t >_ T, and we have full conversion in finite time.
COROLLARY 4.1. If f(S) S’,I is finite if and only if m < 1. The explicit

formulas are
I_S

Rm(S) 1------, m 1,
lnS, m 1,

and thus

(4.6) Rnl(z) { [1 z(1 m)]+/-m, m 1,
e-z, m 1,

where [u]+ stands for the greater of u and O. We can then rewrite (4.5) as

s(t,x) o(x)R; () g(C(T, x)) d-1
Remark 4.1. We could substitute (4.5) into (1.2) to obtain a nonlinear integro-

differential equation for C subject to conditions (1.4b) and (1.4c). A related approach
due to McNabb [19] is more useful. He introduces

(4.7) (t,x) [1 C(T,x)] d- (1 C rt),

the time-integrated deviation of C from its steady state. A straightforward calculation
shows that r/satisfies

, a, (1 Co) + (So s), x ,
(4.s) ,(x, 0) 0, , +, 0, z e on, t > 0.

t>O;
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Although S is unknown in (4.8), considerable information can nevertheless be ex-
tracted from this formulation. For instance, because S decreases to 0 as t -- x, (t, .)
is monotonically increasing to the solution r(x) of the steady-state problem

(4.9) -A e( Co) + 0, + aV, 0, x e 0.

Note that

_< +

where w(x) is the solution of (1.11).
For the p.s.s, problem we define

(4.11) = (1- () dT,

which satisfies

(4.12) -A)=A(0-), +a=0, xe0Ft,

and )(t, x) tends monotonically to the solution of

(4.13) -A)oo =/k0, oo + a)oo, 0, x e 0.

We see that

(4.14) ) _< Aw(x).

In the special case where g(C) C, (4.5) gives

S(t,x) R-lit + R(S0)],

which can be substituted into (4.8) to give a scalar partial differential equation for

7. These ideas were exploited in [24] and [28] and will be used to some extent in the
remainder of the section.

Remark 4.2. If we had considered a problem without gas diffusion and with a
gas concentration maintained at the value one, the solid concentration S*(t, x) would
satisfy the ordinary differential equation

(4.15) S; -f(S*), t > O, S*(O,x) S(x).

There are many ways of seeing that S*(t,x) <_ S(t,x), where S is the solution of (P)
with the same initial solid concentration (and any Co _< 1). For instance, since R-1 is
monotone decreasing and g(C)

_
1, (4.5) shows that

S(t,x) _>_ R-(t + R(So(x))),

the right-hand side being precisely S*(t, x), because now # _= 1 in (4.4). Similarly, we
can show S* _< , the solution of (15) with the same initial value.

The quantity that is perhaps of greatest physical interest is the overall conver-
sion fraction v(t). The inverse of this function gives the time required to achieve the
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conversion of a specified fraction of the solid. We shall compare problems (P), (P’),
and (4.15) with the same initial value So(x).

The overall conversion at time t for problem (P) is given by

(4.16) (t) fa(S(x) S(t,x)) dx fa S(t,x) dx
So(x) x So(x) x’

for problem () by

1 fa x)dx
So(x) x’

and for (4.15) by

"* (t) 1 fa S* (t, x) dx

f So(x)dx
We have already proved the following properties:
(a) 0_?(t)_ 1, 0_’(t)_ 1, 0_’*(t) _1;
(b) ,(t) <_ (t), -(t)=-*(t) (see Remark 4.2);
(c) If Co(x) <_ (o(x), /(t) <_ (t) (see Lemma 3.2);
(d) limt- /(t)= limt--.o-(t) limt-o-*(t) 1 (see Corollary 3.1).
If I is finite, Theorem 4.1 tells us that the solid is fully converted in finite time,

that is, (t) - 1 for t sufficiently large. We define full conversion times tl, 1, t by

tl inf{t" 7(t) 1}, il inf{t" (t) 1}, t inf{t’-*(t) 1}.

We first observe that t is known explicitly. We seek the smallest value of t for which
S*(t,x), the solution of (4.15), is identically zero on ft. Since IIS011 1, there is at
least one point where S0() 1. These points will be the slowest to convert. From
(4.4) we have S(t,) R-l(t), which is positive for t < I and vanishes for t >_ I.
Therefore, t I.

From (b)and (c)above we see that

tl >_ I, il >_ I and, if Co(x) <_ o(x),

We can obviously characterize t by

inf{t S(t,x) O,x e ft} inf{t X(t,x) =_ 1, x e a}.

By (4.5) and the fact that R-I(I) 0, we also have that tl is characterized by

tl
mi_n g(C(T,X)) dT + R(So(x)) I

and 1 by

mi_nxEa fo g(0) dT+ R(o) I.

If So(x) 0(x) 1, then we see that tl and il satisfy

(4.17) rni_n g(C) dr I, mi_n g(d) dT I.
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Next, we provide estimates for 1 when 0(x) 1, the case that occurs most
frequently in applications (uniform initial solid concentration).

THEOREM 4.2. Let So =- 1 and let I be finite. Assume there exist gx,g2 E
C([0, 1]) fq CX((0, 1)) such that gl, g >- O, gx (1) g2(1) 1, and

(4.18) gl (r)

_
g(r)

_
g2(r) V r e [0, 11.

Then

(4.19) I + M2AIIw]I < ix <_ I + M1AIIwl I,

where M1 sup[o,1 g, M2 inf[o,1] g, and w is defined by (3.9).
Proof. By definition, )t 1- ( so that 0 < 1- )t < 1, 0 < )t < 1. We immedi-

ately see that with M1, M2 as defined above,

1 gl (1 fit) <_ Mllt, 1 g2 (1 )t) >_ M2

and, therefore,

1 MxClt <_ gx(1 )t) _< g(1 )t) _< g2(1 )t) _< 1

Integrating from 0 to x, we find

tl Ml(il, x) <_ foil
and, taking the minimum with respect to x and using the characterization (4.17) for
x, we obtain

When t _> ix, 0 so that (4.12) gives

which, when substituted into (4.20) gives the result (4.19).
Remark 4.3. Special cases of interest correspond to g(C) Cp, p > 0. Our esti-

mates then become

(4.21) (a) if p 1, il I q- ,,I[W]I (take gl g2 g);

(b) if p < 1,

(c) if p > 1,
I + , llwll _< ix <_ I + , pllwll

(4.22)

(4.23)

(take g (r) r, g2 g);

(take g2(r) r, gx g).

The result (a) was first given in [28]. From the inequality 0 <_ fl (1 )t)dr
1 W(X), we also find

(4.24) ix llwll,
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which improves the lower bound (b) if A(1 -p)llwll >_ I.
Further improvement follows from using Jensen’s inequality, which we illustrate

in the case p < 1, when the inequality becomes

/0v(T) dT >_ tP-1 VP(T) dT,

where v(t) is any nonnegative continuous function.
Setting v- 1- )t, we find

tl(1- )p dT <_ -P({ Aw(x))P Vx e ,
and, taking the minimum over x,

This inequality implies {1 _> T, where T is the unique positive solution of

(4.25) I T-P(T- lllwll)P,

which can be shown to always provide a better lower bound to than (4.22) and
(4.24). As an example, if p 1/2, (4.25) gives

which is larger than the lower bounds (4.22) and (4.24).
We now turn to estimates for t when So(x) 1. These are somewhat more

difficult as t also depends on both and Co(x). We will not be able, for instance, to
find an exact value for tl when p- 1, as we did for (see (4.21)).

THEOREM 4.3. Let So(x) =- 1, 0 <_ Co(x) <_ 1; then

t _< I / M(e + A)llwll,

and if also Co <_ o, then

where M, M2 are as in Theorem 4.2.

Proof. We proceed as in Theorem 4.2 to reach the equivalent .of (4.20)"

(4.26) tl Mlllrl(t,x)ll <_ I

_
tl M2llrl(tl,x)ll.

Unfortunately, r(tl, x) is not known explicitly, so we must use estimates for lira(t1, x)l I.
From (4.9) we have

< < +
which yields

the upper bound in Theorem 4.3. The lower bound in the theorem follows from
previous results (Theorem 4.2 and Lemma 3.2). [:]
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Remark 4.4. Again we can consider the case Cp and find corresponding forms of
(4.21)-(4.24). For instance, (4.21)becomes

which is quite satisfactory as long as e is small.
Remark 4.5. Jensen’s inequality can be used to improve some of the bounds.
Remark 4.6. We can also be more accurate in our estimate for IIn(tl,x)ll, which

appears in the proof of Theorem 4.3. For t >_ tl, n(t, x) satisfies (4.8) with So 1, S
0; that is,

-An=e(1-Co)+A-ent; r/+an=0 on0t.

Now 0 <_ nt <_ 1, so that

,- ego _< --AT _< e(1 Co) + A

and, hence,
< < +

where y(x) satisfies

-Ay=Co(x), xEFt; y+ayv=0 on0gt.

As an illustration of the use of these inequalities, suppose Co 1. Then (4.26) yields

and

If, also, p 1, then with gl g2 g, we find M1 M2 1 and

I + (- e)llwll <_ tl <_ I +  11 11
Thus, unlike the case where Co

_
o, we now have

4.2. Penetration of the gas. In problems (P) and ()), the gas concentration
tends uniformly to its steady state C 1. The concentration must therefore be
strictly positive for t sufficiently large, but is this necessarily true for all t > 07 Our
experience with scalar problems involving strong absorption suggests otherwise: there
may exist a time-dependent "dead core" in which the concentration is zero at time t
(see [4] and [9]). Any such dead core must, of course, disappear in finite time. For
problems, (P) and (e) we define

D(t) {x e a C(t,x) 0}, T inf{t’C(t, x) > 0 for all x

(4.28) D(t) {x e u O(t, 0}, inf{t" 0(t, x) > 0 for all x e t}.

As in the scalar case, an important role is played by

da
(4.29) J where G(a) g(C) dC.
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Note that if g(C) Cp, J is finite for 0 < p < 1 and infinite if p > 1.
Our main result is that (a) no dead core exists if J oc, and (b) a dead core may

exist if J is finite. We prove these assertions below and also provide rough estimates
for the location of the dead core and for the time at which it disappears.

THEOREM 4.4. Let g(C) be such that J oo. Then

5(t,x) > o
c(t, z) > o

fo a (t, ) e [o, ) fi,
for all (t, x) e (0, x3) t.

Proof. By Theorem 3.2, ((t,x) increases monotonically in time, so (t,x) >
(o(x) with o defined by (1.9). Thus (o(x) satisfies

-5o + 9(5o) _> 0

and, therefore, by a result of Vzquez [30], o(x) > 0 in t, and hence ((t,x) > 0 in
t for all t > 0. In the parabolic case, we have

o c, fC + f(S)9(C) < C, iC + 9(C),

so that C(t, x) is a supersolution of the scalar problem

C AC* + Ag(C*) 0 on (0, oo) x

C*+aC$ =1 on (0, oe) 0Ft,
C*(O, x) Co(x) on a.

The strict positivity can be obtained by an easy modification of a result of Bertsch,
Kersner, and Peletier [5] and, therefore, C(t, x) > 0 on (0,

Next we show that if J is finite, a dead core is possible in the pseudo-steady-state
case.

THEOREM 4.5. Let J < oo; define

d(x, Ogt) distance from x to

A half-width of thinnest slab enclosing t,
ri radius of largest inscribed ball,

re(t) f(i (t, x)), M(t) f(sup (t, x)).

Then

(4.30)

(4.31)

(4.32)

(4.33)

D(t) D x e t. d(x,O) >_

[ N ]1/22Am(t)b(t) # O when J < ri,

j2
[9(t) O when < 2a2M(t)
b(t) =o for all t i,f < J2/2a2.

Proof. Since f is increasing, we have

-A + M(t)g() >_ 0 -A + )f(f;)g(O) >_ -A + )m(t)g(),
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so that is a subsolution of the scalar elliptic problem

-AC() + Am(t)g(C(")) O,

C() + C() 1, x E Ogt.

Therefore, ((t, x) <_ C(a) (t, x), which, in turn, is smaller than the solution C() (t, x) of
the Dirichlet problem. It follows that (t) is contained in the dead core of C(0) (t, x).
It is shown in Diaz [7, Prop. 1.11] that the dead core for C(0) satisfies (4.30); see also
[8] and [25]. The assertion (4.31) is an immediate consequence of (4.30).

To prove (4.32) we observe that is a supersolution to the scalar problem with
M(t) replacing f(S). Although conditions for nonexistence of a dead core for this
latter problem are available [17], [26], we confine ourselves to the case ( 0, when
the simple bound (4.32) is derived in [3]. Since M(t) is a decreasing function of time
with i(0)= 1, the bound (4.33) follows. D

Remark 4.7. To apply (4.31), we need an explicit lower bound for re(t). Such
a bound is easily obtained if inf 0(x) 5 > 0. Then, from Remark 4.2, we find
(t,x) >_ R-(t + R(5)) so that re(t) >_ f[R-i(t / R(5))] and m(0) >_ f(5). Therefore,
a dead core exists at time t if

(4.34) ri > J
2f[R_l(t + R(5))]

1/2

In particular, a dead core exists for sufficiently small t if

(4.35) ri > J
2)f(a)

1/2

Note that (4.34) also gives a lower bound for :

(4.36) >R {f-1 /2N] R(e)}.
We now turn to the parabolic problem when J < x). Estimates are more cum-

bersome because the dead core may not be monotonic in t. For instance, if Co(x) 1,
a dead core may form after a certain time and later disappear. We can, however, find
an upper bound on T, the time beyond which C(t,x) > 0 for all x t. We confine
ourselves to the Dirichlet problem (a 0).

THEOREM 4.6. Let a 0, J < oc, and let a be the half-width of the thinnest strip
enclosing . Then

(4.37) T < e + a2.
2 a2’ <-

Our proof is based on comparison with a half-space, so we begin with the following
lemma.

LEMMA 4.1. Consider problem (P) for the half-space x > 0 with C(t, O) 1 for
t > 0 and initial values 0 <_ X(O,x) <_ 1, 0 <_ C(O,x) <_ 1. Let

p(t) inf{x C(t, x) =_ 0}
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be the penetration distance of the gas, where p(t) is understood to be +cx if C(x, t) > 0
for all x. Then

(4.38) p2 _> 2t

an estimate which holds even when --O.
Proof of Lemma 4.1. We give the proof for e > 0, omitting the simpler case e 0.

Let us first consider the problem with zero initial values for C and X. Condition (3.2)
being satisfied, C(t, .) and p(t) are monotonically increasing. We write (2.3) as

eCt -Cx -AXt, x > O, t > O

and, as in [14], integrate in time from 0 to t to obtain

(4.39) ec(t, x) + ax(t, x)

where

(t, x) C(T,x)dT.

We multiply (4.39) by x and integrate from x 0 to x p(t)"

x(C + AX) dx xxx dx t (t, p(t)).

By the time monotonicity, C(T, p(t)) 0 for T < t, SO that (t, p(t)) 0. Thus we
find

p p2
t x[eC + AX] dx <_ (e + )-,

which proves (4.38) for zero initial values. For other initial values the gas concentration

C(t,x) will be larger (Property I, 3.1), and (4.38) must remain true. [:]

Proof of Theorem 4.6. Let (Xa, Ca) be the solution of the problem (P’) with
c 0. We compare this solution with the solution (XH, CH) for a supporting half-
space H enclosing ft with initial values (XH(0, X), CH(0, X)) (Xa(0, x), Ca(0, x)).
Then, since CH <_ 1 on OFt, (XH(t,x), CH(t,x)) is a subsolution to (P’) for ft, and
hence

(4.40) ca(t, x) >_ c i(t, x).

Now let U be the thinnest slab enclosing ft; applying (4.40) successively to the half-
e+,X a2spaces corresponding to the two faces of U, we see that Ca(t, x) > 0 when t > --if-

where a is the half-width of the slab. This yields (4.37). The proof is the same for the
pseudo-steady-state case.

Remark 4.8. When full conversion occurs in finite time (I < ), we have esti-
mated t and 1, the times to full conversion. When t > t (or t > 1 in the p.s.s.
case), the equation for the gas concentration is just the ordinary heat equation, which
has the well-known property C > 0 for the given boundary conditions. Hence t is an

upper bound for T.
We end this section by showing that a dead core can occur for the half-space

problem when g(C) Cp,p < 1. Consider again the Dirichlet problem, now with
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C(0, x) S(0, x) 1, the initial condition on C being least favorable for generating
a dead core. Our problem then becomes

f(s)a(c) xs,, z > o,
C(0, x) S(0, x) 1, C(t, O) 1.

t>0;

Since conversion of the solid is fastest at x 0, we have

f(S(t, 0)) <_ f(S(t,x)) <_ 1.

From the second inequality we find that C(t,x) >_ z(t), where z(t) is the solution of
zt -Ag(z), z(0) 1. Because z > 0 for

dz
t < g g(z)’

we see that, as expected, C(t, x) is strictly positive for t < K. Note that when g(z)
zp, K is finite if and only if p < 1. Next we show that C develops a dead core at later
times by constructing a supersolution D(t,x) of (4.41) over a bounded time interval
with D(t,x) 0 for x sufficiently large and some range of t. Since S(t, 0) satisfies
St -f(S) with initial value one, we find that S(t, O) R-l(t) (see (4.5) and (4.6)).
Because S(t, 0) decreases monotonically from 1 to 0, we can find, for each 5 with
0 < 5 < 1, a time T5 such that

f(S(t, 0)) >_ 1 5, 0<t<Te.

Therefore, f(S(t,x)) >_ 1 -5 for 0 < t < Te and C(t,x) <_ D(t,x) on (0, T) where D
satisfies the scalar problem

(4.42) Dt Dxx -(1 5)g(D),
D(O, x)= 1, D(t, O)= 1.

x > 0, t > 0;

It was shown in [321 that problem (4.42) exhibits a dead core for all t > x(]K_e).
Therefore, (4.41) will have a dead core if we can choose the parameters so that

eK
(4.43) A(1 5) < Ts.

Let us illustrate the calculation for the case f(S) S. Then S(t, O) e-t, Te
-log(1 5), and (4.43) is satisfied if, for some , 0 < < 1, we have

< -(1 5)log(1 5).

and the maximal value is 1 ThusThe maximum of the right side occurs at 5 1- ,
(4.41) will have a dead core if -- < 1.

Remark 4.9. A bounded domain Ft of sufficiently large size will also have a dead
core for a suitable choice of the parameters. Of course, in this case the dead core must
disappear in finite time.
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POSITIVE SOLUTIONS OF SINGULAR SUBLINEAR DIRICHLET
BOUNDARY VALUE PROBLEMS *

YONG ZHANG

Abstract. This paper mainly studies the existence of positive solutions of Dirichlet boundary
value problems for a class of singular sublinear ordinary differential equations. A necessary and
sufficient condition for the existence of C[0, 1] positive solutions as well as C [0, 1] positive solutions
is given. The uniqueness of the solution is also concerned, and an application to the Dirichlet problem
of semilinear elliptic equations is given.

Key words, sublinear equations, singular Dirichlet problems, positive solutions, lower and
upper solutions, radial solutions of semilinear elliptic equations, existence and uniqueness
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1. Introduction. In this paper we are concerned about the singular boundary
value problem of second order ordinary differential equations

(I.I) + f(t,x) 0, t e (0, 1),

(.e) x(0) x(1) 0.

By singularity we mean that the function f in (1.1) is allowed to be unbounded at the
end points t 0 and 1. Recently such problems have interested many authors [1]-[8].
For background, we mention the existence problem of radial solutions of nonlinear
elliptic equations as follows:

Au + f(]xl, u) O, x e n,

u(x)lon O, ixln_l --Ou exists,
On on

where g/is an n-ball of radius p centered at 0 E Rn, 0 < p <_ +oc, n >_ 2, and when
p +cx) (i.e., fl Rn) we assume n > 2; f(r,u) is continuous for 0 _< r < p,u E
(-cx), oc) (or (0, cx)) if we consider positive solutions).

This problem leads one to treat the boundary value problem of ordinary differ-
ential equations

p(r) dr
(r)r + f(r, u) O, e (o, p),

i(O) O, u(p) 0 and p(p)i(p) exists,

where p(r) rn-1. Under the transformation t t(r) (f (ds/p(s)) + 1) -1, y(t)
tu(r), the above problem is reduced to a singular Dirichlet problem of the form (1.1),
(1.2), that is,

)(t) + (p2(r(t))/t3)f(r(t), y/t) O, t e (0, 1),
y(0) y(1) 0, y(t) C= CI[0, 11CI C2(0, 1),

* Received by the editors March 23, 1993; accepted for publication (in revised form) September
28, 1993.
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where r(t) is the inverse of t(r).
To treat the singular problem (1.1), (1.2), we can make use of three general meth-

ods, the shooting method, the operator or topological degree method, and the lower
and upper solution method. The first has been used successfully in the study of some
special singular problems such as negative exponent Emden-Fowler boundary prob-
lems (cf. [1]). In fact, this method is available if one assumes that f(t, x) is decreasing
in x. But for other cases it often seems useless. The second method, though it has
many advantages in treating nonsingular problems, still has some difficulties when
treating singular problems. One can find some results concerning this method for sin-
gular problems in [2], [3], and their references. Other valuable results connected with
the operator iteration technique are obtained in [4] and [5], where singular boundary
value problems with more general boundary conditions have been treated under the
condition that f(t, x) is decreasing in x (see [6] and [7] for relevant results). The third
method Was developed originally for nonsingular problems. Since there are many dif-
ferences between singular and nonsingular problems, using it as a general method to
the singular problems is pending more basic investigations. Some attempts have been
made by Zhang in [8] to treat the singular problem (1.1), (1.2) with f(t,x) p(t)xa,
where p(t) E C(O, 1), p(t) > 0, 0 < a < 1, and in [9] to treat singular boundary
value problems of other forms. These and the discussion in this paper show that the
lower and upper solution technique is really a very promising method for the study of
singular boundary value problems.

In this paper we deal mainly with the existence of positive solutions of the singular
boundary value problem (1.1), (1.2) under the following sublinear hypothesis.

(E) f(t,x) C((O, 1) (0, oc), [0, oc)), f(t, 1) 0 for t (0, 1), and there exist
constants A, #, N, M(-c < A <_ # < 1, 0 < N <_ 1 <_ M), such that, for t (0, 1) and
xe (0, ),

(1.3) ct"f(t, x) <_ f(t, cx) <_ cf(t, x), if 0 _< c < N;

(1.4) cf(t, x) < f(t, cx) < c.f(t, x), if c > M.

Typical functions that satisfy the above sublinear hypothesis are those taking the
form

f(t,x) p(t)x;
k--1

here pk(t) e C(O, 1), pk(t) > 0 on (0, 1), Ak < 1, k 1, 2,..., n.
We will call a function x(t) e C[0, 1] fq C2(0, 1) a C[0, 1] (positive) solution of

(1.1), (1.2) if it satisfies (1.1) on (0, 1) and the boundary condition (1.2) (and x(t) > 0
for t e (0, 1)). If, in addition, &(0+) and &(1-) exist, i.e., x(t) e Cl[0, 1] fqC2(0, 1), we
will call it a CI[0, 1] (positive) solution. Here we point out that, under the condition
(E), any nontrivial nonnegative solution of (1.1), (1.2) is in fact a positive solution,
since it is a concave function.

The main results of this paper are the following two theorems which will be proved
in 3.

THEOREM 1. Suppose (E) holds. Then a necessary and sufficient condition for
problem (1.1), (1.2) to have a C[0, 1] positive solution is that

(1.5) t(1 t)f(t, 1)dt < .
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THEOREM 2. Suppose (E) holds. Then a necessary and sufficient condition for
problem (1.1), (1.2) to have a C1[0, 1] positive solution is that

(1.6) f01 f(t, t(1 t)) dt < oc.

With respect to relevant results, the author would like to point out that a con-
dition similar to (1.6) has been used by Gatica, Oliker, and Waltman in [4] to obtain
C [0, 1] solutions to singular problems with mixed boundary conditions. The assump-
tion that f(t, x) is decreasing in x is a crucial condition there. Within the scope of
Dirichlet problems, the sufficiency part of our Theorem 2 extends their Theorem 2.2,
but does not include it.

Though the uniqueness seems to be a property typical of sublinear problems, fully
studying it is not easy, especially when f(t,x) has no monotone property in x. We
will discuss the uniqueness in 4, where we will mainly prove the following uniqueness
theorem.

THEOREM 3. Suppose that

(u) f(t,x) e C((O, 1) (0, oc), [0, cx3)), and f(t,x)/x is strictly decreasing in x
for t (0,

Then, if problem (1.1), (1.2) has a C[0, 1] positive solution, it will admit no other
positive solutions.

As an application of the above theorems we will discuss the existence and unique-
ness of radial solutions to Dirichlet problems of semilinear elliptic equations in 5.

2. Preliminary lemmas.
LEMMA 1. For any f(t) e L[0, 1], there exists g(t) e el0, 1] with g(t) > 0 for

t E (0, 1) and g(0) g(1) 0, such that f(t)/g(t) L[0, 1].
Proof. Suppose f(t) LI[0, 1]. Without loss of generality we can assume f(t) > 0

for t [0, 1]. Let l= fd f(t)dt, h(t) f f(s)ds, and, for any given e" 0 < e < 1, let

g(t) [h(t)(l- h(t))] e, te [0,1].

Then g(t) e C[0, 1], g(t) > 0 for t e (0, 1), and g(0) g(1) 0. Also,

0 < (y(t)/g(t)) dt= [h(1- h)]- dh <

This shows f(t)/g(t) e L[0, 1] and hence completes the proof. D
LEMMA 2. For any g(t) C[0,1] such that g(0) g(1) 0 and g(t) >_ 0 for

t [0, 1], there exists q(t) C[0, 1] N C2(0, 1) such that q(0) q(1) 0, q(t) >_ g(t),
and q"(t) <_ 0 for t (0, 1).

The proof of Lemma 2 will be given in the appendix because of the lengthy
argument there involved.

Now let us consider the general singular boundary value problems as follows:

(2.1) ii + f(t,x) 0, t E (0, 1),
(2.2) x(0) rl, x(1) r2,

where we assume f(t,x) e C((O, 1) x I,R),rl,r2 e I,I is an interval in R.
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A function c(t) is called a lower solution of (2.1) if c(t) C2(0, 1) and, for
t e (0, 1), c(t) e I, ?(t) h- f(t, c(t)) > O. Similarly, ..(t) is called an upper solution of
(2.1) if f(t) e C2(0, 1) and, for t e (0, 1),/(t) e I, l(t) q- f(t, (t)) < O.

LEMMA 3. Assume that Shere exist lower and upper solutions of (2.1), respectively
c(t) and (t), such that (),(t) e C[O, 1]fqC2(O, 1),c(t) < [3(t) fort e [0, 1],c(0)--
Z(O) r, and c(1) -/(1) r2. Then problem (2.1), (2.2) admits at least one C[0, 1]
solution x(t) such that c(t) < x() < Z() for t e [0, 1]. I], in addition, there exists

F(t) e L [0, 1] such that

(2.3) [f(t,x)] <_ F(t), t e (0, 1),

then the solution x(t) is a C [0, 1] solution.

Proof. Let {an}, {bn} be sequences satisfying 0

b <... < bn < bn+ <... < 1, an "-* 0 and bn -’ 1 as n --. cx), and let {rn)}, {r(2n))
be sequences satisfying a(an) < rn) < Z(an), a(bn) < r(2n) < Z(bn), n 1,2, For
each n consider the nonsingular problem

(2.1) + f(t,x) O,

By a well-known corresponding result in nonsingular boundary value problems (see
[13, Thin. 1.5.1]), we come to the conclusion that, for each n, the problem (2.1), (2.4)
admits a solution Xn(t) C2[an, bn] such that (t) <_ xn(t) <_ (t), t [an, bn]. Since
[a, bx] C [an, bn], n 1, 2,..., there is, for each n, t,, e [a, b] such that I&(t,)]
I(xn(b) xn(a))/(b a)l <_ (2/(b a))maxte[a,b,](l(t)l + I/(t)l). This allows
us to assume (substituting by subsequences if necessary)

t --, to e [a,bl], x(t) --, xo e [(to),(t0)], x(t)

From [14, Whm. 3.2, p. 14] there is a solution x(t) of (2.1), with the maximum
existence interval (T-,w+), such that x(to) xo, gc(to) Xo, and x(t) converges
uniformly to x(t) on any compact subinterval of (T-,w+). Since

[an, bn] C [an+l, bn+l], U [an, bn] (0, 1) and c(t) _< Zn(t)
n--.1

for t[a,bn],

one can easily see that c(t) < x(t) < (t) for t e (w-, w+). This leads additionally to
the fact that (T-,w+) (0, 1), from the Extension Theorem. Also, x(t) satisfies (2.2)
because c(t) and fl(t) do. Thus, x(t) is a C[0, 1] solution of (2.1), (2.2).

In addition, if (2.3) holds, then Ik!(t)l < F(t), and hence hi(t) is absolutely inte-
grable on [0, 1]. This implies x(t) e C [0,1], so x(t) is a C [0, 1] solution of the problem
(2.1), (2.2). The proof is complete.

3. Proof of the main existence results. It is easy to check that in the hy-
pothesis (E) the number , # can be assumed, without loss of generality, to satisfy
< 0 < # < 1. This will be supposed throughout this section for convenience.

Proof of Theorem 1. 1. Necessity. Assume that z(t) is a C[0, 1] positive solution
of problem (1.1), (1.2). Then there is a to such that &(t0) 0, and hence

(3.1) -(t) f(s, x(s)) ds, t e (0, 1).
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Let c > 0 be a constant such that cx(t) <_ N for t e [0, 1] and 1/c >_ M. From (1.3)
and (1.4) we have

(3.2) f(t,x(t)) >_ (1/c)f(t, cx(t)) >_ c-Ax(t)f(t, 1), t e (0, 1).

(3.1) as well as condition (E) implies that (t) >_ 0 (i.e., x(t) increases) for t E (0, to),
and (t) <_ 0 (i.e., x(t) decreases) for t e (to, 1). This, combined with (3.2), yields

t tt5:(t) f(a, x(s)) ds > c’- x’(s)f(s, 1) ds

_> .-.(t) I(. 1)e. t e (O, to),

and

-gc(t) f(s,x(s)) ds > c’-x’(t) f(s, 1) ds, t e (to,).

Dividing both sides of each of the above two inequalities by c,-x(t) and then
integrating them, respectively, on [0, to] and [to, 1] we have

fot fo ft
t

0 < tf(t, 1) dt dt y(s, 1) ds <_ c-,x’-,(to)/(1 ) <

0 < (1 t)I(t, 1)dt dt I(s, 1)ds < c-.z-.(to)/(1 #) <

These imply that (1.5) holds.
2. Sufficiency. Suppose (1.5) holds. Then, by Lemmas 1 and 2, there exists

q(t) e C[0, 1] C C2(0, 1) satisfying q(t) > 0 and q"(t) <_ 0 for t e (0, 1), and q(0)
q(1) 0, such that

(3.3) t(1 t)@-.(t)f(t, 1) dt< .
This, together with (1.3) and (1.4), implies

(3.4) fo t(1 t)q-.(t)f(t, q(t)) dt< o.

Let

for (1 t) sl+.(1 s)t’f(s. 1) ds + t st’(1 a)+t.f(a. 1)ds,

r (1 t) sq-.(s)f(s, q(s)) ds + t (1 s)q-.(s)f(s, q(s)) ds + q(t).

One can check that ri e C[0,1] n C(0,1), r (0) r(1)=o,i= ,2, and

Lt(1 t) <_ r(t) <_ L, q(t) <_ r(t) _< L2, t e [0, 11;

r’(t) -t’(1 t).f(t, 1), r(t) <_ -q-.(t)f(t, q(t)), t e (0, 1).
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Here

L1 81+tt(1 s)l+t’f(s, 1)ds,

/oL2 s(1 s)q-t’(s)f(s, q(s)) ds + qo, qo max q(t).
te[O,l]

Let a(t) arc(t),/(t) br(t), t e [0, ]; here a, b are constants satisfying
0 < a _< 1 _< b, and their sizes will be determined later. Suppose Cl, c2 are constants
such that clL1 <_ N, 1/cl >_ M, c2 >_ M, 1/c2 <_ N. From (1.3), (1.4) we then have

Again, according to (1.3), (1.4) we can find a k0 > 0 such that f(t,q(t)) >_ koqt’(t)
f(t, 1), and consequently, from the definitions of r(t),r(t), we have, when k >
k-,rl(t) < kr(t) for t e [0,1].

Now we choose a min{1 , )/(-")} and b max{1, k (L
c)l/(-)}. Then the above discussions show that, for such choice of a and b, a(t)
and (t) re lower and upper solutions of (1.1), respectively, and satisfy 0 < a(t)
(t) for t (0, 1) and a(i) fl(i) 0 for i 0, 1. om the first conclusion of Lemma
3 we deduce that the problem (1.1), (1.2) admits a C[0, 1] solution x(t) satisfying
0 < a(t) x(t) (t) for t (0, 1). This completes the proof.

Proof of Theorem 2. 1 Necessity. Assume that x(t) is a C [0, 1] positive solution
of (1.1), (1.2). Then (0) > 0 and 2(1) < 0 since (1.2) holds nd (t) O,x(t) > 0
for t (0, 1). This implies that there are constants I1 and I2, 0 < I1 < 12, such that

(3.5) Ilt(1 t) <_ x(t) <_ I2t(1 t), t e [0, 1].

Let c be a constant satisfying cI2 <_ N, 1/c >_ M. Then (1.3), (1.4), and (3.5) lead to

cx(t) t(1 t))(t, x(t))’>_ (/):f t,
t( t)

>_ c.-(x(t)/t(1 t))u f(t, t(1 t))
>_ c.-If(t,t(1- t)), t E (0, 1).

Dividing by ct’-xI and integrating, we get

f(t,t(1 t))dt < c’-1" f(t,x(t))dt

cX-,I;"(5c(O) 5:(1)) <

Thus (1.6) has been derived.
2 Sufficiency. Suppose that (1.6) holds. Let

r(t) (1 t) sf(s, s(1 s))ds + t (1 s)f(s, s(1 s))ds.
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Then F(t) e C[0, 11 N C2(0, 1) and (3.5) holds if x(t) is replaced by F(t) and I1
f0 t(1 t)f(t,t(1 t))dt, I2 f f(t,t(1 t))dt. Let a(t) aF(t),(t) bF(t); here
a min{1, (-,I2)1/(-,)}, b max{l, (hu-xI)l/(-,)}, 5 is a constant satisfying
I1 >_ M, 1/5 <_ N. A similar argument to that we have clarified in part 2 of the proof
of Theorem 1 yields that, for t E (0, 1),

(t) + f(t, a(t)) -af(t, t(1 t)) + f(t, at(t))
>_ -af(t,t(1 t)) + a.-uI2f(t,t(1 t)) >_ O,

(t) + f(t, (t)) -f(t, t( t)) + f(t, r(t))
<_ -bf(t,t(1 t)) + b..-If(t,t(1 t)) <_ O.

So a(t), (t) are, respectively, lower and upper solutions of (1.1), satisfying 0 < a(t) <_
(t) for t e (0, 1) and a(i) (i) 0, 0, 1. Additionally, when t e (0, 1) and
(t) <_ x <_ (t),

0 <_ f (t, x) <_ (a/)f t,
at(1 t) t(1 t)

at(1 t) f (t,.t(1 t)

<_ (a/)-u(bI2)t’f(t, t(1 t)) =: F(t).

From (1.6) we assert f F(t)dt < o. Thus, according to Lemma 3, we have
proved that the problem (1.1), (1.2) admits a C[0, 1] solution x(t) such that c(t) <_
x(t) <_ (t) for t [0, 1]. This completes the proof. 0

4. Uniqueness. In this section we make a brief discussion on the uniqueness of
the solution of problem (1.1), (1.2). We can assert the uniqueness for two special cases.
The first is that f(t,x) is decreasing in x; the second is that f(t,x)/x is decreasing in
x. In the former case the uniqueness is easy to obtain through a standard argument. In
fact, in this case, for two solutions of (1.1), say x(t),x2(t), with x(ti) x2(ti),i
1,2, x(t) <_ x2(t) for t (t,t2), where 0 _< tl <_ t2

_
1, it must be true that

limt-t sup(x(t) x(t)) >_ O, limt__.tinf(x2(t) x(t)) <_ 0 and x(t) x(t)
f(t, xl(t))- f(t, x2(t)) >_ 0 for t (tl,t2), which assure one that x(t) =_ x2(t) for
t E Its, t2], and hence imply that problem (1.1), (1.2) has at most one solution. In the
latter case, using the method given by the author in [8, Lemma 2], we can obtain our
Theorem 3. Here we give the proof as follows.

Proof of Theorem 3. Suppose conversely that x(t),x2(t) are different positive
solutions of (1.1), (1.2), with

(4.1) x(t) x2(t), i- 1,2, 0 < x(t) < x2(t) for t e (t,t2),

and at least one of them is a C[0, 1] solution. Here tl, t2 are some points in [0, 1]
with t < t2. Then it must be true that x(t) e C[t,t2], otherwise we would have
x2(t) e C[t,t2] and x(t+) +cx (or x(t) -oc) since xP(t) <_ O, which is
impossible because of (4.1).

Since x(t) <_ 0 on (t,t2),x2(t+)(x2(t))is either existent or +x(-cx). This,
together with (4.1), yields

lim (x2(t) x (t)) >_ O,
t"’t

lim (x2(t) xi (t)) <_ O.
t-’*t2
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Let y(t) xl (t)x(t) x2(t)x (t), t E (tl,t2). The above discussion shows y(t+ >
y(t). On the other hand, for t E (tl, t2),

y’(t) xl (t)xT(t) x(t)x’(t)
xl(t)xg.(t)(f(t,x(t))/x(t)- f(t,x(t))/xg.(t)) > O,

which implies y(t) > y(t+ ), a contradiction that proves our conclusion. The proof is
complete.

Remark 1. Condition (U) in Theorem 3 is sharp in the sense that, when f(t, x)
is linear in x, the solution of (1.1), (1.2), if any, is not unique.

Remark 2. Besides [8], the function y(t) has also been used to obtain a uniqueness
result in [6].

Combining Theorems 2 and 3, we immediately get the following corollary.
COROLLARY 1. Suppose that conditions (E) and (U) hold. Then problem (1.1),

(1.2) has a unique positive solution which is a C1[0, 1] solution, provided (1.6) is

fulfilled.
5. Application to subcritical elliptic problems. To show the application of

our results to elliptic boundary value problems we consider two kinds of problems.
First, we consider the Dirichlet problem of elliptic equations

m

+ o,Au
k=l

u
u(x) Ion 0, exists.

On on
Here t is an n-ball of radius p centered at 0 Rn,O < p < +oc, n >_ 2,pk(r)
C[0, p), Pk > 0 on [0, p), --cx < Ak < 1, k 1, 2,..., m.

As we show at the beginning of 1 (where we should note that some important
relations have been omitted, among them if(r) t2/p(r),p(r)u’(r) tl(t)- y(t),
and, when y(t) is a C1[0, 1] solution of the final problem, limt-0 y(t)/t 1(0) > 0
and limr--,0(t)(t) y(t))/p(r) limr-,0 tij(t)V(r)/p’(r) limr-0 p(r)f(r, y(t)/t)/
p(r) 0), seeking the positive radial solutions of (5.1) is equivalent to seeking the
positive solutions of the following boundary value problem of ordinary differential
equations:

ij + F(t, y) 0, t e (0, 1),
y(O) y(1) O, y(t) e C[O, 1],

where

Since

and

m

F(t, y) (r(t))2(-1) E(pk(r(t))/t3+)y.

F(t, t(1 t))dt (r-l/t(r)) Epk(r)(1 t(r))X dr,
k=l

( (ff s-(n-) ds + l)-lrn-2, as r O, if n > 2t(r)
(In p- In r + 1)-1, if n 2,

(1 t(r)) s-(n-l) ds + 1 s-(n-l) ds (p- r), as r--, p,
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the convergence of f3 F(t,t(1- t))dt is equivalent to that of ffr-km=lpk(r)
(p- r) dr (when n > 2) or fop r(ln p In r + 1) Ekm=l pk(r)(p-- r) dr (when n 2).
Hence, according to Theorem 2 and Corollary 1, and taking note of the continuity of
pk(r) at r 0, we immediately deduce the following result.

COROLLARY 2. Problem (5.1) possesses a positive radial solution if and only if
f pk(r)(p- r) dr < oc for each k- 1, 2,..., m. Moreover, the solution, if any, is
unique.

Now we consider the second problem

+ f(l l, o,
lira u(x) O.

x E Rn, n > 2,

We give a nonexistence result as follows.
COROLLARY 3. Suppose that f(r, u) [0, oc) )< (0, c) --. [0, oc) is continuous

and satisfies condition (n) by replacing t there by r [0, oc). Then, if foCrf(r, 1)dr
is nonconvergent, problem (5.2) admits no positive radial solutions.

Proof. If (5.2) admits a positive radial solution, then, using the same transfor-
mation given at the beginning of 1, we will deduce that there exists at least a C[0, 1]
positive solution (belonging to C1[0, 1) in fact) of the problem

(5.3)
ij + (p2(r(t))/ta)f(r(t), y/t) 0

y(0) y(1) 0.

te (0, 1),

But we have, on the other hand, that

f01 f0t(1 t)(p2(r(t))/ta)f(r(t), 1#)dt (1 t(r))p(r)f(r, lit(r))dr

> c (1 t(r))p(r)t(r)-xI(r, 1) dr

since (E) holds and t(r) -- 1,p(r)(1- t(r)) r, as r -- oc. Here c > 0 is some
constant. According to Theorem 1, the above relation implies that (5.3) cannot have
a positive solution. This contradiction assures us that the conclusion of this corollary
must be true. The proof is complete.

Remark. We refer to [10] and [11] for further information on Dirichlet problems
concerning semilinear elliptic equations in bounded and unbounded domains. About
the significance of finding radial solutions we recall the celebrated result in [12], which
asserts that a solution of Au + f(u) O, u(x)lofl 0, where fl is an n-ball, is indeed
radially symmetric.

6. Appendix. Although the geometric significance of Lemma 2 is very clear,
the analytic demonstration is somewhat complicated. The proof is divided into two
steps.

Step 1. Let g(t) e el0, 1] be given such that g(t) >_ 0 on [0, 1] and g(0) g(1)
0. We prove there exist point sequences (tn, xn) and ({n,n),n 0, 1,2,..., with

to {0 1/2 and x0 20 > 0, such that
1. 0 < < tn+ < t < < t < to(= 1/2),tn
2 x 0 as n oc, k=+ > k= > O, and k=(t- tn)+ x= > g(t) for t

[tn+l, tn], n 0, 1, 2,..., here kn (Xn+l z.)/(t+ t,);
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3. -o(-- to) < 1 < < -n < -nq-1 <’’’< l,{n -- 1 as n--- oc;
4" xn 0 as n oo, kn+l < < 0 and cn(t n) +

[n, n+l], n 0, 1, 2,..., here n (5:n+1 5:n)/([n+l [n).
The existence of the points (tn, x), n 0, 1, 2,..., for which 1 and 2 hold can

be clarified as follows.
In fact, if there is an I > 0 such that It >_ g(t) for t E [0, 1], then there is a

co > 0 such that, when c > co,p(t)=: c[1/4- (t- 1/2)211/2
_

It >_ g(t) for t e [0, 1/2].
Fix c > co sufficiently large and let {tn} be a sequence such that 1 holds. Take
Xn p(tn), n 0, 1, 2,... then 2 holds automatically since (t,x) are, successively,
on an elliptic curve.

If the number I does not exist, then fix to 1/2, x0 >_ 1 + max g(t) at first, and
then choose (tn, Xn), n- 1, 2,..., step by step as follows.

Let ko be the number such that Io(t) =" ko(t to) + xo >_ g(t) for t e [0, 1] and
I0() g() for some [0, to) (such a number is of co{rse uniquely existent). It is
easy to see that k0 > 0 and there is a t (0, to) such that Io(t) > g(t) for t [0, t)
and Io(t) g(t).

Take tl 1/2t;, Xl Io(tl). We have 0 < xl < xo and (xl xo)/(t to) ko.
Denote by kl the number that satisfies I (t) -: kl (t- t) + Xl >_ g(t) for t E [0, 1],
and I1() g() for some e [0, tl). We have, obviously, that kl > ko and there is a

t e (0, tl) such that Ii(t) > g(t) for t e [0, t) and Ii(t) g(t).
We then take t2 1/2t,x2 Ii(t2). It implies that 0 < x2 < Xl and (x2-

xl)/(t2 tl) k.
I_l(t,)(>0) have been taken, we denote byGenerally, when tn tn_ 1, Xn

kn the number that satisfies In(t) =: kn(t tn) + Xn >_ g(t) for t [0, 1] and In()
g() for some e [0, tn). Then it is true that kn > kn-1 (xn Xn--1)/(t
and there is a t (0,t) such that In(t) > g(t) for t [O,t),I(t) g(tg).
We then take tn+ t/2 and Xn+l In(tn+l). Obviously, 0 < Xn+l < x and
(Xn+l-Xn)/(n+l-n)-’kn.

So we have proved the existence of the sequence (tn, Xn),n 0, 1,2,..., which
satisfies 1 and 2. The points ([,5:n),n 0,1,2,..., for which 3 and 4 hold can
be gotten in a similar way. And one can adjust x0 or 5:0 so that xo 5:0 holds. We
leave the details to the reader.

Step 2. For any given constants a, b, 1, and 52 such that 51 > b- a > 2, let
m(t) m(a,b,l,2, t) C2[0, 1] be a function such that the following conditions
hold:

m(0)=a, m(1)=b, rh(0)=, rh(1)=2,
(4.1)

h(0)=fh(1)=0 and /h(t)_<0 forte[0,1].

To devise a way to construct such a function, let us consider the following example.
Take an integer n such that (n + 1)[61 (b a)] [(b a) 52] > 0; write

[(n q- 1)(61 (b a)) ((b a) 62)]/[(b a) 62](> 0)

and let re(t) a + 51t I f(t s)sn(1 s) ds. Then one can examine whether the
conditions in (4.1) are all valid (to check this, one should notice that, for any integer
n and e > O, f3 sn(1 s) ds fJ(1 s)nse ds n!/( + 1)( + 2)... ( + n + 1)).
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Write

ln kn q- kn+l (tn tn+l), 2n kn q- kn-1 (tn tn+l),
2 2

ln n -[- n--1 ({,. {n) and 2n n -- n+l (-n+l ’n)
2 ...+1 2

and let

mn (t) m(xn+l, Xn, ln, 2n, t), ?=12n (t) m(2n, 2n+1, ln, 2n, t),
t e [0, 1],n 0,1,2,...,

where tn, Xn, kn and t-n, 2n, n are those constants obtained in step 1, k-1 0, -1
k0. Now we define q(t) as follows:

t..+.)).
q(t)

0

t e Its+,,
t e
t=0,1.

It is easy to check that q(t) E C[0,1] rh C2(0,1) and satisfies q"(t) <_ 0 for t E
(O, 1),q(tn) Xn, q([n) 5Cn, n 0,1,2, Also, q(t)

_
kn(t- tn)-[-Xn

_
g(t)

for t [tn+l, tn] and q(t) >_ n(t- [n) + n g(t) for t [-n, -n-t-1], n 0, 1, 2,...,
since q(t) is a concave function. This completes the proof. [3
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PARAMETER DEPENDENCE OF PROPAGATION
SPEED OF TRAVELLING WAVES FOR

COMPETITION-DIFFUSION EQUATIONS*

YUKIO KAN-ONf

Abstract. In this paper, travelling wave solutions for certain competition-diffusion equations
are considered, and the monotone dependence of their propagation speed on parameters which appear
in the equation are established. To do this, the maximum principle and the bifurcation theory for
heteroclinic orbits are employed.
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1. Introduction. There have been many studies of reaction-diffusion equations
of the form

(i.i) t=D+f(), zeR, t>O

to explain phenomena that appear in various fields, where () and f (fj) are
n-dimensional vectors and D is a diagonal constant n x n matrix. One interesting
phenomenon is the appearance of travelling wave solutions which are of form U(),

x- s t, where s is the propagation speed. To understand this phenomenon, we

may study the properties of the solutions (U, s), which satisfy the ODE

(1.2) 0=DU+sU+I(U), eR.
Comparatively speaking, when n 1 we can easily study lhe existence of solutions

of (1.2) by the analysis of motions in the phase plane, because the so-called comparison
principle holds in the case of n 1. We introduce here the following scalar equation
as a typical and suggestive example:

 eR, t>0.

For each 0 < # < 1, it follows that (1.3) has two locally stable equilibria u 0 and
u 1 in the ODE sense, and that

eR,
u(-oc) 0, u(+cx)) 1

has a unique solution for s (2 #- 1)/x/ (for example, see Murray [11, pp. 304-305]).
We note that the above propagation speed is monotone with respect to #.

In general, the comparison principle does not always hold in case of n >_ 2. This
leads to considerable complexity for studying travelling wave solutions of (1.1). In
this paper, we discuss travelling wave solutions of the following competition-diffusion
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equation, where the comparison principle holds in the framework of (1.1) for n >_ 2:

where

u u + I(u, v),
vt=dvxx+g(u,v), xER, t>0,

(0, ) > 0, (0, ) > 0, e R,

f(u,v)--u(1-u-av), g(u,v)--v(a-bu-v),

and a, b, c, and d are positive constants which have ecological meanings.
When both u and v are spatially homogeneous, the evolution of (u, v) is governed

by
f(, ), (, ), > 0.

We easily see that the asymptotic behavior of (u, v) with the initial conditions u(0) > 0
and v(0) > 0 is classified into the following four cases:

(I) If a _< min(b, l/c), then limt__.+(u, v)(t) (1, 0).
(II) If b < a < l/c, then

lim (u, v)(t) (1- ac a-b)--.+o 1 bc’ 1 bc

(III) If 1/c < a < b, then (0, a) and (1,0) are locally stable and almost every
solution converges to one of them as t

(IV) If a _> max(b, l/c), then lim_+c(u, v)(t) (0, a).
In consideration of the situation for (1.3) with 0 < # < 1, when (a, b, c) satisfies

case (III), we guess that (1.4) has travelling wave solutions which decay exponentially
to two locally stable equilibria, (0, a) and (1, 0), and that their propagation speed is
monotone with respect to the parameters a, b, and c. To justify our expectation, we
study solutions of

0 + + f(, ),
(1.)

O dv + sv + g(u,v), E R

with the boundary conditions

(1.5b) (u, v)(-oc) (0, a), (u, v)(+c) (1, 0),

when (a, b, c) satisfies case (III).
There are many interesting studies for travelling wave solutions of (1.1). Vol’pert

and Vol’pert [13] established a unique existence theorem of travelling wave solutions
for (1.1) with the so-called cooperative interaction process, that is,

0j
>0, i,j=l,2,...,n, ij.

We note that (1.1) with the cooperative interaction process is one of the equations such
that the comparison principle holds. On the other hand, for generalized competition-
diffusion equations including (1.4), Gardner [4] and Conley and Gardner [2] proved
the existence of travelling wave solutions by the topological method, so that their
propagation speed is determined implicitly. (We also refer to Tang and Fife [12],
Hosono and Mimura [6], and Hosono [5l. For the propagation speed of (1.4), Mimura
and Fife [10] proved the existence of solutions with s 0, and Ikeda and Mimura [7]
showed numerically the monotone dependence on some parameters. Unfortunately,
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we have not known rigorous results on the parameter dependence of the propagation
speed. Our main purpose in this paper is to establish the monotone dependence of
the propagation speed on the parameters a, b, and c.

Let us explain our approach briefly. Let u() (u, v)() be a positive solution of
(1.5) for some s. By formally differentiating (1.5a) with respect to # E { a, b, c }, we
obtain

(1.6) u()

where
+ v + f(()) u + f.(()) v )T(U, V) dV -F s V -t- g(u()) U -F gv(u()) V

It is suggested from Lemma A.2 in Kan-on and Yanagida [8] that L:*(u, v) 0 has a
nontrivial bounded solution (u*, v*)(), which satisfies u*()v*() < 0 for any e R,
where :* is the adjoint operator of :. By taking the inner product between (1.6) and
(u*, v*)(), we obtain

0 =s ./,{ u() u* () + v() v* () } d

+ JR{ f,(u())u*() + g,(u())v*() } d..

If u() satisfies u() > 0 > v() for any R, then we have

0 v()v* ()
Oa ft{ u()u*() + v()v*() } d
cos fI u() v() v* () d
0--- fFt( u() u*() -F v() v*() } d

< O,

Os fR u(5) v(5) u*(5) d5
0-- fF{ u() u*() + v() v*() } d

> O.

These inequalities suggest that the propagation speed is monotone with respect to
a, b, and c. In order to justify the above argument, we shall employ the maximum
principle and the bifurcation theory for heteroclinic orbits.

2. Statement of result. We shall say that (u, v)() is (strictly) monotone if
u() is (strictly) increasing and v() (strictly) decreasing. We state the following main
theorem for any fixed d > 0.

THEOREM 2.1. There exist families (u, v)(; a, b, c) and s(a, b, c) defined on

((a,b,c)]0< 1/c<a<b} such that
(i) (u, v)(; a, b, c) is a strictly monotone solution of (1.5) with s s(a, b, c) for

each (a, b, c) 7,
(ii) u(.; a, b, c), v(.; a, b, c), and s(a, b, c) are a C class in (a, b, c), and
(iii) s(a, b, c) satisfies -2 < s(a, b, c) < 2 x/,

o
(a,,) > o, o

(,,) < o, o
(a,,) > 0

for any (a, b, c) 7.
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Furthermore, if (, )() is an arbitrary positive solution of (1.5) with s " for
(a, b, c) E 79, then "ff s(a, b, c) holds and there exists such that (, v() (u, v)( +
7; a, b, c) for any R.

We shall prove the above theorem in the following section.

3. Proofs.
LEMMA 3.1 (Theorem A.2 in Mimura and Fife [10]). Suppose that satisfies

(3.1) 1 <<min{ d+ d2 +4 1+1+4d2}2 2d

Then there exists ao (1/,) such that (1.5) has a strictly monotone solution for
(a, b, c, s) (ao, , , 0).

Let d > 0 be an arbitrary fixed constant. We denote by g the set of all parameters
(a, b, c) P such that (1.5) h a strictly monotone solution for some s. Then we have
g 0 by virtue of Lemma 3.1.

Let to(() (u0, vo)(() and so be a strictly monotone solution and its propagation
speed, respectively, of (1.5) for (a, b, c) (ao, bo, Co) g. By the maximum principle,
we have uo() (0, 1) x (0, ao) for any ( R. The linearized operators of (1.5a)
around (u, v)= (0, ao) and (u, v)= (1, 0) are represented

c(,;) ( P(;) )-aoo +p;(;)
and

p+(;)
respectively, where

p (/; s) 7
2 -t- 8 + 1 ao co, p (; s) d2 + s ao,

p(7;s)=72+s-l, p(7;s)=d2+s+ao-bo.
We note that 1-ao Co < 0 and ao-bo < 0 hold for any (ao, bo, co) P. With u, v,

a(s)) the solutionswe denote by A(s)(A2(s) < 0 < A(s)) and a. (s)(a:(s) < 0 <
of the quadratic equations P2 (7; s) 0 and p (7; s) 0, respectively. And we put

() min{ a(),() }, () m{a(), a() },
E(s) min{ a (s), a (s)}, E(s) max{ a (s), a (s) }.

om p(-s; s) < 0 and p(-s/d; s) < 0, we have

r() ;() < - < a() h?(),
(a.:) rr () () < -/d < () h()
for any s R and (ao, bo, co) P. With u, v, by differentiating P2((s); s) 0
and p$ (a: (s); s) 0 with respect to s, we obtain

e s)<0() -()/:(();Os

a- + s) < 0o () -:()/, (: ();

for any s e R and (ao, bo, co) e P. Then we see that A(s), A(s), a (s), and a (s)
are strictly decreeing with respect to s for each (ao, bo, co) P. rthermore, it
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follows that

(p-(A(s);S)aobo ,1)eA(s)
P ,(; s) ((); ) ,()

ao bo

(o, 1)()

((;s) p((s);s)
1 e(

aO bo
and

if A(s) < A(s),

if A(s)= A(s),

if A (s) > A (s),
if A(s)_< A(s),

if (s) > A(s)

if au (s) <_ a(s),

if a(s) > a(s),

if a (s) < a(s),

if au (s) a(s),

if a(s) > a(s)
are linearly independent solutions of -(u, v; s) 0 and o+ (u, v; s) O, respectively.
By the above behavior, for any s, we have

% (; ) o(I (; )I), , (; ) o(I . (; )I) a - -,
(; ) o(I % (; )I) (; ) o(I -+(;s) l) +.

Let us get the ymptotic expansion of u() . By uo(-) (0, ao),
we see that uo() satisfies

(3.3)

0 uo() + So uo() + f(uo())
p(; so)uo(.) uo() { uo() + co (vo() ao) }
p(; o) o() + o(uo()),

0 dvo() + so vo(’) +
p-(; So)(Vo() ao) ao bouo()

(3.4) + (vo() ao)(ao bo uo() vo())

p-(; so)(Vo() ao) ao bouo() + O(Vo() ao)

as -- -x. Since 0 < Uo() < 1 holds for any R, it follows from (3.3) that uo()
satisfies

uo() C- e+(s)f (1 + o(1))

as -, -cx), where C- is a positive constant. By substituting the above expansion
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into (3.4), we have

o() o

ao bo C$ e
(1 + o(1)):(.+(0); 0)

ao bo C$ e+(s)
(1 + o(1))d

-vPv (Au (So);So)

ao boC e’+ (s)
(1 + o(1))p;-(t(o); o)

+C1 ex+(s) (1 + o(1))

for t(o) < +(o),

for +(o) +(o),

or ,+ (o) > +(o)

as -. -c, where C1 is some constant. Since 0 < vo() < ao holds for any E R,
and since p(A+u(so);so) > 0 holds if Au+(so) > A+(so), we see that C1 must satisfy
C1 < 0. By summarizing the above, we get the following asymptotic expansion:

(3.5)
uo() C$ e+(s) (1 + o(1)),
vo() ao- C-I TM eit(s) (1 + o(1))

as ----c, where

1 if A (so) A (so),
m+

0 otherwise,

and C- is a positive constant which satisfies

ao bo C$
p;-(t(o); o)

C- ao bo C
d (t(o); o)
--61

for A+ (So) < At (So),

for +(o) +(o),

for Au+ (so) > A+ (so),

because p- (-; s) satisfies p- (),+ (s)’, s) < 0 if At (s) < )+ (s), and pv(A+(s);d s) > 0

if A(s) A,+ (s). Analogously we obtain

(3.6) uo() 1-C+ I1n- ez;(s)(l+o(1)),
vo() C+ e-(s) (1 + o(1))

as - +c, where

j" 1 ifa(So)=a(so),
n:k

0 otherwise,

and C+, C+ are some positive constants. Since uo() is on both the unstable manifold
at (u, v) (O, ao) and the stable manifold at (u, v) (1, 0), we see from (3.5) and
(3.6) that Uo()satisfies

(3.7) uo()
(0, ao) C- (I) (; so) + o(I (I) (; 80)[) as

(1, O) Cu+ 2 (; so) + o(I (5; o)I) s 5 --, +.
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3.1. Linearized operator. We define the linearized operator of (1.5a) around
(u, v) uo() and its adjoint operator 2" by

(,) (+e +() + 1() )de + 0v + o() + vo()
and

u so u + fu()u + gu()v
Z.*(u,v) Jdv sov + f()u + g()v

respectively, where fu() fu(UO()) and the other functions fo, go, and go are also
defined in the same manner with fo.

Since uo() is a strictly monotone solution of (1.5) with s so, it follows that
Uo() is a nontrivial bounded solution of (u, v) 0 and satisfies uo() >_ 0 _> vo()
for any E R. We assume that uo() satisfies uo(1) 0 and/or vo(l) 0 for
some 1 E R. By fo() < 0 and go() < 0 for any e R, we have uo() 0 and
Uo() 0. By uniqueness, we obtain uo() 0 for any R, that is, uo() is a
constant function. This contradiction implies that uo() satisfies uo() > 0 > vo()
for any R.

LEMMA 3.2. Suppose that u() (u, v)() is a nontrivial solution of (u, v) O,
which satisfies u()l O(eA+(8)) as -oc (respectively, [u() O(e-(8))
as +o) and u()v() > 0 for any in a neighborhood of -ec (respectively,

+cx). Then u() satisfies u() v() > 0 for any R and limsup__.+o v() >
o (pti, imup__ I() > 0).

Proof. We show only the proof for the former case, because the latter can be
proved in a similar manner. Furthermore, without loss of generality, we may assume

u() > 0 and v() > 0 near -cx.
We assume one of the following two cases: (i) u() and/or v() have zeros, and

(ii) u() satisfies u()v() > 0 for any E R and lim_+ v() 0. We put

inf{lu()v() <_ 0} for the case (i),
for the case (ii)..

Since fv() < 0 and gO() < 0 hold for any e R, with the use of (3.2) and the
integration by parts we have

when u(2)= 0, and
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when v(2) 0 and/or 2 +c. These contradictions imply that the desired result
holds. ]

3.2. Fundamental solutions.
LEMMA 3.3 (Theorem 8.1 in Coddington and Levinson [1]). Let B() be an ar-

bitrary 2 2 matrix which satisfies B() O(e-ll) as -oc (respectively,
+oc) for some positive constant ". Then there exists a fundamental set ( +(),()
of solutions of

(u; s) + B({)u 0 (respectively, +o (u; s) + B({)u 0),
which satisfy

() (; s) d- o(I;(; s)I) as -- -c,
By (3.5) and (3.6), we have

1- aoco 0 / + o(e(t(o)-) )
-ao bo -ao

0 ao bo
as( +

for any 0 < e < min{A(s0),-N(s0)}. Then it follows from Lemma a.a that there
exist fundamental sets { (), (() } and { ((), (() } of solutions of C(, v)
0 which satisfy

() (;o)+o(1(;o)I) a -,

v=()=(;o)+o(l(;o)l) s-+.
We also see that there exists a nonsingular constant 4 4 matrix M (Mij) such
that

((I)-, (I), (I)+, (I)2+) () (-,,+, 2+)() M,
(v, v, v+, %+) () (, ;, +,+)()

hold for any E R, where M (Mij) is the inverse matrix of M. Furthermore, by
the ymptotic behaviors of (; s) and (; s), we have

() o( ()), () o( ()) -,
() o( ()), () o( ()I) s +.

By the fact that an arbitrary solution (u, v)() of (u, v) 0 satisfies

0 =u()+ so u()+ f(()u()+ f()v()
=-(; o)u() o o()() + o(())

=;(; o)() o c; (o) ( + o(1)) v() + o(())
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as --. -oc, we obtain

() -A(o)

p-(t(o); o) i) (i + o(i))
ao bo

if A(So) > A(so),

( c C- +() )p(A+(so) + A(so);so)’ 1 (1+o(1))

if A(so) A (so)
as -- -oc. Similarly, we also have

v() -(o)

;+($(o); o) ) ( + o())
o

if a(so) > a(So),

( oC+ :() ) ( +o(1))’ p+((o) + (o); o)
if a(so)

as - +oc.
We define the order relations ___s and o by the following manner:

(Ul, Vl) ---s (U2, V2) Ul -- U2 and V

__
V2,

(Ul, Vl) __No (U2, V2) Ul

__
U2 and vl _< v2.

And we denote by -s and -o the relations which are defined by replacing _< with <.
Since

(o) < (o) < +(o) + (o) < +(o)

holds when (so) _< A-(so), we have

(3.s)

p- (A (so); so) < 0

p- (Au+ (so); so) > 0

P (Au+ (So) + A- (So); so) < 0

p(+(o) + +(o); o) > o

if A (so) > A- (so),
if A+ (so) > A+ (so),
if A (so) <_ A- (so),
if A+ (so) <_ A+ (so),

that is, (I) () -<o (0, 0) and (b2+() -8 (0, 0) as -oc. Similarly, by the fact that

(o) < o+ (o) + o-(o) < +(o) < +(o)

holds if a+(So) <_ a+(so), we also get -() -s (0, 0)and +() -o (0, 0) as --. +ec.
From Lemma 3.2, we obtain

(I)2+() -8 (0, 0), -(c) >-8 (0, 0) for any e R,

limsup[(I)2+()]2 > 0, limsup[-()]l > 0,

where we denote by [u]j the jth element of u.
We assume Maa 0, that is,

%+ () M V7 () +M V- () +M V+().
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If M34 0, then we have lim_,+o (I)2+() 0. This contradiction implies that
/34 0 holds. By lime_+[+()ll +c, we get

M34 [(I)2+()]1 M324 [+()]1 (1 + o(1)) > 0

as - +oc. Since (I)2+ () -s (0, 0) for any E R, we have M34 > 0. By [+ ()]2 < 0
as -, +c, we obtain

0 < limsup[(h+()] M34 limsup[+()]l

_
0.

--*+o 5-+

This contradiction implies that M44 - 0 holds. Similarly, we also obtain Mll : 0.
Therefore we see that (I)2+ and -() satisfy

+(e) M+(e) + o(I V+ ()I)

-() il (-() + o(I (I){ ()[)

Since u0() is a bounded solution of (u, v) 0, it follows that u0() satisfies

where Mjo (j 1, 2, 3, 4) are some constants. By (3.7), we have M2o -Cu+ E(So) >
0 and M3o -C- A+(so) < 0.

We put U4() (I)2+(). Since (I)2+() M44 2+() -F 0(I 2+()I) as -Foo, we
see that the limits

(3.9) lim Ua() e-i+(s) lim IV4()-n+e-r’+(s)
exist and are nonzero.

We put

M4: +()u.() () 444
/43

v() 1+() %+ ().

By O+() o(I ()I) and 2+() o(I +()]) as -oo, we have

u:() -() + o(I ,i,- ()I), u() ,1+ () + o(I ,+ ()l)

as -, -oc. Since U2() and U3() are represented as

U2() N2 -() + N22 ()+ N32 +(),
Us() N3 ]-() + N23 () + N33 1+()

where

Nij
Mij M44 Mi4 M4j (i 1, 2, 3; j 2, 3),

M44

we also have U2() O(I qs+ ()]) and U3() O(]
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By +() o(I 2+()[) as --, +oc, we have

o() io+() + M4o()
M3o M43 + Mao Ma4 ()Mao Ua() + M

(M30 M43 + M40 M44) V() + o(I V()I)
as +. om lim+ uo() 0, we obtain M30 Ma3 + M40 M4 0, that is,
U3() Uo()/M30. This means that the limits

lim [g3()-n-e-(s)’
exist and are nonzero.

We assume that N32 0. By the use of uo() Mo () + M20 () and
() 0( ()) -, we have

go() Mo V() M:o () + o( ;()) o( ()I),
Nuo() Mo V() =(Mo g:: Mo Y)V()

=(Mo N22 M20 N2) MI
x (() + o( ()

-. om the above behavior, we have Mlo N22 M20 Nu 0. By the
ymptotic behavior of (), we obtain

o Mo [N: oe() Mo V()] -Mo ;(o) e.( + o()) < 0

as -. This contradiction implies that Na2 0 holds. Then we see that the
limits

exist and are nonero.
We put

M21 Mal M41() er( + e() + e( +=e().
MI M M

Then we have UI(()= ()/MI, that is, the limits

(.12) lim lUl(--e-r(l lim Ul(-r(’
exist and are nonzero.

By summarizing the above arguments, we have

(v, v, v, v)()
(,,+, +)()

1._. 0
M21/M11 1

31/M’-’ 0

M/M -M/M

0 0
0 0
1 0

-M43/Ma4 1

This formula shows that { Uy() 4}=1 is a fundamental set of solutions of (u, v) O.
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LEMMA 3.4. There exists a fundamental set { Uj() 4}=1 of solutions of(u, v)
0 such that the limits (3.9)-(3.12) exist and are nonzero.

3.3. Uniqueness. Let u() (u,v)() and s be an arbitrary positive
solution and its propagation speed, respectively, of (1.5) for (a, b, c) (co, bo, co).
By the maximum principle and the positivity of u(), we see that ul() satisfies
Ul() E (0, 1) (0, co) for any E R and has the same asymptotic expansion as uo()
near with appropriate change of positive constants C and C.

We first sume so < Sl. Since (1.5) does not depend on explicitly, we may
assume no(0) 1/2 Ul(0) without loss of generality. Since (s), (s), a(s),
and aj (s) are strictly decreasing with respect to s, we see that there exists 3 0
such that u() o uo() for any ] 3. We put

= min u() (e (0,1)), = max v()(e(0,ao)).

By uo(-) (0, Co), we can take 4 (e (--,3]) S satisfying o(4) o (1,1)"
Since uo() is strictly monotone, we have

o no(5)- no(5- )o (0, 0) if [5[ 53,
1() 0( ) o 1() 0( (3 4))

o (,)- Uo(4) o (0,0) if[[ 3
for any 3 4 ( 0). We put

sup { [u() o Uo( ) for some }.
By virtue of no(0) 1/2 u (0), we have 0 3 4 and

2()( (2,V2)())= Ul()- 0(- 1)o (0,0)
for any R. We assume that both 1 > 0 and u2() o (0,0) for any R
hold. Since Ul() -uo(- ) is strictly monotone in for any , it follows that there
exists 2 (0,1) such that u() Uo(- ( -)) o (0,0) for any ] 3 and
0 E 2. We obtain

1() 0( (1 )) o 0() 0( (1 V)) o (0, 0)

for any [[ 3 and 0 W W2. This contradicts the definition of W. Since
u2(0) 0 holds if W 0, we see that u2() and/or v2() attain local extremum 0 at
some 5 R. Then we have

0 uee()

=(80- 81) UO(5 --nl)+ CO 0(5 --nl) V2(5) < 0

when u2(5) 0, and

0 dv2(5) (So 81) vo(5 hi) + bo vo(5 n) u2(5) > 0

when v(5) 0. These contradictions imply that so s holds.
Since we can also derive a contradiction in like manner when we assume so > s,

we have so s as a result.
It follows from (3.7) that u() satisfies

u () (0, co) C2 1 (; 80) + o(I 1 (; 80)l)
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--+ eA+(so --+as --. -x), where C2 is some positive constant. Since (I) (+r; So) )’ (I)1 (; so)
(1 + 0(1)) as -. -c for any fixed r], we take r]3 as C2 C- e-i+(s)v3, and put

()(= (, )()) () o( ).

--+By virtue of the choice of 73, we have u3() 0(I (I) (; so)I) as - -c. And we
see that u3() satisfies

(3.13) + 0 + f() + f() o,
dv3 + so v3 + gl()u3 + g()v3 o, ER,

where

f() f,((1-O)Uo(-rl3)+Ou())dO

and the other functions fv1, g, and gl are also defined in the same manner with f.
By Lemma 3.3 and

f()) (1- oo() -oo
0 ) +o(e(+(o)_))

--a0

as -. -x) for any 0 < 5 < A+(so), it follows that there exists a fundamental set

{ (),()} of solutions of (3.13) such that :() (; so)+ o(1%(; So)I)
as -. -c. Since u3() is a bounded solution of (3.13) and satisfies u3()

--+o(I (I)l (; so)[) as --, -c, we have u3() C3 (2+ () for some constant C3. By

fv () co { (1- O) uo( r3) + Ou() } dO

Co
2
{’tt(-T]3)+?tl()}---cC4e)+u(s)(l+(1))

as --, -cx, where C4 is some positive constant, we obtain

+() -+(o)

p-(A+(so); so) 1) (1 + o(1))
ao bo

if A+ (so) > Ave (so),

( C+() )p(A+(so)+A+v(So);So),
1 (1+o(1))

if (so) A(so)

as - -oc in a similar manner with the calculation of the asymptotic expansion of
(I)2+(). By virtue of (3.8), we have (2+ () -s (0, 0) as -- -cx.

We assume C3 :/: 0. Then we obtain u3()v3() > 0 near -c. We put

6 inf { u3() v3() <__ 0 }

if u3() and/or v3() have a zero, but otherwise 6 +cx. Using (3.2) and the
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integration by parts, we have

0= {() + o() +I(()) } o( va) o a
1(6)0(6 3) eS 6 1(6)0(6 3) eS 6

()a()o

uo( 3) u() (u3() + co v3(() } e d( 0

when u3()= 0, and

0= {dvl()+sov()+9(())}vo(-Va)e(/ad
dv(6)va(6) e( 6)/d

vo(- Va)Vl() {boa() +va()} e(S()/ad 0

when va(a) 0 and/or (a +. The aforementioned contradictions imply that.
() Uo(- a) holds for any e N.
LEMMA a.g. et 1() ad s be ae arbitrar positive soltio aed its propagatio

speed, respectively, 4 (1.g) for (a, b, c) (ao, bo, co). rhe s so hoes ae there
ezists V sch that () uo(( + ) for e .

g.4. Continuation.
LEMMA a.6. uo() ad so satisf

Uo [ c(o, o)/] ol io o o,
and

-2 < so < 2 X/o d,

where Ch(bo, co) is a continuous function in (bo, co) which does not depend on ao.
Proof. We put

f uo()e(s)/2 for 8o <( O,
U() Vo()e(8O)/(2d) for So > 0.

We see from (3.2), (3.5), and (3.6) that U() satisfies lim__.+ U() 0 for any
so 0. Then it follows that there exists @ R such that U() attains positive
maximum at 7, that is, U() satisfies

0 U(@)= (- l+uo()+ co vo()) U(@)

when so < 0, and

0 _> U(7) ao + bo uo(@) + Vo(7) U(7)d
when So > 0. Thus we have -2 < so < 2 d.



354 YUKIO KAN-ON

Since 0 < Uo() < 1 and 0 < vo() < ao < bo hold for any R, we have

II uo IIco(rt) <_ 1 + bo and

(3.14)
-boco < -co vo() < f(uo()) <_ uo() < 1,

-bo < -bo Uo() < g(uo()) < ao vo() < b
for any R. We have the following:

(i) For so 0,

o =o(/ + I(o(-) o(-

>_ o() bo co .f] uo (-) ar >_ uo() bo co,

0 =o(/ + (o(-//o(-/e- >_ eo( V.
(ii) For so > O,

0 --o() + o (-) f(uo(T))

>_ Uo() bo Co J__ e (-) dr Uo() bo co/so,

0 =d vo() + e{O (--lt/a 9(O(T)) dT <_ d vo() + bg d/so.

(iii) For so < O,

0 =uo() e (’-) f(uo()) dz,

_> o() o (.- a_ o() + 1/o,

0 =dvo() e{so (,-)}/d g(uo(’r)) dT< d vo() bo d/so.

By the above inequalities and uo() > 0 > vo() for any R, we see that there
exists a continuous function C(bo, Co) independent of ao such that

C6(bo, co) for so 0,
uo IIco(rt) <_

C6(bo, Co)/I sol for So 0.

By the inequalities So < max{2, 2 x/ d} and

1
IlUo IICO(R) < min(1, d)

we hve the desired estimate for uo().
We put (a, b, c, s) (ao, bo, Co, So) + (d, b, , ), z t(u, u, v, v) and

-su-u(1-u-cv)f z d’ b’ d’ g) v
-{ sv + v (a bu v) }/d



PARAMETER DEPENDENCE OF PROPAGATION 355

Since (1.5) does not depend on explicitly, we may assume u(0) 1/2 without loss
of generality. Then (1.5) is rewritten as

d-z= f(z;d,b,,), E R,

z(-c) t(0, 0, ao + 3, 0),
z(+oc) t(1, 0, 0, 0),
(o) o(O) + (o,, ., ),

where zo() t(uo, uo(, vo, Vo)(), and c (c1, c2, a3) will be determined later.
Further, by the change of variables

zo() + (o, o, , o) + y

*o() + y
for <0,
for > O,

(3.15) becomes

(3.16)

d
-y A() y + N(, y; d, b, d, g),

(-oo) o (+),
(o o) (o, ,2 , ),
(o + o) (o,,,),

e R \ {0),

where A()= Sz(zo(); 0),

N(, y; 3, b, ’, ’) f(z; 3, b, , ) f(Zo(); 0) A() y.

Let J be an interval and Y() be a fundamental matrix of y A()y. We shall

say that y A()y has an exponential dichotomy on J if there exist a projection
P and positive constants C, y such that, for any , V E J, Y() satisfies

Y(5) P y()-i -< C e-’r (5-r) if >

Y({) (I P) Y(r)- <_ C e- (-) if > .
We note that this definition does not depend on the choice of the fundamental matrix

Y().
PROPOSITION 3.7 (Coppel [3, p. 11]). y A()y has an exponential di-

chotomy on J if and only if there exist a projection P and positive constants C, /
such that, for any , J, Y() satisfies

Y(5) Pw < C e- (-) Y() Pw if >

Y(5) (I P) w < C e- (u-C) Y.(/) (I P) w if ,
where w is an arbitrary constant vector.

We define the matrix X() by

U3() U4() UI() U2()x()- v() v() v() v()
y() v4()y()y()

where { (Uy )() 4}j= is a fundamental set of solutions of (u,v) 0 given in
Lemma 3.4. In consideration of the proof of Lemma 3.4, we can take (U3, V3)()
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(U3, V3)() uo(). Clearly we see that X() is a fundamental matrix of y
A() y. By virtue of (3.9)-(3.12), the following lemma holds.

LEMMA 3.8. d Y A() y has an exponential dichotomy on R_ (-cx,O)
(respectively, R+ (0, +oc)) with the projection P_ diag(0, 0, 1, 1) (respectively,
P+ diag(1, 0, 1, 0)).

Proof. We may take the constant in Proposition 3.7 as satisfying 0 < / <
min{ A+(So),-E (So) }. ]

Let x() and xi*j () be jth row vector and (i,j) element, respectively, of X()-1.
We calculate X(C) -1 directly by the use of the asymptotic behaviors (3.9)-(3.12), and
then obtain

() o(-(+(o)-)) s - +,
{ O(e-(A (so)+5) ) as -- --cx,

for any0 < 5 < min{-A(s0), El+(so)}. Then we see that (u*, v*)()= (x2,x4/d)()
is. a bounded nontrivial solution of :* (u, v) 0.

LEMMA 3.9 (Lemma A.2 in [8]). (u*, v*)() satisfies u* () v* () < 0 for any
R.

LEMMA 3.10 (Lemma 3.2 in Kokubu [9]). y() is a bounded solution of
d-y A() y + N(, y; 3, b, , ’),

u(-) 0, u(+) 0

e R \ {0},

if and only if y() satisfies

and

From the previous lemma and (3.16), we define the map E :R7 --+ R4 by

E((, ,, b, )

(x(0) y(0 0) -/R_x() N(, y(); 3,, 5", ) d

x(0) y(0- 0)- m*4()N(,y();d,b,,)d

x(0) y(0 + 0) + () N(, y();, b, , ) de
+

(o)(o + o)+ () N(, ();, , ’, ) a
+

We easily obtain E(0) 0. Since x() is a solution of x -w A() for each j, we
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have

(c,,b,,’)--0

-6.,x(O)e- ]_ x(){ 5.,ufz(zo(();O)e + f.(zo(); 0) }d

]_ x() f. (zo(); 0) d for j 3, 4,

0# + (,,g,,)=o

=/R x() J’(Zo(); 0) d for j 2, 4
+

with # , b, , ’, where e t(O, O, 1, 0), and ., satisfies ., 1 if # but
otherwise ., O. By the above formulas, we obtain

OE
det

0(a,_ ) (0)

det

xh(O) xh(O) -/n () f(zo(); 0) d
+

x2(0) x3(0)x4(0) --/R_x*4()f(z();O)d
X2(0) X3(0) X$’4(0) /R X() f(Z0(); 0) d

+

\x2(0) x3(0) x4(0) JR x() f(Zo();0) d
+

 o (O1
det X(0) x4( f(zo();O)d

+ vo()v*()}d.det Z(0)
We also get analogously

OE uo (0) f v*det
0(a, ) (0) detZ(0) Jt vo() () d,

OE (ol
det

0(a,) (0) detX(0)u uo() vo() () d,

OE (olf det
0(a, 5") (0) uo u*

det X(0) uo() vo() () d.

We have the following lemmas by virtue of the implicit function theorem, the maximum
principle, and Lemma 3.9.

LEMMA 3.11. There exist Cl-class families (;b,c) and-d(b,c) defined in a
neighborhood of (b,c) (bo, co) such that (;b,c) is a strictly monotone solution

of (1.5) with (s, a) (so,-d(b, c)) for each (b, c) and

((.; b, c), (b, c)) --* (Uo(.), ao) as (b, c) --. (bo, co)
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holds.
LEMMA 3.12. There exist Cl-class families u(; a, b, c) and s(a, b, c) defined in

a neighborhood of (a, b, c) (co, bo, co) such that u(; a, b, c) is a strictly monotone
solution of (1.5) with s s(a, b, c) for each (a, b, c) and

(u(.; a, b, c), s(a, b, c)) (u0(.), So) as (a, b, c) (a0, bo, Co)

holds. Furthermore, s(a, b, c) satisfies

3.5. Nonexistence. Let u() (u, v)() be an arbitrary monotone bounded
solution of (1.53). Since u() is bounded and satisfies u() >_ 0 >_ v() for any E R,
we have liminf_.+ u()- 0 and limsup_+ v()= 0. By (1.53), we have

(3.17) U(T) U() + S { U() u(v) } + f(u(l)) dl.

for any , - E R. If f(u()) >_ 0 near -cx (respectively, +c), then we see

that the limit f_ f(u(l))dl (respectively, f+ f(U(l))dl) exists on for any ,
because f: f(u(zl))dl is increasing (respectively, decreasing) in - for any . By taking
the inferior limit of both hands of (3.17) as T --* -- (respectively, - -- +cx), we get

(3.18)
0 u() + s { u() u(-) } + f(u(l)) dl

respectively, 0 u() + s { u() u(+oc) } f(u(l)) dl

for any c R if f(u()) >_ 0 near c -oc (respectively, c +oc). We also have,
analogously,

(3.19)

for any R if g(u()) <_ 0 near -c (respectively,
LEMMA 3.13. For each (a,b,c) R3+, if s >_ 0 (respectively, s <_ 0), then an

arbitrary, monotone nonnegative solution (u, v)() of (1.53) with (u,v)(-oc)= (0, 0)
(respectively, (u, v)(+c) (0, 0)) saties u() 0 (respectively, v() O) for any

Proof. We only show the proof for the former case, because the latter cn be
proved in a similar manner.

Let u() (u, v)() be an arbitrary monotone nonnegative solution of (1.53) with
(u, v)(-) (0, 0) for s 0. We assume that u(s) > 0 holds for some s e R. Since
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f(u, v) > 0 holds on (0, 51 [0, 5] for some > 0, we see from u(-oc) (0, 0) that
there exists 9 E R such that f(u()) >_ 0 ( 0) for any _< 9. By (3.18), we have

o + + f(u()) d > O.

This contradiction implies that the desired result holds.
LEMMA 3.14. Equation (1.5) with s 0 has no monotone solution for arbitrary

(a,b,c)

_
7).

Proof. We assume that (1.5) with s 0 has a monotone solution u() (u, v)()
for some (a, b, c), which satisfies either a < 1/c or a 1/c <_ b.

We first consider the case for a 1/c <_ b. Then we have (1 u cv)(+oc) O.
We assume that (1- u- cv)() attains a negative local minimum at 10. By
f(u(o)) < 0 and g(u(o)) < 0, we have

0 <_ (1 u cv)(o) f(u(o)) + - g(u(o)) < O.

This contradiction implies that f(u()) >_ 0 holds for any E R. Then, by
lim inf_+ u() 0 and u() -f(u()) <_ 0 for any R, we obtain u() 0
for any R, that is, u() is a constant function. This contradicts the boundary
conditions at +/-oc.

Next, we consider the case for a < 1/c. Since (1-u-cv)() 1-ac+o(1) > 0
as -ec, we have

0 u() + f(u()) d > 0

as --, -oc because of (3.18). This is a contradiction.
Thus we see that the desired result holds when (a, b, c) satisfies either a < 1/c or

a=l/c<_b.
In a similar manner, we can also prove the desired result for the case where either

a>bora-b>_l/cholds. ,
LEMMA 3.15. For arbitrary (a,b, c) 7), if s >_ 0 (respectively, s <_ 0), then

(1.5a) has no monotone solution which satisfies

(u v)(-oc)=
/ \(l-ac a-b), (u, v) (+oc) (1 O)

1 bc’ 1 bc

(respectively, (u,v)(-cx)-(O,a) (u,v)(+oc)- (1-ac a-b))1-bc’i-c

Proof. We only show the proof for the former case, because the latter can be
proved in a similar manner.

Contrary to the conclusion, suppose that (1.5a) with the above boundary con-
ditions has a monotone solution u() (u, v)() for some s >_ 0. By the boundary
conditions at +/-oc, we have

(1-u-cv)(+/-oc)=O, (a bu v)(+/-oc) <_ O.

We consider the case for d <_ 1, and assume that (1- u- cv)() attains a
nonpositive local minimum at 11. Since u()+cv(l) 0 and 9(u(1)) < 0,
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we have

0 <(--v)()

=s 1 u((11)+ f(u((11))+ 9(u(()) < 0.

This contradiction implies that f(()) > 0 holds for any E R when d <_ 1. Analo-
gously, we obtain 9(u()) < 0 for any E R when d >_ 1.

By (a.18) and (3.19), we have

f
0 ((+) (-o)} + .[. f(u())de > 0

o {(+) (-)} + yg(,()) de < 0

These contradictions imply that the desired result holds.

for d <_ 1,

for d > 1.

3.6. Proof of Theorem 2.1.
LEMMA 3.16. Let u() (u,v)() be a monotone, nonnegative, and bounded

solution of (1.5a) for (a, b,c,s) R x R. Then u() satisfies f(u(rkoc)) 0 and
g(,(+)) o.

Proof. We only show the proof for f(u(+c)) 0, because f(u(-oc)) 0 and
g(u(=koc)) 0 can be proved in a similar manner.

Because u() is monotone bounded, we have u() >_ 0 for any R and
liminf_+ u() 0. We assume I/(u(+c)) 2 f+) > 0. Then it follows that
there exists 12 such that

>_ f+ if f(u(+)) > O,
f(u()) <_ -f+ if f(u(+oc)) < 0

for any
We first consider the case where both s _> 0 and f(u(+oc)) > 0 hold. Then we

have

uee()--su()- f(u()) <_-f(u()) <_-f+

for any >_ x2, that is,

() < (:)
as -- +c. This is a contradiction.

We next consider the case where both s _> 0 and f(u(+cx)) < 0 hold. Then we
have

u() + sue(C) -f(u()) >_ f+
for any >_ 2, that is, u() satisfies

/ {+oc if s=0,
u() >_

f+/s if s>0

as --, +c. This contradicts the fact that liminf__,+ u() 0.
We finally consider the case for s < 0. By (1.ha), we have

u() e8(-) u(T) + es (n-) f(u()) d]
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for any , T E P. By taking the inferior limit of both hands as T +cx, we obtain

f+ { > -f+/s > o
u() e (-) f(u()) d

<0

if f(u(+o)) > O,
if f(u(+oc)) < 0

for any _> _2. This is a contradiction.
Thus we have f(u(+o)) O. [
Proof of Theorem 2.1. Let Po { (b, c)]0 < 1/c < b }, and let/30 be a constant

which satisfies (3.1). We denote by 8o(o)(C R_) the maximal extended and con-
nected region which is given by applying Lemmas 3.1 and 3.11 to (b, c) (o, 3o) and
so 0, and on which the functions (; b, c, o) (, )(; b, c, o) and (b, c, o) given
in Lemma 3.11 for so 0 are C class. We see from (3o,o) E 8o(3o) that 80(/3o) is
a nonempty set. By Lemma 3.14, we have $o(/3o) C :Po and 1/c < -(b, c,/3o) < b for
any (b,c) 8o(o).

We assume Oo(3o)NPo O. Let (bo, co) O$o(/3o)gPo, and let { (bn, cn) }n=l (C
80(30)) be an arbitrary sequence which satisfies (b,,cn) (bo, co) as n --* c. Since
1/c < -d(b,,c,,3o) < bn for any integer n, we may assume (b,,c,,3o) -, o
[1/co, bo] as n oc. And we may also assume

(O; bn, cn, O)

(3.20)
2 {-(bn, Cn) "-[" bn} Cn

-i "-Cn) ifgo e (1/co, bo),

/2 if go E { 1/co, bo }
without loss of generality. Because (1.5) does not depend on explicitly. It follows
from the Ascoli-Arzela theorem and Lemma 3.6 that, for any fixed 13 > 0, there exist
{ (b,,c,j) }?=1 (C { (bn, cn)}nC=l) and o() such that

lim (.; bnj 3o) o [[c 0
jo Cn ([-13,131)

Since (; b,, Cn, 0) is strictly monotone and satisfies

(; bn:i, Cn, fl0) e (0, 1) (0,-(bn, Cn, 30)) on R

for each j, we see that o() is a monotone solution of (1.53) with s 0 for (a, b, c)
(o, bo, co), which satisfies o() [0, 1] [0, o] for any R.

We first consider the case where either o 1/Co or o bo holds. Then we see
that the equilibrium points of (1.53) are (0, 0), (0, o), and (1, 0). By To(0) 1/2 and
Lemma 3.16, we have (+oc)= (1, 0) and either (-cx) (0, 0) or (-cx) (0,o).
This contradicts the fact of Lemmas 3.13 and 3.14.

Next, we consider the case for o (1/co, bo), that is, (o, bo, co) E 7). Then we
see that the equilibrium points of (1.53) are (0, 0), (0,o), (1, 0), and

1-oco o-bo /1-boco 1-boco
By (3.20), we have

<go(0)= 1 boco
+1 < 1.

1 bo co
From Lemmas 3.13, 3.15, and 3.16, we obtain go(-Cx) (0,go) and go(+oc) (1, 0).
Then we have (bo, co) Int 8o (flo) by virtue of (go, bo, co) P and Lemma 3.11. This
contradicts the definition of (bo, co).



362 YUKIO KAN-ON

Therefore we obtain $o(flo) Po. For each (b, c) e Po, we define

a*(b,c,o) =sup{al[-d(b,c,o),a { (b,c) } C },
a.(b,c,o)--inf{al(a,-d(b,c,o)] ((b,c) } C 8}.

By Lemma 3.12, we have

1/c <_ a,(b,c,o) < -g(b,c,o) < a*(b,c,13) <_ b

for any (b,c) E 7o. It follows from Lemma 3.5 that the functions u(.; a, b, c)
(u, v)(.; a, b, c) and s(a, b, c) given in Lemma 3.12 can be regarded as Cl-class single-
valued functions in (a, b, c) E $.

We assume a*(bo, co,o) < bo for some (bo, co) Po. Then we have (a*(bo, co,o),
bo, co) e T’. Let {an }n=l(C (-g(bo, co,o),a*(bo, co,o))) be an arbitrary increas-
ing sequence which satisfies limn--,o an a*(bo, co,o). By Lemmas 3.6 and 3.12,
we see that { s(an, bo,co)}= (C (0,2 b--dod) is a increasing sequence, i.e., the limit

limn- S(an, bo, co) (-= so > 0) exists. Then we have

C5 (bo, _c0) < C5 (bo, co)
u(.; an, bo, co)IIc(R) <_ s--(,, -o, co)

for any n >_ 1 because of Lemma 3.6. By using an argument similar to the one
above, it follows that, for any fixed a > 0, there exist { an }=(C { an }n_-)
and uo() such that uo() is a strictly monotone solution of (1.5) for (a,b,c,s)
(a* (bo, co, o), bo, Co, so) and satisfies

II u(.; ani, bo, co) uo IIc-([-(,,]) ---* 0

as j --, oe. By Lemma 3.12, we have (a*(bo, co,o),bo, co) Int$. This contradicts
the definition of a*(b,c,o). Thus we obtain a* (b, c, 3o) b for any (b,c) e 7)o In
a similar manner, we can also show that a.(b, c, o) 1/c holds for any (b, c) E Po.
Therefore, we have g P.

Finally we shall show that g(b, c,/3o) is independent of/3o. Let g be an arbitrary
constant such that (1.5) with (a,s) (gl, 0) has a strictly monotone solution for
(b,c) o. We assume that -a(b,c,/3o) gl. Since s(a,b,c) is defined on 7) and
satisfies sa (a, b, c) > 0, we have

( 8(1 b, c) 0
0 s(-g(b, c,/3o), b, c)

> 8(1, b, c) 0

This contradiction implies that g(b, c, flo) 1 holds.
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THE CHILD-LANGMUIR LAW FOR THE BOLTZMANN EQUATION
OF SEMICONDUCTORS*

NAOUFEL BEN ABDALLAHt AND PIERRE DEGONDt

Abstract. We investigate the so-called Child-Langmuir asymptotics of the one-dimensional
stationary Boltzmann-Poisson system. The asymptotics apply when the lattice temperature is small
and leads to a singular perturbation problem. We derive the limit problem associated with these
asymptotics, and prove the existence of the Child-Langmuir current.

Key words, semiconductors, integral equation, Cauchy problem, contraction, nonlinear differ-
ential equation, nonlocal nonlinearity

AMS subject classifications. 34A12, 34A99, 45J05, 78A35, 82D99

1. Introduction. The design of many high technology components in solid-state
electronics, in vacuum diode technology or in high power hyperfrequency amplifica-
tion requires an accurate description of charged-particle transport. Among all the
possible models, the Vlasov or the Boltzmann equations, coupled with the Poisson
or the Maxwell equations for the fields, provide the most accurate description of the
physics of charged-particle transport. The numerical simulation of these models is an
important tool for the designers.

The modeling of charged particle transport is particularly difficult, due to space-
charge or internal boundary layers which very often appear. The description of such
layers can usually be done by means of perturbation analyses of the stationary or time-
dependent Vlasov-Poisson equations, which provide singular perturbation problems.
One especially interesting problem was investigated by Langmuir and Compton [1],
who showed that the charge boundary layer sitting at the cathode of a vacuum diode
could produce a limitation of the current intensity which flows through the diode.

The mathematical analysis of this problem first started with a study of the
boundary-value problem for the stationary Vlasov-Poisson equation in the one-dimen-
sional cartesian case [2]. The perturbation problem and its convergence towards the
reduced problem of [1] was analyzed in [3], in the same one-dimensional cartesian
geometry. Then a numerical algorithm for the practical computation of the reduced
solution was proposed in [4]. The passage to higher dimensions and more complicated
models was investigated in [5] and [6], in which the well-posedness of the bound-
ary value problems for the stationary Vlasov-Poisson, Vlasov-Maxwell, and Vlasov-
Poisson-Boltzmann equations are proved in any dimension. Then by combining the
ideas of [5], [6], and [3], the perturbation problem for the stationary cylindrically or
spherically symmetric Vlasov-Poisson equation was investigated in [7].

Let us consider a simplified one-dimensional device which consists of two highly
doped N+ regions on each side of a lowly doped N- region. Such an N+ N- N+
device closely resembles a vacuum diode, where the metallic cathode and anode are

replaced by the N+ zones, and the vacuum region by the N- zone. If the collisions
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of the carriers with the crystal lattice defects were negligible, we could use the same
system of stationary Vlasov-Poisson equations and the perturbation problem would
lead to the same result as in the vacuum diode case. This was remarked by Shur and
Eastman in [8]. Strictly speaking, this asymptotic solution is only relevant for either
large direct biases or low lattice temperatures.

However, the collisionless approximation is not valid in realistic situations. To
investigate the effects of collisions, Shur and Eastman [9] proposed a model, based
on a simplified one-dimensional hydrodynamic model and consisting of two equations
of momentum and energy balance. In this paper, we show that the perturbation
approach of the collisional kinetic model can be carried on. The reduced problem
can be explicitly written, and the proof of its well-posedness is given under some
restrictions. It reduces to the Langmuir and Compton [1] or Shur and Eastman [8]
solution when the collision frequency vanishes. It also exhibits the same features;
namely the current intensity cannot exceed a limiting value which depends on the
collision frequency.

The outline of this paper is as follows: In the following section we derive the model
which follows from formal asymptotics of the Vlasov-Poisson-Boltzmann system of
semiconductors. Its solution is entirely determined by means of the electrostatic
potential solution of a semilinear elliptic problem:

(1) "=nl+n2, (0)--0, (1)=1,

where n is an explicit nonlinear function of and n2 is a solution of an integral
equation depending on . In 3, we show that this integral equation has a unique
solution. In the fourth section, we consider the Cauchy problem

(2) "= n + n2, (0) 0, ’(0) ,
and prove its well-posedness. Finally, in 5, we prove the existence and uniqueness
of the Child-Langmuir current for a large range of values of the relaxation time. The
Child-Langmuir current is, as usual, defined as the current for which the solution
of the boundary value problem (1) has a vanishing derivative at x 0.

2. The model. We consider a one-dimensional unipolar semiconductor struc-
ture, which consists of two highly doped N+ regions on each side of a lowly doped
N- region. In such a structure, the N+ regions behave approximately like metallic
contacts and the N- region can be modeled just like a vacuum diode, by assuming
that the injection of carriers at the N+ N- junctions can be described by a given
emission profile G(V) on the source side, and can be neglected on the drain side (see
[10] for more details). Of course, this model is very crude (see [11] for more realis-
tic models), but it focuses the analysis on the injection process, which is of primary
importance for the globM behavior of many devices.

We assume that the N+ N- junctions are located at X 0 (for the source

side), and X L (for the drain side), and that the N- region is represented by
the interval [0, L]. The electron distribution function F(X, V), the electric potential
O(X), and the electron concentration N(X) satisfy the system of stationary Vlasov-
Poisson-Boltzmann equations of semiconductors:

OF e d OF
(3) V--- -t

m dX OV Q(F), X e [O,L], VeIR

d2 dp e
N(X), X e [0, L],(4)

dX2 o
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(5) N(X) F(X, V) dV, X e [0, L].

We denote the collision operator by Q(F), which models the interaction of the
electrons with the crystal defects. The reader will find in [12]-[14] a fairly complete
description of these interactions. In this paper, we will restrict our analysis to the
relaxation time model

(6)
1
(F(X, V) N(X)MT(V)),Q(F)

where T > 0 is the relaxation time, MT(V) is the normalized Maxwellian distribution
associated with the lattice temperature T

1
exp ( mV2

2kBT]
(7) MT(V)-

V/2k’Tm
and kB is the Boltzmann constant. Finally, e0 denotes the medium permittivity. In
the Poisson equation (4), we neglect the doping density of the N- region, which is a
fairly good assumption (see [15]). However, the analysis can also be performed with
a nonvanishing N- in the collisionless case (see [20]).

The system (3)-(5) is supplemented with the following boundary conditions (see
[10] for details):

(8) F(0, V) V > 0,

(9) F(L, V) O, V < O,

(10) (0) O, (L) OL > O.

Indeed, (I)L is the applied bias, and since the potential is nearly constant in the N+
regions, it applies entirely at the boundary of the N- region. Since the N+ region on
the source side is close to a state of thermal equilibrium with the crystal lattice, it is
natural to assume that the injection profile is given by

(11) G(V) N+MT(V), V > O,

where N+ is the doping density of the N+ region. On the other side, the injection is
negligible, which implies (9). More generally, we shall assume that G(V) is a given
function such that

G(V)dV
N+

2

and such that the thermal emission velocity Vc given by

(/0 /0(12) Vc V2G(V) dY / G(V) dY

is equal to the thermal velocity associated with the maxwellian (7)
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Because of this, we assume that the lattice temperatures in the N+ and N- region
are the same, which is a fairly unrestrictive assumption for physical applications.

The existence of solutions of the system (3)-(5), (8)-(10) is mathematically proven
in [5]. Its numerical solution has been achieved by iterative methods in [15] and [16],
by particle methods in [17] and [18], and by Monte-Carlo methods (see [12] and the
references therein).

In the "Child-Langmuir" regime, the thermal emission energy is small compared
with the applied bias, while the injected current remains finite [3]"

or

13) Vc << VL VL i2e(

Therefore, we introduce a "small" parameter a by

(14) << 1.
Vr

We shall use L, VL, and (I)L aS characteristic length, velocity, and potential scales.
We introduce auxiliary units of density N, current density J, distribution function F,
and relaxation time 7", according to

(15)
a0(I)L N L
eL2

J eNVL F "T"V’ V’
and use the following scaling:

X Lx, V YLv, ( (L,
(16) N gn, J -Jj, F Ff,

T TT.

Furthermore, we introduce a dimensionless profile g(v) and express G(V) according
to

1 (V) 1 (v /(17) F G(V) -fig - g

The expression (17) means that Vc is the characteristic velocity associated with G
and is small, while the factor 2 insures that the injected current J(,

Ja VG(V)dV,

remains independent of in the units of J. We recall that these two facts are the
key hypotheses of the Child-Langmuir asymptotics [3]. We also note that a different
normalizing condition of the injection profile G can contribute to a finite built-in
potential at the N+ N- interfaces (see [19]). Let us introduce

1 ()(18) ge(v) -- g
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and write the scaled Vlasov-Poisson-Boltzmann equation

Of l dcpeOf
(19) v---x- 2 dx Ov T e -d299 ne(x),(20)

dx2

(21) nS(x) f(x,v)dv, xe [0,

(22) re(0, v) ge(v), v > 0,

(23) yz(1,v) 0, v<0,

(24) e(0) 0, e(1) 1,

where

(25) Mo(v) v/
exp --Our aim is to solve the reduced problem corresponding to e 0. So we pass formally

to the limit in the equations and get the following reduced problem:

Of 1 dq Of 1
(f n6(v))(26) Vxx q-

2 dx Ov 7"

(27)
dx2 n(x), x e [0,1],

(28) n(x) f(x,v)dv, xe [0,

(29) f(1,v) O, v<O,

(a0) (0) 0,

where di(v) is the delta function; the formal limit of (22) can be expressed by

(31) supp {f(0, v), v

In the collisionless case (7" ec, see [3]) the condition (31) forces the solution to
be a positive measure supported by the characteristics issued from the point (x, v)
(0, 0). In the present case (T < Cx)), it is natural to think that the solution will exhibit
the same features. This means that the particles fly from the cathode to the anode,
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following the same characteristics. However some particles will undergo a collision in
their way to the anode. The collision operator at the right-hand side of (26) sends the
velocity of the colliding particles back to zero. Thus, after the collision, the particle
follows another characteristic, namely the one issued from the point (y, 0) where y is
the location of the collision. This new characteristic is given by the equation

v2 (x) constant -(y),

that is,

The + sign has to be retained because no electron is emitted at the anode, and then
the particles flow from the cathode to the anode. Of course, once the particle is on
the secondary characteristic (32), it can suffer a second collision which sends it to a
third characteristic and so on. Therefore, in addition to a positive measure supported
by the principal characteristics (i.e., issued from (0, 0)), the solution f(x, v) contains
a superposition of the contributions of each of the secondary characteristics (32) for
y E [0.1]. Therefore we write it as

(33) f(x, v) nl (x) 5(v V/(x)) + 2(x, y)5(v V/cp(x) (p(y)) dy,

where nl (x) is the density of particles carried by the principal characteristics and
2(x, y)dy is the density of particles carried by the bunch of characteristics issued
between the point (y, 0) and (y + dy, 0). Mathematically speaking, the integral on the
right-hand side of (33) can be viewed as a change of variables.

We introduce

(34) jl(X) Ttl(X)V/((X),

(35) n (x,

(36) n2(x) 2(x,y)dy,

(37) j2(x) 2(x, y) dy 2(x, y) V/(x) (p(y) dy.

jl is the current flowing along the principal chracteristics, and n2 and j2 are the
density and current carried by all the secondary characteristics. We have

+ n(x),

(39) j(x) + j2(x) j constant.

Inserting the expression (33) into the equation (26), we formally find the following
equation:
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The terms in factor of 5(v- V/(x)) and of 5(v- V/(x)- (y)) can be separated,
which leads to

(40)
djl nl (x)
dx

=0,
T

(41)
Oj2 (x,y) + 0
(X T

0<y<x<l,

1
n(u).(42) J2(Y, Y)

"r

Equation (40) means that the current decreases as one moves along the principal char-
acteristics, because of the collisions. The same is true for each one of the secondary
characteristics (equation (41)). Finally, equation (42) specifies that the current car-
ried by one of the secondary characteristics at its starting point y is made of the
contribution of all the particles which have collided at this point, either from the
principal or the secondary characteristics (cf. (38)). Now we must specify the initial
condition for equation (40). For this, it is natural to assume that the current carried
by the secondary characteristics vanishes for x 0,

(43) lim j2(x) 0.
x--*0

Indeed, for small values of x the collisions are negligible, the total current is carried
by the principal characteristics, then we deduce from (39) that

(44) jl (0) j.

The total current j that flows through the device will be assumed arbitrary for the
moment. By keeping in mind the relations (34) and (35), we can see that the solutions
of the equations (40)-(42) and (44) can be written explicitly:

(45) j (x) j exp ( 1 foo
x dz )

(46) -2(x Y) n(Y)
exp ( 1 dz )

For a given , equation (45) gives a closed expression of jl and (thanks to (34)) the
density nl,

J (lfoozdz )(47) n(x) V/(X)exp ----T V/(z)

The situation is different for J2, since J2 depends on n, which in turn depends on J2
via equations (36) and (35). From now on, we let

(48) g,(x, y) exp ( 1 9fy
x dz )
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By using (36), (35), and (46), we obtain

(49)

Since nl has been previously determined by (47), equation (49) is an integral equation
for n2. Then we can write the complete system satisfied by the potential

(50) d2
dx2 n(x),

0, 1,

(52) n(x) nl(X)+ n2(x),

where n is given by (47) and 2 is the solution of (49), and where j in (47) is an
arbitrary nonnegative constant. The following results are inspired from the existence
of the Child-Langmuir current in the collisionless case (the vacuum diode [3]) and are
proven in this paper.

THEOREM 2.1. There exist T

_
7/9 and -2

_
4/5 such that for evry T E

]0, T1] U[T2, [, there exists a unique value j jCL(T) such that the problem (50)-
(52), (47), (49) has a unique solution that satisfies d /dx(O) O. Moreover,
jCL(’) 4/9 when T tends to oc, and jCL(T) T9/16 when T tends to zero.

This result expressed in the physical variables gives the expression of the Child-
Langmuir current

In the collisionless limit (T c), we find the Child-Langmuir current of the vacuum
diode [3], and in the collision-dominated limit (T --. 0), we find

9 (2e)JCL=---7e m L3

or in terms of the mobility # - and of the external field EL L

It is remarkable that this formula completely differs from the one used for a

homogeneous semiconductor,

J e#nEL,

where n is the density of free carriers. Here the only available free carriers are those
provided by the injection contact and lead to a current which is proportional to the
squred external electric field. As far as we know, such a formula has not been found
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previously in the physical literature. (See [21] for an overview of the current-voltage
characteristics of the basic semiconductor devices.)

In the vacuum diode case, it is proved that the limit current cannot exceed the
Child-Langmuir current. In our case, we prove that a limitation of the limit current
Occurs.

THEOREM 2.2. There exists a value jmax(T) such that the system (50)-(52), (47),
(49) has no solution for j > jmx(T). This value satisfies the following estimate:

jCL(T) _jmax(T)<min (,
It has been proved neither that the problem (50)-(52), (47), (49) has a unique

solution for j < jmx(7), nor that jm(’) jCL(T), as could be conjectured from the
inspection of the vacuum diode case [3] (however, jmax(T) jCL(-) in the vicinity of
zero and infinity). Some pathologies, which occur in the vacuum diode case in higher
dimensions [7], should make us careful about conjectures in this direction. Another
open problem is the convergence of the solutions of the perturbed problem (19)-(24)
to those of (33) and (47)-(52).

3. The reduced problem. To study the limit problem, we use a change of
variable and unknowns in order to get rid of the constants j and T. Thus, we define
the constants and depending on j and T according to

1 T4j2(53) 5
T3j,

and

(54) (x) nl (x) A #2 fil (/ix), n2(x) A #2 t2(hx).

With this rescaling, the system becomes, omitting the tildes,

(55) d2
dx n(x),

(56) n(x) n(x) + n2(x),

1
(57) nl (x) V/(x)

gcp(x, 0),

(58)

y(x, ):()
v/v() v()

fz g(x, y)
Jo v/(z) ()

n2(y) dy

n (y) dy,

(59)
1

(0) 0, (5) X’

(60) )(,1 ep
v/(z) ()
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The first step for the study of the above system consists in solving the integral
equation (58) for a given electric potential . This will be done in the following
subsection, but we first begin with the following definition.

DEFINITION 3.1. Let c E [1, 2), it > 0 and C > 0 be given. We define Q(c, #, C)
as the set of convex functions on [0, #] such that

> o, x e (o,

(61) (0) 0, and IV(x) (Y)I >_ C Ix yl a, x, y e [O, #],

and we set

L(O,#) L(O,#,xa-ldx) {b, xa-1 b(x) e L(0,#)}.

3.1. The integral equation. Here we consider a given convex nonnegative func-
tion and we show the existence and uniqueness of a solution of (58).

PROPOSITION 3.2. Let be given in Q((,It, C) for some in [1, 2), It and C
positive. Then the equation (58) has a unique solution n2 in L(0, It). This solution
has the following properties:

(1) n2 is positive for x e (0, It).
(2) The norm of n2 in L(O, It) can be bounded by a constant depending only on

C, c, and It.
To prove this proposition we define the map

(62)

K" L(0, It) --, L(0, It),
m(x) Km,

such that

x g(x,y) m(y)dy,(63) Km(x) G(x) + V/(x) (Y)

where

(64) G(x)
r]x g(x, y)

nl (y) dy.
Jo

We have the following lemma.
LEMMA 3.3. The map K takes L(O, It) into L(O, It). Moreover, for all m

and m2 in L(0, It) and p integer, the following estimate holds on [0, p]:

(65) X
c-I IK,m(x) K,m2(x)l <_ C xp(1-)

where

(66)
tk -’Ik - dt
(1-t)

and the constant C .
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Proof. Since the definition of Q(a, #, C) implies that (x) >_ C xa, we deduce
from (57) that

<

and then we have

nl e L(0,#).

Thus, to prove that K(L) C L it is sufficient to prove that

(67) h(x) o g(x, y)
V/(x) (Y)

re(y) dy

is in L for every m in L.
First, we have

The change of variable y xt in this integral gives

Xl-
(68)

and ensures that h E L(0, #) since a < 2.
Now we prove the estimate (65). Let us set m ml-m2 and h Km-Km2.

Then m and h satisfy (67) and the application of (68) proves (65) for p 1. To prove
the estimate for all p, we proceed by induction. (The details are left to the reader.)

LEMMA 3.4. There exist two positive constants C2 and / depending only on c,
such that for every k,

Proof. By the Hhlder inequality we find

tk (1-)
Ik (1--t)

dt

< tk (1-) dt .
where is chosen such that -- < 1. Thus, there exists a constant K such that

K C2(69) Ik <_ <-- 1. D
(1+k(1-

End of the proof Of Proposition 3.2. Lemma 3.3, together with Lemma 3.4, implies

,}Kml Km2,,L(O,p) < ’.ml m2’.L(O.) [62.1- ]P(’!) V
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which ensures that K is a strict contraction for p large enough. Thus, K has a
unique fixed point and this fixed point is the limit of all the sequences

(70) r2
k K(n2k-1).

The positivity of n2 comes from the positiveness of nl. Indeed, by induction it is
easy to prove that the sequence n2k, defined by formula (70) and such that n2 0,
is always positive. Finally, it is readily seen that all the estimates established in this
section depend on by means of a, #, and C only.

4. The Cauchy problem. In order to prove the existence of a solution of the
problem (55)-(60), we proceed as in [3] or [7] and introduce the Cauchy problem

(71)
dx2

n(x),

n(x) nl (x) + n2(x),
d(0) 0, d-(0) _> 0,

where n and n2 are given by the formulae (57) and (58). We now give the main
theorem of this section.

THEOREM 4.1. For every fixed value >_ 0 there exists a unique solution of
the Cauchy problem (71) defined on ]R+. Moreover, this solution is equivalent near
x 0 to the solution of

d2f 1 df
dx2 vf-f, f(0) =0, xx(0) =/.

By "equivalent we mean that the ratio of the two functions goes to one as x goes to
zero.

The proof of this theorem is quite long and will be divided in two steps: First we
will prove the existence and uniqueness of the solution on a small interval near zero.
Then we will prove the existence and uniqueness on any bounded interval of IR+. The
first step will itself contain two cases: The case/ 0 which is more singular than
the case > 0. (See also [7], part 2 for similarities with the present problem.)

In the following two subsections we show the local existence and uniqueness of
solutions; this result is stated in the next proposition.

PROPOSITION 4.2. For every fixed value >_ O, there exists a positive constant #
such that the Cauchy problem (71) has a unique solution on [0, #]. Moreover, this
solution is equivalent near x 0 to the solution of

(72)
d2f 1 df
dx2 v/], f(0) 0, xx(0) .

Remark. Although the Cauchy problem is nonlinear and nonlocal, we can treat
it as a differential equation because n(x) only depends on (y) for y _< x. This is also
important for the numerical computation of .

Remark. The solution of equation (72) is given implicitly by

f(x) dg
=x, x [0.+);

v/Z +

in particular, for 0, we have f(x)= (.)4/3.
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4.1. Local existence and uniqueness in the case > 0. We begin the proof
by showing some a priori estimates. For this aim, we first note that the solution of
(71) (if it exists) is strictly convex. Then it satisfies

(73) 9(x) >_ x.
Thus 99 Q(1, #,/) for all # > 0, nd then we have

1
(74) nl (x) <_

By Theorem 3.2, n2 E L(0, #) for every #. Again by Theorem 3.2, we have

where K is a constant depending only on and # since E Q(1, #, ). Without any
loss of generality, we take # <_ 1, and then the constant K can be chosen independently
of #. Combining the above estimates gives

d2990 _< h-z () <_ K +

Now choosing # small enough, we get

d2o C2
0 < -z (x) < v

By integrating this inequality twice we get

(75)

on (0, #).

< 2Cv,

4 X3/2(76) I() x < C.

Now we can give the following definition.
DEFINITION 4.3. We define the set (#, ) as the set of nonnegative C convex

functions defined on [0, #] such that

do(77) (0) =0, (0) =Z

and

(78)
1 d99 LI(1 1 e (0, 1.

Then, we define on $(#, ) the distance

1
(79) d(991, o2) sup

e(0,,l

Finally we define the map

do do2-x () (x)

s: z(,Z) - (,Z),
(8o) v s(v),
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such that

dx2 n()(x),

n(x) nl ()(x) + n2()(x),

s()(0) 0,
dS()
dx

(0) 13 >0,

where n() and n2() are defined by the formulae (57) and (58).
We begin with the following lemma.
LEMMA 4.4. The set (#, 13) equipped with the distance d is a complete metric

space.
Proof. The proof is immediate and left to the reader. Vi
PROPOSITION 4.5. There exist it > 0 and k < 1 (depending on ) such that for

every function , in (it, ) the following estimates hold on (0, it]:

(82)
k

In()(x) n()(x)l < d(,

(83)
k

In2()(x) n.()(x)l < d(99,

Proof. We begin by proving (82). We have

1
n1(99)(x) n()(x) V/(X)

[g(x, O) g(x, 0)]

(84) +g(x,0) [ 1 1 ]
The second term of the right-hand side can be estimated as follows:

9(x,0)

(85)

1 1

v/(x)
I(x)

1 [x d d
--2
<

3/2x3/2 Jo Ix (Y) x (Y)I dy.

Using (79), the last estimate turns to

(86) g(x, 0)
1 1< - d(,).

-3

For the first term of (84) we have

(87)
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Therefore we have

(88) Inl()(x)- nl()(x)l _< C3(1 + x/)d(,),

with a constant C3 depending only on ft. Now by choosing it small enough so that
C3(1 + v) <_ -onk (0,#], we get the estimate (82).

To prove (83), we proceed in a likewise manner, but the calculations are much
more complicated since n2 is not given explicitly. We consider two sequences, n()
and n(), defined by

(89) n() K(n-l()), n2() =0,

where K is defined by formula (70) and

(90) n() K(n-1()), n2() 0,

where K is defined analogously. Therefore, we have the following lemma.
LEMMA 4.6. There exists a constant C > 0 which only depends on such that

(91) In()(x) n()(x)l <_ C d(,) on (0, #1.

Proof. First, we prove exactly in the same way as in (85) that

1 1

v/(x) -() v/(x)-v()
4 (x3/2 y3/2)

d(, )
3 fl3/2 (x y)3/2
C

(92) -< -Yv’--x d(, ).
Besides, we have

x
nl ()) (y)

(ga) +
V/(X) --()

dy

[g(x, y) g(x, y)] dy.

From estimates (82) and (92), equation (93) can be estimated as follows:

(94)

A straightforward computation of the right-hand side integrals leads to

x e (0,,]



THE CHILD-LANGMUIR LAW 379

and this ends the proof of Lemma 4.6.
We proceed by induction and prove the following lemma:
LEMMA 4.7.

(95) ,n()(x)-n()(x),<_Chp ()d(,),
where

and

i=0 j--1

I v t
dt.

Proof. We write

n+1 ()(x) n+1 ()(x) n()(x) nl()(x)

+ [n()(y) n()(y)] g(x,y)
dy

v/(x) ()

+ n()(y) g(x, y)
V/(x) (Y)

] [(x, ) (x, )] d.
n()(y)

() + ff(x) ()

By using Lemma 4.6 and (92), we have

+ d

+ Cn() xd(, ).

For small, we get from the preceding inequality

(97) ]n:+l()(x)--n+l()(x)] < C1d(,)+ x ]n()(y)--n()(y)]
dy

ffZ(x-
and the result follows easily by induction.

End of the proof of Proposition 4.5. The inequality (95) passes to the limit and
gives

(98) ]n2()(x)-n2()(x)] Ch () d(,),

where

i--0 j=l
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is an analytic function defined on IR. For # small enough, we get

and this ends the proof.
End of the proof of Proposition 4.2. By integrating twice the inequMities (82)

and (83), we prove the strict contractivity of the map $ for small which yields the
existence nd uniqueness of the solution on small interval near zero.

4.2. Local existence and uniqueness in the case 0. The proof will be
anMogous to the case > 0 but the estimate (73) is not useful; thus we begin by
proving the following lemma.

LEMMA 4.8. There exists a positive such that for every solution of the system
(71) with O, the following estimate holds for every x e [0, ]:

(99) (x) x4/3.

Proof. Let be a solution of (71). Then the function g(x, 0) tends to 1 as x
tends to zero. Thus, there exists a constant Po > 0 (depending on ) such that

1
(00) (x, 0) 5 w e [0,,o].

Since n2 is positive, the above estimate gives

d2 > 1
(101)

dx2 2
on [0,

By multiplying this inequality by and integrating, we get the estimate (99).
Now the only thing left to show is that o can be chosen independently of
Let o. For x [o,] the following estimate holds:

dh dh
logg(x, 0)

() o ()

,o ()ilhl o

8 1/3 ( 1/3 x )(02) -() .0 +
o

Using the above estimate it isThe estimate (99) will hold on [0,] if g(, 0) .
sufficient to take

(103) K/3- 20, K log2.

In the ce Po ()3 then we take o. Otherwise, 1 defined by formula (103)
satisfies
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Thus formula (103) permits us to build a bounded increasing sequence #n, with a
limit equal to (---K3 )3. In both cases we can choose # ()3, which ends the proof of
the lemma.

As in the case/3 > 0, the preceding lemma allows us to exhibit an equivalent of
o in the neighborhood of x 0. Thus we obtain the analogue of formulae (75) and
(76).

PROPOSITION 4.9. There exist two positive constants # and B such that the
following inequalities hold on [0, #] for every solution o of (71) with 0:

( o4)

( o5)

( o6)

where

/3

Proof. Since o is a convex function with o(0) 0, then for every h > y >- 0 we
have

(107) o(h) o(y) > h y
o(h).

h

Thus using estimate (99), we get for 0 _< y _< x _< #

(108) exp
h1/6 V’h y

<_ go(x, y) <_ 1.

Now we apply this inequality for y 0, and by using the inequality exp(-u) >_ 1- u,
we get

(109)
1 C x/3 1_< nl(x) _<
4 o(x) v/ o( i

Since (99) implies that n2 e L3[0, #], we have

n2(x) < K

and therefore

(110)
1 C x/3 d2o 1 K-< -<

By using this estimate, we proceed as in [7] and prove the proposition. We build some
sequences # Bn Cn such that

(111) o(x) > C x4/3 (1 Bn X1/3) /X E [0,/n].
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dFrom the upper bound for given by (110), we deduce

(112) d2a(x) < K
dx2 x--fTg +

Now we introduce a positive real number t such that

1 1
<_l+u, >_ l-u,(113)

v’i u v/1 + u

Thus for x e [0, #hi 1[0, (__)3], the estimate (112) turns to

(114) (d2 (x) < K + x +dx2 C-n x2/3

We integrate this inequality twice, and by setting

(ii5) C’n If+

we get

(116) p(x) Gin x4/3 (1 + Bin xl/3), x e [0, n] N[0’ n ]"

By using the above estimate and the first inequality of (110), we get

d299 (x) > 1 Cx1/3

dx2 x2/3 V/1 + Bn xl/3

We integrate this inequality twice, using the estimate (113), and obtain

(I17) x4/3 (1 Bn+l x1/3) x E [0O(X)

__
Cn+l

where

(118)

It is obvious to show that the sequences Cn and C’n converge and that

(I19) 9) /3
limC, limC’n D

By using (115) and (llS), we can express B+I by means of B, and show that
Bn and B’n converge, and that their limits are positive. Also, we can choose K and C
in such a way that the limit B of B is the same as that of B’. This yields that #n
converges to a positive limit #. Thus the estimates (104)-(106) hold in [0, #]. []

Now we are able to define a set ’(#), where the solution lies, as shown in the
following definition.



THE CHILD-LANGMUIR LAW 383

DEFINITION 4.10. We denote by $’(#) the set of C convex positive functions
defined on [0, #] such that

do(120) (0) O, x(O) O,

X2/3
d 4
_---(x) D X1/3
dx

<_ DB on (0,#).

On this set, we define the distance

1
(121) d’ (01, 02) sup

e(o,l x-/a
dol d992
-aTx (x)- -aTx (x)

and then we define the map

s. e’(,) - ’(),
(122) s(),

such that

(123)

d28(0)
dx2 n(p) (x),

n(x) nl(O)(x) + n2(o)(x),

()(o) o, dS(o) (0) 0
dx

where n (o) and n2(o) are defined by the formulae (57) and (58).
We claim that 8 maps $’(#) into itself because the constant B defined in the

previous proposition is the limit of both sequences Bn and B’n. Hence, one can do the
same computations as in the proof of the previous proposition and prove the claim.
Analogously to the previous section, we have the following lemma.

LEMMA 4.11. The set ’(#) equipped with the distance d’ is a complete metric
space.

Then we have the following proposition.
PROPOSITION 4.12. There exist # > 0 and k < 1 such that for every function o,

in F_,’(#), the following estimates hold on (0, #]:

(124)
k d’Inl(O)(x) nl()(x) <_ 3xl/3 (o, )

k
[n2(o)(x) n2()(x)l <_ aXe3 d’(o,

Proof. The proof of this proposition is analogous to that of Proposition 4.5. We
begin by proving the following lemma.

LEMMA 4.13. There exists a constant kl < 1 such that for all o and b in
the following estimate holds for 0 < y < x < #:

(126)
1 1

x/(x) () v/(x)-(v)

__
kl x5/3 y5/3

d’-- (x4/a y4/a)a/ (’ )"
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Proof. Since

1 1

v/()-() v/(x) ()
x

(o’(h) ’(h))dh

v/(x) () v/() () (v/(x)- () + v(x) v())
we take # small enough such that (1 Bttl/3)3/2 >_ 0; therefore, (105) gives

Thus

1 1

v/(xi v() v/i(x) ()
< d’(o, ) f h2/3 dh

4This proves the result with kl . [:l

By going back to the proof of Proposition 4.12, we prove (124):

n (o)(x) nl ()(x) g(x, o) [ l V/(xil ]
1

+ V/(x)
[9(x, 01 (x, 0)1.

Therefore

kl _-1/3 d’In1 (o)(x) nl ()(x) < -x (o, ) + Da/2 x2/a x/1 Bxl/a

In view of (126), the following estimate holds"

x 1 1
I(, o) (, o)1 <

,/()

< k__ x2/3 d’(o,
2

dh

Then

kl x_lla d’Inl()(x) nl(Vz)(x)l < -g (, b) + Cd’(o, b).

By taking k < k < 1, we can choose # small enough so that

k l/a d’Il()(x) nl ()(x)l < x- (o, 1.
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This ends the proof of (124). To prove (125), we proceed in the exact same manner
as in the proof of (83). We consider the following sequences:

(127) n() =K(n-l()), n() =0,

and

(128) n() K(n-l()), n2() =0.

Therefore, we have the following lemma.
LEMMA 4.14. There exist constants C > O, it > 0 such that

(129) In21()- n()

Proof. We have

(130)

dy

x n()(y)+ v/(x)
[g(x, y) g(x, y)] dy.

From estimates (124) and (126), the right-hand side of equation (130) can be estimated
as follows:

(131)

By the change of the variable y xt, we prove that the first two integrals of the
right-hand side are constant. To compute the third integral, we set

/0
x 1

C kl h5/3 y5/3
A

v/Cy4/3 v/C(x4/3 y4/3) y -- (h4/3 y4/3)3/2 dh] dy.

Then, through Fubini’s formula, A satisfies

x 1 0
h h5/3 y5/3

A C
V/X4 h4/3 y(h4/3 y4/3)3/2

dy dh.

By using the change of variable y ht for fixed h, we obtain

x dh
A CI

v/x4 h4/3
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where

1 t5/3
I

t2/3(1 t4/3)3/2
Again by the change of variable h tx, we obtain

A C x1/3,

dt<.

and since the third term of (131) is equal to A d’(, ), then

In(T)(x) n()(x)l _< Cd’(, ), x e (0, #1
and this ends the proof of Lemma 4.14.

We use this lemma and proceed by induction to prove the following lemma.
LEMMA 4.15.

(32) n()(x)l

where

and

{=0 j=l

t
Ij

v/1 t4/3

Proof. We write

n+1 ()(x) n+1 ()(x) n()(x)

dr.

x n()(y)
(133) +

V/(x) (Y)

dy

[g(x, y) g(x, y)] dy

and by using Lemma 4.14 and inequalities (87) and (126), we deduce that

In+l(o)(x) n+l()(x)l
_

Cd’(o,

ix in()(y+ v/C(x4/3 y4/3)
dy

+ Cx1/3 d’(, )
+ Cx2/3 d’(,

For # small, we get from the preceding inequality that

(134) In+l()(x)-n+l()(x)l< Cld’(,)+ jo
x In()(Y)-n()Y)l dy,

JC(x4/3 y4/3)
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and the result follows easily by induction. D
End of the proof of Proposition 4.12. The inequality (132) of Lemma 4.15 passes

to the limit and gives

In2()(x) n2()(x)l <_ C h((Cx)/3) d’(, ),

where

(z) z
=o j=

is an analytic function defined on IR. For # small enough we get

k
In2()(x) n2()(x)l < d’(, )3x/3’ Vx e (o,l

and this ends the proof.
End of the proof of Proposition 4.2. Like in the case f > 0 treated in the previ-

ous section we integrate twice the inequalities (124) and (125) and prove the strict
contractivity of the map ’ for small #. This gives the existence and the uniqueness
of the solution on a small interval near zero.

4.3. Global existence and uniqueness. In this section, we show the existence
and uniqueness of the solution of the system (71) on an interval [#, A], where A is an
arbitrary constant. By denoting , as the quantities defined in Proposition 4.2, we
can rewrite the system on [#, A]"

(136) d2
dx2 n(x), x e [#,A],

(137) n(x) n(x) + n2(x),

(138) nl(x) V/(x)g(#, 0)exp
V/99(z ),

(139)

(140) (,) (,), d99 d
dx

(#) -x (#)’

(141) ( ].i )g(x,y) exp
V/(z)_(y)
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)(142) gj(x,y) exp
V/(z) (Y)

We apply a fixed-point procedure associated with this new formulation. We set

-= pC [#, .4] convex such that () (), () ()
We define the map

1
nl ()(x) g(, 0) exp

z)
and the map n2(p) by the integral equation

Z" (Y)
g("’) exp (- i dz

n()(x)
(x) () (z) ()

ff a(x,u) [(v)() + :()()l d.ff(x)
0.

Finally, we define the map $

(144)

such that

(145)
dx2 ()(),

()() ()(x) + .()(),

s()() (), s() () () > 0.

The proof of existence and uniqueness of the solution is based on the following propo-
sition.

PROPOSITION 4.16. There exists a constant k such that for every pair offunctions, in . and every integer p that satisfies

w [,, A],

where D1 is an arbitrary constant, we have

]gD1 (x_t)p+ Vx E [#,A].IS()’(x) s()’(x)l < +,,
The existence and uniqueness of the solution is an immediate consequence of the

above proposition.
COROLLARY 4.17. There exists an integer p such that the map 8p is a contraction

on . The considered distance on . is

d(,) sup I’(x) ’(x)].
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Proof. Apply the preceding proposition with p 0, then

IS(o)’(x) S()’(x)l <_ k (x it)d(99, ) Vx e lit, A].

An iteration of this inequality using the preceding proposition gives

s,()’(x)l < (x
p Vx e [#, A].

This gives

kp (A- #)Pd(SP(g9), $P()) _< d(v,p

and we only have to choose p large enough. El
The remainder of this paragraph will consist in proving Proposition 4.16. From

now on we will consider a pair 99, of functions in 9v that satisfy

(146) I’(x) ’(x)l <_ D1 (x #)P Vx e [#, A].

LEMMA 4.18. There exists a constant kl independent of , q2, and p such that

In1 (99)(x) nl ()(x)l <_ k D1 (x #)P.

Proof. The difference of the densities associated, respectively, with and reads

The second term of the right-hand side can be bounded by

1 1 Iv(x)

By the convexity of 9 and , we have 9, >- (#) > 0. Then

1 1 -- 2((,))3/2 (s) (s)[ ds <_ k D1 (x p)P

where the constant k only depends on it, (it) and A.
The first term of (147) can be estimated as follows:

(148) - exp exp
V/(z)

dh

<_ k’ D (x #)
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This inequality, combined with the preceding one, ends the proof of the lemma.
We will prove an analogous lemma for the density n2. Like previous sections, we

will build a sequence n2k, prove some estimates on n2k, and then pass to the limit.
We set

(149) n() 0,

and for all k,

(150)

Notice that

(151) g(x, y) n2()(y)n2k+l(9)(X) nl x -- -V/-- -(- : -)) dy

We begin with the following lemma.
LEMMA 4.19. There exists a constant k such that for every , that satisfies

(146), the following estimate holds on [#,A]:

(152) In()(x) n2()(x)l _< k2 D1 (x #)P.

Proof. We write

n()(x) n()(x) I + II +III + IV + V,

where

(154)

(156)

(157)

(158)
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Now we estimate the five terms one by one. First, since from the previous section
.(y)y2/3 is a bounded function in the neighborhood of zero, then the term I can be
estimated as follows:

III <_ Ky-2/3 1 1

v/v(x) () v/(x) ()

But since

v/() ()
1

V(x) ()
I(x)

v/(z) ()v/(x) ()(v/(x) () + v/(x) ())

and

d d() () > (,)(x ) + ()( ) > C(x ),

then

K’ dy
Il <- I(x) (x)l / ( )/.

Therefore,

(159) [II <_ C,P,x,I (x)[ _< CDI(x-#)P,

Analogously,

C jf 1 1
IXXl < y2/3 /x :--y v/(z) (y) vie(z)

t, dy " [(z) ’g,(z)l dz<_ C
y2/3v/X y (z y)3/2

_< c a I(z) ()1 /a v’x" (

dz dy

Therefore,

(160) l:(z) (z)lIIII <c x/z x/x-
dz <_ C DI (x #)P.

For III, the estimate comes directly from the one on n,

I/ZI
CIn(:)(y) n()(y)l

dy.

We deduce easily that

(161) IIH! <_ C D1 (x it)p.
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For IV, we have, since nl is bounded in L(#,A),

x/(z)-()
1

v/(x) ()

But since

v/v()-v()
1

v/(x)-()
< C f: I’(h) ’(h)l dh

(x y)3/2

we use Fubini’s theorem and obtain

fx fh dy
IIYl < dh Io’(h) ’(h)l (x y)3/2"

This leads to

(162) IZVI < I’(h)-’(h)] dh < CD (x-#)
/

For the last term, we obtain

1

v/b(h)

dy

dh dy

Thus, we have

(163) IVI < C fx i,(t ,(t)l
dt < C D1 (x-#)PV’x- t

The result follows easily from (159)-(163). S
By using the sequences n2

, we prove the following proposition.
PROPOSITION 4.20. There exists a constant k2 such that for every , in

that satisfies (146), the following estimate holds on [#,A]:

[n2(o)(x) n2()(x)l <_ k2 D (x #)P.

Proof. We will prove this estimate for the difference [n2k()(x)- n2()(x)] and
then pass to the limit. From (151), we deduce that



THE CHILD-LANGMUIR LAW 393

n+()(x) n+()(x) n()(x) nl()(x)
x n2()(y) nk2()(y)

(X, y)dy+
v/(x) ()

[ 1
+ n()(y)g(x,y)

(x)- (y)

()() [(x,) (x,)] d.+ (x)- ()
Since n can be bounded independently of and on [, A], then the last two terms
of the above equation can be treated exactly as the terms IV and V of the proof of
Lemma 4.19. (See (157) and (158).) By using the result of Lemma 4.18, we can write

(la) ]n+()(x) +()(x)

An immediate iteration gives

(165)

where

(166)

Ink2()(X) n()(x) <_ C1 D1 (x #)P hp,k (C1v/X ),

h,, () z
j=0

v/(x) ()

with

tm/2
(167) Im- v/I------ dt, m E IN.

Since hp,k (CI v/X- #) ho.k (Cv/A- #), and since this sequence is convergent as
k tends to infinity, we deduce that

In2()(x) n2()(x)l <_ k2 D (x #)P.

5. The boundary-value problem and the Child-Langmuir current. In
the previous sections we have shown that the Cauchy problem (71) introduced in 4
has a unique solution. After performing the inverse scaling of (54), we obtained that
the problem

d2 n(x),(168)
dx2. n(x) n(x) + n2(x),

(169) n(x) J g(x,O),
v/(x)

(7o)

f (x, )n2(x) J0 v/(x) ()

f (x,u)
J0 v/(x) ()

n2(y) dy,

nl (y) dy,
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d(171) (0) 0,
dx

(0) 1,

(172) g(x, y) exp ( l fy dz )
has a unique solution for every T > 0, j >_ 0, and 1 >_ 0. This solution can be written
as

(173) (x) T
4 j2 T--

where is the solution of (71) with .. Therefore is a solution of the boundary-
value problem (55)-(60) if and only if (1) 1 or, equivalently, if and only if the
corresponding satisfies

(174) a j2"

This constraint will give the limitation of the current. Let us start with the following
proposition.

PROPOSITION 5.1. Let be the solution of the problem (168)-(172); then we have

(175) ()9(z,) d r j (1 9(z, 0))

and

(176)

Proof. (46) shows that

n(y)g(x, y) dy - j2(x, y)dy

=Tj2(x);

then with (45) and (39) we have

n(y)g(x,y)dy Tj (1 g(x, 0)),

which shows (175).
(176) can be shown by multiplying the Poisson equation by and integrating it

between 0 and x. This leads to



THE CHILD-LANGMUIR LAW 395

The first integral can be computed by an integration by parts

(178) ]i
x J
/(

x

g,(y, 0)’(y)dy 2jg,(x, 0) v/(x) + 2
j

g,(y, O)dy.
T

For the second integral, we use Fubini’s theorem

foo n(z)9(, )’()
v/() (z) fo

x

]z
x

dzdy n(z)

An integration by parts for fixed z gives

n(z) (y)g(y,z)
v/()- (z)

fl’ (y) )g, (y, z)- v/() (z)
dy dz.

x ooy n(z)g,(y, z)’() - V/() (z)
dz dy 2 n(z) g’ (x, z) V/(x) p(z)dz

T

+ Jx- J (,o)a.
T T

We sum this equation and equation (177) to finally obtain (176).
Remark. (176) can also be derived from the Boltzmann equation (26) by multi-

plying by v and integrating. This can be viewed as a sort of energy identity.
This proposition allows us to prove Theorem 2.2.

Proof of Theorem 2.2. First, we deduce from (176) that

(180) ,2(x) >_ 4j
X.
T

We take the square root of this inequality and integrate it. Hence the condition

(1) I leads to

9
(181) j _< ]- r.

Besides, by using the expression (170) of rig., we have

x n(y)
(x y)dy >.(x)

(x) ()

Hence, by using (175) we obtain

J (x, 0))n2(x) > (1-g
Then (168) leads to

d2p
> J(182)

dx2

l foo
x

TV/(
n(y)g(x, y)dy.

v/(x)

(179)

By using Fubini’s theorem backward for the last integral and applying (175), we obtain

x

dy dz 2 n(z) g,(x, z) V/p(x (z)dz
T

+ 2 n(z) g(y, z)
dy dz.

T
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which by integration gives

(183) j < 4/9
and ends the proof.

As shown in [3] and [7], the case of a vanishing derivative at x 0 is of great inter-
est (Child-Langmuir regime). In this case, we prove that the boundary-value problem
(55)-(60), with the additional requirement that -x (0) 0 and with unprescribed j,
has a unique solution. We begin with the following lemma.

LEMMA 5.2. Let be the solution of (71) with O. Then has the following
asymptotic behavior:

(184) d 4 X3/2d- 2 vf,

d 4/3 (9) 2/3 ( )xl/3 9 2/3
X4/3(185)

dx
(p xO.

Besides, satisfies the following estimates on IR+,

4x3/2 (9)2/3x4/3(186) (x) > (x) >

Proof. The asymptotic behavior in the vicinity of 0 (185) is already proven in
Theorem 4.1. The global estimates (186) are direct consequences of (176). Indeed,
Proposition 5.1 applies for with 1 0 and j and T replaced by 1. Therefore,

The integration of this inequality leads towe deduce from (182) that " > .
the second inequality of (186). The first inequality comes from (180) applied with
=j=l.

The only thing left to show is (184). First, we deduce from (176) that

4 x < -x (x) 4 x + 4 (Xg(x,O) + 4(X) (y)g(x, y)dy

(lS) < 4x + 4ff(x);
therefore it is sufficient to prove that o(x2) in the neighborhood of +. Let us
introduce the function

(x)
f(x) x/

We prove now that f is decreasing in the neighborhood of+ and consequently it is
bounded. The derivative of f has the same sign as

(188) A(x) x ’(x) g (x) x ’(x) (x) g (x).

We deduce from (187) that (x) 2 + 21/(x), and by using the first estimate

(186), we bound d(x) by

1
A(x) x /4(x) (x)

( 13/4 ),1/4() 2 ()
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Since (x) _> x3/2, then A is negative for large x’s. This ends the proof of the
lemma.

Then j is determined by the equationProof of Theorem 2.1. We set X

(189) (X) T
2 X2,

where is given by (173). From (181) and (183), we deduce the following estimates
on X:

9 16
(190) X > 4r3,

X > -9r4.

Therefore, we have studied the equation B(x) := (x)- T Xe 0 on the interval
(Xmin,-I-oo), where

Xmin_SUp ( 9 16 )4T3’ 9r4

Thanks to the preceding lemma, it is obvious that lim__.+ B(x) -oc. Besides,
by inserting the inequality (x) _> - z3/2 into the expression of B, we find

B TSr >0.

This insures the existence of a solution of B(x) O. To prove the uniqueness, it is
sufficient to prove the implication

(191) (x > Xmin, B(x) O) (BI(x) < 0).

Let us prove (191). The condition B(x) <_ 0 implies that (x) _< T2X2. By using this
inequality and (187), we obtain

B’(x) < 2v/1 + r x/ 2T2
X 2X/ (X/1 + T T2X/).

The condition x > leads to

B’(x) < 2v/ (v/1-t-r -).
The right-hand side of this inequality is negative when T _< 7/9, which proves (191).

9 and proceeding in a likewise manner, we prove (191)By using the condition x >
in the case T _> 4/5.

Finally, we prove that the current is equivalent to - when T tends to zero and

to 4/9 when T tends to infinity. Since X(T) 1/(T3jCL()) satisfies ,(X) 2x then

we deduce from the behavior of () that lim-0 X(T) +cx) and lim_. X(T) O.
Thus, by using the symptotic behavior of in the vicinity of zero and infinity, we
obtain the result.

6. Conclusion. We derived a limit model for electron transport in a semicon-
ductor via a Child-Langmuir asymptotics of the Boltzmnn equation. The results of
Theorem 2.1 seem to be true for all the values of T but would need more technical
arguments. In our analysis we neglected the doping density in the N- region. One
of the effects of the doping profile is the loss of the convexity of the potential which
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in turn would not be necessarily increasing, and the explicit formulas for the density
would not be valid. However, in the collisionless case, when the doping density is
not too large, the limit potential is increasing (see [191 or [2O]). This result could be
extended to the case T 7t OC. Finally, the convergence problem of the perturbation
problem solutions (19)-(24) to the limit problem solution is not solved yet and its
proof is in progress.
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(LOBAL EXISTENCE OF SOLUTIONS TO
REACTION-HYPERBOLIC SYSTEMS IN ONE SPACE DIMENSION*

DANIELLE D. CARRt

Abstract. Global existence theorems to the initial value and initial-boundary value problems are
proved for a general class of reaction-hyperbolic systems that arise from the transport of chemically
reacting materials. The basic technique of proof is to use the geometrical properties of the equilibrium
set of the nonlinear source terms to construct Lp estimates for each p and to pass to the limit to get
an a priori L bound.

Key words, material transport, energy norms, chemical kinetics, hyperbolic equations, initial
value problem, initial-boundary value problem
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1. Introduction. We refer to a system of partial differential equations as reaction-
hyperbolic if it has the form

Lff(x, t) f (x, t, 7),

where if(x, t) is an r-dimensional vector whose components represent the concentra-
tions of the chemical species ui, L is a smooth first-order hyperbolic operator, and the
linear or nonlinear functions in f represent the chemical reactions taking place among
the species ui [9]. These systems arise naturally in the study of material transport
such as the transport of intracellular materials in nerve axons [1], [3], [5]. In this paper
we concentrate on a class of reaction-hyperbolic systems in one space dimension that
can be cast into the canonical form

(Or / AlOx)ul (x, t) fl (ul, u2),

(1) (0 / iOx)Ui(X,t):-_l(%ti_l,%ti)/ f/(ti, ztiT1)

+
0)

where the initial data are nonnegative, continuously differentiable functions that van-
ish at infinity. Without loss of generality, we assume that all the Ai are constant and
not necessarily distinct. In fact, in many applications several of the Ai are zero [2].

The problem is said to have a global solution if for any T E ]+ a bounded solution
exists for all time t E [0, T]. Since we allow the source terms to be nonlinear, global
existence to system (1) is not obvious. Consider the case where 7 (u(x, t), u:(x, t))
for x . For fixed , 2 , system (1) reduces to

(0 + A10x)Ul(X,t) f(g),
(2) (at / A2Ox)u2(x, t) -/(7),

0)
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which describes the chemical interactions and the active transport of the species ui
at the rate Ai along the real line. Note that for f(7) u2 and positive initial data,
the system

(Or  lOx) tl (X. t)  21.
(0, +

O) U-’O(Z).

has no global solutions, since the first characteristic equation 1 u2 has no global
solution for positive initial values.

We establish conditions on the source terms so that system (2) and ultimately
system (1) are globally solvable. We do this by constructing an interesting family of
energy norms which depends in an explicit way on the geometry of the equilibrium
set of the source terms. These norms allow us to derive Lp estimates for the solution
for each p, and taking the limit we obtain an L estimate. Global existence follows
easily.

In 2, we exploit the fundamental properties of chemical kinetics in order to prove
that a local solution exists to system (1) and that if the local solution starts positive for
all x E ] then it stays positive for all local time. If the local solution can be majorized
by a constant C that depends only on the initial data and on a fixed time step, then
the solution exists globally. This is achieved by repeated successive approximations
along the time axis, using the fact that the solution remains bounded by C. In 3,
we establish conditions on the source terms for the 2 2 system in order to construct
an a priori bound for the solution to the initial value problem. This a priori estimate
depends not only on the initial data, but also on the geometry of the equilibrium set
of the nonlinear source terms fi. A special case of the 2 2 system extends Illner’s
results [6]. In 4, we generalize our results to certain classes of r r systems, and
finally in 5 we indicate how these results are extended to the initial-boundary value
problem.

There are lots of important equations without the form (1), for which one can
prove global existence using other methods. Some of these techniques are clearly
illustrated in the proof of global existence to the fast axonal transport system [5].

2. Local properties. Chemical reactions can be classified on a kinetic basis by
reaction order [7]. For p > 0, pth-order reactions are those whose rate is proportional
to the product of the concentrations of p reactants. Let (ul (x, t),..., ur(x, t)) de-
note the concentrations of all the chemical species ui used and produced in a chemical
system at position x and at time t. The reaction

tl --U2 k--k U3

is second order since the formation of U3 depends on the concentrations of two reac-
tants, u and u2. The resulting rate equations for the concentrations of ul, u2, and
t3 are

Ou (x, t) -kuu +
Ou:(x,t) -kuu + kua,
Ou(x, ) kuu

Note that Ot(u + u2 + 2u3) 0, which is just the conservation of mass.
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In general, for a closed system the equations that describe the rates of change of
the chemical concentrations ui with respect to time are

(3) Otui(x, t) fi(),

where 1,..., r and the linear or nonlinear functions f are rate functions which
represent the chemical reactions involving the chemical species ui. Note that if p is
the maximum order of the chemical reactions, then each f is a kth-order polynomial
of ff for 0 < k._< p. In addition, since the loss of a certain species is proportional to its
present amount, ui is a factor in all terms with negative coefficients in the polynomial
f. Since the chemical system is closed, mass is conserved and the net reaction rate
is zero. Consequently, there exists a linear combination of the fi involving positive
constants such that the sum is zero. Finally, if all the concentrations of the chemical
species are zero, then the values of the rate functions fi are zero. These fundamental
properties motivate the following structural hypotheses on the source terms fi.

DEFINITION 2.1. f is a reaction function if and only if f satisfies the following
three properties:

(i) For p >_ 1, the components of f have the following form:

(4) f (x, t, (x, t, (x, t,

and flj are nonnegative constants; thewhere for each i 1,...,r and j 1,...,r, cj
coefficients cj (x, t, if) and dj (x, t, if) are smooth, nonnegative, uniformly bounded

functions in x and t.
(ii) There exist positive constants b such that -i bif O.

(iii) f(x, t, 6) 6.
Let C() denote the set of all real-vMued, continuous functions vanishing at

infinity on ]. C([0, 5) ]) is the set of all real-valued functions w such that for
all > 0 there is a closed interval I C with w(x, t)I< e for all t 6 [0, 5) and all
x I. If we write C, we mean the set of those functions, which are continuously
differentiable in addition to having the above properties.

PROPOSITION 2.2 (local existence and positivity). Consider the following system:

(5) (Or / AO)u(x, t) fi(x, t, ),
o)

where f =_ (f,..., fr) is a reaction function, and the initial data uo are uniformly
bounded, nonnegative, C() with uniformly bounded derivatives. There is a > 0
so that system (5) has a unique nonnegative solution in C for t e [0, 5).

Proof. The proof is a straightforward generalization of Cabannes’ result, using
the method of successive approximations [4]. For details, see [5].

3. 2 2 systems. Even though we know the basic structure of the reaction func-
tion f, global existence to system (1) is still not obvious since we have not addressed
its highly nonlinear nature. In order to figure out the right additional hypotheses for
the source terms, consider the following simple chemical equation:

k--’k
?U2(6) #u k
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U2

f() > o
Ul U2

f() < o
Ul 2

U2

FIG. 1. Stable equilibria for f(ff) -klu + klu.

which leads to the following differential equations for the spatially homogeneous case:

(7) Otu (X, t) -kilt1tt d- ]g2t,
t)

where kl,k2,?,# > 0. For # and kl k2, (7) reduces to

+(8) ot t2(x t) ]gl t ]gl t .

Let f(ul,u2) =- -klUl + ]glt2 and let f(7) (f(7),-f()). Note that the
chemical system (6) is at steady state when the components of the source term are
zero and that this occurs only when the concentrations of the reactants are equal.
Define the zero curve for f to be z() _= T. If the concentration of u is initially less
than z(u2), then f is strictly positive. In this case, the concentration of Ul increases
while .the concentration of u2 decreases until the two are equal. Similarly, if the
concentration of u is initially greater than z(u2), then f is strictly negative, and
the chemistry adjusts itself until the two concentrations are equal (see Fig. 1). Thus,
the zero line z(.) consists of stable equilibria for system (8). One can easily see that
max{I u(x,t)I1, u2(x,t)I1} is nonincreasing in time and that the maximum of
the initial data is the a priori bound for the solution [6].

For the case when the zero curve no longer coincides with the line u u2,

this bound does not hold. Without loss of generality, let 2 The zero linekl
z(u2) 2u2 still consists of stable equilibria for (7); however, the max{ u (x, t) [,

(see Fig. 2)u2(x,t) } increases in time in the wedge u2 < u and u2 > u
New estimates must be constructed which utilize the highly stable structure of the
spatially homogeneous case.

DEFINITION 3.1. We define a class of source terms f such that system (2) has a

curve of stable equilibria for the spatially homogeneous case. We say that f satisfies
the stabili criteria for the 2 2 system if and only if

(i) f(g) (f(),-f(ff)) is a C2 reaction function of ff (u, u2) only.
(ii) The set of zeros of f in the closed first quadrant is given by a continuous,

one-to-one function, z(.), where z(O) O.
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U2

"it2 tl

2 "1

FIG. 2. Stable equilibria for f() -klu + k2u, where 2.

(iii) f(ul, u2)(ul z(u2)) <_ 0 for all x e ] and t e [0, ).
We now prove that if the source term f in (2) satisfies the stability criteria, then

a global solution exists to (2).
THEOREM 3.2. Consider the 2 x 2 system:

(9)
(0 + Ox)(x,t) (),
(or + A20x)u2(x, t) -f(ff),

(x,O) o(x),

where and )2 are constants and the initial data uoi are uniformly bounded, non-
negative, C()3 LI(]) functions with uniformly bounded derivatives. If the source

term f(ff) =_ (f(ff),-f()) satisfies the stability criteria, then a solution to (9) exists

for all x E ] and for all t >_ O.
Proof. To prove Theorem 3.2, we derive an L a priori estimate for the solution

for all time.
By Proposition 2.2, a nonnegative C local solution exists to (9). Pick T > 0

and assume that a nonnegative solution exists for all x E and t [0, T]. For n > 1,
define the energy norm E as

(10) E (t) (x, t) + nzn-1 (T)d-] dx.

All terms in (10) are nonnegative by Proposition 2.2 and the stability criteria. Thus,
for all t [0, T] we know that

E,I (t) >_ u(x,t)dx.

Differentiating E with respect to time and using the differential equations yields
the following equalities"

dEl(t [nu-(x t)Otu(x,t) + Ttzn-l(u2)Ott2(x t)] dxdt
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(11)

nzn-l(T)dTdx

nzn--I(T)dT -t- /2 lim nzn-l(T)dT.

All the indicated limits in (11) are zero since the initial data are in C(). By the
stability criteria we know that for all nonnegative ui, f(Ul, u2)(u-1 zn-(u2)) <_ O.
We thus have

-Eul(t) nf()(u-l(x,t) zn-l(u2))dx
_

The energy norm Eu was carefully constructed to be a nonincreasing function of
time. Thus, for 0 <_ t <_ T

(12) Eul (0) >_ Eu, (t) >_ uT (x, t)dx.

Estimating EI (0) yields the following:

(13)

Combining (12) and (13) yields the following estimate:

(14) u (x, t)dx <- { 0 117:111 01 I1 }

+ {nz(ll o I1)n-1 o(x/II1}

We know that for a given function w if limp__+o I1 < oo, then II I1< ,.
Taking the lim sup of both sides of (14), we get the desired L estimate

(15) (x,t)Iio<> <_ o(x)I1 +z(ll o I1<,o)

for all t E [0, T].
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To find an a priori bound for u2, we apply a similar argument. Let m > 1 and
denote the inverse function of z(.) as 7(’). Define the energy norm Eu2 as

(16) E. (t) (x, t) +

Differentiating E,2 with respect to time yields

(17)

mTm--l(T)dT] dx.

by Proposition 2.2 and the stability criteria. Since E, is nonincreasing in time, we
have bypositivity that

(8) E(0) >_ E (t) >_ u(x, t)dx

for 0

_
t _< T. Applying the previous argument to estimate E: (0), we get our final

result for all t E [0, T]:

(9)

We have shown that max{ll (x,t) I1,11 u(x,t) I1} _< A for all t e [0, T],
where the a priori bound is defined as

(20)

This a priori bound ensures that a solution to (9) exists for all time and space.
Note that the a priori estimate (20) depends not only on the initial data, but

also on the geometry of the zero set of the source terms. As an example, consider the
system

(21)
(Or + ,lOx)tl(X, t) -kilt? + k2"a,
(0, + .O)(x,t) k? k,

(x, 0) 0(x),

where r, #, kl, and k2 are positive constants, A and ,2 are arbitrary constants, and
for 1, 2 the initial data u0i are nonnegative, uniformly bounded, C()N L(])
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functions with uniformly bounded derivatives. The curve of zeros is simply z(u.)
():l"uI and it is clear that f() =_ (-klUt -F k2u klUl k2u2) satisfies the
stability criteria. Thus, by Theorem 3.2 a global solution exists to (21) for any r > 0
and # >0.

Let K:: (k)/’, C2 ()/v and p By (20) the a priori bound for the
solution to system (21) is

Now consider the case when # . For K: (k-z)/v, the a priori bound reducesk:
to

A max{l("ttol(x) IIo -’ 02(x)11,2C-1 o(x)I1 + uo2(x)

In addition if we set k k2, the energy norms are simply

E b(z, t) + (z, t)] dz,

Eu. [u(x, t) + u(x, t)] dx,

and the a priori bound Jt further reduces to

We remark that Illner showed global existence in this case for r/= 2 in [6].
There are various degenerate systems that can be handled by different yet very

simple methods. For k:, # > 0 the source term in the system

(Ot -- ,10x)Ul (X, t) --glt?,
(22) (Or + A20x)u2(x,t) ku,

(x, o) o(x),

does not satisfy the stability criteria since the zero curve is not invertible. System
(22) can be written as

(23)
(Or q- AlOx)Ul(x,t) f(ul),
(Or q- A2Ox)U2(x,t) --f(ul),

(x, o) o(x),

where f has the following form:

(see formula (4)). Since (u) =_ (f(u:),-f(u:)), we know by Proposition 2.2 that a

nonnegative, C local solution exists to (23). For T > 0, assume that a nonnegative,

cloo solution exists for t E [0, T]. By positivity, we have that

fou: (x, t) u0: (x) + f(u: (x : (t s), s))ds
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Since f(ul) is a smooth function on a compact set, it has a maximum in terms of the
initial datum u01 (x). Using positivity, we analyze the integral equation for u2"

u2(x, t) u02(x) f(ul (x A2(t s), s))ds

<-II u02(x)I1 +Tmax(-f(ll uol(x)I1)).

Thus, the a priori bound for the solution to (22) for all x E ] and t E [0, T] is

,4--max{ll uo(x)I1, 0e(x)I1 +Tkl t01(X)I1}.

4. r x r systems. We now extend the results for the 2 x 2 system to a certain
class of r x r reaction-hyperbolic systems with the following form:

(24)

where r > 2. For i 1,..., r, let Fi be the right-hand side of the ith equation. We
extend the definition of stability criteria to r x r system.s.

DEFINITION 4.1. For the r x r case, we say that F (F1,... ,Fr) satisfies the
stability criteria if and only if

(i) () a c atio Inctio of o.
(ii) For k 1,...,r- 1, the set of zeros of fk in the closed first quadrant is

given by a continuous, one-to-one function, zk(’), where zk(O)= O.
(iii) For k 1,...,r- 1, fk(u,uk+l)(uk z(uk+l)) _< 0 for all x and

t e [0, ).
THEOREM 4.2. Consider the r x r system (24), where r > 2. If $ =_ (FI,..., Fr)

satisfies the stability criteria and the components of the initial data fro(x) are non-

negative, uniformly bounded, CI(N)C LI(I) functions, then a global solution exists
to system (24).

Proof. Let zk(’) denote the zero curve for fk, and let %(.) be its inverse. For
n > 1, define the following functions:

(25) Z(m,j)(T) Zm o Zm+l o...o Zj(Z), rn <_ j,
r(m,j)(T) ")’m o m-1 o...o /j(T), m j.

Note that Z(m,j) and F(m,j) are compositions of nonnegative, monotonic functions,
and are therefore nonnegative and monotonic. Define the following energy norms:

E (t) =_ (x, t) +

J_’ ( i--lfoUk(x’t)n(x, t)nt- EE (t)
oo k=l

-I (r)drnl-’(i_ 1,k)

r foUk(x,t)
k=i+l

Z-1 (r)dr) dx,n (i,k-1)
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;(E() (x, ) + (-,k) .r.dr dx.
k=l

All the terms in the energy norms are nonnegative by Proposition 2.2 and (25). Dif-
ferentiating E (t) with respect to time yields the following equalities:

(27) P- (r)dr]nAk (i-,k)

n n-1Ox Ak (i,k-1)(r)dT dx.
k=i-t-1
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The boundary terms in (27) vanish since the solution is in C(] [0, T]). We now
expand the sums in (26) to get the following:

d
E, nfl (Ul, u2) n-1 n-1r(_,() r(_,()dt

+nf2(u2, u3) n-I Fn-Ir_,2)(uz) (_,)(u)
[r- n-l]+’’’+fi-l(i-l,i) (i_l,i_l)(i-1)--i

.nf,(u,, ui+) [ur-- n-(u,+)](i,i) n-1

[- Z- ])+...+ nf_(_,) ,r_(_)-- ,r_() dx

(nfl(ul,u2) (i_l,2)(l(Ul))- (i_1,2)(u2

[F-- Fn-1 )]
() +"" + fi-l(i-1, i) [i51 (i-1) i

+( +1 r- -Z (i+1

+n+(+,+) i, (’+)- , (z+(+))

fzn--1 zn--1+"" + f-(-’) ,r-(-) ,r-(z-()) dx.

By the stability criteria, fi(ui, ui+) 0 for i(ui) ui+ and for z(ui+) ui;

we also have that and fi(u, ui+) 0 for i(ui) ui+ and for zi(ui+) ui. Since

F(m,j and Z(m,j) are nonnegative monotonic functions, we have that each term in the
integrand (28) is nonpositive and that

d
dE() O.

Eu nd E were carefully constructed to be nonincreasing functions of time as well.
Applying the argument in Theorem 3.2 to the energy norms yields the following
priori bounds for the solution:

I1 0 1 +z,-(ll u0 I1)

i--1

k=l k=i+l
r--1

k=l

These bounds ensure that a solution to (24) exists for all time and space.
Note that for r 2, the estimates in (29) reduce to the previous results in (20)

by Theorem
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5. Initial-boundary value problem. We define the initial-boundary value
problem for the r r system to be the following:

(3o)

(Or + AlOx)ul(x,t) f(u,u2),

(cOt + )iOx)ui(x,t) -fi-(Ui-l, Ui) + f(u, u+),

+ t)

where Ai is arbitrary and x E [0, +oc). For those hi > 0, we prescribe the following
boundary data:

(31) ui(O, t) hi(t).

PROPOSITION 5.1 (local existence). Consider the initial-boundary value problem
(30), (31). For k 1,...,r- 1, let each fk ] be C, and let the
components of the initial data, ri0(x), and boundary data, h(t), be uniformly bounded,
continuously different:able functions with uniformly bounded derivatives. If for those
)i > 0 the data are compatible at the origin, that is, if

lim hi (s) lim uoi (s)
s-O+ s--,O+

and

lim hi(s lim [-AiUoi(S + Fi(ui(s, 0), ui+(s, 0))]
s---0+ s--,0+

where Fi is the source term for the th equation in (30), then there exists a 5 > 0 such
that the initial-boundary value problem (30), (31) has a unique solution for all x >_ 0
and t [0, 5). If in addition the initial data are nonnegative, C(]+) functions and
each fk is a reaction function, then the solution to the initial-boundary value problem
is a nonnegative, C1([0,5) +)function.

Proof: See [5] and [8].
THEOREM 5.2 (global existence). Consider the initial-boundary value problem

(30), (31) and assume the hypotheses defined in Proposition 5.1. If F- (F1,...,
satisfies the stability criteria, then a solution to (30), (31) exists for all x >_ 0 and for
all t

Proof. To prove this theorem, we apply the same argument used in Theorem 4.2,
where the energy norms are modified to account for the boundary data at the origin.

For some T > 0, assume that a nonnegative solution exists to (30), (31) for all
x>_0andt[0, T].

For those )i <_ 0 where 1,..., r, we modify the energy norms used in Theorem
4.2 in the following way:

Eu (t) u’(x, t) + -Fn-n (i-l,k)(T)dr
k=l - n (i,k- 1)

k=i+l
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X>O

k=i+l

n-1 ]nAkF(i_l,k (r)dT ds

nAkZ-k--1)(T)dT] ds,

where n > 1. Note that for 1, those sums whose limits go from k 1 to k 0
are set to zero. Similarly, for r, we set those sums from k r + 1 to r to be zero.
Differentiating E with respect to time yields

(32)

(33)

r_l )q- Z
k=i+l

k= JO k=+
Xk>O Ak>O

Z- (r)dr.nA (/,k-l)

Collecting boundary terms (33), we find as in (27) of Theorem 4.2 that the boundary
terms at + vanish since the solution is in Cir. However, the boundary terms at the
origin do not vanish and we are left with

i--1

]iuk(O,t+
X<_O

+-fo"(’t)

k=i+
<o

nAk (i,k-) (r)dr +
k=i+
Ak>O

i-- hk(t)
n--1 (r)drnAF(_,k

k=l k=i+l
Ak>O Ak>0

n-1nAkP(i_l,k)(T)dT

nak (i,-) (r)dr

n/kZ-kl (r)dT.(,-)

For all Ak > 0, the solution uk(O,t) is the prescribed boundary data hk(t). So the
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boundary terms further reduce to

ou(O’t)
Fn-1 ou(’t)

(34) Aiu(O t)+ nAk (i_l,k)(T)dT + Ttkzn-1 (T)dT.(,-)
k=l k=i+l

By assumption A <_ 0 and the sums are over those )k <_ 0, so the terms in (34)
are nonpositive. Thus, the energy norms were modified so that the positive growth
factors at the origin vanish and the remaining terms either do not contribute to or
decrease the growth of the energy norm as time progresses.

By applying the same manipulations used in Theorem 4.2 to the sums in (32)
and combining (34), we can easily show that E (t) is nonincreasing in time. Using
the same argument in Theorem 3.2 yields the following a priori bound for solution
u(x, t), where _< 0:

(35)

+ E F(i_,)(o<<Tmax h(s))+ Z(i,k_)(om<y<XThk(s)).
k=l k=i+l

For those Ai > 0 where 1,..., r, we have the following energy norms:

(t) _= (x, t) +
k--1

Itrn-1 (T)dT(i-l,k)

n (i,kl_)(T)dT dx
k=i+l

where n > 1. Again, for 1 and r, we set the appropriate sums equal to zero.
By differentiating Eu, with respect to time and collecting boundary data, we have- oUk(o,t)+

k--1, <_0

i--1

joUk
(O,t)

n" rn-1 (y)dT + EAk (i-- 1,k)
k=l

n" Fn- (T)dTAk (i-- 1,k)

+ (o,t)
k--i+l
<o

fok(o,t)
_n-1 (T)dT--- En (,_1 zn--1nAk (,_) (T)dT

n--1n’kZ(i,k-1) (T)dT""
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Again, all the positive growth factors at the origin vanish, and we are left with

fooU(O’t)_. Frt- fo
u(O’t)

,Ak (i-l,k)(r)dr +
k-’l k-"iW1

n n--1Ak (i,k-1) (T)dT,

which consists of nonpositive terms. The a priori bound for solution u(x, t), where
> 0, is

i-1

(36) u(x,t)I1 < uo I1 + max h(s)+ r(-,)(ll o0<s<T
k=l

max hk(s)).+ Z(,-)(o<<r
k=i+l

Global existence of a solution to (30) follows easily. [:l

Note that the a priori estimates (35), (36) depend on the initial data, boundary
data, and on the geometry of the zero set of the source terms. As a simple example,
consider the 2 2 system:

( + 0)u(x,t) f(,)
( + o)(, t) f(,

(x, o) o(x)
U (0, t) hi (t), t>0,

where A1 > 0, A2 < 0, and the initial and boundary data are compatible at the origin
as defined in Proposition 5.1. The energy norms as defined in Theorem 5.2 reduce to

fo( o=2(z’t)

E (t) (, t)+

E. (t) u(x, t) +

nzn-l(T)d" dx +

n’n--l(T)dT dx + nl"n-l(T)dTd8

and the a priori bounds given by (35), (36) are

ux(x,t)I1 < uox(x)I1 + max hi(s)+ z(ll uo2 I1),
0<s<T

max hi (s)).II u2(x t)I1 < uo2(x)I1 +(11 uox I1)+ (O<<T
Acknowledgment. The author wishes to thank Michael C. Reed for suggesting
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GLOBAL ATTRACTORS FOR PARABOLIC PROBLEMS IN
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Abstract. This paper deals with global well-posedness and existence of global attractors for
systems of weakly coupled semilinear parabolic problems in fractional power spaces which are em-
bedded in L. In these spaces, no growth assumption on the nonlinearity is required for local
existence and it can be proven that some sort of dissipation takes place. The tools employed are the
theory of invariant regions and the invariance theory. The first provides global existence of solutions
whereas the second provides point dissipativeness. Some applications to chemical kinetic problems
are considered, as are some problems arising as limiting problems for reaction-diffusion equations in
thin domains around a point.

Key words, global attractors, cooperative systems, thin domains, fractional power spaces,
reaction-diffusion equations

AMS subject classifications. 35B40, 34C35, 35K57, 58B39

1. Introduction and statement of the results. Let be a bounded smooth
domain of IRn, n _< 3. In this paper we consider parabolic problems of the form

(1.1)
ut=dAu-’u+f(u) in ,
nn 0 in Off,

where d and are positive constants.
We are interested in global well-posedness and the existence of global attractors

for such problems. To simplify the presentation we assume that u is scalar and the
nonlinearity f :JR - IR is a C function that satisfies

(1.2) limsup f(u) <_ -5 < O.

This dissipativeness condition will play a fundamental role in proving that there
is an absorbing set for (1.1).

To describe the results we introduce some terminology. Let X L2() and
A" D(A) C X --, X be the self-adjoint operator defined by

D(A) { e H2() 0, 0 inO-g

A -dA +-y gE D(A).

This operator is sectorial, and we can define its fractional powers As, 0 <: a, and
the associated fractional power spaces Xa D(A) endowed with the graph norm.
We will be concerned only with a < 1.
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23, 1993.

Instituto de Cincias Matemgticas de Sgo Carlos, Universidade de Sgo Paulo, 13560-970, So
Carlos, SP, Brazil. The research of the first author was partially supported by Conselho Nacional de
Desenvolvimento Cientifico e TecnolSgico, Brazil, under grant 300889/92-5.

415



416 A.N. DE CARVALHO AND J. G. RUAS-FILHO

It is well known that under some growth assumptions on the nonlinearity f, the
problem (1.1) has a global attractor in Hl(gt). More specifically, if f satisfies

If(u)-f(v)l<c(ell’+elvl’)lu-vl, r/<2and/9>0, if n:2,

If(u) f(v)l _< c(1 + lul 2 + Ivl2)lu- v] if n 3,

then the problem (1.1) has a global attractor in Hl(ft). (See, for example, Hale [14],
Hale and aaugel [15], Carvalho [3], and Carvalho and Oliveira [5].)

These growth assumptions are necessary to obtain local existence of solutions for
(1.1) and also play a role in obtaining some energy estimates necessary to guarantee
that the solution operator for (1.1) defines a global dynamical system which is bounded
dissipative.

It would be interesting to pose the problem (1.1) in a space where no growth
assumption on the nonlinearity f was required for local existence and where we were
able to prove the existence of a global attractor.

We will consider spaces Xa which are embedded in L(gt). Our aim is to show
that in such spaces the problem (1.1) has a global attractor and to obtain some good
estimates for the size of the attractor in the uniform norm.

Hale [13] proved the existence of a local attractor for (1.1), which coincides with
the embedding of the attractor for it f(u) into the subspace of constant functions
of Xa, a > , if the diffusion coefficient d is large (see also Hale and Rocha [16], [17]
and Hale and Sakamoto [18]). However, the techniques employed by Hale [13] would
only apply to global attractors if some a priori bound on the size of the absorbing set
could be obtained and only if the diffusion coefficient is large (see Carvalho [3] and
Carvalho and Oliveira [5]).

We prove the existence of a global attractor for the problem (1.1) regardless of
the size of d. We also give uniform (with respect to d) bounds (in L) on the size of
the attractor which will make the results of Carvalho [3] and Carvalho and Oliveira
[5] applicable to the case a 1/2 as in Hale [13], Hale and Rocha [16], [17], and Hale
and Sakamoto [18] (see also Fusco [11]).

To carry on this project, we need to obtain that the solution operator associated
to (1.1) is globally defined, that orbits of bounded subsets of X under the flow defined
by (1.1) are bounded subsets of X, and that there is a bounded set that attracts
points of Xa. Since the solution operator associated to (1.1) is compact, Theorem
3.4.6 in Hale [14] would guarantee the existence of a global attractor.

Recall (see Hale [14], for example) that if T(t)" X --, X, t > O, is a semigroup of
transformations on a Banach space X, then a set Jt is an attractor if it is a compact
invariant set that attracts a neighborhood (.9 of itself; that is,
for t >_ 0, and there is a ne.ighborhood O of A such that dist (T(t)U, A)
The set A is a global attractor if it attracts each bounded set of X.

Next, we state our main results. Consider the following system of reaction diffu-
sion equations with dispersion:

n
ut DAu- "u + Ej=I Bj(x) Ou + f(u)

u
0 in OFt,

in

where u (ul,u2,... ,UN)T, N >_ 1, D diag(dl,..., dN), d > O, 1 _< _< N,
and Bj diag(b,..., bJY) is continuous in t, 1 < j < n. The nonlinearity f
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(fl,..., fN)T ][N ----> :N is assumed to be a C function that satisfies

(1.3) lim sup f (u) <_

_
< 0

uniformly with respect to- (ul, .,u_,u+, .,UN) E lRy-, 1 <_i <_ N. In
2, for suitable values of ")’, we prove the following result.

THEOREM 1.1. Under the above hypotheses, the solutions of (1.1)’ with initial
data in X are globally defined and orbits of bounded subsets of X under the flow
defined by (1.1)’ are also bounded subsets of X.

In 3 we show the existence of a global attractor neglecting the dispersion terms
in (1.1)’. Indeed, we prove the following theorem.

THEOREM 1.2. Suppose that in (1.1)’, Bj O, 1 <_ j <_ n. Then the solution
operator (T(t),t >_ 0} for (1.1)’ is point dissipative and therefore it has a global
attractor.

In 4 we consider the structure of gradient systems that such problems have and
prove the next theorem.

THEOREM 1.3. Let E [-, i], where , are positive constants, 1 <_ <_ N.
If s fi(ul,..., Ui--1,8, Ui+l,..., UN) < 0 whenever s E, then (x) E E E

EN, Vx , and 4.
Finally, in 5 we consider applications to a class of cooperative systems arising

from thin domain problems around a point.
The tools employed are the invariance theory as in Henry [19] and the theory of

invariant regions of Chueh, Conley, and Smoller [7].
We believe that the hypothesis (1.2) can be relaxed a little to include the case

when the nonlinearity f satisfies s f(s)- /s
2 < O, Isl >_ , for some > 0. However,

we have not been able to prove that, in this case, orbits of bounded subsets of X
under the flow defined by (1.1) are bounded subsets of X.

We remark that other boundary conditions can be considered with little change;
hence, we will restrict the presentation to the homogeneous Neumann boundary con-
ditions case. We also remark that if the nonlinearity depends on the spatial variable,
the results hold with almost no change in the proofs.

The following result identifies the values of a that we will be considering; its proof
can be found in Henry [19, Thm. 1.6.1].

THEOREM 1.4. Suppose that C IRn is an open bounded set with smooth bound-
ary. Then for O <_ a <_ 1,

1
X c Wl’2(t) when - <_ ,

n
XaCC() when O<_u+- <2.

Furthermore, the embedding is compact whenever the inequality is strict.
n lforn--1 weTherefore, if we assume that a > max{, } for n 2, 3, or a >_ fi

have that

(1.4) X C H (t) n L

Hereafter we assume that (1.4) holds. The next lemma is the main reason why we are
interested in working with such spaces.



418 A.N. DE CARVALHO AND J. G. RUAS-FILHO

LEMMA 1.5. Let f :JR IR be a C function and fc X
_
X be the map

defined by

ff ()(x) f((x)).

Then, fe is a well-defined compact map which is Lipschitz continuous in bounded sets
of X. Furthermore, for any r > 0 there exists a constant NI, depending only on r,
such that

IIf()llL(a) < N1,

whenever ]1]] < r.
The proof of this result is rather trivial and we omit it. This lemma states that

the problem (1.1) is locally well posed in X even if no growth assumption is made
on the nonlinearity f.

2. Proof of Theorem 1.1. In this section we prove that solutions of (1.1) with
initial data in X are globally defined and that orbits of bounded subsets of X under
the flow defined by (1.1) are also bounded subsets of X. To prove this result, we
will use the following lemma.

LEMMA 2.1. Let A be a sectorial operator and f X X be a bounded map
which is Lipschitz continuous in bounded subsets of X. Then, the problem

(2.1) + Au= ff (u),
u(0) u0 e X,

has a local solution T(t)uo defined in a maximal interval of existence [0, tmax). Fur-
to, it lT(t)oll o t,x +.

For a proof of this lemma see Henry [19]. We observe that it is not enough that the
nonlinearity f be locally Lipschitz continuous. We assume that f is Lipschitz contin-
uous in bounded sets, which is suitable for our applications. Some extra hypothesis
is necessary because the phase space is not locally compact.

We know that A diag(A,..., AN) defined by

D(Ai) { e H2() 0},

-A d +E= }(x) oOxj
generates an analytic semigroup on Xa and that it satisfies the following estimates:

(e.e)

for somee>0, M 1.
By writing the problem (1.1)’ in the form (2.1) and using the variation of constants

formula, we can view its solution through u0 X as

r(tlo -ao + -(-I(r()ol,

where (fe())(z) f(O(z)) for all X. If llT(t)oll(a N N, t [0, tmax) for
some N > O, we have that

(2.3) lT(t)uoll. Mllu011e- + MK e-(t-)(t- s)-ds,
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where K supte[0,tmx Ilfe(T(t)uo)llL2(g). Therefore, if we are able to obtain esti-
mates in L(Ft) for T(t)uo, 0 _< t < tmax, a similar estimate can be obtained in X
and the solutions are globally defined.

To obtain such estimates in L(f) we introduce the notion of invariant regions
as in Smoller [24].

DEFINITION 2.2. A set E C IRN is called a positively invariant region for the
local solution of (1.1)’ if any solution T(t)uo that satisfies to(X) E E, Vx f is such
that (T(t)uo)(x) E, x f and for all t in the maximal interval of existence of the
solution.

Our next result characterizes some of the invariant regions of the problern (1.1).
Its proof follows Smoller [24] and is presented here for the sake of completeness.

THEOREM_ 2.3. Let j, j > O, 1 <_ j <_ N be_such that u_j fj (u) < 0 for all_ U ]RN

with uj [-j,j]. Then the rectangle E [-,] x [-2,2] x... x [--N,N] is
an invariant region for the local solution of (1.1).

Proof. If there is a solution v(x,t) (v(x,t),v2(x,t),... ,vN(x,t)) of (1.1)’ with
initial data v(x, 0) (v(x, 0), v2(x, 0),..., vN(x, 0)) e E for all x e t, that does not
stay in E1 (-c,] lRN-1 for all t [0, tmax), then there is a to and xo Ft such
that

vl(x, t) < 1, 0

_
t < to, x t, and v(xo, to) --.

We observe that x0 need not to be in Ft. If this is the case, by a change of variables
we can assume that ou- - < 0. Then the maximum happens in t and the theorem
will follow if we let 0.

Therefore, ifvl(xo, t) < ,Vt [0, to)and v(xo, to)
0, then E1 is invariant.

Consider the following:

(2.4) vlt (xo, to) dlAv(xo, to) ?vl(xo, to)
(vl

+ E By (xo)xj (xo, to) + f (v(xo, to)).
j--1

OvWe claim that Vv 0 at (xo, to). In fact, if > 0 at (xo, to) for some 1
then v(xo,to) 1 and v(x, to) > for some x with Ix- xol small. This implies
that vl(x, t) > for x near xo and t < to near t. This contradicts the definition of

Ovto and -_’ < 0. By using the same reasoning, we obtain that < 0 at (xo, to) for
some 1 _< _< n leads to a contradiction and the claim is proved.

Similarly, v < 0 for all 1 < < n. Therefore, Avl(xo, to) < 0. From expression
xix

(2.4), we have that

vlt (xo, to) < fl(v(xo, to)) "yv(xo,to).

Since fl(v(xo,to)) -/vl(xo, to) < O, we conclude that vt (xo, to) O.
From the reasoning at the beginning of the proof we have that (-x,] IRN-1

is an invariant region for the local solution of (1.1). In the same way, we obtain that
[-, x) IRN-1 is also an invariant region. From the fact that the intersection of
invariant regions is still invariant, the proof is completed.

This theorem shows that for any uo E X the local solution T(t)uo of (1.1)’
through uo satisfies

IIT(t)UOllL() <_ N1
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for some N1 > 0, whenever defined.
It follows from both Lemma 2.1 and expression (2.4) that the problem (1.1)’

defines a global dynamical system in X.
Since the semigroup generated by A satisfies (2.2) for some e > 0, our following

computations show that orbits of bounded subsets of X are bounded subsets of X.
To do this, we resort once more to the variation of constants formula and to Lemma
2.1.

Let B be a bounded subset of X. From the fact that X is embedded in L ()
and from the variation of constant formula, we have that there are constants K > 0,
1 <_ 4 depending only on B such that

IIT()0IIc K + K2 (- s)--(-’)lIf(T(s)uo)llL(a)ds

_< K1 + Ka (t s) e (t-8) ds

Vt _> 0 and Vu0 E B. We used that IIT(t)uollL() <_ K4, which follows from the
embedding of X into L() and from Theorem 2.3. This proves Theorem 1.1.

In what follows, we consider an example of a reaction-diffusion equation with
dispersion for which we know that orbits of bounded sets are bounded.

Consider a system of reaction-diffusion equations of chemical kinetics (see, for
example, Chueh, Conley, and Smoller [7])

wt dlAw + ni=1/3+g(w, v) in ,
(2.5) vt dAv + ,1 32 ov +h(w,v) in ,

Ow Ov
0 in 0gt,

On On

where t C IRn, n <_ 3 is as in 1, and f, g" 2 are C-functions that satisfy

lim sup -, lim sup -,

where the first limit is uniform with respect to v and the second is uniform with
respect to w.

Then the system (2.5) can be rewritten as

n +f() in ,
0 in 0,

where

u (w,v) -v IR, Bj diag(/3J,/3y), f(u)
/ g(w) + /w } IR2 IR2
\ + /v

satisfy (1.3) and -y is chosen as follows.
Consider the operator A defined by A- diag(A, A2),

D(Aj) { H2(t) 0},

n 0Ay dyA / + E=l -6 j=1,2.
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Let - be such that the analytic semigroup generated by A decays exponentially
to zero as t --* cx. The results in this section imply that the solution operator S(t) for
(2.5) is defined globally and orbits of bounded sets under {S(t) t _> 0} are bounded
subsets of Xa.

3. Proof of Theorem 1.2. In this section we use the invariance theory as in
Henry [19] to prove that there is a bounded set in X which attracts points of Xa.
Unfortunately, the techniques employed in this section will not work for systems of
reaction-diffusion equations with dispersion due to the fact that we will not be able
to find a Lyapunov function for such systems. We state the results of the invariance
theory that we will use by starting with the definition of Lyapunov function.

DEFINITION 3.1. Let {S(t), t _> 0} be a dynamical system on Xa. A Lyapunov
function is a continuous, real-valued function V" X -- IR such that

1() limsup
Y(S(t)) Y()

_
0

t-,O+ t

for all dp E X
The next theorem is a classical result from invariance theory and will be the main

tool in the proof of point dissipativeness.
THEOREM 3.2. Suppose that uo X and {S(t)uo, t >_ 0} lies in a compact satin

Z, thenw(uo)is nonempty, compact, invariant, connected, and dist(S(t)uo,w(uo))---,
0

The following result has a classical and simple proof but we present it to make
sure that our Lyapunov function (see later in this section) is suitable.

THEOREM 3.3. Let V be a Lyapunov function on X
X () 0}, flA the maximal invariant subset of E. If {S(t)uo, t >_ 0} lies in a
compact set in Xa, then S(t)uo --,

Proof. By hypothesis, Y(S(t)uo) is nonincreasing for t >_ 0 and is bounded below
(since orbits of points are precompact) so that limt__. V(S(t)uo) exists. If
y e w(uo), then Y(y) f, so also Y(S(t)y) , t >_ 0, and so Y(y) O. Thus
w(uo) c E, so w(uo) c A//and the result is proved. El

We will apply these results and the results of 2 to obtain the existence of a global
attractor for systems of reaction-diffusion equations without dispersion, that is, we
consider the problem

(1 1)"

nn =0’ in OFt,

where u (Ul,U2,...,Ug)T, N >_ 1, D diag(dl,... ,dN), di > O, 1 <_ <_ N,
and -y > 0. The nonlinearity f (fl,..., IN)T IN ]lN is assumed to be a C
function that satisfies (1.3) and

(3.1) Ofi(u) Did(u) Vu e tg.
Ouy Oui

To prove that the solution operator for (1.1)" is point dissipative, we must first
prove that the orbit of a point X is a compact subset of Xa. This is a conse-
quence of the following result.

THEOREM 3.4. In the problem (2.1) assume that the nonlinearity fc is Lipschitz
continuous in bounded subsets of Xa and that A is a sectorial operator with compact
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resolvent. If T(t) is a solution of (1.1)" on [0, xz) with IIT(t)]la bounded as t --then {T(t), t >_ 0} is a compact subset ofXa. Furthermore, if B is a bounded subset
ofX and T(t)B remains in a bounded subset ofX as t --, cxz, then {T(t)B, t > 1}
is a compact subset of X.

The proof of the above result is very simple and can be easily adapted from Henry
[19, Thm. 3.3.6].

Now since all the hypotheses of Theorem 3.4 are satisfied for problem (1.1)", we
can conclude that orbits of points under the flow defined by (1.1)" are compact subsets
of Xa. From Theorem 3.2 the w limit set of any point u0 is a nonempty, compact,
invariant set that attracts u0 under the ttow defined by (1.1)".

From Theorem 3.3 we know that the set A/[ attracts points of Xa. We need to find
a Lyapunov function V for which E is a bounded subset of X; point dissipativeness
will follow.

Let V" X ]R be the function defined by

z ’’2dx fa F()dx1 <DV, V}dx + -v() 5
where F" IRN -- ]R is such that VF(u) f(u). Then V is continuous and

9()<0 v x
Therefore, we must prove that E { E X () 0) is a bounded set in X.

The set E is the set of equilibrium points of (1.1)" and therefore any function
E must satisfy X and

(3.2)
DA4) -yb + f() 0 in

o0-n =0 in 09t.

To prove that E is a bounded subset of X we proceed in the following way. First
we prove that there exists a constant c > 0 such that IIIIL(,N) <_ C V G E and
then we use (3.2) to prove that IIDA]]n(,u) _< maxlsl<c I-’ys + f(s)l. The result
will follow.

LEMMA 3.5. There exists a constant > 0 such that IIllL(,u) <: for every

Proof. Let i be such that sf(ul,..., ui-1, s, u+l,..., Ug) < 0 Vs such that Isl _>. Then suppose that (1,..., CN) E and that maxze( 4k(x) Ck(Y) >
for some k. Thus, at y

CkdkACk /2k + Ckfk() 0

and ACk > 0 since k > 0, but ACk(y) <_ 0 (if y we proceed as in Theorem 2.3).
This is a contradiction and maXxefi (x) _< k, 1 _< k _< N. In the same way we
obtain that minfi Ck(x) _> --k, 1 _< k < N, and the result is proved.

COROLLARY 3.6. The set E is a compact subset of X.
Remark. It is very important, for some applications, to be able to obtain some

a priori estimates that do not depend on the size of the diffusion coefficient. See, for
example, Carvalho [3] and Carvalho and Oliveira [5]. This is an advantage that this
technique (i.e., the use of invariant regions) has over the techniques employed in Hale

The estimates obtained there for the size of E[14, p. 77], even in the case a 5.
strongly depend on the size of the diffusion coefficient. It is also important to obtain
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good L(fl) bounds on the attractor. Since models are an approximation of a real
phenomenon, it is important to know that at least in a neighborhood of the attractor
the approximation must be as accurate as we can get; outside this set it does not
matter much.

COROLLARY 3.7 (Theorem 1.2). The solution operator {T(t), t _> 0} for (1.1)"
is point dissipative and therefore has a global attractor.

The proof of point dissipativeness follows from Theorem 3.3 and Corollary 3.6
and the proof of existence of a global attractor follows from the results in this section,
2, and Theorem 3.4.6 in Hale [14].

4. Proof of Theorem 1.3. In this section we consider the possibility that the
problem (1.1) has the structure that the so-called gradient systems have. Such a
special class of dynamical systems, for which the flow on the attractor can be better
understood, are considered, for example, in Hale [14].

DEFINITION 4.1. Let Y be a Banach space. A strongly continuous Cr semigroup
T(t) Y Y, t >_ O, r >_ O, is said to be a gradient system if

1. Each bounded positive orbit is precompact.
2. There exists a Lyapunov function for T(t); that is, there is a continuous

function V" Y --. IR with the property that
(i) V(y) is bounded below.,
(ii) Y(u) cx as IlYlIY
(iii) Y(T(t)y) is nonincreasing in t for each y e Y,
(iv) If y is such that T(t)y is defined for t e ]R and Y(T(t)y) V(y) for t e lR,

then y is an equilibrium point.
Observe that the Lyapunov function defined in 3 does not satisfy property 2 (ii).

However, we still obtain that the dynamics in the attractor for (1.1) can be described
as well as the dynamics of a gradient system.

To obtain these results we consider an auxiliary system, namely

ut DAu-’u + ](u) in

(4.1) Ou
0-- 0 in Off,

where f is obtained from f in the following way. The attractor 4 for (1.1) in X is
a bounded subset of L(, ]1:{N) and therefore we can cut the nonlinearity f in such
a way that all the properties of f are preserved. In addition, f is globally Lipschitz
continuous and the dynamics in the attractor remain unchanged. That is, the problem
(4.1) has a global attractor in X which coincides with A.

The problem (4.1)_ is well posed in X1/2 and has an attractor ji. in X1/2. Therefore
we must have Jt c ,4. Since ji. C X and we have that it is invariant, it must be
contained in 4 and they are the same. This reasoning proves the following result.

THEOREM 4.2. /f {T(t), t >_ 0} is the semigroup defined by (1.1) in Xa, ,4
denotes its attractor, and E the set of equilibrium points, then .4 W"(E) {y E
Xa "T(-t)y is defined for t >_ 0 and T(-t)y E as t c}. If, in addition, every
element of E is hyperbolic, then E is a finite set and 4 WxeEWU(x).

COROLLARY 4.3 (Theorem 1.3). Let Ei [-i,i], where , are positive
constants, 1 <_ <_ N. If si fi(ul,..., Ui_l,S, Ui+,...,ug) < 0 whenever si Ei,
then (x) E E E1 x x EN, Vx t2 and V 4.

Proof. The proof of this result follows in two steps. First we observe that the
equilibrium points satisfy that (x) E, Vx f (as in Lemma 3.5). The second
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part follows from the fact that the a limit set of points in A are subsets of the set of
equilibrium points and that any rectangle containing E is invariant. More specifically,
let e > 0 and Ee be an e neighborhood of E. If E Ee, then there is a T < 0 and e E E
such that I[T(T)- ellLoO(fl,l:tg <_ KIIT(T)- ell < , where K is the embedding
constant of X C L(fl, lRN). This implies that (T(T))(x) e E, Vx e . Since E
is invariant we have that E.

This proves that for any e > 0 and JI, (x) E E Vx t. The result follows.

5. Systems arising from thin domains problems. In this section we con-
sider a class of systems of weakly coupled parabolic partial differential equations of
the form

ut DAu- u + f(u) in

Ou
nn 0 in

whereu= (Ul,U2,...,UN)-, N _> 1, D. diag(dl,...,dN), d > O, 1 <_ <_ N
and the nonlinearity f (fl(u),..., fN(u)) -c ]RN ---, lRN is assumed to be a C
function that satisfies

(5.2) uf(u) < O Vu e lRN, ui q [,], l<_i<_N.

The matrix is taken as M-B where M diag(L,...,L), with

Li _< 1 for 1 <_ _< N and B is the tridiagonal symmetric matrix

B

where

m r 0 0 0 0

rl m2 r2 0 0 0
0 r2 m3 r3 0 0
0 0 r3 m4 r4 0

0 0 0
0 0 0 rN--3 roW--2 rg--2

0 0 0 0 rN--2 mN-,

0 0 0 0 0 rN--1

0
0
0
0

0
0

rN--1

mN

mN aN _].. aN+lO"
2IN O’lN+lq-aN+l(1--o’)

ak+l k 2, N- 1mk 2 + -KG+-

"+ k 1 N- 1?k 2/+

and a > 0, l > 0 for 1 <_ k _< N + 1. This problem arises as a limiting problem for
reaction-diffusion equations in thin domains around a point. (See Hale and Raugel
[15], Carvalho [3], and Carvalho and Oliveira[5] for details.)

To prove that problem (5.1) has a global attractor we have to obtain an invariant
region for equation (5.1) as in Theorem 2.3, find a Lyapunov function for it, and show
that the set of equilibrium solutions are bounded in the L (f) norm as in 3.
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Assume that f satisfies (3.1). Let F" IRN - lR be such that

VF(u) f(u)

and V" X IR be the function defined by

i=1

2 + (, ) + F()) dx,

where (-,-) stands for the usual inner product in ]Rn.
The function V is continuous and

9() < 0 v x

Thus if E E { E X" () 0} we have that X and

(5.4)
DA-+f() 0

0
nn 0 in

in fl,

We now prove the L(t) boundedness of the equilibrium solutions and the exis-
tence of the invariant regions for (5.1).

The following result is a consequence of the theory of invariant regions (see Smoller
[24, p. 202]) and appears in Carvalho and Oliveira [5] when t is an interval.

LEMMA 5.1. The rectangle [fi, piN is an invariant region for (5.1) whenever fi >_
and p >_ .

To prove that E is a bounded subset of X we proceed as in 3. First we prove
that there exists a constant c > 0 such that IIllL(a,N) _< c V E and then we
obtain that

LEMMA 5.2. IrE is the set of equilibrium solutions of (5.1) there exists a constant
> 0 such that IIIIL() _< for every E.

Proof. Let be such that sjfj(s) < 0 Vs such that Isjl >_ . Suppose that
:= (1, 2,...,) E and let maxxe( j(x) y(yy) (if yy t we proceed as in

Theorem 2.3). We claim that y(yj) <_ for all j.
Suppose 0y(Yy) <_ for j 1,2,...,k- 1 and Ok(Yk) > for some 1 _< k <_ N.

From the kth equation we obtain

0 Ok (yk)dkAOk (Yk) rk

+

At yk the maximum principle implies (see Protter and Weinberger [23, p. 65])

k(Yk)dkAOk(Yk) <_ 0

and

< o.
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Since Ck-l(Yk)

_
Ck-l(Yk-1)

_ , we also have

rk-1rk-lnk k(Yk)[k(Yk) k-l(Yk)] < nk Ck(Y)[ -(Yk-)] _< 0.

These inequalities together with (5.5) imply that

rk Ck(Yk)[OkTl(Yk)- Ck(Yk)] > O.
L

It follows that 0+l(Yk) > k(Yk) and

Ck+(Y+) Ck+(Yk) > Ck(Yk) Ck(Yk+).

Using the same argument through the (N- 1)th equation we obtain

(y) > ,
() > _(y),

and the Nth equation gives

0 (y)dA(y)---, (u)[0-(u)]

+(u)[() _()] + V()f (()).

The same reasoning as before implies that

mN rN--
L ( (Y))2 > 0"
N

This contradiction implies maxzefi Cj(x) for 1 j N. In the same way we
obtain that minxe /(x) - for 1 j N and the result is proved.

COROLLARY 5.3. Suppose that (3.1) and (5.2) hold. Then the set E is a bounded
subset of X, the solution operator (T(t), t O} for (5.1) is point dissipative and has
a global attractor A. In addition,

for all cp E ,4 and

A= W(E).

Furthermore, if each element of E is hyperbolic, E is finite and

A--UxeEW(x).

If in addition

of(5.5)
0uj

>0 for ij,

then (5.1) is a cooperative system if is a convex domain (see Kishimoto and Wein-
berger [20]). For such systems the following result holds.

PROPOSITION 5.4. Let be a nonconstant equilibrium solution of (5.1). Suppose
that (5.5) holds on the range of t. Then t is unstable.

COROLLARY 5.5. If (5.5) holds in E, then every nonconstant equilibrium solution

for (5.1) is unstable; that is, if t E is stable then t is constant.
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ON STABILITY OF A DYNAMICAL SYSTEM*

CHARLES S.C. LINt, BIN YANG, AND FUDONG CHEN

Abstract. This note solves an open problem raised by Zeeman in [Nonlinearity, 1 (1988),
pp. 115-155]. It extends his results about the stability of a dynamical system from C-vector fields
to Cm-vector fields, where 1

_
m

_
c. For any Cm-vector field v, the existence, uniqueness, and

global attraction of the steady state of the Fokker-Planck equation in Cm-1 space is proved. The
steady states are used as a tool to classify vector fields. The density of stable Cm-vector fields is
also proved.

Key words, dynamical system, stability, semigroup, positive operators, the Fokker-Planck
equation, compact manifold

AMS subject classifications. 34C35, 47D05, 58F10

1. Introduction. Given a vector field v on an oriented n-dimensional Rieman-
nian manifold and > 0, the time-dependent Fokker-Planck equation is given as
follows:

du
(1)

dt
e Au- V. (uv),

(2)

Zeeman proved that there is a smooth steady state u of the Fokker-Planck equation
for a smooth vector field v on a connected compact Riemannian manifold without
boundary cf. [1]. A new definition of stability of a dynamical system is introduced
via the steady state. The new definition has a number of advantages over structural
stability. Zeeman gave several good examples to compare the two stabilities. One of
the advantages of the new definition is that stable vector fields are dense in the C
topology; cf. [1] and [2].

In this paper we deal with Cm-vector fields on an oriented compact Riemannian
manifold without boundary, where 1 _< m < oc. The main results are as follows"

(i) For any Cm-vector field v, there is a unique steady state u of the Fokker-
Planck equation in Cm-1 space. Furthermore, all solutions tend to the steady state
t.

(ii) The stable Cm-vector fields are dense in the space of Cm-vector field.

2. The steady state of the Fokker-Planck equation. Let X be an oriented
n-dimensional Riemannian manifold, and X connected compact without boundary. In
what follows, we shall fix a chart on X. Let k (kl, k2,..., k), Ikl k+k+...+k,

mwhere ki are integers for i 1,2,...,n. Let Cm be the set of C -differentiable
functions on X and Cm(X) the space of C" function with C" topology defined on a
chart by

Received by the editors October 8, 1992; accepted for publication (in revised form) September
14, 1993.

Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
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Let

Um={uEcm;u>_Oand /xU=l}
and Vm be the space of all Cm-vector fields on X with C" topology.

DEFINITION 1. A solution uv(t) of equation (1) is called a steady state if uV(t)
0 and uv(t) U"+1.

Given a Cm-vector field v and e > 0, we define the Fokker-Planck linear operator
FP in cm-I(X) as follows:

(a)
(4)

FP.u- Au- V. (uv),
D(FP) {u e cm-l(x); FPvu e cm-l(x)}.

We shall first recall some definitions needed for our results. A cone K in a Banach
space Y is a closed subset of Y such that for any a > 0, aK C_ K, K N (-K) {0}
andK+KCK.

A positive operator P (with respect to cone K) in Y is an operator in Y such that
P(K) c_ K.

A positive operator P is called strongly positive if P maps every nonzero point in
K onto the interior of K,

The following facts are known; cf. [1] and [31.
(i) There is a semigroup G(t) of bounded linear operator in cm-I(X) with

generator FP., i.e., the Fokker-Planck equation (1) has a solution G(t)uo for any
uo D(FP).

(ii) G(t) has an expression of the form

(5) G(t)u(x) Jx g(x, y, t)u(y) dy,

(6) Jx g(x, y, t) dx 1,

where g(x, y, t) is a solution of the Fokker-Planck equation (1) with initial condition

(iii) G(t) is a strongly positive operator on C’-I(X) and G(t)Um+l c Um+l
for any t > 0.

Therefore, in order to obtain the existence, uniqueness, and global attraction of
the steady state of the Fokker-Planck equation, it is enough to prove the following
theorem (cf. [1], [2], and [4]).

THEOREM 2.1. The operator G(t) is compact on cm-I(X) for all t > O.
To prove Theorem 2.1, we need several lemmas.
LEMMA 2.2. Let B {f e C’(Z), f I1- 1}. An operator G is com-

pact on CTM(X) if {O-’k’ (Gf); f B} is equicontinuous for all 0 _< Ikl <_ m and

{OIk’/Oxk(Gf)(x);f B} is relatively compact in R for all x in a chart and 0 <_

Proof. Applying Ascoli’s theorem for each index k, we have a convergent sub-
sequence (01kl/0xk)(Gfkn), n 1, 2, Without loss of generality, by selecting a
subsequence of a subsequence if necessary, we may assume there is a subsequence
(OIk’/Oxk)(Gf,) which is convergent in C(X) for any index k. That implies Gfn is a

Cauchy sequence in cm(x). Hence, G is a compact operator on C’(X).
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Let h R R be given by h(r) e-r2/2. It is easy to check that h(t)(r)
h(r)pt(r), where pt(r) is a polynomial of degree 1. Therefore, Lemma 2.3 is trivial.

LEMMA 2.3. There is a constant M > 0 such that

max Ih(t)(r)l <_ M

and locally

Ih() (r) h() (r’)l <_ MIr r’

for all 0 <_ <_ m.
LEMMA 2.4. For any v E Vm and e > O, we have

Olklg
(x, y, t) (x’ y, t)Ox o <_ Ml (t)lx o < Ikl < m

for t > O, where g(x, y, t) is a solution of the Fokker-Planck equation arising from v
with initial condition 5(x- y), and Ml(t) is a continuous function.

Proof. Let X Rn, vo c- ax, where c, a are constants, c Rn, t R. Let
go(x, y, t) be the solution of the Fokker-Planck equation for vo with initial condition
the Dirac function 5(x- y). Then (cf. [1] and [3])

go(x, y, t) (2a)-12e-1--"112,

where x, y Rn,
--2t

a= (1-e if :/:0,
2et if 0,

and

c(1-e-t) if #0,
#= ct if =0.

By Lemma 2.3, we have

(s)

_
M(27)-n/2a-(n+1)/21x_ 0 <_ Ikl < m.

Since any manifold X can be locally approximated by a Euclidean space and any
vector field v on R’ has linear approximation at the origin, we have by arguments
similar to [1] that

(9) (x, , t) Ox- (x’, , t)

for the solution g(x, y, t) of the Fokker-Planck equation arising from v with initial
condition 5(x--y), where M1 depends on t. Obviously, the compactness of X is

necessary here.
Proof of Theorem 2.1. Since

(10) G(t)f(x) ]’x g(x, y, t)f(y) dy,
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and (O’kl/Oxk)g(x, y, t) is continuous for 0 _< Ik] <_ rn- 1, we have

Ox----G(t)f(x) --x g(x, y, t) f(y) dy.

Thus, by Lemma 2.4 and Lemma 2.2, we see that G(t) is a compact operator on
cm-l(X).

COROLLARY 2.5. G(t) has a unique fixed point u in cm-I(X) with u >_ 0 and

fx u 1. Furthermore, C’-I(X) has a decomposition

Cm-(X) E + H, E N H {0},

where

E span{u},
H {h e cm-l(x); Gn(t)h --* 0 as n oc},

or

H- {hE cm-l(x); /xh--O}
Proof. Since G(t) is a compact and strongly positive operator on cm-(X),

spectral radius r of G(t) is a simple eigenvalue associated with an eigenfunction u >_ 0.
Furthermore, C’-(X) can be written as the sum of G(t)-invariant subspaces

cm-:(X) E + H, E span{u},

and G(t)[H has spectral radius < r.
We may assume f u 1 by scaling u. Hence, r 1 follows from the fact that

f G(t)u f u 1, u is a fixed point of G(t) in Cm- (X). Suppose G(t) has another
fixed point Ul in cm-(X) with u >_ 0 and fu 1 then u cu. ful fu 1
implies c 1.

It is easily seen that

H C {h e cm-l(x); Gn(t)h --* 0 as n --
since the spectral radius of G(t)IH is less than 1. Conversely suppose f cm-I(X)
and Gn(t)f -. 0 as n -- oo. Since f e + h, e e E, h e H and G(t)e e, Gn(t)h --* 0
as n --* co, we have e 0 and f h H. Consequently,

H {h e Cm- (X); Gn(t)h --* 0 as n -
By (5) and (6), f Gn(t)f f f for any f cm-(X). If h e H then Gn(t)h -- 0

as n (x,by the arguments above. Therefore f Gn(t)h 0 as n ---, x. It follows
that f h 0.

On the other hand, suppose f Cm-1 (X) and f f 0. Let f e + h, e E and
hEH, thene=cu. Sincefh=0asshownabove, c=fcu=fe=f(f-h)=0.
Hence, e 0 and f h H. This completes the proof of Corollary 2.5.

THEOREM 2.6. For any vector field v Vm, the Fokker-Planck equation for v
with e-diffusion has a unique steady state u Um+l, and all solutions tend to the
steady state u.

Proof. Let 7 > 0 and u be the unique fixed point of G(-) in Corollary 2.5. Since
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G(t)u >0 and / G(t)u / u l

for any t > 0, we have G(t)u u for any t > 0 by Corollary 2.5. Hence

d d
(a(t)u) (u) O,

u E D(FPv) and u is a steady state of the Fokker-Planck equation in Um+l.
If there is another steady state Ul, then ul Um+ and

d
d--(Ul) FPvul O.

That implies u is an eigenvector of FPv associated with eigenvalue 0. Hence, u is
an eigenvector of G(t) for any t > 0 corresponding to the eigenvalue 1 (cf. [5]). In
particular,

The uniqueness of Corollary 2.5 implies u u.
For any solution G(t)uo in U"+, G(t)uo-u H follows from f(G(t)uo-u) 0

and Corollary 2.5. Since {G(t)uo; 0 < t < T} is bounded, {G(t)uo u; 0 < t < T} is
bounded also, say, by M.

By the strong positivity of G(-), the spectral radius r of G(’)IH is less than
one. We can select a p such that r < p < 1. Then, there is an no such that
Gn(T)IH) II <- fin for all n > no. Given e > 0, there is an n such that nl > no

and pnM < e for all n > nl. Hence, for any t > niT, t n + s, where n > nl and
0 < s < T, we have

G(t)t0 -t ]]rn-1 --11 Cn(T)C(8)to- an(T)t
fin G(8)Uo- t lira-1

<_pM <_e.

This completes the proof of Theorem 2.6

3. Density of stable vector fields. In this section we prove that stable vector
fields are dense in the space of all Cm-vector fields on a compact connected Rieman-
nian manifold.

DEFINITION 2. Two C-functions u, u’ X R are said to be equivalent if
there exist diffeomorphisms c, of X, R, respectively, such that the following diagram
commutes.

U
X R

U

Two C"-functions u, u’ X -- R are said to be Cm-equivalent if either u u or
there are neighborhoods of u and up, say, O and 0, respectively, in C’(X) such
that every function in Ou C? C is equivalent to every function in Ou, C3 C.
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A Cm-function f is called Cm-stable if f has a neighborhood of Cm-equivalents
in cm(x).

DEFINITION 3. Two Cm-vector fields v, v’ on X are said to be e-equivalent in
Vm if their corresponding steady states of the Fokker-Planck equation with e-diffusion
are cm-l-equivalent in cm-I(X).

A Cra-vector field v is called e-stable if it has a neighborhood 0 in Vm such that
every pair of vector fields in 0 are e-equivalents.

A Cm-vector field is called stable if it is e-stable for arbitrarily small e > O.
Define a map

7e Vm
__ um+

by assigning to each v E Vm the steady state re(v) uv’ of the Fokker-Planck
equation for v with e diffusion. By Corollary 2.5 of 2, the map r is well defined.
We will use different topologies on the set Um+ in Theorems 3.1 and 3.2.

THEOREM 3.1. The map :r Vm --+ (Ure+l, I1" lira-l) is differentiable and hence
continuous.

Proof. Recall that

Cm- (X) E + H, E N H {0},

where E is the one-dimensional subspace spanned by the steady state, and H is the
complementary invariant subspace of G(t). Since G(t) is the semigroup generated by
FPv, H is also an invariant subspace under FP,. Define

F- FPIH.
F is an infinitesimal generator of G(t)l H. By the spectral mapping theorem (cf.

[5]), 0 is a resolvent point of F since 1 is a resolvent point of G(t)IH. Therefore F-is continuous.
Given v e V", let u (v). For any v’ e Vm, . (uv’) e cm-l(X). Further-

more, V. (uv’) H because f V. (uv’) 0 follows from integration by parts. Let
u’ F-(V (uv’)). Then

v. (v’) r(’) ’- v. (’),

zx( + ’) zx + 5(’)
v. () + 5IV. (’) + v. (’)]
v. [( + ’)(v + ’)1 + o()

for any 5 > 0. It implies

( + ’) + ’ + o().

The map v’ --+ u’ F-I(V (uv’)) gives the derivative T.Tr. It is continuous because
it is the composition of three continuous maps:

v’ --, uv’ V. (uv’) -, F-I(v (uv’)),

the first being continuous because u is in Cm+l, the second being continuous because
Vm has Cm topology but H has Cm- topology and the third being continuous by
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the continuity of F-1. Therefore is differentiable and continuous from VTM to
(u+, I1"

THEOREM 3.2. The map r is open from Vm to (Um+l,
Proof. Let

G={gEVm; g=-Vf, for somefECm+},

w {w e v; V.w 0}.

We define the following operators:

r G W ---. G, r (g, w) g;

: a ---, u, ? (, /= + -, wh

" Vm ----. a x W, (v).= (eVu/u, uv- eV), where (v).. u+1 -- a, e() -(- );
rlc a Um+, rlc;(9) (9) e-/’/ for some Vf 9.

Then it is easily checked by computation that r and are inverse homeomor-
phisms between G x W and Vm and rlc and are inverse homeomorphisms between

and (Um+, I1" IIr+)(cf. [1]). Furthermore, we have

Hence r is open from VTM to (U"+1, I1" ]lm+), because it is the composition of
three open maps.

THEOREM 3.3. For any e > 0, e-stable C’-vector fields are dense in V".
Proof. Let Uo be the set of Cm-- stable functions in (Um+, ]1" ]]m-). Let Vo

be the inverse image of U0 under r. Then V0 is the set of e-stable C’-vector fields
because r is continuous. In fact, let v Vo, then u rv Uo. Since u is Cm-l-
stable, there is an cm-l-equivalent neighborhood Ou of u in C’-I(X). Therefore,
inverse image of OH under r is an e-equivalent neighborhood of v.

Let Uoo be the set of cm+l-Morse functions with distinct critical values in (Um+,
]1" IIm+l)" Let Voo be the inverse image of Uoo under r. Then Uoo is dense in V"+1
with Cm+l topology; cf. [4]. Furthermore, we have Uoo C Uo and Voo C Vo; cf. [6].
For any v V" and its neighborhood Or, let u rCv and OH rOv. Then OH is a
neighborhood of u in C"+1 (x) by Theorem 3.2. Therefore, there is a uo in Uoo
We can select vo from Voo r O such that rv0 no. This implies that e-stable
C’-vector fields are dense in V".

THEOREM 3.4. Stable C’-vector fields are residual and therefore dense in VTM.
Proof. It should be noted that e-stable vector fields form an open subset in V"

for any e > 0. Let

OOnn=lgl/n,

where V/n is (1/n)-stable set. Then any vector field in W is stable. Now W is
residual in Vm because it is a countable intersection of open dense subsets in a Baire
space. Therefore the density of stable C’-vector fields in Vm follows from the density
of W in V".
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MULTIEXISTENCE OF SLOWLY OSCILLATING-PERIODIC
SOLUTIONS FOR DIFFERENTIAL DELAY EQUATIONS *

YULIN CAO

Abstract. This paper presents a checkable condition on the function f such that the differential
delay equation &(t) -f(x(t-1)) has at least n distinct slowly oscillating periodic solutions, where n
is any natural number or infinity. As an example, an equation is demonstrated to satisfy the condition
proposed for n +cx, and therefore, it has infinitely many slowly oscillating periodic solutions.

Key words, slowly oscillating periodic solutions, differential delay equations
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1. Introduction. This paper discusses the differential delay equation

(1.1) &(t) =-f(x(t- 1)),

where f is a continuously differentiable function and f(0) 0. For any given number
n (n is allowed to be infinity), we will give a checkable condition on the function

f such that (1.1) has at least n distinct slowly oscillating periodic solutions. Here,
a slowly oscillating periodic solution means that the distances between its zeros are
greater than one (i.e., the delay time). Two slowly oscillating periodic solutions are
distinct if they are not equal under any time-shift. In 4, an equation is constructed
to satisfy the condition proposed for n +cx, and therefore, it has infinitely many
slowly oscillating periodic solutions.

Equation (1.1) is primarily important in the study of slowly oscillating periodic
solutions, not only because it is the simplest one among the differential delay equa-
tions (or the functional differential equations), but also because some other important
differential delay equations can be changed into this form (1.1). For example, the
nonlinear equation (t) -y(t- 1)N(y(t)) can be changed into (1.1). (See [13, pp.
276-277].) This nonlinear equation has several applications, and the question of multi-
existence of slowly oscillating periodic solutions is pertinent here. Cunningham [5] has
used it as a population model, Wright [20] has used it in the theory of asymptotic prime
number density, and Jones [9] has used it to describe a control system.

Nussbaum [17, Thm. 2.2] has proved that there is only one slowly oscillating
periodic solution of the equation

(1.2) 2(t) =-ah(x(t- 1)), a > ,
under the assumptions (i) h is an odd and continuously differentiable function, (ii)
h’(O) I and h’(x) > 0 is monotonically decreasing for x > 0, and (iii) b(x) h(x)x-1
is strictly monotonically decreasing for x > 0. He has demonstrated a special equation
which violates the assumption (iii) (he has assumed that (x) is only monotonically
decreasing for x > 0) and has more than one slowly oscillating periodic solution. Our
example in Theorem 4.1 shows that, if the assumption (iii) is violated, there could be

* Received by the editors September 19, 1990; accepted for publication (in revised form) October
11, 1993.

Department of Mathematics, University of Georgia, Athens, Georgia 30602.
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infinitely many slowly oscillating periodic solutions of (1.2). Our main result is based
on Kaplan and Yorke’s Trajectory Crossing Lemma. (See [11] and [12].) Our basic
idea is to construct some solutions whose orbits in the (x(t),x(t- 1)) plane spiral
inward or outward and do not cross each other. If a pair of those orbits forms an
annulus-like region, then there is a slowly oscillating periodic solution whose orbit is
in this region. Consequently, if we can construct n such disjoint annulus-like regions,
then there are n distinct slowly oscillating periodic solutions. This idea is similar to
the Poincare-Bendixson Annular Region Theorem for the existence of a limit cycle for
planary ordinary differential equations.

2. Definitions and primary results. First, we introduce some definitions and
results from [12]. Consider the scalar differential delay equation

(e.1) c(t)- -f(x(t- 1)),

where the function f(x) is continuously differentiable and satisfies the following as-
sumption:

(H1) f(0) 0, f’(x) > 0 for all x e R.

Let C C([-1, 0],) be the Banach space of all continuous functions from [-1, 01
to I. Define C. by the set of all in C satisfying

(i) has at most one zero in [-1, 0], and
(ii) must change sign at any zero in (-1, 0).
Write x(t) x(t; to, ) to denote the solution of (2.1) satisfying x(to +

for 0 E [-1, 0]. Denote xt C, as usual, by xt(O) x(t + 0) for 0 [-1, 0]. It is easy
to see that x(t) exists for all t >_ to.

LEMMA 2.1. Suppose (H1) is satisfied. If C., then xt C. for all t >_ to,
and the zeros of x and ic alternate on (to, +c). If x has only finitely many zeros in

(to, +oc), then x(t) monotonically goes to zero eventually, as t --, +c.
Proof. The first part is given by [11, Prop. 2.1]. The second part can be deduced

from (2.1), because x(t- 1) > O(x(t- 1) < 0) implies that (t) < 0((t) > 0).
From Lemma 2.1, one can see that, if C., then x(.; to, ) is a slowly oscillating

solution of (2.1), that is, the distance between any pair of successive zeros of x is greater
than the delay time (i.e., one). Also from aemma 2.1, we know that x(t) and x(t- 1)
cannot equal zero at the same t. The basic idea of [11] is to compare slowly oscillating
solutions in the (x(t),-x(t- 1)) plane.

DEFINITION 2.1. Given / (3,1,/2) and S (sl,s2) in I2, we say that is
outside S if’y S and if either of the following is satisfied"

(i) "1 "--81, 1’21 > 1821, and ’282 > 0,
(ii) s2 0, I/ -> Is [, and /s > O.

Let /(t) (/(t),/2(t)) and S(t) (s(t),s2(t)) be two parametrized continuous
curves in I2 for t in intervals I and Is, respectively. We say that "lI is outside

S[Is if there exists a nondecreasing continuous function T from I onto I8 such that
"(t) is outside S(T(t)) for all t e I.

Observe that, when the point S in the (u, v) plane is above the u axis, "outside S"
means straight above S; when S is below the u axis, "outside S" means straight below
S; when S is on the right u axis, "outside S" means on the right side of S; when S is
on the left u axis, "outside S" means on the left side of S. Assuming x and y are two
solutions of (2.1), whenever we say that xlIx is outside ylIy, we mean that the curve

-), defined by (t) (x(t),-x(t- 1)), for t in the interval Ix, is outside the curve S



438 YULIN CAO

defined by S(t) (y(t),-y(t- 1)) for t in the interval Iy. When sup Ix +oc, we call- an orbit of x in I2. From Lemma 2.1 and the discussion that followed, one can see
that the orbit of a slowly oscillating solution x of (2.1) rotates in the (x(t),-x(t- 1))
plane clockwise around the origin. The next lemma is a modification of Kaplan and
Yorke’s ajectory Crossing Lemma in [11] and [12].

LEMMA 2.2 (ajectory Crossing Lemma). Suppose (H1) is satisfied. Let x and
y be two solutions of (2.1). Assume that Xto, YTo e C,, and assume that for some t
and T satisfying

> t0+ 1, k T0+ 1,

xl[to, t) is outside y][To, T)(xI(to, t] is outside yl(ro, T]). g there exists Tn > T
for some n 1 such that y(Tn) 0 and y has n zeros on (To,Tn], then there exists

tn > t such that x(tn) 0, x has n or n + 1 zeros on (to, tn], and xl[to,tn + 1] is
outside yI[To, Tn + 1](xl(t0, tn + 1] is outside y(T0, T + 11).

Moreover, if y has infinitely many zeros in (To, +), then x has infinitely many
zeros in (to, +), and xl[to, +) is outside y[T0, +)(xl(t0, +) is outside

Proof. The proof is omitted, because it is similar to the proof of [11, Lemma 3.1].
Here, we just make some comments on the proof. It should be pointed out that the
key point in the proof of the ajectory Crossing Lemma of [11] and [12] is that the
orbits of x and y do not cross. The assumption in [11, Lemma 3.1], differing from
ours, is that both x and y have infinitely many zeros. But this assumption is not
needed in the proof of "noncrossing" it is needed only in the proof of "outside." Since
we assume that y has n zeros in (T0,T,], it follows from "noncrossing" and Lemma
2.1 that there exists n > such that x(tn) 0 and x has n zeros on (to, t]. If
y(To) 0, there may be a {0 in (to, t) such that x({0) 0 and (x(t),-x(t- 1))
is outside (y(To),-y(To)) for all t in It0, {0]. In this ce, x has n + 1 zeros in some
interval (t0, tn]. By "noncrossing" again, one can see that x[[t0, t + 1], which has the
same rotations around the origin as y[[To, T, + 1] does, is outside y[T0, Tn + 1]. Letting
n +, we know from the first part of the lemma that x has infinitely many zeros.
Since the separations of zeros of x and y are greater than one by Lemma 2.1 and
Definition 2.1, it follows that T,,t + as n +. Consequently, the second
part of the lemma is true.

Note that the assertion in [11, Lemma 3.1] that x[(to, +) is outside y(To, +)
is not precise: it is not the case that if xl[t0, t) is outside y[[T0, T), then x[(t0, t)
is outside y](T0, t). A simple example is given for the case in which y(to- 1)
0, x(t0- 1) > 0, and y(to) > x(to) > O.

DEFINITION 2.2. Suppose that x is a solution of (2.1) and has infinitely, many
zeros in (to 1, +). Assume Xto C,. We say that x spirals outward (inward) in

(t0, +) if there exists some t > to such that x](tl, +) is outside x](t0, +)(x](t0,
+) is outside x](tl, +)). We say x spirals toward an orbit in 2 if the point (x(t),
-x(t- 1)) in 2 approaches the orbit as t +.

For any slowly oscillating solution x(t) of (2.1), one can see that x(tl 1) 0
for some t implies that x has an extreme value at t t. Therefore, by the definition
of "outside," if x(tl, +) is outside x[(t0, +) for some tl > t0, then the orbit of
x must make a complete rotation about the origin when t goes from t0 to tl. Let T
be the map in Definition 2.1 making x[(t, +) outside x[(t0, +). If t, T"(to) is
the nth iteration of T at t0 and T is the restriction of T to the interval_(tn, +),
then x(tn+, +) is outside x(tn, +) with the corresponding mapping Tn for n
0, 1, Thus, if x spirals outward, then the orbit of x in 2 rotates outward around
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the origin infinitely. The discussion is similar if x spirals inward. Following the
discussion above, we have a corollary of Lemma 2.2.

COROLLARY 2.3. Suppose (H1) is satisfied. Let x be a solution of (2.1) on

(to- 1, +(x). Assume Xto E C. and assume that there is a tl > to such that xl(tl
tl + 1] is outside xl(t0 to + 1]. Then xl(t, +) is outside xl(to +c) and x spirals
outward on (to, +).

Proof. If x has n zeros in (to, +c), following the discussion above, there exists
at least one zero of x in the interval (to,t]. Therefore, x has at most n- 1 zeros in

(t, +c), contradicting Lemma 2.2. Thus x has infinitely many zeros. The proof is
completed by the use of Lemma 2.2.

The following result presents a way to determine the existence of slowly oscillating
periodic solutions. The result is implicitly given by [11] and its proof is omitted.

THEOREM 2.4. Suppose that (H1) is satisfied. Let x be a solution of (2.1) through
(to, ) I C.. If x is bounded and spirals outward in (to, +c), then there exists a
slowly oscillating periodic solution 5c of (2.1) such that x spirals outward toward the
orbit of 2. If x spirals inward in (to, +x) and the orbit of x is bounded away from
the origin in IR2, then there exists a slowly oscillating periodic solution c of (2.1) such
that x spirals inward toward the orbit of in IR2.

3. Multiexistence of slowly oscillating periodic solutions. In this section,
we will present a checkable condition on the function f such that (2.1) has at least n
distinct slowly oscillating periodic solutions.

THEOREM 3.1. Suppose that f is an odd function and satisfies (H1). If there
exist 0 < a < a2 < < a2n such that, for k 1, 2,..., n,

(3.1) fof
(a2k--1)

f(x) dx > 2[f(a2k_l)] 2

and

(3.2) 0 < f(a2k)/a2 < 1,

then (2.1) has at least n distinct slowly oscillating periodic solutions. In fact, there ex-
ist slowly oscillating solutions xk(.) and slowly oscillating periodic solutions 2}(.)(k
1, 2,..., 2n) such that

(i) xk+ll(0, /x is outside xkl(0,+) for k =-0, 1,2,...,2n- 1.

(ii) x2k-1 spirals outward toward the orbit of 22k-1, and x2 spirals inward toward
the orbit of 22k for k 1,2,...,n.

(iii) :2k--1 and 2 may be the same up to a time-shift; 2k and 2j are distinct

for any k j.
If there exists an infinite sequence {an}n= such that (3.1) and (3.2) are satisfied

for each k, then (2.1) has infinitely many slowly oscillating periodic solutions.
To prove this theorem, we construct initial values ,..., 2n in C. such that,

if xk x(.; k) is a solution of (2.1) satisfying x(O; k) (0) for 0 e [-1, 0], then
xk(.), k 1, 2,... ,2n, satisfy (i) and (ii) of the theorem.

CLAIM A. Suppose that (H1) is satisfied and {ak}2n is as in Theorem 3.1. Choose
52k- > 0 small enough that

f(a2k--1)(1--52k--1)
(3.3) f(x) dx > 2[f(a2k_)]2

J0



440 YULIN CAO

ob
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X-t

aff( ak.t )(1 k- )’ bff(a.t)

(u, v) (x(t), -x(t- I))

FIG. 1.

and

(3.3)’ f(a2-)(1 2k-) > a2k-.

If 2- in C.(k 1, 2,..., n) is an arbitrary nonincreasing function satisfying

a2k-, 0 e [--1,--82k_],
(3.4) _(0) > 0, e (--8-, 0),

0, 0 0,

then the solution x2k- x(.; 2k-) of (2.1) spirals outward in (0, +c).
Proof. To prove the claim, we show the existence of the first two positive zeros,

to and t2, of x2k-1 and then, prove that x2k-l[(t2,t2 + 1] is outside x2k-ll(0, 1].
Note that from the inequality (3.1) and the assumption (H1), one can deduce

that f(a2k-1) > a2k-1, and thus, there does exist 52- E (0,1) such that (3.3)
and (3.3)’ are satisfied. Let x2k- x(-;2k-1) be the solution of (2.1) satisfying
x2-(0) 2-(0) for 0 E [-1,0]. From (2.1), we have

zk-(t) f(pk-l(O- 1)) dO for t [0, 11.
Therefore,

(.)
and

x2k-l(t) --f(a2k-1)t for t e [0, 1 52k-]

--f(a2k-) < X2k-(t) < --f(a2k-)(1 --(2k-1) for t e [1 --52-1, 1].
.Thus, the orbit of x2-](0, 1] in the (u, v) plane (that is, the (x(t),-x(t- 1)) plane)
connects the negative v axis to the negative u axis, and consists of two parts. The
first part, x2-l(0 1--52k-], lies in the third quadrant on the line v -a2-, while
the other part, x2k-[[1 -52-1, 1], is bounded by four lines, v -a2k-,v O,u
--f(a2k-)(1- 52k-), and u -f(a2k-). (See Fig. 1.) For t in [1,2- 52k-], from
(3.5) we know that
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(3.7)
x2k-l(t) X2k-l(1)- f(--f(a2k-1)(S- 1)) ds

X2k-l(1) + dx
Jo f(a2k-)

and therefore, for t in [2- 52k-, 2],

x2a-(t) >_ x2k-(2 52a-1)

> --f(a2k-1) + ff(a2k-1)(--52k-1)
J0

> f(a2k-1) > O,

f(x)
f(a2k-)

dx

by the first inequality of (3.6) and (3.3). Together with (3.5) and (3.6), the inequality
above implies that the first positive zero to of x2k-1 does exist and is in (1, 2- 52k-1).

Now, we want to determine the location of the orbit of x2-](to, to + 1] in the
(u,v) plane. Since x2k-(t) is strictly increasing for t E (1, t0 + 1) by (2.1), the
inequality above also implies

X2k-(t) > f(a2-) for t e [2- 62k-l,to -- 1].

If t a2-/f(a2k-), then tl is in (0, 1 52-) by the choice of (2k-1. We want to
show to 1 > tl. Using the second inequality of (3.6) and the monotonicity of f we
deduce from (3.7) that, for t in [1, t + 1] C [1, 2 52k-],

x2_(t) < x2a_l(1)+
f
i

f(a2k-1)tl f(x)
dx

o f(a:k-)

[a2_ f(x)< -f(a2k_)(1 62k-) +
o f(a2k-)

< --f(a2-l)(1 62k-) + a2- < O,

dx

by the choice of 62k-. Together with (3.5) and (3.6), the inequality above implies
x2k-(t) < 0 for all t (0, t + 1] and thus, tl + 1 < to or to- 1 > t, where to in

(1, 2- 62k-) is the first positive zero of x2-1. Consequently, it follows from (3.5) and
the definition of t that

x2k-(t) < x2k-(t) --a2a-

for t in [to- 1, 1--52k-] C (t, 1--52k-). The discussion above shows that the orbit of
x2k-l(to, to + 1] in the (u, v) plane connects the positive v axis to the positive u axis,
and consists of two parts. The first part, x2-l(to, 2--52k-], lies in the first quadrant
above the line v a2k- by (3.8)’, while the other part, x2k-ll[2- 52k-,to -t- 1], is
on the right side of the line u f(a2k-) by (3.8). (See Fig. 1.)

Since f is an odd function, 2k-(t) --x(t; 2k-), t [--1, +Cx), is a solution
of (2.1) satisfying 2k-(0) --2k-(0) for 0 in [--1,0]. From the discussions above
one can see that x2k-ll(to,to + 1] is outside 2k-l(0, 1] and 2l(to,to + 1] is outside
x2k-ll(0, 1]. (See Fig. 1.) The Trajectory Crossing Lemma implies that there exists

t2 > to + 1 such that x2k-(t2) 0 and x2-l(to, t2 + 1] is outside l(0, to + 1].
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It is easy to see that the counterpart of x2-l[(t2,t2 + 1] is 2k-l[(to,to + 1J--both
orbits connect the negative v axis to the negative u axis--and therefore, the former
is outside the latter. Consequently, x2k-l[(t2, t2 + 1] is outside x2k-ll(0,1], since
22-1(t0, to + 1] is outside the latter, as we mentioned above. The proof is completed
by Corollary 2.3.

CLAIM B. Suppose that (H1) is satisfied and {ak}2n is as in Theorem 3.1. Choose
52 > 0 small enough that

(3.9) f(a2)(1- 52k) > max{f(a2_), f(f(a2k))}.

Let 2k(k 1, 2,..., n) in C. be an arbitrary nonincreasing function satisfying

0e [-1,-52k],
(3.10) 2(0) > 0, 0 e (--52k, 0),

=0, 0 =0.

If x2k x(.; 92) is the solution of (2.1) and x2-1 is as in Claim A, then x2l(0, +x)
is outside x2-11(0, +x) and x2k spirals inward in (0, +c).

Proof. By the assumptions we know that a2 > a2- > 0 and a2k > f(a2k) > 0;
thus it follows from the monotonicity of f that there exists 52k > 0 satisfying (3.9).
Suppose x2 x(.; 2k) is the solution of (2.1) satisfying x2k(O) 2(0) for 0 in

[- 1, 0]. From (2.1), we have

Therefore,

(3.11)

and

f(2k(O- 1)) dO for t e [0, 1].

x2(t) -f(a2)t for t

(3.12) -f(a2k) < x2(t) < -f(a2)(1 62) for t e (1 52k, 1].

Thus, the orbit of x2l(0, 1] in the (u, v) plane connects the negative v axis to the
negative u axis, and consists of two parts. The first part, x2kl(0 1- 5], lies in
the third quadrant on the line v -a2a, while the other part, x2kl(1- 52k, 1], is
bounded by the four lines v -a2a, v 0, u -f(a2), and u -f(a2k)(1
Since a2k > a2k-1 and /(a2a)(1- 52k) > f(a2k-), from the discussion right after
(3.6), we know that the first and the second parts of x2al(0, 1] are below and on the
right side of the orbit x2-1](0, 1], respectively. Thus, x2kl(0, 1] is outside x2-11(0, 1].
Therefore, by Claim A and Lemma 2.2, x2al(0, +c) is outside x2-l(0, +c) and xu

has infinitely many zeros in (0, +c).
Let t to be the first positive zero of x2a. One can see that to > 1, because x

is a slowly oscillating solution and x2(0) 0. Since x2k(t) is increasing in (1, to + 1),
we know that

(3.13) --f(a2k) < x2k(t) < 0

for t e [to- 1, to) C [0, to), and

x2(t) f(x2a(s- 1)) ds
(3.14)

< f(f(a2k))(t- to)

_
f(f(a2k)) for t e (t0, to + 1].
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v

p(a,d)

P(-a,-d)

affif(a)(l-8 ), bff(a ), =f(f(az )), d=a,

c<a<b)., (u, v) x (0, x(t I)

FIG. 2.

Therefore, X2kl(to, to-+- 1] connects the positive v axis to the positive u axis and is
bounded by the four lines v f(a2k), v 0, u f(f(a2k)), and u 0.

By the oddness of f,c2k(t) -x2k(t) is the solution of (2.1) satisfying 22k(0)
-a2}(0) for 0 in [-1, 0]. Through the discussion above, we can see that 22}1(0, 1] is
outside x2kl(to, to + 1] and x2}l(0 1] is outside 22}1(t0 to + 1], since a2k > f(a2k) and
f(a2k)(1 --52k) > f(f(a2})). (See Fig. 2.) Therefore, by Lemma 2.2, it is easy to see
that 22}1(0, to + 1] is outside x2kl(to t2 + 1], where t t2 is the second zero of x2k

for t > 0. One can see that the counterpart of 22}1(t0 to + 1] is x2kl(t2, t2 + 1]mboth
orbits connect the negative v axis to the negative u axismand therefore, the former
is outside the latter. (See Fig. 2.) Consequently, x2}l(0, 1] is outside x2kl(t2, t2 + 1]
because x2kl(0, 1] is outside 22}l(to,to + 1]. By Lemma 2.2, x2kl(0, +cx) is outside

X2kl(t2 +cx) since we have shown that x2k has infinitely many zeros in (0, +c). This
means x2k spirals inward in (0, +) by the definition. Claim B is proven. [:]

Proof of Theorem 3.1. If in Claim A we choose 52k-1 > 0(k 2, 3,..., n) so small
that

f(a2k--1)(1- (2k-1)> f(a2k-2)

is also satisfied, then similar to the discussions above one can see that x2k-ll(0, 1] is
outside x2k-21(0, 1] (since both of them connect the negative v axis to the negative u

axis); x2k-ll(0, 1] is in the exterior of the rectangle bounded by v --a2k-, v O, u
0, and u -f(a2k-1); and x2k-21(0 1] is in the interior of that rectangle. Therefore,
we have constructed solutions x}(.) for k 1, 2,..., 2n satisfying the following.

(i)’ xk+[(0, +cx) is outside xki(0, +c) for k 1,2,... ,2n- 1,
(ii)’ x2}- spirals outward and x2k spirals inward for k 1, 2,..., n.

The statement that X2k-1 spirals outward implies that the orbit of x2}-1 is bounded
away from the origin of I2, and the statement that x2k spirals inward implies that
X2k is bounded. On the other hand, by the property (i)’ above, the orbit of X2k keeps
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X2k-1 bounded and the orbit of X2k-1 keeps the orbit of x2k bounded away from the
origin. Therefore, by Theorem 2.4, there exist slowly oscillating periodic solutions
and 22k-1 of (2.1) such that X2k-1 spirals outward toward the orbit of :2k-1 in
and x2k spirals inward toward the orbit of :2k in N2. It is obvious that 22k and
are distinct for any k - j. The proof is completed.

4. An example. In this section, an equation is constructed which satisfies the
conditions in Theorem 3.1, and which therefore has infinitely many slowly oscillating
periodic solutions. Consider the equation

(4.1) it(t) =-f(x(t- 1)),

where f(x) (b + )x + bx sin[ln(1 + Ix]2/(3b))].
PROPOSITION 4.1. If b >_ , then (4.1) has infinitely many slowly oscillating

periodic solutions.

Proof. It is obvious that f(0) 0 and f is an odd function.

(3)f’(x) b+ + bsin[ln(l+ Ixl2/(3b))]
2glx]2/(3b)+

1 + Ixl/(a) cos[ln(1 +

3 -lxI 2/(3b) 1
4 1 + ]x12/(ab) 12

for all x e IR. Thus, if x f-l(y) is the inverse of y f(x) and {ak} is defined by

(4.2) a2k f-l((e(2k-1/2)r-- 1)3b/2), a2k-1 f-l((e(2k-1)r 1)3b/2)

for k 1, 2, 3,..., then 0 < al < a2 < a3 < < a2k-1 < a2k < "’’, and

(3)f(a2)= b+ a2 (b)a2k < a2k.

Consequently,

f(a2k- 1( 3)f(x) dx - b+ --4 [f(a-l)] + bxsin[ln(1 4-Ixl2/(3b))]dx
JO

( ) fo
(2k-1)r 3b2

1)3b-1 sinsds,1__ b+ [f(a2k_)]2+ (es- es
2 2

where s ln(1 + ]xl2/(3b)) or x (e8 1)3b/2. If h(s) (es 1)3b-les, then h(s) is
positive and increasing for s > 0. Therefore,

(2j+l)r 3b2
h(s) sin s ds > 0 for j > 1

J(2j--1)-n" 2

and
f(a2k-1) 1( 3) f2(a2k_1)>2f2(a2k 1)f(x) dx > 5 b +-
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Thus, the function f satisfies the condition in Theorem 3.1 with {ak}=l defined
by (4.2). Consequently, (4.1) has infinitely many slowly oscillating periodic solu-
tions. [:]

Remark. For the more general function f(x) blx + b2xsin[ln(1 + Ixl)], if b >_
4, b > b2 > b- 1, and 0 < # < (b-b2)/b2, then using the technique of the preceding
theorem one can show that this function f satisfies the conditions in Theorem 3.1 with
{ak }= defined by

(4.3) a2k f-l((e(2k-1/2)r 1)1/t), a.k- f-((e(k-)= 1)/#).

Therefore, the equation (4.1) with this function f has infinitely many slowly oscillating
periodic solutions.
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ON RECURRENCE RELATIONS FOR SOBOLEV
ORTHOGONAL POLYNOMIALS *
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Abstract. This paper discusses recurrence relations for sequences of polynomials which are

orthogonal with respect to the Sobolev inner product defined on the set of polynomials 7) by

N

k--0

(p,q E T))

for some integer N >_ 1, where each #k, 0 <_ k <_ N, is a positive Borel measure. It is proven that
there exists a real-valued polynomial h" ] ]1 satisfying

(,) (hp, q)w (P, hq)w (p, q 7))

if and only if each of the measures ttk, 1 _< k <_ N, is purely atomic with a finite number of mass

points. In addition it is proven that Rj, the set of real roots of dJh/dxj, (1

_
j

_
N), is nonempty and

that supp (#k) C Nik=lRi. It is also shown that if h satisfies the condition (.), then the polynomials
orthogonal with respect to the inner product (., ")w will satisfy a recurrence relation of order 2m-t- 1,
where m deg(h). Furthermore, an algorithm is given to construct a polynomial H of minimal
positive degree for which the above properties hold. Several examples will be discussed to illustrate
the theory. Lastly it is shown, under certain circumstances, when these orthogonal polynomials will
satisfy second-order linear differential equations.

Key words. Sobolev orthogonal polynomials, Borel measures, Dirac point mass measures,
recurrence relations, second-order differential equations, structural relations

AMS subject classifications. 33A65, 28A25

1. Introduction. It is well known (i.e., see [3, pp. 21-22]) that every sequence
of polynomials {n(x)}=0 orthogonal with respect to an inner product of the form

(1.1) (p, q) := jf p(x)(l(X) d#(x),

where # is a signed measure on the real line I, satisfies a three-term recurrence relation
of the form

n+l(X) (anx + bn)(n(X) engn-l(X) (n >_ 0),
(1.2)

0(x) co; 0-1(x) ---- 0,
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where {an }, {bn }, {Cn } C ] and anCn # 0, n 0, 1, 2, The key step in establishing
(1.2) involves dealing with the obvious identity

(1.3) (xp(x), q(x)). (p(x),xq(x)).

for all polynomials p, q.
During the last few years, there have been several papers written about polynomi-

als orthogonal with respect to Sobolev inner products. Some of these inner products
are of the form

(1.4)
rl r2

(p, q) "= p(x)(l(x) d#(x) + E Mp(c)(t(c) + E Np’(d)(l’(d),
r=l r=l

where I is some interval on the real line, Mr >_ 0, Nr >_ 0, and cr, dr are fixed points
(not necessarily in I). For example, see the contributions [1], [2], [12], [14], and the
references therein. In each of the examples in these papers, the authors exhibit a
polynomial h(x) of degree rn >_ 1 such that

(hp, q) (p, hq)

for all polynomials p and q, and from this deduce that the corresponding orthogonal
polynomials {n(x)} satisfy a recurrence relation of the form

n+m
h(x)n(X) E bn,k)k(X).

k--n-m

For Sobolev inner products involving derivatives of higher order, see [12].
We remark that all of this work has been influenced and popularized, in one

way or another, by the paper of A. M. Krall [10], which has led to attaching mass
points to the absolutely continuous measures associated with the classical orthogonal
polynomials in order to obtain new orthogonal polynomials satisfying certain fourth-
order differential equations.

Note that, in (1.4), if N > 0 for some r, 1 <_ r <_ r2, it will not be the case that

(x;(x), q(x)) (;(x),xq(x))

for all polynomials p, q. However, the authors in the above-mentioned papers exhibit
polynomials h" I - I of degree rn rn(r2) >_ 2 such that

(h(x)p(x), q(x)) (p(x), h(x)q(x))

for all polynomials p, q and, from this, deduce that {n(x)} satisfies a (2m + 1)-term
recurrence relation of the form

n+m
h(x)d/)n(X)-- E bn,kdpk(X)

k--n-m

n rn, rn + 1,...).

In this paper, we shall be concerned with the weighted Sobolev inner product

(1.5)
N

:=
k=O
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on the set

7):= p(x)= akxklakEC, nENo
k--0

of all polynomials p It( -- C, where each #k,k O, 1,... ,N, is a positive Borel
measure on the Borel subsets B(]R) of the real line JR, and N >_ 1 is a fixed integer.
We shall also assume that the moments {cn,k}n=o of Pk, 0 < k <: N, defined by

"-- fN xn d#k (n 0, 1, 2,... ;k 0, 1,..., N),Cn,k

exist and are finite. Notice that the inner product in (1.5) includes every inner product
of the form (1.4). We shall also find it necessary in certain situations to let 7-/denote
a Hilbert space generated by the inner product (., ")w satisfying the inclusion 7 C 7-/.
It is not assumed that 7) is dense in 7-/. We note that an example of 7-/could be the
classical weighted Sobolev space W2N(I, d#o,..., d#g) (see [11]).

Before stating the main theorem of this paper, we note that we shall use the
notation 5xo to denote the Dirac point mass measure defined on the Borel subsets of
]R by

1 if x0 e B5xo(B)= 0 ifx0B
(BeB(I)).

Moreover, as is customary, we shall write d(hxo) 5(x- xo)dx, where 5(x- x0) is
the so-called Dirac delta distribution. We list other notation that the reader will
frequently encounter in this paper:

N0 denotes the set of nonnegative natural numbers;
12 denotes the set of complex numbers;
2 denotes the complex conjugate of the complex number z;
f(a)(x) denotes the kth derivative of the function f with respect to x;
supp (#) denotes the support of the positive measure #.

In 3 we shall prove the following theorem.
THEOREM 1.
(i) Suppose there exists a polynomial h" IR -- I of degree > 1 satisfying

(1.6) (hp, q)w (p, hq)w (p, q e P),

where (., ")w is the inner product defined in (1.5). Then the measures #k, 1 <_ k <_ N
are necessarily of the form

(1.7) #k

for some positive integer P(k), where

P(k)

j=l

(a) Ck,j >_ 0,j 1,...,P(k),k 1,...,N;
(b) {xk,jlj 1,...,P(k)} := R 0 are the distinct real roots of h(k)(x), 1 <

k<_N;
k(c) supp (#k) C Cj=1R = , k 1,..., N.

Moreover, the degree of h is at least N + 1 and
(d) there exists a unique (up to a nonzero, real constant multiple) polynomial

H" --. I of minimal degree m(H) (>_N + 1) satisfying g(o) 0 and

(Hp, q)w (P, Hq)w (P, q 7));
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(e) the sequence of polynomials {n(x)} that are orthogonal with respect to the
inner product (., ")w will satisfy a (2re(H) + 1)-term recurrence relation

(1.8)
n+m(H)

k=n--m(H)

(n >_ re(H))

for some real numbers bn,k. Furthermore, the length (see Remark 8 in 3,
below) of this recurrence relation is at least 2N + 3.

(ii) Suppose the measures #k, 1 <_ k <_ N, in the inner product (1.5) are given by

Q(k)

j=l

for some positive integer Q(k) with supp(#k) {Ykl,...,Yk,Q(k)} (i.e., kj > 0 for
j 1,..., Q(k)). Then there exists a unique (up to a nonzero, real constant multiple)
polynomial H I --. of minimal degree m(H) >_ N + 1 satisfying the conditions of
(d) and (e) above. Moreover, if Rk denotes the set of real roots of H(k)(x), 1

_
k

_
N,

then (c) is valid.
Remark 1. The fact that h(k)(x) has at least one real root (1 _< k _< N) may seem

somewhat surprising upon first glance, but it is a consequence of (1.6) (see Theorem
4 below) and not a condition that is assumed.

Remark 2. Under the conditions of Theorem 1, we see that the measures #, 1 _<
k _< N, are purely atomic. No restriction is placed on the leading measure #0; see 5
of this paper for further discussion of this observation.

Remark 3. The Gram-Schmidt orthogonMization process (see [3, pp. 13-14]) may
be used to assert the existence of a sequence {n(x)} of real polynomials which are
orthogonal with respect to the inner product (.,.)w, defined in (1.5). Of course, it

may be difficult in practice to explicitly compute each Cn(x) by this method. If this
is the case and if the recurrence coefficients bnk can be efficiently calculated, then the
recurrence relation (1.8) affords an alternative way of computing each (x).

The reader should also consult the contribution of Iserles et al. [8] for another
approach to effectively finding each Cn(X). They consider the inner product (1.5) in
the case of N 1 and when the positive Borel measure #1 has infinite support. In this
case, the polynomials {bn(X)} will not necessarily satisfy a recurrence relation of the
form (1.8). Consequently, the computation of these polynomials will, in general, be
quite difficult. However, in [8], the authors give conditions on when these polynomials
can be efficiently computed in terms of the orthogonal polynomials associated with
the leading measure #0.

Throughout thi. paper we shall speak of the orthogonal polynomial sequence
{On (x)}; of course, each Cn (x) is only uniquely determined up to an arbitrary nonzero
constant multiple.

Remark 4. As mentioned above, the key step in establishing a three-term recur-
rence relation for an orthogonal polynomial sequence in a space generated by the inner
product (1.1) is in recognizing the identity (1.3). It is interesting to point out that con-
dition (1.3) may be stated in terms of Hermitian operators. Indeed, if T/denotes the
Hilbert space generated by (., .), then (1.3) is equivalent to the operator T" 7) - 7-/
beingHermitian, where T is defined by

e 9(T)
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Moreover, if 7 is dense in 7-/, then (1.3) is equivalent to the operator T being sym-
metric. See Remark 10, below, for further discussion.

At this point, we mention the important work of Duran [4], which we just recently
obtained. For each N >_ 1, he characterizes those inner products (., .) on the space 7)
of polynomials for which the operator SN T) defined by

p E t)(SN) 7

is Hermitian. From this characterization, he obtains inner products more general
than our inner product in (1.5). In 3 of his paper, and by considering an approach
different from ours, he does consider the inner product (1.5). Although he shows that
the measures #k, 1 _< k <_ N, are discrete in this case, his characterization is not as
explicit as our Theorem 1.

Remark 5. In this paper, we shall only consider real-valued polynomials h of
degree >_ 1 satisfying (1.6). Further work needs to be done in the case of complex-
valued polynomials h sat’isfying (1.6). The interesting case seems to be when h is
real-valued; indeed, this seems to be the only case considered in the literature.

Remark 6. We could have defined our inner product (., ")w in (1.5) to be

N

(1.9) (P, q)w P(k)(x)(t(k)(x) d#k.
k--O k

where Ik is a real interval (0 <_ k <_ N). A particularly interesting case would arise
when Ik g Ij , k,j 0,..., N. However, since each #a can be extended in an
obvious way to a Borel measure on all of B(I), we see that the inner product (1.9) is
a special case of (1.5). We remark, however, that there is at least one disadvantage
of using (1.5) over (1.9)" the inner product in (1.9) can be more descriptive. For
example, suppose {n(X)} is an orthogonal polynomial sequence with respect to the
inner product

(P, q)I JlP(X)q(x) d#(x),

where # is a positive measure and I is some interval on the real line. The classical
theory of orthogonal polynomials dictates that these polynomials will have their roots
in the interior of I. This may not be so clear if we write the above inner product as

x)q(x) d,(x).

Remark 7. Before proceeding with the rest of the paper, we point out that if
an orthogonal polynomial sequence (OPS) {,(x)} is orthogonal with respect to the
inner product

N

:=
k=0

as well as orthogonal with respect to the inner product defined from the leading
measure #0, i.e.

(P, q)uo := ] p(x)(l(x) d#o(x),

then
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(i) {n(x)} will satisfy a three-term recurrence relation, and
(ii) #k, 1 _< k <_ N, does not necessarily have the form (1.7), and
(iii) there does not necessarily exist a real-valued polynomial h(x) of degree _> 1

such that (1.6) holds.
Indeed, some examples are the classical orthogonal polynomials of Jacobi, La-

guerre, and Hermite and, in general, orthogonal polynomials that satisfy higher-order
differential equations of the form

2m

(1.10) E ar(x)Y(r)(x) Ay(x).
r--1

For example, the classical Jacobi polynomials are orthogonal with respect to the inner
products

p(x)((x)(1 x)(1 + x)Z dx -1, > -1),

and

p’(x)(t’(x)(1 x)-+l (1 + x)/+1 dx.

Similarly, the Laguerre-type polynomials, which satisfy a fourth-order equation of the
form (1.10), are orthogonal with respect to the two inner products

(P’ q) [o,) d (x)

and

(;, q) ,w (p, + f0 {xe-p"(x)(t"(x) + ((2A + 2)x + 2)e-p’(x)q’(x)} dx,

where A is a fixed, positive constant and a is the Borel measure generated from the
monotonic increasing function " [0, cx) --. defined by

-1/A if x 0,5(x)
1-e-x if x>0.

For additional examples and references, see [5] and [6]. Because of this peculiarity,
we shall henceforth assume that the polynomials orthogonal with respect to the inner
product (1.5) are not orthogonal with respect to the leading measure #0.

In 2 of this paper, we shall state and prove a measure theoretic result which is
essential in the proof of Theorem 1. Section 3 contains a proof of Theorem 1 while 4
considers several examples to illustrate the theory. Lastly, in 5, we discuss refinements
of the theorem with applications to semiclassical orthogonal polynomials.

2. A preliminary measure theory result. The following theorem is essential
in establishing the proof of Theorem 1.

THEOREM 2. Suppose a is a finite, positive Borel measure on the Borel subsets
B(I) of the real line 1 with supp (a) C J, where J is some interval on the real line.
I’n addition, suppose K" I -- I is a polynornial of degree rn >_ 1 such that

(i) K(x) >_ 0, x E J, and
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(ii) fg K(x) da(x) O.
Then there exists an integer P.>_ 1, points Xl,... ,xp E J satisfying K(xj) 0,j
1,..., P, and positive constants al Op such that

supp (o’) {xl,... ,xp}

and

(.1)
P

(7 E oj6x.
j=l

Proof. If K(x) has no roots in J, we can write j U=ioAn, where

An := {x e JlK(x) > 1/n} e (n= 1, 2, 3,...).

However, 0 f:da > fatda > (1/n)a(An) so that a(An) 0, n 1,2,...,
which forces a(J) 0, contradicting the fact that a is a positive measure with
supp (a) C J. Consequently, let R := {yl,..., yr} denote the set of distinct roots
of K(x) in J. By repeating the above argument, we can show that a(B) 0 whenever
B E B(N) and B N R 0. If B E B(N) is arbitrary, we may write B (B \ RB) U RB,
where RB := R N B. Then a(B \ RB) 0, and thus

yj ERB

where aj := a({yj}),j 1,... ,r. In particular, a(J) Ej=I aj, and since a(J) > O,
at least one of the js is positive. Let S := {yj E RIj > 0} so S supp (a)
and m > r >_ card(S) := P >_ 1. For convenience, rewrite S {xl,... ,Xp} where
a({Xj}) j,j 1,... ,P. Then

xjEB

The proof is complete on noting that (2.2) is equivalent to (2.1). []

3. The Proof of Theorem 1. We start with the following basic result.
LEMMA 3. Suppose there exists a polynomial h 1 -- N of degree m >_ 1 such

that

(3.1) (hp, q)w (p, hq)w (p, q e "P).

Let {n(x)}n__0 be the orthogonal polynomial sequence generated by (’,’)w. Then
{n(x)} satisfies the (2m + 1)-term recurrence relation

n+m
(3.2) h(x)qbn(X) E bn’kk(X) (n m, m + 1,...),

where

hcn, dPk)w(3.3) bn,k= (Ck,qbk)W (n=m,m+ 1,...;k-n-m,n-m+ 1,...,n + m).
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Proof. For n >_ m, we can find real constants bn,k, k 0, 1,..., n + m such that

n+m
h(x)n(X)-- E bn,kCk(X).

k=0

For 0 _< r _< n + m, the orthogonality of {bn(x)} yields

n+m
(3.4) (hen,

k=0

On the other hand, (h,,r)w ((/)n, hCr)w 0 if m + r < n; i.e. bn,r 0 if
r=O,...,n--m-- 1.

This establishes (3.2), and (3.3) follows from (3.4). gl

Remark 8. If the polynomials {n(X)} satisfy a recurrence relation of the form
(3.2), with bn,n+m O, n >_ m, then we shall say that {n(X)} satisfies a recurrence
relation of length 2m + 1. We remark that, in general, it can be quite difficult to
compute the recurrence coefficients bn,k given in (3.3). See 5 for a further discussion
of this.

THEOREM 4. Consider the inner product (., ")w, defined in (1.5), where the mea-
sures #k, k O, 1,..., N, are positive Borel measures on the Borel subsets of the .real
line. If there exists a polynomial h" I I of degree m >_ 1 such that (3.1) holds for
all p, q E T), then

P(k)

(3.5) d#k(x) E ak,jh(x xk,j)dx (k 1,... ,N),
j--1

for some positive integer P(k), where ca,y >_ 0, k 1,..., N; j 1,..., P(k),

(3.6) .P(k)lrk {Xk,jjj=l are the distinct real roots of h()(x),

and

k

(3.7) supp (#k) C N Rj : 0 (k 1, 2,..., N).
j=l

Proof. Suppose (hp, q)w (P, hq)w for all polynomials p, q E 7). That is,

(3.8)
N a-(k)jfh(k-Y)[p(Y)VT()_p(k)(t(J)]d#k= 0
k=l j=0

(p,q aT)).

Substituting p(x) 1 and q(x) h(x) into (3.8) yields

+ +... + 0.

Since #1,..,, #N are M1 positive measures, we must have

(3.9) 9f(h(k)(x))2 d#k 0 (k 1,... ,N).
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By Theorem 2, we see that for each k, 1 _< k <_ N, there exists an integer P(k) >_ 1,
distinct real numbers Xk,1,..., Xk,P(k) and nonnegative constants ak,1, Ok,P(k) such
that

(i) supp (ttk)C {xk,1,... ,Xk,P(k)};
.P(k)(ii) h(k)(xk,j) 0 j 1, P(k); i.e., {Xk,yjj= are the distinct real roots of

h(k)(x);
P(k)(m) dpk(x) -j=l ak,jh(X Xk,j) dx, k 1,..., N.

This establishes (3.5) and (3.6) of the theorem.
We now prove, by induction, that

(3.10) h(k-O(x))2 d#k 0 (i 0,...,k- 1;k + 1,...,N).

As a consequence of this induction, we will see that

k

(3.11) supp (#k)C N R1 (k 1,...,N).
i=1

Notice that we have established (3.10) in the case of 0 (see (3.9)). Suppose, then,
that for some r, 0 _< r < N, we have

h(k-i)(x))2 dpk 0 (i 0,...,r; k i + 1,...,N).

We must show that

(3.13) ](h(k-r-)(x))2 d#k 0 (k r + 2,... ,N).

For each k E {1,...,N} and i E {0,...,k- 1}, we may write

(x

where Qk-i(x) has no real roots and rk-i,j,j 1,..., P(k- i), are positive integers.
From (3.5), we see that (3.12) implies that

(3.15)

P(k)

E OkjQ2k-i(Xkj)(Xkj Xk--i’l)2rk-i’l"’" (Xkj Xk-i,P(k-i))2rk-i’P(k-i) 0
j=l

(i 0 ,r; k + 1,...,N).

Since Qk-(xk,j) O, either aa,j 0 or xk,j is a root of h(k-O(x), 0,... ,r; k
+ 1,...,N,j 1,...,P(k). In other words,

supp (/zk) C (i 0, 1,...,r;k + 1,...,N),

frown which it follows that

k

(3.16) supp (#k) C N R. (k l,...,r+ 1)
i=1
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and

k

(3.17) supp (#) C N R
i:k--r

(k=r+2,...,N).

Moreover, (3.5) and (3.12) also imply that

p(x)h(k-i) (x) d# 0 (pP;i=O,...,r;k=i+ 1,...,N),

and consequently (3.8) simplifies to

(3.18) E
N k--llkljRh(k--j)[P(J)(k)--P(k)(J)]dPtk’--OE j (P’ q E 7))

k--r+2 j-----r+

Substitute p(x) xr+l/(r + 1)! and q(x) xn+r+2/(n + 1)r+2 into (3.18), where (a)n
is the Pochhammer symbol, to get

(r + 2) jflt’(x)xnd#r+2 + lr + 3) ] h’’(x)nxn-d#r+3+ l r+l

q- h(g-r-1)(x)n(n 1)... (n N + r + 3)Xn-y+r+2 dltN O.
r+l

If we write h’ (x) m--n=O nxn and substitute into the above equation, we immedi-
ately obtain

o,

thereby establishing (3.13).
Furthermore, using the representations (3.14) and (3.5), we see that (3.13) yields

(3.19)

P(k)

E akjQ2k-r-l(Xkj)(Xkj Xk-r-l,1)2rk-r-l’l
j’-I

(Xkj Xk-r-l,P(k-r-1))2r-’-’P(k--l) 0

(k=r+2,...,i),

from which it follows that

supp (#k) C Rk__ (k=r+2,...,N).

In particular,

supp (#r+2) C R1.

Combining (3.17) and (3.20), we find that

r+2

supp (#+2) C N R.
i=1
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This completes the induction and establishes (3.7) of the theorem. The proof of the
theorem is now complete.

COROLLARY 5. Under the assumptions of Theorem 4, the degree m of h(x) must
be at least N + 1.

Proof. Suppose, to the contrary, that 1 <_ m <_ N so that h(m)(x) =- c 0, for
some constant c. From (3.9), however, we find that

(h(’) (x))2 dtt, c2 jf dttm O,

contradicting the fact that #m is a positive measure. [

Remark 9. See Remark 11, below, for precise conditions for when there exists a

polynomial h -- I of degree exactly N + 1 satisfying (hp, q)w (p, hq)w, p, q E P.
By Lemma 3, it now follows that the sequence of polynomials that are orthogonal with
respect to the inner product (., ")w will satisfy a recurrence relation of length at least
2N+3.

Remark 10. Stating Theorem 4 slightly differently, it is interesting to note that
if the operator T 7 -, 7-/, defined by

is Hermitian, then the measures #k, 1 <_ k <_ N, defined in the inner product (., ")w
necessarily satisfy conditions (3.5) and (3.7). As we shall see below, in Theorem 6,
the converse statement is also true.

Summarizing the results of this section so far, we know if there exists a real-valued
polynomial h of degree m >_ 1 such that (3.1) holds, then the corresponding orthogonal
polynomials generated by (., ")w satisfy a (2rn + 1)-term recurrence relation; that is,
the degree m of h(x) determines the length of the recurrence relation. Of course, if h
does satisfy (3.1), it will not be unique. Indeed,

(hPp, q)w (p, hPq)w (p,q

where P :If( -, I is an arbitrary polynomial. It is natural, then, to ask: what is a

polynomial H I -- of minimal degree for which (3.1) holds? From Lemma 3,
this minimal polynomial will be optimal in the sense that it will yield the recurrence
relation of minimal length for the associated orthogonal polynomials.

To answer this question, write

Q(k)

(3.21) #k E ZkJYk, (k 1,...,N),
j=l

where we shall now assume that/aj > 0; i.e.,

(3.22) supp (#)= {Ya,1,...,Yk,Q(k)} (k= 1,...,N),

and card(supp (#k)) Q(k) <_ P(k).
We now define sets Bk C supp (#k) with a(k):= card(Bk) _< Q(k) and polyno-

mials hk, 1 <_ k <_ N as follows:
(i) Let BN supp (#N) and hN(x)= I-IUN,eBN(X- yN,j)N;
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(ii) For l _< k <_ N- l, let

Bk supp (#k) \
N

U supp (#j)
j=k+l

and define
1

l-[ (x-
Ykj EBk

Notice that the degree of ha(x) is given by

deg(hk) 0

Finally, let H(x) be the polynomial of degree

N

(3.23) re(H) := 1 + E deg(hk),
k--1

defined by

(3.24)
x N

H(x) fo H hk(t) dt"
k--1

THEOREM 6. The polynomial H" I l defined in (3.24) is the unique polyno-
mial (up to a nonzero real constant multiple) of minimal degree satisfying H(O) 0
and (3.1), with the positive measures #k, 1 <_ k <_ N, satisfying conditions (3.21) and
(3.22). Moreover, if Rk denotes the set of real roots of H(k)(x), then

k

(3.25) supp (#) C N Rj (1

_
k

_
N).

j=l

Proof. As in (3.8), we see that

N k-l(k)jfH(a-j)[p(j)(l()_p(k)VT(Y)]d#k(Hp, q)w (p, Hq)w EE j
k--1 j=0

(p,q E7))

We show that expression (3.26) is zero for all p, q E P.
F/om (3.21) and (3.24), we may write

H’(x) (x yN,)g (x yN,,(N))NQ(x),

where Q (x)-- h (x)... hN-l(X). Hence, for 1

_
r

_
N,

dHr(x)
dxr
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for some polynomial Q,r(x). Since the exponents N- r + 1 >_ 1 for 1

_
r <_ N, it

follows from (3.21) that

1 (N ) fRH(N-j)[p(J)ct(N) p(N)ut(J)] d#N O
j=o

J (p,q 7)).

Now write

H’(x) (x YN,1)N (X-- yN,a(N))N H(X--YN-I,j)N-1PI(X), YN-I,j E BN-1

for some P1 E 7). Then, for 1 .<_ r <_ N- 1, we see that

(3.27)
dHr(x)
dx

Pr(x)(x YN,1)N-r+l (X yN,c(N))N-r+l H(X YN-l,j)N-r,

YN-I,j

for some polynomial Pr (x).
Since supp (#N-l) C BN U BN-1, it follows from (3.27) that

2 (N --1) jfRH(N-j-1)[p(J)ct(N-1) --p(N-1)(t(J)] dN_I O
j--0

J (p,q 7)).

Likewise, and in a similar fashion, we can show that each of the terms on the right-hand
side of (3.26) is zero. Hence H(x), as given in (3.24), does satisfy (3.1).

Suppose g: I R is a polynomial satisfying (3.1), and g(0) 0. From (3.6) and
(3.7) of Theorem 4, we see that g’(x) is given by

Q(1) Q(2) Q(n)

g’(x) P(x) H (x Ylk) II (x Y.k)2 H (x Ygk)g,
k--1 k--1 k--1

where P(x) is some polynomial.
From the definition of H(x), it is clear that

(3.28) H’(x) divides f(x),

i.e., deg(g) > deg(H). If deg(H’) deg(g’), then (3.28) yields KH’(x) g’(x) for
some constant K #- 0. Hence C + KH(x) g(x), for some constant C. Since H(0)
g(0) 0, we must have C 0, and hence

g(x) KH(x).

Lastly, we establish the inclusion of (3.25) by induction on r N, N 1,..., 1.
Let x0 G supp (#N)= {YN, I,..., YN,Q(N)}. Since

H’(x) (x YN,1)N (x yN,Q(N))Nhl(x) hN-l(X),

we see that
H’(xo) H"(xo) H(N)(xo) 0;
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i.e., xo E CI=IRj.

Suppose then that

k

supp (#k) C N Rj
j--1

(k N,N- 1,...,r + 1).

We must show

supp (#r) C ’ Rj.
j=l

kBy the construction of H, we see that Bk C ["Ij=IRj, and hence from our induction
hypothesis, we have

supp (#r) Br U (supp (#r) \

(Br U supp (#) 0 U supp (#j)
j=r+l

j=l j=r+l

r r-F1 r+2 N

j=l j=l j=l j=l

c Rj.
j--1

This completes the induction and finishes the proof of the theorem. [3

Remark 11. It is clear that the degree of the polynomial H defined in (3.24) is
minimized when card(Bk), 1 <_ k <_ N, is minimized, and this occurs precisely when
supp (#) is a singleton set; i.e., supp (#) {a}, 1 _< k <_ N, for some real number
a. In this case we see that H(x) is necessarily a nonzero, real constant multiple of
(x--a)N+I.

By combining the proofs of Lemma 3, Theorem 4, Corollary 5, and Theorem 6,
we arrive at a proof of Theorem 1.

4. Examples. In all of the examples below, the measure #0 is an arbitrary, pos-
itive Borel measure. For other papers concerning recurrence relations for orthogonal
polynomials, we refer the reader to [2, Thm. 3.1].

1. It is possible that the polynomial h(x) satisfying (1.6) has only complex roots.
For example, if the inner product is given by

+

then (hp, q)w (P, hq)w,p, q e 7), where h(x) x2 + 1. For this example, we note
that the minimal polynomial H(x), defined in (3.25), is given by H(x)= x2.

2. From Theorem 1, it follows that there does not exist an inner product (., ")w
given by (1.5) with N > 1 such that (3.1) is satisfied for

h(x) x3 + 3x + 3.
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Indeed, since h’(x) 3x2 + 3, we see that R1 0, contradicting (c) of Theorem 1. In
fact, from (3.9), we find that

3x2 + 3) 2 d#l(x) 0,

which, of course, implies that #1 -= 0. It is interesting to note that even if we relax our
requirements in Theorem 1 and allow the measure #1 to be the zero measure, there
are still no inner products of the form (1.5) with N >_ 1 and with at least one of the
measures #k, 1 <_ kJ<_ N, nontrivial for which (3.1) holds with h(x) x3 + 3x + 3. To
see this, observe that since deg(h) 3, an argument similar to that given in Theorem
1 implies that necessarily N 1 or N 2. Since we ruled out the case N 1 above,
the only other possibility is that the inner product has the form

(p,q)w fp(x)((x) dpo + fpl(x)Y(x) d#2.

Assuming then that (hp, q)w (p, hq)w for all polynomials p, q E 7), we find that

(4.1) 9f(2h’(p’q"- p"@’) + h"(p@" -P"(t)) d#9. 0 (p, q 7)).

Substituting

p(x)= l and q(x)=

into this equation yields

xn+2
(n+ 1)(n + 2)

h"(x)xn d#2 0 (n e N0),

and, hence, it follows that

h"(x))2 dt2 9f 36x2 dp2 O.

Of course, since #2 is assumed to be nontrivial, we must have

d#2(x) cS(x) dx

for some real constant c - 0. However, if we substitute p(x) x and q(x) x2 into

(4.1) we find that 12c 0 and thus arrive at a contradiction. We leave it to the reader
to formulate and prove the analogue of Theorem 1 when the measures #k, 1 <_ k _< N,
are assumed to be nonnegative with at least one of these measures necessarily being
positive.

3. Suppose that the Sobolev inner product is given by

(p, q)w fp(x)(t(x) d#o(x) + ]p(x)q(x)5(x) dx

+ p"(x)(l"(x)(5(x) + 5(x 1))dx.
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We now construct the minimal polynomial H :1 --* described in Theorem 6. We
find that B2 {0, 1},B1 0, h2(x) x2(x-1)2, and hi(x) 1. Hence the polynomial
H(x) is any nonzero, real multiple of

12x5 30x4 + 20x3 60 hi (t)h2(t)dt.

1} andNotice that, in the notation of Theorem 6, R1 {0, 1},R2 {0, ,
{0} supp (1) C /1, {0, 1} supp (#2) C R1 FI R2.

4. Suppose that (hp, q)w (p, hq)w, (p, q E 7), where

(p, q)w jfp(x)C:l(x) d#o(x) + 9fp’(x)Kl’(x) d#l(X) + jfp"(X)Kl"(x) d#2(x)

and h(x) x5 10x3 + 20x2 15x- 158. Now h’(x) 5(x- 1)3(x + 3) and h"(x)
20(x- 1)2(x + 2) so that

{-3,1} and R2={-2,1}.

By Theorem 1, we see that

supp(#l) C R1 and supp(#2) C R1 R2 {1}.

Hence, there exists a constant k > 0, and nonnegative constants cl and c2 with

c + c # 0 such that

d#2(x) kh(x- 1)dx, d#l(X) (c15(x 1) + c25(x + 3))dx.

Since the degree of h(x) is 5, Lemma 3 says that the sequence of polynomials that
are orthogonal with respect to (., ")w will satisfy an eleven-term recurrence relation.
Actually, the algorithm outlined in Theorem 6 indicates that the polynomials will sat-
isfy either a nine-term or a seven-term recurrence relation. Indeed, if -3 E supp (#1),
then the algorithm outlined in Theorem 6 dictates that

h2(x) (x- 1)2, hi(x) (x + 3),

and hence that the minimal polynomial H(x) is any nonzero, real multiple of

x(t- 1)2(t + 3)dt.

For example, H(x) 3x4 + 4x3 30x2 + 36x will suffice. Consequently, the associated
orthogonal polynomials will satisfy a nine-term recurrence relation. On the other
hand, if -3 supp (#i), then supp (#i) supp (#2) {1}, and a calculation reveals
that H(x) can be taken to be (x- 1)3; in this case the polynomials will satisfy a
seven-term recurrence relation.

5. Suppose N 3 and
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where ci > 0, 1, 2,..., 10. Proceeding as in the previous example, we find that

h3(x) x3(x- 1)3,
h2(x) (x- 2)2,

hi (x) (x 3)(x 4),

and hence the polynomial H(x) of minimal degree satisfying (3.1) and H(0) 0 is

any multiple of

1260x1 1940x0 + 123200x9 419265xs + 829620x7 960960x6

+609840x5 166320x4.

The corresponding orthogonal polynomials will satisfy a 23-term recurrence relation.
We emphasize that this length is minimal!

5. Further modifications and applications of Theorem 1. In this section,
we shall suppose that the sequence {n(X)}n=o is a monic orthogonal polynomial
sequence (MOPS) with respect to the inner product in (1.5). We shall also find it
convenient to decompose the inner product (1.5),

N

k=0

where the inner products (., ")uk are defined by

(p, q),k ] p(x)(t(x) d#k (k 0, 1,...,N).

Let {qn(X)}nC=O be the sequence of monic polynomials that is orthogonal with respect
to the leading inner product (., ")o. Writing

n-1

On(X) q(x) + n,q(z),
j=O

we find, in the usual way, the Fourier coefficients an,j, 0 <_ j <_ n- 1:

(,q).o =n,j
qj qj tto qj qj #o ’ () Z,(n) (’)ql)(’))..k= \ s=l

(qJ’ qj)’

Then (5.1) becomes

)n(X) an(X) E k,s)(nk) (Yk,s)lk’l IX, Yk,s)
k--1

where
n- (j) (k)

K(., (, ) q (x)q (1
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From the Christoffel-Darboux formula (see [3, p. 23]),

K(’)(x,y) qn(X)qn-l(y) qn-l(X)qn(y)
(qn-1 qn-1)tto X y

and taking derivatives with respect to y at the point yk,8, we obtain

(’) (x, Yk,s)--1

k!(x- yk,)--1

(qn-1 qn-1)tto
(qn(x)Tk(x; Yk,; n 1) qn-1 (x)Tk(x; Yk,; n)),

where Tk(x; Yk,s; n) denotes the Taylor polynomial of degree k at y,8 for the polyno-
mial qn (x).

If we denote

q(ns) (Ys,1) gn"_ (x, Ys,1

(n) ff.(o,) D diag (A1, A2, AN)
TT(0 ),

/--1 --I --iwhere Aj diag j,1, ,2,’.’, ,Q()), I, 2, N, and n-1 is the block matrix

.(i,i) (yi,r, Y,)Q() while the ( m) block element iswhose diagonal elements are "n-1 r,s=l

((t,m) (yt,, Ym,8))(’n--1
= Q(-)

then following the same techniques used in [1] and [12], the following result can be
deduced

PROPOSITION 7. For each n
(a) the matrix (D + Tin) is nonsingular;

(n, Cn)W det(D +(b) (an, an)rio det(D + 7n-1);

(c)

q (x)

1)

(0’I))T ((O’N))Tn--1 n--1

D+ ]’n-

det(D + Tn-1)

(O’J))Twhere (n-1 deotes the transpose of the vector [((o,_)
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Using (5.3), the following result is an immediate consequence of the above propo-
sition; see also [1, eq. (2.12)] and [12, eq. (2.11)].

COROLLARY 8. There exists a polynomial g(x) such that

(5.4) g(X)n(X) Ag,n(x)qn(x) + BN,n(X)qn-l(X).

Indeed,
N

II
k-’-i

1 ifBk=O,
gk(x)= H (x--ykj)k+l if Bk O,

ykj EBk

and AN,n, BN,n are polynomials depending on n and, with degrees, respectively, deg(g)
and deg(g) 1.

We remark that, in general, deg(g) deg(h). From (5.4), we can explicitly find
the parameters bn,k which appear in the recurrence relation (3.2) with some suitable
normalization. For example, if {n} is a sequence of monic orthogonal polynomials,
multiplication by g(x)in (3.2) yields

n+m
(5.5) h(x)g(x)*n(x)-- E bn’kg(X)k(X)

k--n-m

and

[j--n--p k--n-m 1--k-p

where the coefficients {Cn,j} are the Fourier coefficients of g(x)n(x) with respect to
the orthogonal system {q}. But, from the three-term recurrence relation which is
satisfied by the MOPS {qn} and by iteration, we have

h(x)qj(x)
j/m

E dj,lql(x),
l=j-m

and finally
n+p j+m n+m k+p

E E Cn,jdj,lql(x)= E E bn,kCk,lql(X).
j=n--p l=j--m k=n-m l=k-p

For fixed n, notice that 2m + 1 parameters bn, appear in (5.5). We adopt the con-
vention that

bn,k 0 if In- k > m,

ck,=0 iflk-11>p,
dy,t=0 iflj-ll>m.

Then

n+p+m n+p+m

(5.6) E Cn,j dj,l E bn,k Ck,1
j--n--p--rn k=n-m-p
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forn-m-p<_l <_n+m+p.
In particular, because of bn,n+m 1, we can give the matrix representation

C(n) D(n)
2m,p 2p,m

bn,n-m Cn,n-p

where
Cn-i-m-- 1,n+m-- 1--p

C(n)
2m,p

CnWm-- 1,n--m--p

dn+p,n+m-l-p
D(n)
2p,m

dn+p,n-m-p

Cn-m,n+m-. -p ICn--m,n--m--p

dn-p,n+m-1-p Idn-p,n-m-p

However, since cij 0 for li Jl > P and ci,i_p > O, i n + m 1,..., n m, we have
that C(n) is a nonsingular upper triangular matrix. As a consequence, we can obtain2m.,p
an explicit representation of the parameters {bn,k } of the recurrence relation for which
the sequence {n} satisfies in terms of the known parameters {ci,j } and {di,j }

(.(n) _lD(n
k2m,p] 2p,m

bn,n-m Cn,n--p

An interesting application of the work in this section is related to the situation
when some differential properties of the MOPS {qn} are known. If #0 is a semiclassical
measure, i.e., if the linear functional u defined on 7) by

(u, p) jf p(x) d#o
satisfies a distributional equation

D(A(x)u) B(x)u,

where A and B are polynomials with deg(B) >_ 1, and D is the derivative operator, it
is known (see [13]) that

n+r--1

(5.8) A(x)q(x)= E /n,jqj(x),
j--n--t--1

where deg(A) := r, deg(B) := k, and t := max{r- 2, k- 1}. This last expression,
called a structural relation, leads to a second-order linear differential equation

A(x, n)qg(x) + B(x, n)qn(X) + C(x, n)q(x) O,

which the MOPS {q} satisfies. We remark that (5.8) is a weaker condition than (5.9)
but, if {qn} satisfies a three-term recurrence relation, then (5.8) is equivalent to (5.9)
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(see [7]). However, as the following result shows, there exist nonstandard sequences
of MOPS which do not satisfy a three-term recurrence relation such that (5.9) holds.

PROPOSITION 9. If {qn} is a semiclassical MOPS, then {n} satisfies

ft.(x, n)g(x) +/(x, n)n(X) + (x, n)On(X) O,

where fI, , and are polynomials of degrees independent of n.

Proof. From (5.4), we find

(g(x)n (x))’ AN, (x)qn (x) + B’ (x)qn_ (x) + AN,(x)q (x) + BN, (x)q_(x)’N,n

Multiplying by A(x) in the above expression, taking into account the structural rela-
tion (5.8) and the three-term recurrence relation for the MOPS {q,(x)}, we obtain

A(x)(g(x)n(x))’ S(x, n)qn(x) + R(x, n)qn-1 (x)
(x, n)qn(x)+ [(x, n)qn(X),

where S and R are polynomials and and/ are rational functions.
From (5.4)and (5.10), we obtain

(5.11) q,(x)

(X)n(X) B,(X)
A(x)(g(x)(x))’ R(x, n)

AN,n (X) BN,n (X)
S(x,n) R(x,n)

C(x, n))n(X)-- D(x, n)’n(X),

(5.12)

AN,(x) g(x)(x)

qn-l (X)
S(X, n) A(x)(g(x)O(x))’

AN,(x) BN,n (x)
S(x,n) R(x,n)

E(x, n)On (x) - F(x, rt) (x),

where C, D, E, and F are rational functions. Using (5.8) and the recurrence relation
for {q}, the result follows from (5.11) and (5.12).

Remark 12. The reader will notice that the above proposition includes a construc-
tive approach to constructing the second-order linear differential equation satisfied by
the MOPS {}.
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ON TWO-DIMENSIONAL DEFINITE ORTHOGONAL SYSTEMS
AND A LOWER BOUND FOR THE NUMBER OF NODES OF

ASSOCIATED CUBATURE FORMULAE*

H. BERENSt, H. J. SCHMIDt, AND Y. XU

Abstract. In a comprehensive investigation in the 1960s Krall and Sheffer [Ann. Mat. Pura
Appl., 76 (1967), pp. 325-376] characterized all bivariate orthogonal polynomial systems which are
generated by a second-order differential equation. Actually, they prove that these nine systems are
weakly orthogonal and (positive) definite except possibly for two systems. Their paper is completed
by showing that these systems are also definite and by determining all parameters for which the
classical positive definite systems remain definite. The authors further derive an explicit form of
the three-term recursion formulae for all systems. In addition, it is shown that for the associated
cubature problem MSller’s lower bound applies.

Key words, bivariate orthogonal polynomial systems, Gaussian cubature

AMS subject classifications. 41A10, 41A63, 65D32

1. Introduction. Let us denote by P R[x, y] the ring of polynomials of two
variables with real coefficients, and let Pk, k 0, 1,..., be the linear subspace of P
spanned by

xk xk- yk1, x, y, ly, xyk-1

Following Krall and Sheffer [5], a monomial basis

{Pk}=0, keN, where pjk xk-jyj + lower-order terms,

is said to be a weak orthogonal system, if there exist coefficient matrices

and

kDk (di,j)i=o,1 k,j=0,1 k-l,

such that

Dk (dikj)i=l,2 k+l,j=o,1 k-1 e Rk+lxk

(1) xPk Lk+lPk+l + CkPk 4- DkPk-1, YPk Fk+ Pk+ 4;-CkPk -1- DkYk-1,

where P Pok Pk kPk k 0, 1,... The matrices Lk+l and Fk+l are defined
as the shift matrices [Ek 0] and [0 Ek], where Ek is the identity in R+1x+1 and
P-1 =0.

The system is said to be orthogonal with respect to the linear functional : P --, R
if, for each k E No, :(PkP) O, 0 <_ < k, and if ranki(PaP) k+l. Here,
PkP is the tensor product of the vectors Pk and Pl and :(PkP[) is the matrix,
the coefficients of which are determined by the functional acting on the polynomial
coefficients of the tensor product. The matrix :(PkP), k No, is known as the kth
moment matrix and is denoted by Mk. Instead of saying (Pk}kENo is an orthogonal

Received by the editors April 30, 1992; accepted for publication (in revised form) September 7,
1993.
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system, we also say the system is definite; in case the matrices Mk, k E No, are

positive definite, we speak of a positive definite system.
It is almost obvious that a definite system {Pk}keNo is a weak orthogonal system,

i.e., it satisfies the recurrence relations (1). It follows from [11, Thm. 2] that, con-
versely, a weak orthogonal system is an orthogonal system with respect to 27, defined
by

z(p3) 1 Z(P ) O, O<_j<_k, k 1,2,...,

exactly when

rankSk=k+l, where Sk [Dk Dk] E Rk+l2k.

Let {Pk}=o be a definite orthogonal system with respect to 27. By multiplying
(1) by P_I, P, and Pk+, respectively, and applying 27, we obtain

CkMk 27(xPkP), DkMk- 27(xPP_) MkLt,
OkMk 27(YPkP), DkM_ 27(yPaP_I) tkF.

Using these identities, we can compute the moment matrices by induction. Indeed,
let Gk diag [2, E_2] and Gk diag [Ek-2,2]; then

2 Ek LtGLk +

and consequently,

(3) 2 Ma MkLtkGkLk + MkFOFa DkMk_GkLk + DM_Fk.

Setting M0 1, the last equation allows us to compute Mk from Mk-1, k N.
Again, let {P}=0 be a definite orthogonal system with respect to 27. A cubature

formula of degree m for 27 is a linear combination of point evaluations

N

K" P ---* R’p K(p)= E ai p(xi, yi),
i=0

0, (x,y) e R2

such that K(p) 27(p) for all p Pm, and at least one P0 G Pm+l satisfies K(po)
27(P0). Of special interest are formulae with a minimal number N of nodes. Such
formulae are said to be interpolatory; i.e., the nodes have the interpolation property.
A lower bound for N is

N >_ dimP[m/2]+ ([m/2] + 1)([rn/2] + 2)/2.

The proof is usually given for positive definite systems; the proof in Stroud’s book [9,
Thm. 3.15-1], however, depends only on the regularity of the moment matrices.

In 1976, MSller [6] improved the bound for strictly positive linear functionals,
which nevertheless remains true in the definite case since only orthogonality is in-
volved.

If N is the number of nodes in a cubature formula of degree rn 2k 1 for Z,
then

N >_ dim Pk- + rank M_1/2,
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where the coefficients of M_ are given by

* =Z(P P-PPf_ ij=l,2,mij -1

Since M_I is skew-symmetric, its rank is even. The computation of the coefficients
of M_ and of its rank is difficult in general, and particularly difficult if the integral
is not a tensor product of one-dimensional integrals. In the centrally symmetric case,
where Z(xk-iyi) 0, 0, 1,..., k, for all odd k N, MSller proved

k, if k is even,(4) rank M_ k- 1, if k is odd,

without making use of the explicit form of the matrix.
For the Lebesgue integral over the triangle {(x,y) R2" 0 x,y, 1- x- y}

MSller [6] computed the rank of M_ up to k 6 and verified the rank condition (4)
for this case. Rasputin [7] then proved it for all k N. In a separate paper [2], Berens
and Schmid further extended the result to all classical Jacobi weight functions. In
their approach, the matrix M_ was rewritten as

M_ LkMF FML
LDMk_ FDMk_ (LkDk FkDk)M-

by again applying the identities (2). Introducing

we clearly have

M*_ LkDk FkD

rank M_ rank M**k-l"

In the present paper we study a class of definite bivariate orthogonal polynomial
systems which are generated by the following second-order differential equation:

(5) w -A}w, A} E R, k N,

where

w (ax2 + dlx + ely + fl)wax + (2axy + d2x + e2y + f2)Wxy
+(ay2 + d3x + e3y + f3)Wyy + (gx + hl)dx -- (BY -]- h2)dy

for some real constants a 0, g, di, ei, fi, hi, and for

Ak -k((k -1)a + g), g + ka # O, k 0,1,

In their paper, Krall and Sheffer [5] determine all weak orthogonal systems which are
generated from (5). Furthermore, they prove that these nine systems are indeed either
positive definite or definite, except possibly for the systems generated by [5, eqs. (5.22)
and (5.53)]. We complete their paper by showing that these systems are also definite,
and by determining all parameters for which the classical positive definite systems
remain definite. In addition, we shall derive an explicit form of the recursion formula
(1) for all these systems, and we will show

rankM k, if k is even,
k- 1, if k is odd.
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This shows that the lower bound MSller derived for centrally symmetric integrals
holds true for all classes considered here. Concerning the existence of cubature for-
mulae of degree 2k- 1 attaining the lower bound, characterizations are known if Z
is positive definite and for special functionals even methods are known to construct
such formulae; see [8]. In the definite case, however, this is all open. For the existence
of cubature formulae of degree 2k- 2, which is not the subject of this paper, we refer
to [8] and [11].

Krall and Sheffer were aware of the associated moment problem, i.e., assigning
a measure to the functional Z defined by a definite system, in particular a positive
measure in case the system is positive definite (Favard’s theorem). In the multidi-
mensional case this is quite involved; see Fuglede [3] and the recent results of Xu

2. General approach. We study the nine differential equations separately. To
k and bi ofdo so, we first determine the coefficients

k-1 k-2

E -k .k- E k k-2P t + ui% + biut + 1.o.t.,
,=0 v=O

tk xk-iyi, 0, 1,..., k.

By applying to pk and comparing the coefficients in

k-1 k-2 / k-1 k---k tk + E atk k-1 + E bit-2 (t)+E ak (t-)+ bik,f_.(tk-2)+l.o.t.,
,=0 =0 =0 =0

k and kwe can compute a bi respectively. Elements a.k and b.k which are not definedz,. z,.
explicitly, are equal to zero. In all cases the orthogonal polynomials are of the form

2

z,z+ti+, + .i,i+i+ + 1.o.t.,
=--1 ,=--2

which leads to the recursion formulae

O, 1,..., k,
i= 1,2,...,k+1.

To simplify the notation, we omitted and henceforth will omit the superindex k in

c,j and d,j, respectively. Again, by comparing the coefficients in

we obtain

Ci,i+ ak .k+l
i,i+ ti,i+,’

d,+ b hk+ k
z,i+ ’i,i+ Ep=-- ci,i+pai+p,i+
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Analogously, we find

k .k+l
Ci,i+ ai_l,i+,_ tei,i+, 12 --1, O, 1,

]k.-t-1 k 0 1 2i,i+, bik-,i+,- -’i,i+, E -1 Ci,i+pai+p,i+,, u --2 --1,

Hence, we can compute the (possibly) nonvanishing elements of the real k + 1 k
matrices

do,o

dl,0

d2,0

do, do,2

d1,1 dl,2 ".

d2,1 d2,2 "’. "’.

"" "" "" dk-3,k-2
". ". dk-2,-2

"" dk-l,k-2
d,_

dk-3,k-1

dk-2,k-1

dk-l,k-1
d,_

and

d-2,k-

dk-l,k-1

dk,k-1
dk+l,k-1

As stated above, a definite system will be obtained if and only if

rank S rank IDa Da] k + 1.

In order to prove (6), we have to determine the elements of M*_I"

i,j=l,2,...,k.

All rank conditions can be attacked directly if the matrices Da, Dk in the recursion
formula are explicitly known. To be on the safe side we checked the results by using a
Maple program for all nine systems and transferred the results directly into the text.
The input is a function defining a. and b.k for the system in question.

z,3 ’,3

3. Explicit recursion formulae and the rank conditions. In this section we
present the nine differential equations, numbered as in [5], the corresponding image
polynomials of the monomials under , the highest coefficients of the corresponding
orthogonal polynomials of degree k, and the coefficients of the recursion formulae.
Finally, in.all cases the conditions on the free parameters are discussed in order to
satisfy the rank condition for Sk as well as M*_1. Since we are only interested in
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determining the rank of Sk and of M*_ 1, respectively, we will delete common factors
in the rows and columns without changing the notation.

Equation (3.10). Differential equation:

wxx + coyy xwx ywy -kw.

Monomials:

(tki --ktki + (k i)(k 1)t/k-2 +i(i 1)ti_2k-2.

Nonvanishing coefficients a. and b.

bki,i-2 -i(i 1)/2, b -(k i)(k i- 1)/2.

Nonvanishing coefficients in the recursion:

di,i k i, di,i-2 1.

Nonvanishing elements of M*_ 1"

The differential equation defines the product Hermite polynomial system (the tensor
product of the Hermite polynomials); it is definite, even positive definite, and the
rank condition (6) holds.

Equation (3.12). Differential equation:

xwxx + ywyy + (1 + c x)wx + (1 + 3 y)wy -kw.

Monomials:

() -t + ( )( i- .)t- + i(i + Z)tL-.
Nonvanishing coefficients a.k and b.k

ak -i(i + )i,i--1

a. -(k i)(k + c),
b --i(i 1)(i+)(i+3-1)/2,i,i--2

b i(i + )(k i)(k + c)z,z--1

bk. -(k i)(k 1)(k a)(k a 1)/2.

Nonvanishing coefficients in the recursion:

ci,i 2k+1-2i+c, i,i-1 2i-1+3, di,i (k-i)(k-i+a), i,i-2 (i-1)(i-1+3).

The matrix Sk"

a(k+) 0
(k- 1)(k + c + 1) 3+1

"’. 2(/3 + 2)

c+l ".

0 k(k + )
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it has rank k + 1 exactly when -a,-/3 N.
Nonvanishing elements of M*_1"

--(k-i)(k-i+c) i= 1 2 k-1.mi,i_1.* (i-1)(i-1+/3), i= 2, 3, k, mi,+

The differential equation defines the product Laguerre polynomial system (the
tensor product of the Laguerre polynomials); it is definite if and only if-c,-/3 N,
in which case the rank condition (6) also holds. For c,/3 > -1 the system is even
positive definite.

Equation (3.13). Differential equation:

Monomials"

wxx + yWyy XWx + (1 + c y)Wy -kw.

(t/) -kt + i(i + a)ti_ + (k-i)(k- i- 1)t/k-2.

Nonvanishing coefficients a. and b.

a -i(i + a) bk (i + a)(i + a 1)i(i 1)/2, b. -(k i)(k 1)/2.z,z--1 i,i--2 z,z

Nonvanishing coefficients in the recursion:.. 2i + a- 1 di, k- i,,--I

The matrix Sk"

k 0
k-1 a+l

di,i-2 (i- 1)(i- 1 + c).

0

rank Sk k + 1 exactly when -ct N. The classical systems satisfy c > -1.
Nonvanishing elements of M*_ 1"

The differential equation defines the product Hermite-Laguerre polynomial system
(the tensor product of Hermite polynomials and Laguerre polynomials); it is definite
if and only if -c N, and in this case the rank condition (6) also holds.

Equation (5.14). Differential equation:

(x2 1)w + 2xywxy + (y2 1)Wyy + 9xw + gywy k(k + g 1)a, -g No.

Monomials:

(tk) k(k+g 1)t (k i)(k 1)t-2 i(i 1)ti_2.k-2
Nonvanishing coefficients a.k and b.

,3 ,3

b bki,i-2 -i(i- 1), b b..= -(k- i)(k- - 1)
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where b 2(2k + g 3).
Nonvanishing coefficients in the recursion:

d di,i-2 i(i- 1),
d d,i-2 (i- 1)(2k + g- i- 1),

d di,i (k- i)(k + g + i- 2),
d di,i (k + 1)(k i),

where d (2k + g- 3)(2k- ! + g). Since d,-2 - 0 and

det 0 d20 :/: O,
d20 0 d3

we obtain rank Sk k + 1.
Nonvanishing elements of M*_I:

i-1 k-i** 2, 3, k, **mi,i-1 2k + g 3 mi,i+ 2k + 9 3
1,2,...,k- 1.

The differential equation defines the circle-polynomial system (cf. Chap. VI in [1]); it
is definite, even positive definite, and the rank condition (6) holds.

Equation (5.19). Differential equation:

3ywxx + 2wxy xw yWy -kw.

Monomials:

(tki --ktki + 3(k i)(k -i- 1)tik+-i + 2(k i)itki-_.

Nonvanishing coefficients a.k and b.k
,3

ak --3(k i)(k 1),i,i+l

b -i(k i) b 9(k 2)(k 3)(k i)(k 1)/2.i,i--1 i,i+2

Nonvanishing coefficients in the recursion:

Ci,i+l 6(k i), di,i-1 i, di,i-1 k + 1 i.

The rank of Sk is easily determined to be equal to k + 1.
As shown in [5], and easily verified by the induction formula (3), the moment

matrix Mk, k E No, has cross-diagonal nonvanishing elements:

rn k) i(k- i)’i,k--i 0<i<k.

Nonvanishing elements of M;*__l:

** k- 2i + 1,Tni,i i- 1,2,..., k.

The system is definite, not positive definite, and the rank condition (6) holds.
Equation (5.22). Differential equation:

(x2+y+l)wx+(2xy+2x)Wxy+(y2+2y+l)wyy+gXw+gywy -k(k-l+g)w, -g No.
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Monomials:

() (+ )+( i)( i - 1)ti_1)ti+ + 2i(k k-1

+( i)( i )-+(i 1)-_.
Nonvanishing coefficients a. and b.k

ak. 2i(k- 1)
,-1-- 2k+g-2’

a (k i)(k 1)
,i+1 2k + g- 2

bk i(i 1)(g + 2(k 1)(2k 3)),- (k +- )(k +- 3)
(k i)(k 1)(g + 2(i + 1)(2k 3))

e(ek +- e)(ek + 3)
Nonvanishing coefficients in the recursion:

C Ci,i_ -2ig,

c ci,i+l -2(k i)(k + g 1 + i),
c ,i-1 -2ig 4k2 2gk + 4k + 2g,
c ei,i+l 2(k + 1)(k i),
d di,i-2 ig2 (i 1),

d dc, g(k i)(_g2 + 5g + 2ig 4gk + 2ik 5 3i + 9k 4k2 + 2i2),
d d,+2 (2g + 3k 3 + i)(-k + + 2)(-k + + 1)(-k + i),
d di,i-2 g2(_g_ 2k + 1 + i)(i- 1),

d di,i g(2k + g 2i- 2)(k- + 1)(k- i),
d di,i+2 (k 2)(k i + 1)(k i 1)(k i),

where c (2k+g-2)(2k+g)and d (2k-l+g)(2k+g-3)(2k+g-2)2. The entries

di,i-2: i 2, 3,..., k, do not vanish. To determine rank Sk it sufficies to determine
the rank of the submatrix

[ ]do,o 0 d1,1
A= 0 ,o _0

d2,0 0 d3,1

Here, det A -4kgD(2k + g 2)(2k + g 3)2(2k + g 4). We obtain a definite
orthogonal system if g f No; this was left open in [5].

It follows from the representation of Dk and Dk and formula (3) that the coeffi-
cient ,(k) of the moment matrix Mk is given by

where

m() d-(k) (k-1)
k,k k+l,k-1 ’’k-l,k-l kEN,

d--(t:) -kg2(g + k 2)
+,- ( + k a)( + k )-( + k )
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Since M0 1, -(k)
’"k,k 0 for a given admissible g and for all k No. Assume the

system to be positive definite; then -(k)
""k,k > 0 for all k No. An inductive argument

implies that g < -(2k- 1) for all k N, which is obviously impossible.
Nonvanishing elements of M*_1"

** -(i- ), i= , a,m mi,i_
in m**i,+1 -g(-g + 3 + 3i-3k)(k- i), 1,2,...,k- 2,
n .,+** ( )( )( i), , ,..., k a,

where m (2k + g- 3)(2k + g- 2)2.
Hence, the system is definite and not positive definite for g N0, and equation

(6) holds.
Equation (5.52). Differential equation:

(z x) +xu + (u
+((. + ) Z ) + ((. + ) ) k( + .), -. N0.

Monomials:

.(tki) k(k + c)tki (k i)(k +/3)t/k-1 i(i + "Y)ti_lk-1.
Nonvanishing coefficients a.k and b.k

ak. -(k i)(k + 3)
’ 2k + c 1

ak. --i(i +’)
,-1 2k + c 1’

bk.. i(i- 1)(i + ")(i +- 1)
,,-2 2(2k + a- 1)(2k + a- 2)’

b. i(i + )(k i)(k + fl)
,,z-1 (2k + 1)(2k + a 2)’

b.= (k 1)( )( +- 1)(k + Z)
,* e(2k +. )(ek +. e)

Nonvanishing coefficients in the recursion:

c ci,i- -2i(i + ),
c ci,i -1 + 2i + a- + 2ak- 2i2 2ia + 2k2 + 2i + a,

c 5i,- -2i2 + 4ik + 2i + 2i- 2i- 2k- 1 a + 2yk + +,
c i,i -2(-k- 1+ i)(:k- 1 + i- ),

d di,i-2 i(i- 1)(i + )(i- 1 + ),
d d,_ i(-a 2ak + 2ia a + 2 + 2 4i 2i + 2k 2k2 + 2i2)(i + )

i(i + )[e(k + 1)(k + Z + 1) (2k zi + Z + 1)(2k + )1,
d d, (a + k +i- 1)(i + a- 1+ k- )(k- + )(k- i),

d di,i-2 (-a 2k + i)(i 2k a + )(i 1)(i 1 + ),
d d,_ [-2ia + a 7a 2k + 2i2 4ik + 2k + 2i](k + 1 i)(k + 1 + )

( + 1)(k + Z + 1)[e(i + ) (el + z 1)(ek + .)1,
d , (k + 1 + )(k + 1 i)(k + )(k i),
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where c (2k + a 1)(2k + a + 1) and d (2k + a)(2k + a 1)2(2k + c 2).
If k 1 the rank condition is satisfied if and only if

det $1 a(a + I)(7 + 1)(’7 + 1)(a 7 "7 i) # O.

Furthermore, in this case rank M* 0. Henceforth we shall assume that k > 2.
In order to obtain rank Sk k + 1, the first and last row of Sk must be different

from zero. Since k + and k + 9/are a common factor of the two rows, respectively,
we get in addition to -c No,

and 9/ N.

Thus, di,i-2 and a,i are nonvanishing elements in Sk. The rank condition is satisfied
if the determinants of the matrices

doo d_lo djl dk-2,k-2 0 dk_-l,k-1
A dl0 d20 d_2 or B dk-l,k-2 dk_l,k_l _dk,k-1

d20 0 d31 dk,k-2 dk,k-1 dk+l,k-1

do not vanish. We find

det A a k(k + )(, + 1)(9/+ 2)(k + c 9/- 2)(k + c 9/- 2),
det B a k(k + 9/)(/ + 1)(7 + 2)(k + c 7 2)(k + 7 3’ 2),

where a 2(2k + c 3)(2k + a 2)2(2k + c 1).
Let us first consider the case c ? + 9/- k + 2. Inserting c into the formulae

of di,j and d,j and deleting the common factor d, we get for Dk, after deleting the
common factor + 7 in the (i- 1)st column,

di+,i_ i(i + 1)(i + /+ 1),
di#_ i(2(k i)(k + ) (2(k i) + + 1)(k + + y)),

di-l,i- (# + 9/+ i)(k +/ + 1)(k + 1),
dk-,k- ( + k + 9/)( + 1), dk,k_ -k(Ct + k + 9/)( + 1),

and similarly for Dk, after deleting the common factor k + in the ith column,

di+2,i (k +/ + ")(i + 1)(i + 9/+ 1),
di+l,i (k i)(2i(i + 9/+ 1) (2i + 9/+ 1)(k + # + 9/)),

di,i (k + t + l)(k + l)(k i),
1,0 --]g(] -/ - 9/), d-2,0 (k + # + 9/).

Next we add the first k- 1 columns of Dk to the last k- 1 columns of/)k and obtain
for 1,2,...,k- 1,

di+2,i (i + 1)(i + 9/+ 1),
di+,i -(2i(k i) + (k i)(9/+ 1) + i( + 1)),

di,i (k + 1)(k +/ + 1),
dl,0 =-k, d2,0 1,

Recall that we do not change the notation when we delete common factors in rows and columns
of the matrices under consideration.
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where the common factor k + + - 0 has been deleted from all elements. Now we
subtract the ith column of Dk multiplied by from the (i- 1)st column of Dk and
get

di+l,i-1 O
di,i_ -i(k + + 1),

di-l,i-1 (k + 1)(k +/3 + 1),
dk,k-1 ---k, dk-l,k-1 1;

here, the common factor ( + /+ 1) 0 has been deleted. Finally, we subtract for
1, 2,..., k- 1, the (i 1)st column of Dk from the ith column of Da, which leads

to

i+2,i=i+l, i+,i=-(k-i), d-,i-0, ,0--k, d-,0=l.

Thus Dk Da and rank Sk k. Hence the parameters c,, 7 must in addition
satisfy the condition/ + " a No in order to get a definite system.

There remains to consider the case when /- a + k 2. Then

di+,i-1 i(i + 1)(k + + c 1)(k + + c 2),
di,i- i(k + + o 2)(2(k + 1)(2k + c 1)

-(2k + a)(3k 2i + a 1)),
di-l,i-1 i(k + + c 2)(2k i + a 1)(k + 1),

where i(k + + a 2) is a common factor in the (i 1)st column of Dk. Similarly,

i+:,i (i + 1)(k i)(k + + o 1)(2k + a 2),
di+,i (k i)(2k + c 2)(2(i + 1)(k + + a 1) (k + 2i + a 1)(2k + c)),

i,i (k i)(k + 1)(2k + c 2)(2k + c 1),

here (k i)(2k + a 2) is a common factor in the ith column of Dk. Thus, for
i-- 1,2,...,k,

di+2,i di+,i- O, di+l,i di,i- O, di,i di-l,i- O.

By subtracting the first k- 2 columns in Dk from the last k- 2 columns of Da, we
find that the rank of Sk is equivalent to the rank of the following tridiagonal matrix:

a0 co

bl al

" Ck-1

b ak

where

a0 (10
bl d2,0,
ci di,i

ai di,i-l,, 1, 2,..., k,

bi di,i-2, 2, 3,..., k,

0, 1,...,k- 1.



480 H. BERENS, H.J. SCHMID, AND Y. XU

Since

ai 2(k i + 1)(2k i + c 1) (2k -F c)(3k 2i + c 1),
i)( k + o, k

b i(k + + o 2), 1,2,...,k,

0, 1,...,k,

it is not hard to factor the matrix as follows:

ao Co ao 1 Vo

bl al ". bl 0/1 1. . Ok_

bt: ak bt:

where

ci -(2k + c- i- 2)(k + a + i- 1), 0, 1,...,k,
-(k i)/(k + o + 1), 0, 1,...,k 1.

Hence, no further restrictions on the parameters a, , and are necessary
The differential equation defines the Jacobi polynomial system on the simplex (cf.

Chap. VI in [1]); it is definite if and only if -c,-c + + , No and -,-- N;
it is even positive definite for c > + 7 + 1, > -1, > -1.

Nonvanishing elements of M*_1:

m m.**. (2k- 2i + a--)(i- 1)(i- 1 + V) i= 2, 3, kz,z--1

m mi*,* i(i + )(2k 2i + # + 1) (k + 1)(k + # + 1)(2i + 1),
1,2,...,k,

ram** --(a-2+2i-#)(k-i+)(k-i) i=1 2, k 1i,i+

where m (2k+a-1)2(2k+a-2). To determine the rank of M:I, let us introduce
the notation

al Cl

M** b a

Ck_

b ak

where

bi -(2k- 2i + a- )(i- 1)(i- 1+ /), 2,3,...,k

ai (k- + 1)(k + # + 1)(2i + V- 1) i(i + )(2k- 2i + # + 1),
1,2,...,k,

ci (a- 2 + 2i- #)(k- + #)(k- i), 1,2,...,k- 1.

Since there is at most one element in the subdiagonal which might vanish, the rank
of M** is greater than or equal to k- 2. Since the rank of M*_ is even this means
rank M** > k- 1 if k is odd.
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Denoting the principal minors of M** by A, 0, 1,..., k, we can compute
det M** Ak recursively via

A0=l, Al=al, Ai =aA-l -bc-iA-2, i=2,3,...,k.

By introducing the expressions

( )( + )( + Z ),
T (2k 2i + c - 2)(2i + c -/3 2), i= 1,2,...,

we obtain

the recursion for the subdeterminants can then be rewritten as

A0 1, A S, A [iS-(i-1)S_I]A_I+(i-1)S_I T_A_2, 2,3,... ,k.

In what follows we need the following main identity connecting the Ss and Ts:

(m + 1)[(i- 2m + 1)Si+, -(i- 2m)Si- S2(i-m)+l]
(i- 2m + 1)(i- 2m) [Ti+l Ti-m]

2

where m 0, 1, 2...; the identity is easily verified.
By induction we prove that

Ai U2i- + E A U2(i-,)- TiTi- Ti-,+, 1,2,...,k,

where

re=l,2,..., andA= (i- 2u)!u!2’’
For 1 we have a S U1. By assuming the formula to be true for Ai-1 and
n, we obtain for [(i + I)S+ iS] ni + iS TA_ the expression

We apply the main identity for m 0 to [(i + 1)S+1 iS]U2_ and get

i(i + 1) i(i + 1)
U2+ +U2-T+ ---U2-3 S2i- Ti

[il]

+(i + 1)Si+ E AU2(,_)_ TiTi_... Ti-,+ + iSi Ti U2i-3
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[(i-1)/21

+iSi Ti E A-1 U2(-,)-3T-IT-2...Ti-

[i/2]

-iSi Ti E AU2(i-)-I Ti-ITi-2... Ti_,+

i(i + 1)U+ + ----U:_ T+
+U2i-3 Ti [(i + 1))Si+- i(A- 1)&- i(i+1--)$2-112

[/21

+(i + 1)Si+ E Au2({_.)_ T{T{_I...
y:2

[il2]

-i& Ti E A U2(i-)- Ti_Ti_2... Ti_,+

[(i-1)/2]+1

+ & T ) U T T . T +__,i-vj-

i(i + 1)
U.i+ + -----U._ Ti+

+U2i-3 Ti [(i + l)){Si+l i(A{- 1)Si- i(i+1)$2i-112
[i/21

i-1+ E U2(i_)_ TiTi_I... Ti_,+ [(i + 1)A&+l i(A A_)Si] + R.
’--2

For i even we have R 0, while for odd, say, 29 + 1 we obtain

R (2 + 1))2U2+1T2+1... T+.
Next we apply the main identity for m u and, by recalling that

//-F1 (i + 1)!
(i + 1 2)!!2’

we obtain

(i + 1))/Si+1 i(/ i- )qi
(i + 1)!

[(i-.-1 (i 29 + 1)!!2

[ (i-2+l)(i-2/2)(Ti+i_T_,)].)/+1 S2(i_u)+ .+.
2(/2 + 1)

Note that the second summand vanishes for even, say, 29. By setting the
i+undefined term ,,+1 to be equal to 0 for even and 29, we can rewrite the last

equation as

i--1 )/+1 ),i+1 Ti- ).

The main identity for m 1 can be written as

(i- 1)(i- 2)
(i 1)Si+ (i- 2)& $2-

4
(Ti+I Ti-1),
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which gives

(i + 1)ISi+1- i(A/1 1)Si-
i(i +1__)$2_

2
( + )

2
[(i- 1)S{+, -(i- 2)S{-

A+I[Ti+I Ti-l].

Thus we can simplify the last expression obtained for [(i + 1)S{+1 iS{]
to

v+, +a+_r+ + x+l_ar+r +l_arr-i
[i/2]

u+l
:2

[i/2]
x+ U(i_)_I TT_ T_ + R,"’u+l

which can be rewritten as

S2i+ + .i+ Zi+ Zi Zi-u++U(i-)-

[{/1 [{/el

+ a+lu(_)+ rr_l r_+ +1+u(_)_ rr-i.
u:2 u:l

the last two sums reduce to -R, which finally gives

[i/2]+1

g{+ + :x+lg({+l_)_ T{+IT{... T{+_+.
u=l

Taking into account that for even, say, 2u 2u+l
"+1 0 and that for odd

[i/2] + 1 [(i + 1)/2], the last formula completes the induction.
Thus we obtain

Since S2(k-[k/2l)-I qk 0 for odd k, we get in this case rank M*_ k- 1.
To finish the discussion let us assume k to be even. Then S1Sa... Sk- =fi O. By
introducing the shifted factorials (Pochhammer symbols)

(a)o 1, (a), a(a + 1)... (a + n 1),

and regarding the identities

(a ) (-1)’(1- a), (a){_ (- 1)"

aER,

(a){
(1-a-i)’

(a + 1)(a + 3)... (& + k- 1),
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we can fully factorize Ak. Indeed,

similarly

and finally

Thus

Ak ol o3... ok_123k/2 () (-+- k q-1)
k/2 2 /2

-/3+1)2 k/2

where

Since the numerator of E vanishes for u > k/2, we can represent E as a generalized
hypergeometric series, evaluated at 1; i.e.,

(8) E- 3F2(-9/-2 /--2k+2 -k/2; --2k+l -k+l )2 2 2 2
;1

Since the 3F2 sum is balanced, we can apply the Pfaff-Saalschfitz-formula (see, e.g.,
[4]) and obtain

c-/-’,/- )
(’7-2k+! (-/3+12 ) k/2 2 ) k/2 2 k/2 2 k/2

Thus
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Hence for the admissible parameters a,/, and /we get rank M;*_ k for even k.
To summarize, if the system is definite (i.e., -a,-a +/ + 7 N0 and -,- N),
then the rank condition (6) holds. For the positive definite system the proof of the
rank condition can be significantly simplified, as done in [2].

Equation (5.53). Differential equation:

x +ex + ( )+(x ) +( ) (+ ), - N0.

Monomials:

(t) k(k + g 1)t i(i + ag 1)t_k-ll g( i)t-1"

Nonvanishing coefficients a#. and b#

aO. -i(i 1 + ag) a. -g(k i)
,-1- 2k + g- 2 ’ 2k + g- 2’

i(i )(i + )( +),-- 2(2k+g-2)(2k+g-3). ( i)i(- + )
,-1 (k + )(e + 3)’

(- )(- - 1)
’ e(ek + e)(e + 3)

Nonvanishing coefficients in the recursion:

c c,i_ -2i(i 1 +
c ci,i g(g- 2 + 2i),

c ,_ 4ik + 2ig 4k 2g + 2agk + ag2 2i2 + 2i 2iag,

c , 2g(-k 1 + i),
d d,_ i(i )(i + )(i + ),
d di,i- -ig(g- 3 + 2i)(i- 1 + ag),

g2d d, (- e + + )(- + i),
d d,_ (- + + e)(i + e)(i )(i e + ),
d d,_ g(k + 1 i)(-ag 2agk + 2iag + ag + 2g 2ig 2 + 4k 4ik + 2i2),

d dS, (-- + )(- + i),

where c (2k + g 2)(2k + g) nd d (2k 1 + g)(2k + g 2)(2k + g 3). To obtain
the full rank of S, the lt row of S must be different from zero, i.e., the following
elements must not vanish:

dk,-e k(k 1)(k + cg 1)(k + cg 2),
dk,a- -kg(2k + g 3)(k + cg 1),

k+l,k-1 (g - g 2)( + g g 1)k(k + ag 1).

Hence -ag 0, 1, 2, Since d, 0, 1, 2,..., k- 1, we consider the submatrix

dk-l,k-1 0 dk-2,k-2
k,k-1 dk-l,k-1 dk-l,k-2
+,-1 d,_ d,_
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the determinant of which is

det S; 2g4k(2k + g 2)(2k + g 4)(2k + g 3)2(k + ag 1).
For -g,-ag =/- 0, 1, 2,..., a definite system will be obtained independent of c; this
was left open by [5].

It follows from the representation of Dk and Dk and formula (3) that the coeffi-

cient ,(k) of the moment matrix Mk is given by

m(k) Z(k) 1)0,0 0,0 m k N,

where

-kg2(g + k 2)
o,o (g + 2k 3)(g + 2k 2)2(g + 2k 1)"

Since Mo 1 -(k)
"oo,o 0 for a given admissible g and for all k E No. Assume that

the system is positive definite; then ,(k)
’0o,o > 0 for all k E No. An inductive argument

implies that g < -(2k- 1) for all k N, which is obviously impossible.
Nonvanishing elements of M*__ 1"

m mi_ --(i 1)(i 2 + g)(2i 3 + g), 2, 3,..., k

m mi,i g(-2ik + 2k agk + 3i2 5i + 2iag + 2 ag),
1,2,...,k,

ram** g2(k- i) i=1 2 k-1i,i

where m (2k + g 2)(2k + g 3). No element in the superdiagonal vanishes, hence
the matrix condition is satisfied. The system is definite and not positive definite if
and only if -g,-g N0; in this case also the rank condition (6) holds.

Equation (5.55). Differential equation:

(x +) +( +)+x + .
MonomiMs"

k-2() + ( i)( + )- +( i)( ) +( i)-_.
Nonvanishing coefficients a. and b

z,z z,z.- z,z

Nonvanishing coefficients in the recursion"

c.= -2k, .= -(2k- 2i + 2)
d,_ -i, d, ( i)(a + ),
d,_ -( + ), d, (a i)(- + ).

Thus we obtain

( 1)

-1

-k k(k- 1).. _(a_ ) .
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which is of rank k + 1 for all a.
In [5] it is shown, and it can be easily verified by the induction formula (3), that

the moment matrix Mk k E No has vanishing elements m!k). for k < i + j and that
,3

the. cross-diagonal elements are given by

re(k)
i,k-i (--1)i!(k --i)!, 0 _< _< k.

Nonvanishing elements of M*_ 1"

** --(k-i)(2i-2-a)** -k + 2i- 1 rni,i+.mi,

Hence, the system is definite, not positive definite, for all a; the rank condition (6) is
also satisfied.
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CONVEX APPROXIMATION BY RATIONAL FUNCTIONS*
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This paper is dedicated to Dick Askey and Frank Olver on the occasion of their birthdays.

Abstract. In this paper, the convex approximation to Ixl and to convex functions with contin-

uous derivatives are investigated. In the first case, the approximation order Cle-c2v-d is achieved by
using H quadrature. In the second case, the estimate f(x)- Rn(x) I_ end_ is proved, where
is any positive real number.

Key words, convex approximation, rational functions

AMS subject classifications. 41A20, 41A25, 41A29

1. Introduction. The main result of this paper brings a convex approximation
by rational functions to a function f(x) e Cony [a, b]Cl[a, b]. The idea for this
work comes from a proof to Newman’s conjecture (see [3]). Because of its nonlinearity,
rational approximation is inherently more difficult than polynomial approximation.
The restriction of "form fitting" makes convex rational approximation an even more
difficult problem, and very few results are known.

Let Rn denote the set of all rational functions. We first construct a convex
approximation to Ixl on [-1, 1], and then we extend this result to the whole real line.
Since f(x) can be approximated by a polygon, we obtain

R(f) < C IIf’llc[a,b]
n2_e

where R(f) is defined by

R(f) inf
r(x)ERn

r(x) is convex

f(x) r(x) llc[a, b

2. Convex approximation to Ix[ on [-1, 1]. The function Ix[ plays a very
important role in approximation theory. As a consequence, rational approximation
to Ixl has been intensely studied in [2], [4], and [5]. Since the original construction of
Newman [2] is in fact a comonotone approximation to Ixl, it is natural to hope that
the same or a modified construction can give a convex approximation to Ixl. However,
this is not the case, because any function that interpolates Ix] cannot be convex.

The existence of a convex approximation to Ix[ comes from the fact that the
function x arctan(Nx) can also give a good approximation to Ixl for large N. Although
arctan(Nx) is not a rational function, its integral representation and the theory for
super quadrature make it possible to construct a rational function which gives a convex
approximation to Ix I.

From the work of Andersson and Bojanov [1], we have the following theorem.
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Askey (SIAM J. Math. Anal., March 1994, Vol. 25, No. 2).

Department of Mathematics, Temple University, Philadelphia, PA 19122.
Department of Mathematics, Temple University, Philadelphia, PA 19122, until his death in

1991.
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THEOREM A. For i 1, 2,..., n, there exist ti E [-1, 1] and Ai >_ 0 such that

sup
n

f(t)dt E Ai f(ti)
i--1

< C n e-n < C’ e-3v/-d

where D is the unit disk and H (D) is the space of all functions which are analytic
and bounded in D.

Obviously this result can be reformulated by conformal mapping in the following
way.

THEOREM A’. There exist ti E (0, 1) and Ai >_ O, 1, 2,..., n, such that

sup ]01 f(t)dt A f(ti)
i=1

<_ CM e-3v,

where C is an absolute constant and f {z lz- 1/21<_ 1/2}.
Now consider the function gN(x) (2/7r)x arctan(Nx). From elementary calcu-

lus it is easy to prove the next lemma.
LEMMA 1. For x >_ 0 and N > O, we have

(1) O <_ x gN x --2x ];x 1+t2dt < 2
-TrN’

(2) gN(X) __2 fO Nx2

7r 1 -]- N2x2t2
dt

((3) g,N(X 2
arctan(Nx)+

1 + N2x27r 7r (1 + N2x2t2 )2
dt

and

(4) gv(X)
2 2N 2 fo 2N(1- 3t2N2x2) Co- (1 + N2x2)2 - (1 + t2N2x2)3

dt >_
N3.

Before using the quadrature formula to obtain our theorem, we need the following
lemma.

LEMMA 2. For a >_ 0 and f {z lz- 51 <- 1/2} we have

1 + z2a2
< 2 max{2, a}.

Proof. Let z x + iy. For Iz- 51 5, we have

y2 x X2,

and

1 + z2a2 1 + (2x2 x)a2 + 2ixya2,

max
1 + z2a2

1

mini1 + z2a21zEgt
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but

min I1 + za min I1 + (2xe x)a2 + 2ixya21
ZE y2--X--X2

1>- min 11+(2x-x)a+2

1/4 if0 _< x _< 5-

1/2 if1/2 <_z<_ 1

(since 1 xa2 + 2x2a2 _> 1/2),
(since lY] >- V/- v/1 "X _> ),
(since 1- xa2 + 2x2a2 >_ 1).

From the last inequality, Lemma 2 follows.
Using Lemmas 1 and 2 and Theorem A we can prove the following theorem.
THEOREM 1. There exist a constant C and a rational function r(x) of degree n

such that for x [-1, 1]

and
(b) r"(x) >_ o.

Proof. By applying Lemma 1 and Theorem A’ to (2)-(4), we obtain

gx2

1 + z2N2x2
< 2 N x2 max(2, Nx) < C1 N2,

II 2Nx

(1 + z2Nx2)2
< 2 N x (2 max(2, Nx))2 _< C2 N3,

and

2NCl 3z2Nx) ll(1 + z2N2x2)3
HC()

These inequalities imply that

<_ (2N + 6 N3 x2) (2 max(2, Nx))3 < C3 N6.

(5)
2

n Nx2

gN(X) z-. 1 +71"
i--1

_< C4 N2 e-3v/-,

9’N(X)
eNx

Ai 2x2N2 2r (1 +t
<_ C5 N3 e-3v,

and

(6)
n

g(x) 2EAi 2N(1-23tN2x2)22a
ri= (1 + tiN x )"

<_ C6 N6 e-3v/-,

respectively. Let

r(x) -2 1 Nx2
Ai 2 2 2"7r l+tix N
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By (5) and (1), we have

(7)
2 N2 e_3vIlxl- (x)l _< Ilxl- gN(X)l / IgN(X) r(x)] _< -- + C4

Pick

1 (C_) " -N= e3

in (7), so that for x >_ 0 we have

From

66 N9 e_3v < 1,
Co

we find that

C6 N6 e-3v < N3"

Then by (4) and (6) we see that for x > O, r"(x) > 0. Since r(x) and r"(x) are even
functions, and since we have shown the necessary results for x >_ 0, Theorem 1 is
proven for x e [-1, 1].

3. Convex approximation to f(x) e Cony [a, b]Cl[a, b]. Now, we consider
the convex approximation to f(x) e Conv [a, b]C [a, b], the space of all convex func-
tions with continuous derivative. This space was the first function space on which the
rational approximation was shown to be better than the polynomial approximation.
The main result we have obtained is the following theorem.

THEOREM 2. For every e > O, n large and f(x) E Cony [a, b]Cl[a, b], there
exists a rational function r(x) of degree n which is convex on the interval [a, b] such
that

IIf(x)- r(x)llC[a b] < C
Iif’llC[a, bl

n2_e

where C is an absolute constant.
Before we give the proof of Theorem 2, we need the definition of the ski-slope

function and some preliminary results.
DEFINITION 1. The "ski-slope" function k(x) on x [0, oc] is defined by

k(x) l-x, O <_ x < 1,
0, x>_l.

We first prove that any convex polygonal function g(x) on [0, 1] can be written
as a linear combination of k(x).

LEMMA 3. Given the interval [0, 1] and a partition of the interval 0 xo <
xl < < XN 1, let g(x) be any convex polygonal function on [0, 1] with vertices
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Xo,... ,XN such that g(x) is a nonincreasing function and g(1) 0. Then there exists
a linear combination of k(x), defined by

N-1

i=0

with

aN-1
(x_)
1 XN_

and

N-1

g(x{)- E ajk( x{ )
j--i+l Xj+l

ai Xi1
Xi+l

i=N-2, 1, 0

such that

(s)

and

K(x) g(x) for x e [O, 1]

(9) 0 < a < 21lg’llL[O,11.

Proof. By the definition of k(x), for 0, 1, N, we have

x

Xi+
O,

0 < x < xi+,

x >_ x+.

Therefore, for x E [xi, xi+l], 0, 1, N- 1, we have

(10)
N-1

r (x)K(x) aj k X}41
j-=i

and

N-1

r (:)K(x) ai k X’;+I - j=i+laJ k j+;.

N-1

g(xi)-- E ajk( Xx.+l ) N-i
j--iA-1 ( Xi ) ( Xi )1 Xi

k + E ajk Xj;Xi+ j-=i+l
Xi+l

N-1 N-1

+ a x =(x).
j--i+l

Xj+I j---i+l

Obviously, K(XN) K(1) 0 g(xg). Thus we have proved that (8) holds for
x xi, O, 1, N. Since K(x) is also a polygonal function with the same
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vertices as g(x), we have K(x) g(x) for x e [0, 11. Now if we assume that ci is the
slope of g(x) on the interval [xi, x+l], then c- c+1 _< 0 for 0,..., N- 1, and by
(10), we have

N-1

Eajk( x )=g(x)=ci(x-x)+g(xi) xE[x,x+l].
j--i Xj+I

Since the left-hand side is just a straight line for [0, x+l], then in fact we have

N-1

ajk( x ) (x- x) + (x) e [0,X+l].
J=

xj+

Therefore, we obtain for 0,..., N 2,
N-1

j=i+l Zj+I

1
Zi+l

( (+( ++(+1
1

Zi+l

x+ (c+ -c) >_ O.

Finally, since 0 <_ x+l <_ 1, for 0,..., N 2, we have

0 <_ a <_ 2max Icl <_ 211g’llL[O 11"
In addition, these inequalities hold for aN-1 by its definition and the mean value
theorem.

LEMMA 4. For f(x) Conv[a, b] N Cl[a, b], there exists a partition of [a, b],
a xo < xl < < XN b such that the polygonal function g(x), which has the x ’s
as its vertices and interpolates f(x) at the xi ’s, satisfies

(11) IIf(x) g(x)llC[a,b <_ 2(b- a) ga

Proof. Without loss of generality, we can assume that [a, b] [0, 1]. Let

f(x) f’ (O)xF(x)
if,(1)_ if(0)["

Then we have that F(x) e Cony[0, 1] N C1[0, 1],F’(0) 0, F’(x) _> 0, and F’(1)
IIF’(x)[Ic[o,1] 1. Since x + F’(x) is an increasing function on [0, 1], the xi’s which
satisfy xi + F’(xi) (2i/N) for 0, 1,..., N form a partition of [0,1]. Now let gl(x)
be the polygonal function with the x’s as its vertices, and let gl(x) interpolate F(x)
at the xi’s. For x [xi-1, xi] we have

IF(x) (x)l < (x- _)[F’(x) F’(x_)]

1 F 2< --[Xi- Xi--1 -- (Xi)
-4

_1 (_)
2 1

4 N2
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Now let g(z) If’(1)-f’(0)[ ffl(x)+f’(0)x to have (11) hold for [a, b] [0, 1]. Finally,
for a general closed interval [a, b], (11) holds by a linear transformation. [3

COROLLARY 1. If N >_ 2, f(x) e Conv[0, 1] C C1[0, 1], f’(x) <_ 0 and f(1) 0,
then there exists a partition of [0, 1], 0 x0 < Xl < < Xg 1, and a function
K(x) as defined in Lemma 3 such that

1
(12) xl N2

and

(13) IIf(x) K(x)llc[o, ] 6
N2

1
Proof. The partition of [0,1] is obtained by setting x - and applying Lemma

4 to I(x) on the interval [xl, 1] with N replaced by N- 1. Let g(x) be the resulting
polygonal function with g(0) f(0). We then have

If(x)- g(x)l <_ [Xl- 0][f’(xl)- f’(0)] _< 2 Ilf’(x)llc[o,1]
N2

for x e [0, x l]

and

If(x)- g(x)l 2 ( 1 ) IIf’(x)[[c[0, 1]
1-- (N )- <_6

N2
for x E [xl, 1].

Corollary 1 then follows from Lemma 3.
Now we extend the results of 2 into the whole real line.
LEMMA 5. Let be a positive integer and let

function
Define the rational

2 #x
2

r(x) )_ Ai
r

i=1
1+ 2 2#2,

where the Ai’s and the ti’s are constants determined by Theorem 1.

C
(14) Illxl r(x)l <_ -,

Then for x

2 (arctan(# x) +

and

1 + x2p2 + O

r (1 +x2#2)2 + O

In addition, for xl >_ 1 we have

(17) Ir(x)l _<_ C x2,

I ’(x)l < eCixI,
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and

(19) I"(x)l 8C,

where C is a constant.
Proof. (14)-(16) are direct results of Theorem 1, and by the definition of r(x),

for x _> 1, we have

2 2#x 2r(x)Ir’(x)l A (1 + t#22 22X XF
i=l

2#(1 3t2#2x2)2n 2t2X2)3(l+t
< ’(x) ’ (x) ’ (x)

-t-3 =4

Solving these two differential inequalities with the initial condition r(1) 1+O(e-/3),
we find that (17)-(19) hold for x >_ 1. These results also hold for x _< -1 by the sym-
metric property of r(x).

From Lemma 5 we have the next theorem.
THEOREM 3. Let be a positive integer and set # ex/-5/3. Define r(x) to be the

function in Lemma 5 and let T(x) 1/2(Ix- 11 2Ix + Ix + 11). Also define

[ ( ) (x)3 x-1
-2r +r(20) S(x) - r

3 - 3

(21)
-1

(22) ?1 (X) t:

and

For large we then have

(23)

x2

(t? + x)’

t(x) S(x) (x) + : (x).

(x)a 5 =lxl+O for x e [-3,3],

(24) o x c [-,

C1() IT(x) t(x)l < o x e (-v, ),

(26) t" (x) >_ 0 [1/2,
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and

(27) the degree of t(x) <_ 10,

where C1 is an absolute constant.
Proof. (23) is evident from Theorem 1. (24) and (27) can be seen easily after

some simple calculations. To prove (25), we first obtain

(28)

and

1+O(), 0_<lx[<_l,
r(x) 1+O(1), 1 <_ [x[ _2,

()( )O (,,)- Ix[ >_ 2,

(29) I?I(X)I O (_) for xe [-x/fi, v/-fi],

from (21) and (22), respectively. Now by (23) and (24), for 0 <_ Ixl <_ 1,

IT(x) t(x)t < IT(z) S(x)(z)l +
1

< IT(x)- S(x)l + IS(x)lO
_

/0) , o () o() (__)
Note that for Ixl _> 1, T(x) 0. Because of this fact and by (28), (29), and (24), for
1 <_ xl _< 2, we have

IT(x) t(x)l < IT(x) S()v(x)l +-

() ()(3) < o + -- o

For 2 _< Ixl <_ v/-fi, by (17), (28), and (29) together with T(x) 0, we find

( x)(32) <_O 2- (l+x2)2 +-- <_O ;
Then, (25) follows directly from (30)-(32).

For (26), and from (21) and (22), we first compute

(33) 7’ (x)
(1+ ()

2’
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(34) 7"(x)
_) 2v--1

2v+l )

and for x e [-v/-fi, V/-fi],

(35)

Furthermore, let xo 2- 1/(2)
2--;J be the solution of r/"(x) 0. Then by (33)

and (34), there exists 5 e (0, 1/2] such that

C2/22
(36) max ([r/(x)[, Ir’(x)l, 17"(x)l) <_

(1 + 5)(1 + x2)
x e [xo + 5, V/-fi],

(37) max(]7’(x)l’ Ir/"(x)l) <- (1 + 5)’
x e ,xo 5

and

(3s) max(l’(x)l Ir"(x)l)
_
C32, x e [xo- 5, Xo + 51.

Now from (17)-(19), (35), and (36), together with

(39) t"(x) ’(x)+ "(x)()+ eS’(x)’(x) + (x)"(x)

and

#klim 0 for k > 0,(40) --, (1 + 5)

we obtain

1 C C2 v2
t"(x)>_ -(64+16x+8x2) >_0

(1 5)(1 X)2+ +
for x0 + 5 _< x <_ v/-fi and u large.

For x E [, x0 + 5], by the definition of S(x) and (16), we have

S"(x) r"
3 1) _2r,,(x)

r (1 + (_)2#2)2
-2 # +(1 + ()2#2)2 (1 + (+--)#

[1 ](41) >- #3’
xe ,xo+5

For x e [1/2, xo- 5], from (14), (15), and the definition of S(x), it is easy to
obtain IS(x)I <_ 12 and IS’(x)I <_ 6max_l<x<llr’(x)l _< 12; combining those facts,
0 <_ r/(x) <_ 1, (37), (39) and (41), we find that

t,,(x)>
1 C4 12C22 12C2u2 [I ]- #3r/(x)- (1+5)- (1+5) >-0’ x ,xo-5
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holds for u large.
Finally, for x E (x0 -5, x0 -4-5), from the definition of S(x) and mean value

theorem, we have

3
S(x) Xo-5- 1

& 3

By the fact that x0-5-1 x0+5+/-1
3 > 0, 3 < 1, and (16), we obtain

(42) IS(x)l <_ --, x e [Xo 5, Xo + 5].

Similarly, if we replace r’(x) in S’(x) by (15) and from that

2 (arctan(#x) + ))"#x _2 --4xpt3

1 + x2#2 r (1 + x2#2)a’

we have

S’(x)
2 -42#3 / 1 )3- (1 + 2)3 - O xo-5- 1

& 3 xo+5+l)3

and

(43) I ’(x)l <_ x e [xo xo + 5].

From (41)-(43), (35), (38), and (39), we have that

].t3 r](x)- --C3 -C3 > 0, x [xo 5, xo + 5]

holds for u large. Therefore, we have shown that t"(x) > 0 for x
By Theorem 3 and the fact that k(x) 22/[--) for x > 0, we have the following

corollary.
COROLLARY 2. Fop x [0, x/], let

(x)=2t(x+l) [ (x=2 S (x+12
Then we have

C
(44) Ilk(x) (x)ll

and

(45) "(x) >_ 0.

We are now ready to demonstrate the proof of Theorem 2.

Proof. Without loss of generality, we set [a, b] [0, 1] and for f(x) Conv [0, 1]
C[0, 1], we assume that f’(x) <_ O, IIf’[Ic[0,l 1, and f(1) 0. By Corollary I,
there exist xi and ai, 0, 1, N 1 such that

IIf(x)- E aik x_if__ IIc[o 1] < N2.
i--O Xi+l
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If we set

N-1

i--0

by (12), we have (x/xi) <_ N2 for x e [0, 1]. If N2 <_ V/-fi, from (44), (45), and ai >_ 0,
we obtain

R"(x) >_ 0 for x E [0, 1],

and

If(x)
N-1

f(x)-Eaik(,x+l )
i--0

N-1

Eaik( x---)
i--0 Xi+l

N-1

i--0

6 C
(46) _< - + N--.

Now given e > 0, let N n1-e and u n. For large n we have N2 _< v/-fi and
N3 << #. By (46), and because the degree of R(x) is 10n, we finally get Theorem 2.
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SPLINE WAVELETS OF SMALL SUPPORT*

DEBAO CHENt

Abstract. Every ruth order cardinal spline wavelet is a linear combination of the functions

{N(lm)+l(2x--j),j e Z}. Here the function Nm is the mth order cardinal B-spline. This paper proves

that the single function Ar() (2x), or N() 1) is a wavelet when m and satisfy some mildm+l m+lzx
conditions. As decreases, so does the support of the wavelet. When increases,the smoothness of
the dual wavelet improves. Each wavelet is constructed by spline multiresolution analysis. The dual
multiresolution analyses are given.

Key words, wavelet, dual wavelet, wavelet basis, biorthogonal wavelet basis, B-spline, Riesz
basis

AMS subject classifications, primary, 41A15, 42C15; secondary 41A05, 41A30, 41A58

1. Introduction. The simplest example of an orthonormal spline wavelet ba-
sis is the Haar basis. The orthonormal spline wavelet bases of higher-order spline
wavelets were given by Battle [2] and Lemari6 [20] by using different methods. Co-
hen, Daubechies, and Feauveau constructed biorthogonal wavelet bases of compactly
supported wavelets [11], [13]. The most important advantage of Cohen, Daubechies,
and Feauveau’s construction is that both wavelet and dual wavelet are compactly
supported, and are still symmetric or antisymmetric. In particular, they constructed
compactly supported spline wavelets with compactly supported dual wavelets. As
they pointed out, their theory also can be used to construct noncompactly supported
wavelets. Their contributions have been very significant. Chui and Wang [8], [9]
introduced the following mth order compactly supported cardinal spline wavelet"

2m--2
1

(-, + j).
j=0

Here the cardinal B-splines Nm are defined recursively by the equations

N1 (x) X[0,1)(x),

N(z) (N_ N)(x)= N_l(Z- t)dt, m

This cardinal spline wavelet has been sudied by several other authors as well. (See,
for example, Auscher [1], Micchelli [24], and Unser and Aldroubi [27].) The advantage
of the cardinal spline wavelet is that the wavelet spaces are kept orthogonal and the
wavelets are still symmetric or antisymmetric. The dual wavele is still an ruth-order
spline function. In a previous paper [a], we extended Chui and Wang’s work and
proved that the functions

re+l-11 )j or() (2x-j), -l<c<lm,l;c(x) 21_ (-1 Nm+(j + 1 +
j----1

Received by the editors March 10, 1993; accepted for publication (in revised form) October
14, 1993.
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are also ruth-order compactly supported spline wavelets; here rn + is even and >_ 1
(if/ 1, we assume -2/3 _< c

__
2/3). When c 0, the wavelet Cm,l;o Cm,l is

symmetric or antisymmetric. The dual wavelet Cm,l;0 Cm,t iS an /th-order spline
function.

In fact, every ruth-order cardinal spline wavelet can be written as

1 h’T(l) (2X j)Ca,m,l(X) E aj"m+l

where a {ay } is a real sequence that is either finite or infinite.

We ask the following question: Is the single function mr(l) (2x- j) a wavelet? In"m-t-I
this paper we prove that it is a wavelet when rn and satisfy some mild conditions.
Some proofs in this paper are borrowed from Cohen, Daubechies, and Feauveau [10],
[11], [13] and Chui and Wang [7], [8], [9].

Using the derivative of certain functions to construct wavelets is a typical method
in the construction of wavelet frames and dyadic wavelet transforms [16], [22]. In this
paper, we show that this method is also a source of wavelet bases.

First we define the term "wavelet." For a given function f, we will use throughout
this paper the notation

fj,k(x) 2j/2 f(2Jx- k), j, k e Z.

DEFINITION l. An element of L2(R) is called a "wavelet" if
() {,},ez is a Riesz basis for L:(R), and

(2) its dual basis is of the form {j,k}j,keZ for some function in L2(R).
We also call the dual wavelet of 2. Sometimes we call and dual wavelets.

Following Mallat [21] and Meyer [23] we define the multiresolution analysis.
DEFINITION 2. A multiresolution analysis (MRA) ofL2(R) is a sequence {V}jez

of closed subspaces of L2(R) such that the following hold:
(1) V c Vj+I for all j E Z;
(2) t2y___Vj is dense in L2(R) and N=_Vj {0};
(3) f(x) e V f(2x)e V+I for all j e Z;
(4) f(x) Vo = f(x- k) Vo for all k Z;
(5) there exists a function Vo such that {(x- k)" k Z} is a Riesz basis

of Yo.
It is well known [4], [17], [21], [23] that the B-spline N, can serve as the scaling

function b in Definition 2 and generates the mth-order spline MRA {yjm}jez.
Throughout this paper we use the following convention for the Fourier transform:

(1.1) fw) f(t)e-ti dt.

The Fourier transform of the scaling function N, is

Hence, we have

(-)N,(w)=
1 e i m

iw

k--1
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where

2. Preliminaries. Let mo, o, ml, and fit1 be 27r-periodic functions that satisfy

(2.1) no(0) o(O) ,, ,o() o() o,

(2.2) () -o()m( + ) .,()-o( + ) # o,

and

(2.3) o(.) -( + )/(), () -no( + -)/().

These assumptions lead to

(2.4)

(2.5)
(2.6)

-o()o() +-()() ,
mo()o( + ) +m()( + ) o,
mo(w)no(w) + mo(w + 7r)no(w + ) I.

Also, we suppose that the Fourier coefficients of mo and o have exponential
decay, or at least belong to 11. We define, first in the sense of tempered distributions,
the scaling functions and wavelets by

Since we have assumed that m0 and 0 vanish at w r, we can express these
filters in a factored form

2
P()’

2
()"

The following theorem was proved in [11] and [13]. The authors of [11] and [13]
mainly consider the case in which there are finitely many terms in the Fourier series
of too, ffto, m, and 1. But as the authors pointed out, the following theorem is still
true if there are infinitely many terms, having sufficiently decay.

THEOREM 1. Suppose that [-Tr, zr] D1 U D2 L) LJ Dj D1 [A D2 t_J I..j Dk,
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and that there exist q > 0, > 0 so that

Ip(w)l <_ q, w E D1,

[p(w)p(2w) <_ q2, w e D2,

wD1,

w D2,

[p(w)p(2w)...p(2J-lw)[
_

qJ, w e Dj,

Then

< + I 11 I(w)l _< C(1 + I l)

wDk.

with K log2 q and K log2 . If L- K > 1/2 and L- K > 1/2, then the functions, dp, , and 2 are square integrable so that we can define the functions , , 2, and

2 via inverse Fourier transforms. Furthermore we have the following items:
1. The functions and el) are dual scalin9 functions, and they 9enerate dual

MRAs.
2. The functions 2 and are dual wavelets in the sense of Definition 1.
3. IfL-K > 1, L-K > 1, and K and K are not integers, then 4), CL-K-,

and , CL-K-1.
Let us consider any 11 sequences {pk} {qk } and their associated Laurent series

P(z) - E Pkzk’ Q(z) - E qza,
k’---cx3 k---

which satisfy P(1) 1, P(-1) Q(1) O.
determinant

P(z)
p(-z)

If Ap,Q(Z) # 0 on Izl- 1, we define

(2.7)

Following Chui [4] we consider the

If we let

Q(z)
Q(-z)

Q(-z) 1
G(Z)-- Ap,Q(Z) 2

gnzn
n-----(:x

-P(-z) 1
H(z) Ap,Q(Z) - E hnzn"

mo(w)=P(e-’i), Cno(w)=G(e-i), ml(w)=Q(e-i), l(a))-H(e-wi)

then the conditions (2.1)-(2.3) are satisfied.

3. Main results. In this section, we construct a special kind of biorthogonal
wavelet basis. Our wavelets are the B-spline’s derivatives of certain orders which are
dilated and, in some cases, translated. One advantage of our wavelets is that the
wavelets are quite simple and have relatively small supports. We define- T(/) (2x) if m + is odd, or (m + 1)/2 is odd,
(3.1) ,t(x)

2-() (2x- 1) if (m + 1)/2 is even.
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LEMMA l. Let z e-1/2. Then

where

f 2-1(1 z)
(3.2) Qm,t(z)

2-1z(1 z)
if m + is odd or (m + 1)/2 is odd,

/(. + )/2 .
Proof. We prove only the first case. For the second case, the proof is similar.

Recall that

k=0

When m + is odd or (m + 1)/2 is odd, we have

k=0

Hence,

When m + is odd or (m + 1)/2 is odd, we have

2-m(l+z)m 2-1(l-z) =2-(m+l)((l+z)m+lx.,, () _( z) -(1 + z) -(1 z)m+l).

When (m + I)/2 is even, we have

2-m(1 + z)m 2-tz(1 z)Ap,,Q.,(z) 2_m(1 z), _2_tz(1 + z)
-2-(m+l)z((1 + z)m+l + (1- z)m+t).

Let z e-i. When m + is even, whether (m + 1)/2 is even or odd, we have

IAP.,,, (z)l-- cos+ -+w sinm+z #0.
w

When m + is odd, we have

AP’Q’(z)= (l+e-wi)re+t2 (1--e-Wi)re+t2
2

(- g

Hence

[Apm,Qm, (Z)] COS2(mT/) -+W sin2(m+/)

Therefore, we can define the following functions on the unit circle.
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(3.3)

q,(-)

Hmz(Z) --Pm(--Z)
Ae,,(z)

e(+z)
( + z)+- ( z)+’
when rn + is odd, or (m + 1)/2 is odd,

2"(1 + z)
(1 + z)m+t + (1 z)m+t’
when (m + 1)/2 is even,

-2t(1 z)"
(1 + z)+ ( z)+
when m + is odd, or (m + 1)/2 is odd,

2tz-(1 z)m

( + z)+ + ( z)+’
when (m + 1)/2 is even.

We define the following functions.

(3.4)

(3.5)

By (3.3), we know that

2
m,t(w),

where

(3.6)
2m+le-mwi

p-m,Z(w) (1 + e-)"+t (1 e-)"+t’ when (m + 1)/2 is odd,

2m+le-mwi
(1 + e-)m+t + (1 e-)m+t’ when m +l is odd, or (m + 1)/2 is even.

By (1.3) we know that the function N, satisfies the conditions in Theorem 1 with

q 1. We need to prove that the function Nm,z satisfies the conditions in Theorem 1

so that we can obtain the dual scaling function Nm,t and dual wavelet ,, via inverse
Fourier transforms. We see that

(3.7)

1

sinm+l (w/2) + cosm+l (w/2)
Im,()l 1

(sin2(m+t) (w/2) + cos2(’+)iw/2))1/2,

when rn + is even,

when rn + is odd.

THEOREM 2. Let m,t be defined as in (3.6). If 2 <_ m + <_ 6 or m + 8, 10,
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then we have

Im,l(W)m,l(2W)] <_ m,l --If m + 7,9, or m + > 11, then we have[

7r 27r

7r 27r
3- 3"

3 ]= D1 t2D2 such that

7r 27r

w6D1,

Om,l log2 { log2(1 + 3(m+t)/2) -m
5l log2(1 + 3m+t)-m

if m + is even,

if m + is odd.

By Theorem 1 and Theorem 2 we have the next theorem.
THEOREM 3. If Om,1 > 1/2, then the functions Nm and Nm,1 are dual scal-

mling functions which generate the dual MRAs {VTM} and {V ’}, respectively. The

functions m,l and m,t are dual wavelets in the sense of Definition 1. In addition, if
am,t > 1, then the dual scaling function Nm,l and the dual wavelet m,t are in C’,-1.

Theorem 3 is mainly based on Theorem 1 and Theorem 2. It has been pointed
out in [11] and [13] that the conditions in Theorem 1 are not strictly necessary to
ensure that b is in L2(R). But we can prove a weaker inverse theorem on the square
integrability of the function .

THEOREM 4. Let

rno(w)=(l+e-i)L fi2
p(w), b(w) mo(2-kw).

k=l

Suppose that p is continuous and

’p(w)’=f(sin2w) (2r)
Then the function is not in L2(R).

Proof. Since p is continuous, we can choose e between 0 and M- L such that for
some 8 > 0,

Ip()l > 2+, -6, V + 5

--2M, M>L.

Let

I,,t(W),,I(2W)m,t(4W)I <_ ,, - w e D2.

We postpone the proof of Theorem 2 to the next section. It is easy to see that

2m+l

() 1+ 3(m+l)/2
if m+l is even,,

2+
1 + 3+t

if m + is odd.
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For any nonnegative integer j we have

)sin +w =sin cosw+cos -.2y

2r 2r
(- 1)J sin -- cos w + cos 5 sinw

=(-1)sin(2 w+ (-1)j )
Hence,

sin w

2j 5,
2r 2j ]Ip()l > 2n+, e V V /

If w E [" 2n 5, -" 2n + 5], then 2-kw [2_. 2n-k 2-kS, _2___. 2n-k + 2-kS],
1, 2,... n. Consequently, we have

sin(w/2) 12L oo

./2 II Ip(2-)] d
k--1

sin(w/2) 2L n

II Ip(2-k)l2 d
/2 =1

f.2+I()1 dw > E J.2-5
I()1 dw +oo.

Since the function Nm,z satisfies all the conditions in Theorem 4 and Im,Z(2r)1
2t-’, we derive the following theorem.

THEOREM 5. If m,t < O, then the functions Nm,t and ,, are not in L2(R).
Consequently, the function ,, is not a wavelet when am,Z < O.

There is still a gap: "0 <_ am,t <_ 1/2." However, this gap is not too large. It is
easy to see that for any fixed rn, there is at most one integer such that am,t is in

’Sthis gap. When I <_ rn <_ 20, one can verify that only the following twelve CXm,t are
in the interval [0, 1/2].

a2,1 0.403677,
o10,3 0.302257,
oz15,4 0.0571438,

O3,1 0.321928,
O11,3 0.095397,
OZ17,5 0.434596,

O6,2 0.357552,
O13,4 0.472181,
O18,5 0.227069,

a7,2 0.132368,
oz14,4 0.264736,
oz19,5 0.0195527.

We have seen that the length of the support of the wavelet m,t is (rn + 1)/2.
When < rn, the length of the support of the wavelet m,* is even less than the length
of the support of the scaling function Nm. The smoothness of the dual wavelet m,Z
is am,t 1. The smaller is, the smaller the support of the wavelet m,i. The larger
is, the better the smoothness of the dual wavelet m,t. For applications, if one wants

where C1 and C2 are positive constants that do not depend on n. The last inequality
is true for sufficiently large n. Hence,
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the small support of the wavelet, one can choose small 1. If one wants the better
smoothness of the dual wavelet, one can choose large 1.

Although the dual scaling functions and dual wavelets are noncompactly sup-
ported, the algorithms should be still manageable since the dual filters are fractions
of trigonometric polynomials and can be implemented in a fast recursive way.

We compare the wavelet m,t with the wavelet m,Z- In [3] we proved that the
function

re+l--21 XT()Cm,t(x) 2z_1 (-1)JNm+t (j + j..m+t(2x j)
j=0

is also an mth-order spline wavelet. The support of the wavelet Cm,t is [0, m + l- 1].
The dual wavelet Cm, is an/th-order spline function. If 11 m + 2/2 2, then the
functions m,Z1 and Cm,t. have the same length of the support. The smoothness of the
wavelet m,tl is

Cm,t 1 log2(1 + 3(m+m+2t2-2)/2) m 1 log2(1 + 3(m+t2-)) m 1

> (m + 12 1) log2 3 m 1 12 log2 3 + (m 1)(log2 3 1) 2,

which is much better than the smoothness of the wavelet Cm,Z, except when m
11 12 1. In this aspect, the wavelets m,t are better than the wavelets Cm,t. But
the dual wavelets m,t are no longer spline functions except when m 1. In this
aspect, the wavelets Cm,t are better than the wavelets m,t.

At the end of this section we mention an interesting fact. Obviously, for any
integer j, the function (.-j) is a wavelet if the function is a wavelet. In general, the
function b(.- 1/2) is not a wavelet. For example, when m +l is even and Cm,t > 1/2,
the function m,t is a wavelet but the function m,Z("- 1/2) is not a wavelet. But when
m + is odd and OZm, > 1/2, both m,l and Cm,l(X) m,l(X- 1/2) are wavelets. In
fact, we have

and

IAP, ,Qk,, (z)l (z)l 0, Izl 1.

Hence, we can prove that (m,(x) m,(X- 1/2) is a wavelet when , > 1/2.
When m + is even, the center of the wavelet m, is an integer or half-integer.

When m + is odd, the center of the wavelet , is the fourth integer (m + 1)/4.

4. The proof of Theorem 2. We have seen that Theorem 2 is essential in our
constructions. In this section we shall prove Theorem 2. Recall that

1
when m + is even,

sin+t (w/2) + cos+(w/2)
(4.1)

(sin2(m+)(w/2) + cos2(m+)(w/2))$/2’
when m + is odd.

Let
sin2(w/2) x, f(x) 4x(1 z), fg.(x) f(f(x)),

1 1
Wp(x) xp + (1 x)p’ Fp(x) Wp(x)

xp + (1 x)p.
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If m + is even, by setting p (m + 1)/2 we have

I,,t(w)l Wp(x), I,,t(2w)l-- Wp(f(x)), I,,t(4w)l- Wp(f2(x)).

If m + is odd, by setting p m + we have

]m,t(W) V/Wp(x), ]im,t(2W)] V/Wp(f(x)), Im,t(4W) V/Wp(f2(x)).
It is easy to see that Theorem 2 is equivalent to the following theorems.

THEOREM 6. Let 1

_
p

_
5. We have

31 1 3
(4.2) Fp(x) > Fp - when 0<x< <x< 1

-4’ 4-

1 3
(4.3) when - _< x -< -’4

THEOREM 7. Let p >_ 6. We have

(4.4) Fp(x) >_ Fp -(4.5) Fp(x)Fp(f(x)) >_F (),
(4.6) Fp(x)Fp(f(x))Fp(f2(x)) >_ Fp

1 3
when O < x < < x < l

-4’ 4-

1 3
when <x<0.41, 0.59<x<-

when 0.41 < x < 0.59.

Since Fp(x) Fp(1 x) and f(x) f(1 x), we only need to prove the above
theorems for 0.5 <_ x <_ 1. First we prove Theorem 6.

Proof of Theorem 6. Since the function Fp is increasing on [1/2, 1], the inequality
(4.2) is obvious.

Let

Ap(x) Fp(x)Fp(f(x)) (xp + (1 x)P)(ff(x) + (1 f(x))P).

The derivative of the function Ap is

(4.7) Ap(X) =p(xp-1 (1 xF-1)(f(x) + (1 f(x))p)
4p(xp + (1 x)p)(fp-l(x) (1 f(x))p-)(2x 1).

When p 1, the function F1 is the constant 1, and the inequality (4.3) is obvious.
When p 2, 3, we have

A2(x) 2(2x- 1)(6(1 f(x))2 1),
A3(x) 3(2x- 1)3(6x- 1)(6x- 5).

When 1/2 _< x _< 3/4, we see that 3/4 _< f(x) <_ 1. One can verify that the functions

A and A are negative on (1/2, 3/4]. Hence, the functions A2 and A3 are decreasing
on [1/2, 3/4], which proves inequality (4.3) for p 2, 3.

Since the functions (xp-1 (1 x)p-I)/(2x 1) and xp + (1 x)p can be expressed
as polynomials in f(x), the function Ap(X)/(2x- 1) can be expressed as a polynomial
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in f(x) also. By a simple calculation we have

A4(x) -(2x 1)(6fh(x) 50f4(x) + 108f3(x) 126f2(x) + 81f(x) 20)
-(2x- 1)B4(f(x))

Ah(X), -5 (2x 1)(30/5(x) 150/4(x) + 264f3(x) + 231f2(X) + 106f(x) 20)

5(2x_ 1)Bh(f(x)).
4

The zeros of the polynomials B4 and B5 are

0.537296, 0.542624 + 0.927367i, 0.92954, 5.78125

and

0.52765, 0.528725 + 0.525581i, 0.906141, 2.50876.

Looking at these zeros, we see that the polynomial Bp, p 4, 5 has only one zero
in [3/4,1]. Because the function f is decreasing on [1/2, 1] and /(1/2) 1, and
/(3/4) 3/4, the function Ap, p 4, 5 has only one zero Xp in (1/2, 3/4]. Since

A(3/4) -p((3/4)p-1 -(1/4)P-)((3/4)p + (1/4)p) < 0,

Ap(X)
lim p(p- 1)(1/2)p-2- p(1/2)p-3 > O,

x-.1/2 2x- 1

the function Ap, p 4, 5 is increasing on [1/2, Xp] and decreasing on [Xp,3/4]. So
when p 4, 5 and 1/2 _< x <_ 3/4, we have

Ap(x) >_ min[Ap(1/2), Ap(3/4)]
mini(I/2)p-l, ((3/4)p + (1/4)P)2] ((3/4)p + (1/4)P)2 Fp2(3/4)

which proves inequality (4.3) for p 4, 5. 5
When p >_ 6, one can verify that Ap(1/2) < Ap(3/4). That is why we need to

consider the function Fp(x)Fp(f(x))Fp(f2(x)) when p >_ 6. Before we prove Theorem
7, we establish the following lemma.

LEMMA 2. The function Ap(x) Fp(x)Fp(f(x)) is decreasing on [0.7, 3/4].
Proof. In the proof of Theorem 6, we have already seen that this conclusion is

true for p 1, 2, 3. In the following we shall prove that this conclusion is true for
p _> 4. In fact, in Theorem 7, we only need this lemma for p _> 6. Recall that

(1/p)Ap(X) (xp- (1 x)P-)(fP(x) + (1 f(x))p)

-4(xp + (1- x)P)(IP-I(x) (1 f(x))p-1)(2x- 1).

When 0.7 _< x <_ 3/4, we have 2x- 1 >_ 0.4. Since the functions xp + (1 x)p and
fP-(x)- (1 f(x))p- are positive on [1/2, 3/4], we have

(1/p)Ap(X)
<_ (xp-1 (1 x)p-1)(fP(x) + (1 f(x))p) 1.6(xp + (1 x)P)(fP-l(x) (1 f(x))p-1).
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When 0.7 <_ x <_ 3/4, we have 3/4 <_ f(x) <_ f(0.7) 0.84. Hence,

(4.9)

fP(x) + (1 f(x))p (fP-l(x) (1 f(x))p-I)
fP-l(f(x) 1)+ (1 f(x))p + (1 f(x))p-1

< -0./-1,()+ (/4) + (/4F-1

_< -0.16(3/4)p-1 + (5/4)(1/4)p-I

(-0.16.3p- + 5/4)(1/4)p- < O.

The last inequality is true for p >_ 3. Also we have
(4.10)
xP---(1--x)P---I.6(xP+(1--x)p) < xp-I-I.6xp xP-i(1--1.6x) < --0.12xp-1 < 0.

Combining the inequalities (4.8)-(4.10), we see that Ap(X) < 0 when 0.7 _< x _< 3/4.
Hence, the function Ap is decreasing on 0.7 _< x _< 3/4.

Proof of Theorem 7. Since the function Fp is increasing on [1/2, 1], the inequality
(4.4) is obvious.

By Lemma 2, the function Fp(x)Fp(f(x)) is decreasing on [0.7, 3/4]. This proves
the inequality (4.5) for 0.7 <_ x <_ 3/4.

For 0.59 _< x <_ 0.7 we use a different strategy. When p >_ 6, we have

(4.11) (3.001)p 3p + p. 3p- 0.001 +... > 3p + 6.35 0.001 > 3p + 1.

Then we have

(3.001)
2p

(9.006001)
p

(4.12) Fp2(3/4) ((3/4)P + (1/4)p)2 < 4 16
< 0"5629P"

It is easy to see that the function Fp is increasing on [1/2, 1] and the function F,(f(x))
is decreasing on [1/2, (2 + x/)/4]. When x E [a, b] C [1/2, (2 + x/)/4] we have
.(4.13)
Fp(x)Fp(f(x))

_
Fp(a)Fp(f(b)) (ap + (1 -a)P)(fP(b)+ (1- f(b))p) > (af(b))p.

By using the above fact, we can prove that the inequality (4.5) is true for 0.59 _< x <_
0.7. In fact, when 0.59 <_ x _< 0.6 we have

Fp(x)Fp(f(x)) > (0.59. f(0.6))p (0.59.0.96)p 0.5664p > 0.5629p > Fp2(3/4).
When 0.6 < x < 0.62 we have

Fp(x)Fp(f(x)) > (0.6. f(0.62))p (0.6.0.9424)p -0.56544p > 0.5629 > F2(3/4).
When 0.62 < x < 0.65 we have

Fp(X)Fp(f(x)) > (0.62. f(0.65))p (0.62.0.91)p 0.5642p > 0.5629p > Fp2(3/4).
When 0.65 < x < 0.68 we have

Fp(x)Fp(f(x)) > (0.65. f(0.68))p (0.65.0.8704)p 0.56576p > 0.5629p > Fp2(3/4).
When 0.68 < x < 0.7 we have

Fp(x)Fp(f(x)) > (0.68. f(0.7))p (0.68.0.84)p 0.5712p > 0.5629p > Fp2(3/4).
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In the rest of the proof, we need to prove the inequality (4.6). First, by inequality
(4.11), we have

Fp3(3/4) 4P
< < 0"4223P"

Note these facts: The function Fp is increasing on [1/2, 1]. The function Fp(f(x)) is

decreasing on [1/2, (2 + x/)/4]. The function Fp(f2(x)) is decreasing on [1/2, (2 +
v/2- /)/4]. When 1/2 <_ x 0.59, we have

Fp(x)Fp(f(x))Fp(f2(x)) Fp(1/2)Fp(f(O.59))Fp(f2(0.59))
> (/2). 1(0.59). ( A(o.9)F

(0.. 0.9v. o.sva990a), (o.a2aao52),
> o.a::a > F(/a).

Finally, we must mention that all the above numbers are accurate. We did not perform
any rounding.

5. Final remarks. In [3] and in this paper we proved that the functions Cm,;c,
L;(2x- 1), and m, are mth-order spline wavelets. In fact, every ruth-order
cardinal spline wavelet can be written as

() (x j) 0,a(X) 21 aJ "mWl
J

where a {aj } is a real sequence, whether finite or infinite. The function Ca is also
dependent on m and l, but we omit the subscripts rn and 1. The problem is how to
choose these aj’s to ensure that the function is a wavelet. First, we need to choose
a {aj } to be in 11. The Fourier transform of Ca is

where

Qa(z)=
1-z
2 E aiz

Second, we must choose {ai} such that the determinant

Ap.,Qo (Z) Pro(z) Qa(z)
Pm(-Z) Q(-z)

is not equal to zero on the unit circle. Then we can define

a(z)
Q.(-z)

A,,Qo(z)

N,(w) H G’(e-2-ki)’
k=l

-P.(-z)H. (z) =/x,,,o (z)

Third, we need to prove that the function G satisfies the hypotheses of Cohen,
Daubechies, and Feauveau’s theorems so that we can obtain the dual scaling function
and dual wavelet via inverse Fourier transforms. To construct the wavelets m,Z and
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Cm,L;c, we used different strategies to prove that the corresponding functions Ga’s sat-
isfy the hypotheses of Cohen, Daubechies, and Feauveau’s theorems. If the sequence
{aj} is symmetric, then the wavelet and dual wavelet are symmetric (if is even)
or antisymmetric (if is odd). If the sequence {aj} is finite and if the determinant
Ap,,Q, (z) is a monomial, then both wavelet and dual wavelet are compactly sup-
ported. The authors of [13] consider mainly the case in which m + is even. We
also can construct compactly supported wavelets when m + is odd. At least, it is
interesting from a theoretical viewpoint. If

Na(a) H Ga(e-2-kwi) Aa(e-wi)l(a)’
k--1

where Aa is a Laurent series, then the dual wavelet is an/th-order spline function [3].
In this case both wavelet and dual wavelet are spline functions, and we can obtain
biorthogonal spline wavelet basis. Furthermore, if m l, then the wavelet spaces Wm
are kept orthogonal and the wavelet basis is nonorthogonal only inside a given scale.

Finally, we mention that our method also can be used to construct nonspline
wavelets.

Appendix. In illustration of our techniques, we present some graphs of the scal-
ing functions, the wavelets, the dual scaling functions, and the dual wavelets for rn 1
(fig. 1), m 2 (fig. 2), and m 3 (fig. 3).
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FIG. 1. Graphs of the scaling function, the wavelets, the dual scaling functions, and the dual
wavelets for rn 1.
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FIG. 2. Graphs of the scaling function, the wavelets, the dual scaling functions, and the dual
wavelets for m 2.
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FIG. 3. Graphs of the scaling function, the wavelets, the dual scaling functions, and the dual
wavelets for m 3.
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NONLINEAR STABILITY OF STRONG DETONATIONS FOR A
VISCOUS COMBUSTION MODEL *

TAI-PING LIU AND LONG-AN YING$

Abstract. Strong detonations for a viscous combustion model are studied. These waves are of
.ZND (Zeldovich-von Neumann-Doring) type. It is shown that these waves are nonlinearly stable. The
analysis consists of an energy method for the fluid variable and a pointwise estimate for the reactant.
Strong detonations are compressive, which allows for a priori determination of their time-asymptotic
location by the conservation law for the perturbation.

Key words, detonation waves, nonlinear stability
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1. Introduction. Consider the viscous combustion model:

(1.1)1,
(1.1)2

+ qz) + f
z -K(u)z

[1], [3]. Here u represents the lumped fluid variables and z is the concentration of the
reactant. The viscosity/, the heat release q, and the reaction rate K are positive
constants. Motivated by the study of shock waves for gas dynamics, we require the
flux f(u) to satisfy

(1.2) f’ (u) > 0, f" (u) > 0

so that (1.1) models detonations instead of deflagrations. The concentration z lies
between 0 and 1, with z 1 the unburnt state and z 0 the completely burnt state.
The reaction rate function (u) is smooth and satisfies

(1.3)

1 for u > 0,(u)= 0 foru<0,

’(u) > 0 for 0 < u < 1,

so that u 0 is the ignition temperature.
Well-posedness of the initial-value problem for (1.1) has been established [4], [5].

Our purpose is to study the nonlinear stability of strong detonation waves. There
are two types of combustion waves for (1.1) and (1.2), and they are strong and weak
detonation waves. Both are travelling waves:

(u, qz)(x, t) (s, y)(x at) =_ (s, q)(x at),

4(-c) O, (+cx) 1.
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ur ur + q 0 ?2. *
FIG. 1. Chapman-Jouget diagram for detonations.

By putting (1.4) into (1.1), we obtain ordinary differential equations for (s,y). The
first equation in (1.1) is a conservation law and can be integrated to yield the jump
condition

a
f(u’)- f(ul)
ur +q-ul

In general there are two values, u, and u*, for the left state ul for each given right
state ur and wave speed a; see Fig. 1.

The main difference between the weak detonation (u,, ur) and the strong deto-
nation (u*, ur) is that the former is undercompressive and the latter is not:

a > f’(u.),

f’(u*) > a > f’(ur).

The strong compressibility property (1.6) allows us to determine a priori the time-
asymptotic location of a strong detonation when perturbed. This is done using the
conservation laws

(1.7) (u + qz (s + y))(x, t) dx (u + qz (s + y))(x, O) dx, t >_ O.

The reason this can be done is that no characteristic leaves the detonation and there-
fore a perturbation does not give rise to diffusion waves. A diffusion wave would carry
finite mass and make a contribution to the conservation law (1.7), in addition to that
of the translation of the detonation [2]. A weak detonation, on the other hand, is
undercompressive and a perturbation would give rise to a diffusion wave. As a conse-
quence, the time-asymptotic wave location cannot be determined a priori. Different
analysis is needed for its stability. We leave this to the future.

2. Preliminaries. Travelling waves (1.1) and (1.4)satisfy

(2.1)1

(2.1)2

8 /--1 (--O’(8 -]- y) + f(8) -- C) g(s, y),
K

0), q).
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FIG. 2. Phase diagram for strong detonations.

FIG. 3. Fluid variable profile for strong detonation.

We are interested in strong detonations, such as ul u*. From the compressibility
property (1.6), (u*, 0) is an unstable node for (2.1) and there is a unique connecting
orbit provided that a is not small [3], [4]. The trajectory is not monotone around
(u*, 0) (see Fig. 2):

f’(s) > 0 for r/< o,
(2.2)

f’(s) < 0 for

for some constant 70. For small heat release q, the effect of y in the (2.1)1 is small and
therefore s is almost monotone:

(2.3)

o

0 < f’(s)vdl 51 << 1,

f’(s,/)-a>C for

for some positive constant C; see Fig. 3.

3. Time-asymptotic analysis. Consider a perturbation of the strong detona-
tion (u*, 0; ur, 1)

(u, qz)(x, O) (s, y)(x) + (fi, 9)(x, 0) (u0, qzo)(x).

From the compressibility property (1.6) there is no characteristic leaving the detona-
tion and carrying diffusion waves. Thus the perturbation can cause, time-asymptoti-
cally, only the translation of the detonation. Suppose the amount of translation is x0"

(u, qz)(x, t) - (s, y)(x + xo at) as t -- oc.
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From (1.7), letting t --, oc, we obtain

{(s + y)(x + xo at) (s + y)(x at)} dx (f + fi)(x, O) dx.

Denote by (xo) the left-hand side of the above identity; we have (0) 0 and

’(xo) (s + y)’(x + xo at)dx (s + y)l_ ur + q u*.

It follows that

(xo) + q

xo (ur + q .)-1 (? + )(x, 0)dx.

This determines the time-asymptotic location of the detonation. We may translate
(s, y) so that we can assume, without loss of generality, xo 0, or equivalently,

(3.3) (f + fl)(x, t) dx (f + fl)(x, O) O, t >_ O.

This is used by considering the antiderivative v(x, t):

(3.4)

(u + qz)(x, t) (s + y)(x at) + vx(x, t),

v(x, t) =_ (f + f])(, t) d, v(+oc, t) O.

By integrating the difference of (1.1) and (2.1), we have

vt + f(s + vx + q( z)) f(s) vxx + q( Z)x,

(3.5) v(x, O) (f + f)(rl, O)d,

(3.6)

( /o ) ( /o(z )(x, t) zo(x) exp -g (u(x, T)) dT (Z)exp -g (s(x, T)) dT

(3.5) can also be written as

(3.7) vt + f’(s)vx vxx + q(( z)x f’(s)q(( z) + O(1)(v2 + q2(( z)2).

4. Stability analysis. We start with the standard energy estimate by integrat-
ing (3.7) times v:
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With this and (2.2), we have from Cauchy-Schwarz that

/5 /5v2(x, T) dx 4- v2 dx dt 4- [f’(s)z[v2 dx dt
t+o

(.) (, o) o()[q( ) q( )]
T

+ ,()2 dx

Here we have made the following a priori assumption:

(4.2) sup ]v(x,t)] 52 << 1.
-c<x<c,O<t<T

The second and third terms on the right-hand side of (4.1) are estimated, respec-
tively, by using (3.6), (1.3) and (3.5), (1.6). We start with the latter by first rewriting
(3.5) as

vt 4- (f’(s) a)vn vnn 4- q( z)n f’(s)q(( z) 4- O(1)(v2 4- q2( z)2),
rl x-at,

and so

vv (f’(8) cr)-I [--vt 4- vrl 4- q( z)v f’(s)( z) 4- O(1)(v2 4- q2( z)2)].

Integrating this times v over (-oo, r), r < 70, we have from (2.3) that

(4.3)

This and (4.1) yield, for 51 + 52 small,

(4.4) F /o Fv2(x, T) + v2x dx dt + If’(s)xtv2 dx dt

/5 /o /5<_ v2(x, O) dx + [O(1)q2( z)2 + O(1)vq( z)] dx at.
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We now turn to the estimates for - z using (3.6). From the hypotheses (4.2) and
(1.3), there exists a positive constant D and /1, /2, r2 > r/1 > r/0 such that

(a.v)
(a.s)

(u)=0 forx-at>rl2,
(u)>D forx-at<i,

f’(s) < -D for rl2 > x- at > ri,

if(s)- a > D for x- at < rll

cf. Fig. 3. Thus we have from (3.6) and (4.5) that

(4.9)

The region rll < x- at < r/2 has a finite width in both x and t directions and therefore
we have from (3.6) and (3.4) that

(U(X,T))dT)]

where we have used the Cauchy-Schwarz inequality. This and (4.7) yield

(q(z ) + vz)2(x, T) dT] dx dt
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Hence we have, for q small,

We finally turn to the same integral as (4.9) and (4.10) but for the region
by using (4.6) and (3.6)

(4.11)

[ /0’ ](z )(x, t) 0(1) Izo(x) (x)l + I(s(x, T)) (U(X, T)) d

exp (-K fot (s(x, ’)) dT)
o( )[Izo(x)

+ I(s(x, 7)) (u(x, T))ldT exp(-KDt2(x)),
(=)

t (x) max((x- 2)/a, O), t2(x) =-- max((x- )/a, O).

In particular, we have for some C > 0,

(z )(x, t) O(1)(zo(x) + (x))exp(-Ct) for x < 0.

Thus

(4.12) [q2(z )2 + Ivq( z)l] dx dt O(1)q(q + 52) (zo(x) + (x)) dx.

Again from (4.11), for x > 0 and

(z-)(x,t) 0(1) Iz0(x)- (x)] + I(s(x,T))--(u(x,z))ldT exp(-Cl-l[),
(=)

whence

O(1)v2 x e-Cl=-tl dx dt I + II +III.
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Clearly,

I O(1)q Izo(x) (x)l2 dx

and, by a change of order of integrations,

III <_ O(1)q O(1)v2(r], )e-Cl,I dr] dr,

Thus we may apply the same procedure in deriving (4.4) from (4.3) to obtain

III O(1)q [q2(_ z)2 + O(1)vq(- z)+ f’(s),v2] dx dt

Tat
O(1)q [q2( Z)2 + O(1)lvq( Z) + ]f,(s)Vv2]] dx dt.

From (3.4) and Cauchy-Schwarz we see that

II < q O(1)
-w.)/

--q 0(1)
-v.)/

2

(Iq(z )1 + Ivl)(x, ) dT e-Clx-tl dx dt

(q2(z )2 + vz2)(x, T) dT] Ix at[e-Clx-tl dx dt

We conclude from these estimates for I-III and (4.9)-(4.12) that, for q small,

(4.13)

[O(1)q2(_ Z)2 + O(1)qv(- Z)] dx dt

O(1)q xlzo(x (x)l dx + O(1)q (zo(x) + (x))dx

/o’/_/ o(x)q (If’(s)lv= + v2) dx dt.

Finally, we have from (4.4) and (4.13),.for q + 51 -4-52 sufficiently small, the following
main energy estimate:

(4.14)
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We now state our stability result.
THEOREM. Suppose that q is small,

(uo(x) s(x)) dx and (zo(x) (x)) dx

are sufficiently small in the space H3(-oc, +oc), and that as x --,

 o(x)
dk

dxk
(zo(x) (x)) O(Ixl-2-,),

k 0,..., 3, for some e > O. Then u(., t)- s(.- at) and z(., t)- if(.- at) decay to
zero in the L(x) as t --Proof. From our hypotheses, the energy estimate (4.14) becomes

v2(x, T) + (v2x + If’()lv2) dx dt O(1)6,

for a small constant 5. By similar arguments we may use the differentiations of (3.4)
and (3.5) to obtain energy estimates for higher derivatives of v

dx dt O(1)6,

dx dt 0(1)5,

Wl --- Wx.In turn these estimates imply that the assumption (3.5) holds by the Sobolev inequal-
ity. In fact, the same arguments also yield the equicontinuity of the L2 norms of w
and wl. Since their double integrals are bounded, it follows that

fS w2 x, T) dx - 0 as T -- c.
To finish the proof, it remains to show that one of the quantities, (u- s)(x, t) and
(z- ()(x, t), goes to zero as t --From (3.6)

(u s)(x, t) w(x, t) q(z ff)(x, t)

(/ow(x, t) q(zo(x) (x)) exp -K (u(x, T)) dT

q(x) [exp (-K fo’ (U(X, T)) dT) exp (-K/o (s(x, T)) dT)]
w(x, t) -t- O(1)q(o(x) (x)) + Kq(z) 0(1)( s)(x, "r) dT.

Take a constant E, a > E > 0. We have for x > Et,

O(1)q(zo(x) (x)) O(t-2-e) --* O.
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Thus it follows from Gronwall’s inequality that (u-s)(x, t) --, 0 as t --, O. For x < Et,
we have from (3.6) and (4.6) that

(z-)(x,t)-O(1)(zo-)(x)exp(-KD(t x-l))a
O(1)exp(-t[1 D/a] / i/a) --, 0 as t --, O.

This completes the proof of the theorem.
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APPROXIMATION PRÈS DU TEMPS D'EXPLOSION DES
SOLUTIONS D'ÉQUATIONS D'ONDE QUASI-LINÉAIRES EN

DIMENSION DEUX*

SERGE ALINHACt

Abstract. For a général quasi-linear wave équation in two space dimensions and Cauchy data
of site e, we construct an approximate solution using thé method of nonlinear geometric optics .

Away from thé blow up time, we obtain arbitrary accuracy near thé light cone .
Near thé blow up time, we make explicit thé behavior of thé solution and of thé error terras .

Key words. équation d'onde quasi-linéaire, solution approchée, optique géométrique non
linéaire

AMS sub ject classification. 35L40

Introduction . Dans ce travail, nous étudions les solutions d'équations d'onde
quasi-linéaires en dimension deux d'espace, pour des données de Cauchy Cô de taille
e .

De nombreux mathématiciens ont contribué à cette étude, parmi lesquels on
peut citer Klainerman, John, et Hôrmander (on trouvera dans [6] une bibliographie
détaillée) .

Il a été notamment établi que le temps de vie- TE de la solution est de l'ordre de
Aô/e2 , et que la solution u est approximée, pour tout A <A0 et t < A 2 /e2 , par une
fonction ua de la forme

R(r -- t w T) où x = r(cos w sin w)1!,,

	

,,

	

,
r 2

T = EV L~

R étant solution d'une équation de type Burger .
Ces procédés d'approximations, qualifiés "d'optique géométrique non linéaire"

sont classiques (voir, par exemple, Di Perna et Majda [3], Majda [8], [9], Hôrmander
[5], ou encore [1]) .

Le présent article a pour but de décrire une construction beaucoup plus précise,
en insistant sur le comportement de la solution ua et de l'erreur près du bord du cône
de lumière, c'est-à-dire dans une zone de la forme - cté < r - t < M (les données de
Cauchy étant supportées dans x < M) .

De plus, on ne se limitera pas à t < A2 /e2 (A < Ao) : on établira les comporte-
ments de la solution et de l'erreur pour

t < A° + 2 A0A1 -0( 1)
e2

	

e

	

e '

c'est-à-dire au voisinage du temps d'explosion de V 2 ua .
La motivation de cette étude est le désir de préciser les estimations connues de

T~ et de comprendre la nature du comportement explosif de u lorsque t --~ TE . Un
premier pas dans cette direction a été fait dans [2] .

*Received by thé editors February 16, 1993 ; accepted for publication (in revised form) September
23, 1993 .

t U ni versité de Paris-Sud, Département de Mathématiques, 91405 Orsay Cedex, France .
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f

SERGEfALINHAC

Cetfarticlefétantfparfnécessitéfassezftechnique,fnousfavonsfadoptéflefplanfsuivant .

•

f

Auf§f1fsontfintroduitesflesfnotationsfetflefproblèmefprécis .
•

f

Auf§2,fnousfrésumonsflafconstructionfetflesfestimationsfdferreursfzonefparfzone,
aprèsfquelquesfcommentairesfdestinésfàfaiderfleflecteurfàfsaisirflesfenjeux .

•

f

Lef§3festfconsacréfàfunefpremièrefpériodefdeftempsfoùflesfinteractionsfnon
linéairesfsontffaibles .

•

f

Auf§4,fonfexpliciteflaftransitionfassezfdélicatefdefcettefpremièrefpériodefau
temps t <fA2/e2 fAf<fA°f, enfrésumantflesfrésultatsfobtenusfauf§5 .

•

f

Enfin,flef§6festfconsacréfàflfétudefpourftf> A2/e2 etfjusqufàfunefdistancefo
duftempsfdfexplosion .

1.fNotationsfetfpositionfdufproblème .
•

f

DansfR3 , onfnote fx°,fxl, x2f lesfvariables,fenfutilisantfsouventflafnotation
commode x°f= t, xf= fXi,X2f .

Lesfcoordonnéesfpolairesfen fx1, x2f serontfalorsfnotées fr,fwf, avec rf=ffxif+
x2f1/2 xlf=fr cosfw, x2 =fr sinfw,fwlf=fcosfw, W2 =fsinfw, aw =fX152 - x2 al .

Pourfuneffonction f fx,ftf, onfnoterafparfabus

1,2
Iffx,tf1 2 dxJ et

f

IlflI o =fsupflffx,tfl,

=fg

lesfnormesfL 2 et L°° de ffàft fixé .
•

f

Onfconsidèreflféquationfdesfondesfquasi-linéaire à coefficientsfréels

f1 .1f

f

a?uf- / x uf-+- g akufa uf=f0,

oùflafsommationfestfétenduefauxfindicesf0 <fi,fj,fkf<f2, ak =fa/axk, g
g00 =0, Lux =8?-I-9 et D =fat - Z .

Avecfw°f_ --1, onfdéfinitfcommefdansf[5]

f1.2f

f

gfwff=fgfwjwj wk.

Onfsupposefdonnéesfdesffonctions u°ffx, ef, ulffx,fef, réellesfdefclassefC°°fdans
Rfzfxf[0, CO[, supportéesfdans 1X1 <fM, pourflesquellesfonfa

u°fx, eff_ efu?ffxff+ 62 14fXff+ . . ., ul fx, eff_ efuiffxff+ e2 u2 fxff+ . . .

Onfconsidère,fpourfef>f0,flefproblèmefdefCauchy

f1.3f

f

fmouf+ g akua~uf=f0,fufx,f0ff=fu°fx, ef , atufx,f0ff=fulffx, ef .

Onfsefproposefdefconstruirefunefsolutionfapprochée ua dufproblème f1 .3f, en
portantfunefattentionfparticulièrefauxfcomportementsfdeflafsolution ua etfdeflferreur.
Ja =fCJua + g2~fak ua a ua prèsfduftempsfdfexplosion .

2.fRésultatsfobtenus :fDescriptionfdeflafsolutionfapprochéefetfestima-
tionsfdesferreurs .

2.1.fQuelquesfgénéralités .
2.1 .1.fDansflafdescriptionfdeflafsolutionfapprochée ua de f1 .3f quifserafconstruite

enfdétailfauxf§§3-6,fnousfdistinguonsfsystématiquementfdeuxfzonesfdfespaceftempsfet
troisfpériodesfdeftemps .
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• La zone dite "extérieure" est située au bord du cône de lumière, et est définie
par --Co < r - t < M, pour une constante Co assez grande (en fait, Go» zoo I, voir
plus bas) .

•

	

La zone dite "intérieure," définie par r - t < -Co + 3 . Les trois périodes de
temps sont définies comme suit .

•

	

La "période I" est 0 < t < 2 e- a, où a < 2 est à choisir (on prendra en fait
~_ 14

9 )

• La "période II" est e - ' ` < t < A 2 / 2 , où A est un nombre positif fixé arbi-
trairement, avec toutefois A < Ao (voir plus bas) .

•

	

La "période III" commence à t = A 2/~ 2 , et s'achève avec l'explosion de la
solution .

La solution approchée u a sera en fait construite séparément dans chaque do-
maine, les fonctions correspondantes étant notées ua' 2 (i pour "intérieur"), ua' e (e
pour "extérieur"), ua I ' Z , etc .

La solution u a sera obtenue enfin par recollement des morceaux à l'aide de tron-
catures .

•

	

Pour 0 E C°° (R) vérifiant 0(s) = 1 pour s < 1 et 0(s) = 0 pour s > 2, on pose

u=(1-0)(r-t+Co--1)ua,e +0(r-t+Co_1)ua ,i

et de même pour les périodes II et III .

•

	

Pour les périodes I et II, on pose

ua = B(teÀ)uâ -I- (1 - B(tea))uar .

•

	

Dans un souci de simplification, le passage de la période II à la période III se
fait par simple recollement de ua 1 et uF sur t = A2/e2 .

2.1 .2. La constante Co choisie en §2 .1.1 est assez grande pour assurer le fait
suivant : la solution approchée u a construite n'explose pas en zone intérieure, même
en période III .

C'est en zone extérieure que se produit (en période III) l'explosion de la solution
approchée ua .

Du fait qu'on espère voir la vraie solution u se comporter comme u a , on s'intéresse
donc tout spécialement à la zone extérieure .

La preuve que u manifeste effectivement un "comportement explosif" près des
points où ua explose est délicate, et nécessite que ua soit une très bonne approximation
de u (cette preuve est fournie en {2}) . C'est ce point qui explique la différence de
traitement du présent travail entre les deux zones .

La transition "vers l'intérieur" s'opérera donc essentiellement en négligeant dans
uâ des termes devenus inutiles pour uâ .

En revanche, l'absence de lacune pour les solutions libres de l'équation des ondes
en dimension deux, et les interactions non linéaires, obligent à considérer le comporte-
ment de uâ pour de grandes valeurs de t -- r . Or l'on sait [5J qu'une solution u à
données Cô de Du = 0 s'écrit

u= 1 F r-t w 1
r1/2

	

' r '
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où F(c.r, w, z) vérifie des inégalités "de type symbole"

a«, a~aQ

	

< (;(1 +

Si l'on développe F par la formule de Taylor en z = 0, on obtient

uNi2 {Fo(r_t,w)+ 1 F1(r-t, w)-I- • • • -1- ~Fk(r-t, w)-I-},
r~

	

r

	

r

où Fk (cr, w) est un symbole en o d'ordre - 2 + k (et de type (1,0)) .
Ce développement ne nous apprend donc rien sur le comportement de u dans

toute zone e < r < 1 - e (e > 0), tandis qu'il est arbitrairement précis en zone
- t -

extérieure.
On voit ainsi que les termes négligés de uâ seraient devenus dans uâ, de toutes

façons, non significatifs .

2.1.3. Les formes successives de ua à travers les trois périodes se laissent com-
prendre de la façon suivante .

En période I, on calcule tout simplement u a par un développement en série de e

ua = eu 1 + e2 u2 + . . .

Les interactions quadratiques "de première génération" (c'est-à-dire celles de

So(r -t, w,r)u1 ~	
rl/2

avec lui-même) font apparaître des termes en

~2 t 1 Sr-tw l

	

et 1 S r- t w l etc .1 2 ~

	

''

	

'

	

Puis
r

	

r1/2 2

	

''

	

'r~

	

r

les SZ étant certains symboles en o . Cela conduit à introduire le temps lent r =
de façon à écrire la somme

sous la forme

e
r V2 ( Sp + TSl + T 2 S2 + . . .

e

	

1
rl/2 S r - t, w, r -,r.

•

	

Les interactions de "deuxième génération" (c'est-à-dire celles de ul avec u2)
font apparaître, outre des termes comme ci-dessus, des termes de la forme

e3 log t S

	

l

	

puis
e5 (log t)2 S

	

t

	

l etc.
rl/2

	

s r -- t ' w' r ' P

	

rl/2

	

r -s

	

' w, -'L etc .

Cela conduit à introduire un deuxième temps lent ( _ e2 log t, tous les termes se
sommant en

~

	

1
re F r - t,w, r,T, ~
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En période II, on cherchera donc la solution sous la forme modulée

ua
~

	

1r 1/2 F r - t, w, 1 , T, ,

l'équation aux dérivées partielles satisfaite par F traduisant les effets des interactions
quadratiques .

En première approximation, (et notamment, en zone intérieure), cette équation
n'est autre que l'équation de Burger en les variables o = r - t (espace) et r (temps) .
C'est un fait classique (cf., par exemple, [5]) .

Si l'on recherche une précision supérieure, on doit faire appel en deuxième période
à un modèle plus complexe, l'apparition des termes en (log t)" décrits plus haut corre-
spondant à des valeurs entières d'indices pour certaines équations à points singuliers-
réguliers (cf. [10]) .

La transition entre les périodes I et II consistera à imposer à F comme conditions
initiales sur r = ( = 0 les valeurs obtenues en période I .

En période III, le temps lent (et la variable z = 1 deviennent redondants car
r

~2

	

Q~2 -1
=

2 i+ )T2
T

(= 2s2 log - .
s

On va donc simplifier, pour r > A la forme de u a en u r V2 F€ (r - t, w, r) (cette
nouvelle fonction F~ dépendant alors de s) . Le raccord entre les zones II et III
consistera à imposer

Faw A= Faw
~2

1 _--) ,
~

-1 A 2s2 lo
A

(

	

)

	

> A2 + A2

	

g ~

Bien entendu, dans l'étude de uâll ' e , on porte une attention particulière à l'explo-
sion des dérivées d'ordre supérieur ou égal à deux . Ce sont ces résultats qui servent
de point de départ, dans [2], à l'étude du comportement explosif de la vraie solution
u .

2.1.4. L'erreur liée à l'approximation de u par ua sera évaluée en calculant le
comportement de Ja = Dua + g2~ âk ua â ua , et en obtenant des estimations de û =
u -- ua en périodes I et II .

2.2. Description en période I. On définit les fonctions u~ (x, t) (j >_ 1) par

(2.2 .1)

	

Oui = o, ul(x,0) = u°(x), atui(x,0) = uI(x)

(2.2 .2)

	

Oui + Q~ = 0,

	

u~ (x, 0) = u°(x), 8t u~ (x, 0) = u~ (x) pour j > 2,

où Q p =

	

g 8k ut ut' .

Il est bien connu (cf. [4], [5]) que

(2.2 .3)

	

ul ~ R ~r l~t' w~ (r -* +oo, r - t > -C),
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pour

1
(2.2 .4)

	

R(o, w) =	
/'

	

1
2 2~ J3>o \/s - v

R(s, w, v) désignant la transformée de Radon

(a.2 .7)

R(s, w, v)
= J

	

v(x) dx de v .
xw=s

Par ailleurs, on établit au lemme 3 .2.1 que

(2.2 .5)

	

u2 - g(2 ) (8vR)z ~ L(
r1~2'W) ( r --* -zoo, r - t >_ -C) ,

pour une certaine fonction C°° L (cr, w) .

2 .2 .1 . En zone extérieure, la proposition 3 .1.1 fournit une approximation arbi-
traire de uk : pour tous N, N' E N, il existe des fonctions C°° Lt et Rk,t telles
que

uk = r1!2

	

log t)Q L~ (r - t, w, ~)
0<22<k-1

SERGE ALINHAC

{ R(s, w, ui) - â3R(s, w, u°) ds,

t~/2 (kg t)t' Dt,i'
e>_ i

JLk (r -
1t , w,
r

	

+ rk ,ij

avec rk = O(r - N) et DLt/r1 / 2 --
On considérera dans la suite N et N' comme fixés, très grands, selon les besoins .

Les dépendances de Lt et

	

ne sont jamais explicitées .
On prendra, pour q grand, à choisir,

q

(2 .2.6)

	

ua' e

d'où il résulte par construction Ja = O(+ 1 t( -3 )/ 2 ) .

2.2.2. En zone intérieure, nous n'utilisons les termes uk que pour k < 7. Nous
prenons d'abord ui = ul, u2 = u2 ; pour u3 et u4, nous ne gardons que les deux
termes principaux de u3,a et u4,a ; enfin, pour 14, u6 et u7, nous ne gardons que les
termes principaux de u5,a, u6,a et u7,a (tous ces termes sont explicités en X3 .2) .

Nous posons donc

7

uâ ,i =
~=1

2.2.3. Après recollement, on obtient pour Ja les estimations

3
(2.2 .8)

	

~ax ,t,WJa1o~Ca{l+.t+s5(1-+-t) 1 ~2 ~-e8 (l+t) 5 /2}~logt~ q-1 ,



APPROXIMATION DE SOLUTIONS D'ÉQUATIONS D'ONDES

	

535

avec de plus à l'extérieur

(2.2 .9)

	

I IDx , t , c) .JaII O

	

a< ~%« 6q+
1 (q-3 )/ 2 •

2.2.4. Les deux fonctions R et L jouent dans la suite un rôle essentiel . Intro-
duisons dès maintenant quelques commentaires et hypothèses qui s'y rapportent .

Nous faisons sur R et g l'hypothèse de non dégénérescence suivante

(ND)

	

Il existe un point (ao, wo) et un nombre > 2 tels que

(i) -g(wo) aa R(cro, wo) <0,
(ii) VA, C > 0 avec, pour la - aoI + Iw - wo l < A,

-g (w) aa R(a, w) > -g (wo ) aa R(ao, w o ) + C(Ia - aol + Iw - wol)k •
Remarquons que cela implique que (ao, wo) est un point (unique) de minimum

absolu de -g(w) aa R(a, w) .
Dans le cas spécial où l'équation considérée serait de la forme a2u - c2(u t ) La,u = 0

et les données initiales invariantes par rotation, cette hypothèse devrait être remplacée
par

(ND)'

	

Il existe un point ao et un nombre ç > 2 tels que

(i) -gaa R(ao) <0,.

(ii) VA, C > 0 avec, pour la - ao l < A,

g a~

2

	

2

R(a) > ga~ R(a'o) + C la - ao l~

•

	

Définissons la fonction S(a, w, r) par

(2 .2 .10)

	

aTS - 9 (3S)2 = 0, S(a, w, 0)' = R(a, w) + sL(a, w) .
2

La fonction e/r 1 / 2 S(r - t, w, r) apparaîtra ultérieurement comme une assez bonne
approximation de u .

Comme c'est la dérivée S' de S qui satisfait une équation de Burger, on retrouve
bien ici le fait que ce sont les dérivées secondes V 2u qui "doivent" exploser .

•

	

Posons

Ao =

	

1

	

Ai _ -A2 wo aa L ao, wo

	

et r* = r* E= Ao+e A1 .
wo a2R

	

w

	

o g ( )

	

(

	

) ~

	

( )
g()

	

( o~o, o)

Compte tenu de l'hypothèse (ND) et des propriétés bien connues de l'équation
de Burger, on note que Ao est le temps de vie de S pour E = 0, tandis que r* (E)
approxime à 0(62 ) près le temps de vie de S dans le cas général .

2.3. Description en période II.
2.3.1. En zone extérieure, et compte tenu de la proposition 3 .1.1, nous remar-

quons que, formellement,

uâ'e

	

6 1
r1~2

F(r - t, w,
r' r' ~) •
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La proposition 4 .1 .1 permet de construire, dans un intervalle 0 < T < Tl (où
Tl = Ao + o(1)), une fonction F(a, W, z, T, () qui se raccorde bien à uâ' e . Nous posons
donc

(2.3.1)

(2.3 .2)

uaI ,e

SERGE ALINHAC

r1~2
F r - t, w,

r
, T,

	

.

2.3.2 . En zone intérieure, nous choisissons

u,f ' Z = 6ul -f- E2 u2 --
ltl 1/

	

l
2 x lrl (aOR)ZI

-1-x r V2 [S(r - t, w, T) - S(r - t, w, 0)] ,

Où ul, u2, R et S sont définis au §2 .2, tandis que x dénote (par abus) une troncature

( r

	

1

	

2
x 1+ )

	

\ t'
avec x E C°O(R), x(s)=O pour s < 2, x(s)=1 pour s >_ 3 .

On choisit l'expression (2 .3 .2) pour des raisons techniques : le lemme 4 .2.1 indique
en fait l'équivalence

(2 .3 .3)

	

uâr,2 ,~ x
r1/2 S(r -- t, W, T) .

2.3.3. Après recollement spatial et temporel, on obtient pour Ja en période II

(2.3 .4)

avec de plus à l'extérieur

(2 .3 .5)

I0.t,wJaI0 < Ca

	

log t2t

IIt,wJa1Io < Ca 6q+1-À(2j)

2.4. Bilan des erreurs en périodes I et II . Les estimations indiquées ci-
dessus permettent d'établir sans difficulté le théorème suivant .

THÉORÈME 2 .4.1 . Pour tout A, 0 < A < Ao, il existe EA > 0 tel que, pour tout
A2

0<E<EA

	

-ett<

	

, on ait-

	

~2
(i) Itw(ua)Io

a«~_ uç Ca E23!9 log E ( .
(ii) Pour tout p, il existe q tel que l'on ait de plus, à l'extérieur,

II,t,w(u

	

~x- ua) I I o < C0 ~P .

Rappelons que q apparaît en (2.2 .6) . On choisit dorénavant q en sorte que ii) ait
lieu pour p = 8 .

2.5. Description en période III . Dans toute la suite on posera z = T, T=
E\, ( _ E2 log t. Pour une fonction S(a, W, z, T, () régulière, on notera S' =
S" = OS, etc., et S = âTS, S = âTS, etc .

2.5 .1. L'hypothèse (ND) sur le minimum de -ga R assure que la solution uf' i
définie par (2 .3 .2) n'explose pas en période III . Nous prenons donc

(2.5 .1)

	

uâl1' = uâl,i .
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2 .5 .2 . Notons, pour la fonction F de (2 .3 .1),

2
(2.5 .2)

	

r) ',
-

FA(o~,w) =F aw >

	

1+~A, 26210 A
A2

	

g

et définissons (par abus) une nouvelle fonction F(a, w, r) par

(2.5 .3)

	

âTF - 2 (ôF) 2

	

Q = 0,

	

F(o, w, A) = F,y(v, w) .

D'autre part, en notant

E(F) _ - 1 1 a 2(+)-
F ug F'

F"
_ 8 F 8 F

T 3 4 w

	

2T2

	

4T2 + 4T
+ g (wkF' A2~ F + w2 wj F" Ak F)

l'expression introduite au lemme 6 .1 .1 (dans laquelle les Ak, A2~ sont des opérateurs
d'ordre 1 en aw , &T ), définissons une fonction G(o, w, r) par

(2.5 .4)

	

âTG - g(âQ F) âoG = J E(F) ds,

	

G(v, w, A) = 0 .
M

Nous choisissons alors

Ill,e(2.5 .5)

	

ua

	

_- ri~2 (F -f- 6 2G) (r - t, w, r) .

2.5.3. Le raccord entre les périodes II et III se traduit par l'estimation

(2 .5.6)

	

II Ôx,,,~ (0)1V(U_U a )II O <~

	

Ca,k E 8 pour r=A,

A2où 9 désigne la dérivée â droite en t =

	

.t

	

~2

2.5.4. Après recollement, on obtient pour Ja les estimations

(2.5 .7)

	

A l'intérieur,
I
&a, t , w Ja

Io
< Ce5 (log Et,

(2 .5 .8)

(2 .5 .9)

A l'extérieur, sous l'hypothèse (ND)
(ou (ND)'), pour un vl > 0,

( i ) IJa(0 Ç C	

7
(ii) IVJa I O + I8wJal0 Ç C	,(?- _

(iii) ~VZJa~o+tBwVJaIo+kâwJato<_C (T- T)6-vl
e

On a posé ici f = T(6) = T*(s) - Csk/~-1 -- Cs2 Ilog sI, pour un C assez grand
(cf. lemme 6.4 .1) .

2 .5.5. La solution approchée ua possède en outre les propriétés suivantes :

A l'intérieur 11 8 ,t,w ua I Io < Cc 6 2 .
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(2.5.10)

SERGE ALINHAC

A l'extérieur,
(1) fUa I + (Vx ,t,w ua I < C~2
(ü) Pour k > 2,

aax,t,w ua I

	

C

	

_ 1Ial~

	

_r) 2 2

t (iii)

	

a2.'I• ua(x, t) - rl/2 w2 wj F" (r -- t, w, T )

3. La solution en période I. On écrit formellement u = E U1 +62 u2

	

et
l'on choisit les u j en sorte que

(i) ou i = 0, ui It=o = u°, at u1 I t=o = ui, puis, pour j > 2,
(11) Ouj + Qj = 0, uj It=o = u?, at uj,t=o = uj , ou Qp -
Pour alléger, on écrira souvent g au a2v au lieu de EkZ, j,g aku a v .
Nous allons maintenant choisir des approximations des u j à l'extérieur et à

l'intérieur.

3.1 . Les approximations à l'extérieur. Elle reposent sur le lemme suivant .
LEMME 3 .1 .1 . Soit S une fonction C°° de ses arguments .
(a) Pour tous µ E III et k e N, on a l'identité

(3.1 .1) tµ(i g
t)

k
0

tµr~gt ~ S(r-t, w, r,T,~)

-2S' /

	

k l QS

	

1 /

	

(2µ-1)k k(k-1)\
t~ ~µ + log t) + r512 + t2~

	

- 1) + log t

	

(log t) 2 ~ S

	rt I
L
- (S' + 4 S) + t

S'

	

k
\~ + 1 g t /,

e~
~- 2 a S' - z a S 2 a S

	

k	6 3
a	 e4a2 S

+ t r 4

	

~

	

~ + t ~ µ + log t + t3/2 8+r ~

	

t2 r ~ '

oùQS=- 4-~aw S-f-2azS'-2zazS'-z 2 azS .
(b) Pour toute S(r - t, w), tous µ E III et k e N et tous N E N, N' E N, il existe

des fonctions

	

r - t w

	

(1 0 < £ < k) et L,~ r - t w 1 (0 < £ < k + 1) telles que.e

	

- -

	

> rr

	{

	

tµ+2 (log t) tEQ +

	

(log t)tLQ } = tµ(log t)k S + O(zN) .
~e<k

	

e<k+1

/1\/+ 3/ 2
De

	

o
L~

= O zN'et Eo ne contient as de terme en -plus, r1/2

	

(

	

)~

	

p

	

r
Preuve . (a) Remarquons tout d'abord qu'à l'extérieur, on peut écrire t = r - u _

r(1 - az) et r = t (i + ), ce qui permet d'échanger asymptotiquement toute puissance
de r et toute puissance de t . On a

ot~(log t)ku = tµ(log t)k { Du + t (µ + lo tl atu

< Cv ~T -T~ 5 ~ 2

+t (µiµ - 1) +
(2-1)k
log t +~log t)2

}



D'autre part,

où A = 4 + 9 ; comme

(logt)k+1 L(r tr 1 / 2

en choisissant
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L' <k
O<L<N

(Ot+8r)S

	

1

	

•
2~

(8? -13) S = - 48S - - { -2 s' + - as + ---- a + Ç asr2

	

r2

	

}2/

622/
6

S

	

1 ta2 - a2 - l A Sr

	

r2 J

(b) A l'aide de la formule (3 .1 .1) (appliquée à des fonctions indépendantes de
T), on obtient, si pL -,

t1+ (log t)tEt(r - t, w)
O<t<k

avec

Si t = -, on obtient

62 {+

	

-288'+ -o?s+ --a+ taçs},
2

et on trouve
62s

	

.D=QS+~( - s' S) +512t

	

4

	

t~ \ 4

= t'(log t)"S+

E~(o, w) =	 -1 	f S(s, w ) ds, etc .
2(+ )J M

- z8S)

+ t3/2 8S+	8 28

539

t/'- (log t ) t' st,t , ( r-t, w) ,
L>o

O<L<k

= t'(1og t)c S + > t/(1og t)t' S,e' (r - t, w) + O(zN),
L>O
L'<k

L(, w, O) = 2(k± 1) f S(s, w) ds,

et L solution, à un ordre convenable en z, de QL = O .
En répétant cette procédure, on obtient, si 1a + 2 N,

1D_-j-j ( >

	

t1Hl(log t 'Et,e'(r - t, car = t(log t "S O(z" ' .
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Si u + 2 = q E N, on trouve

tµ+2 ~(log t)t'E' (r - t, w)

Eo

où

B~<k0«<N

(log t)E' LQ' (r -
i<V<k+i

Qk =

e2
~k = D Uk + g 8 Uk 32 Uk = --r

p>0, m>0

SERGE ALINHAC

t, w, -
r J 1

De plus, Eq,o = 0 . Dans tous les cas, on réécrit le premier terme de la solution obtenue
sous la forme

Fi+ 2
r1/ 2 (logt)tEt(r_t,w,)r e«

vérifiant la condition du lemme .

	

D
Nous sommes alors en mesure de prouver la proposition suivante .
PROPOSITION 3 .1 .1 . Pour tous N, N' E N, le terme uk peut s'écrire

u= 1

	

lo t 5L~ r-t w 1k

	

ri/2

	

( g )

	

k

	

' , r
e>o2$<k-1

+ ~~ tt/2 (10g t)5' Rk'tr
e>1

e+2e'<k-1

r

h>k-1m+2p<h

= t'(log t)v S + O(zN+l-µ) .

e
rk = O(z^'), et O L~2 = O(zN')

De plus, si £ = 2p (p > 1), Rk'o ne contient pas de terme en
Enfin, si l'on pose Uk =

	

6U5, on a

irk

-- t, w,

)°

ll
r~

6h-m-2p Tm (p Fmp(O'>W> z),

	

>

avec la majoration ~k = O (61+1 t(k-3)/2 .

Preuve. (a) Pour k= 1, on a ui = V2 1 Ro'o r- t w> 1 (voir [5]) . Procédons0

	

rr
alors par récurrence, en supposant correcte la forme de u~ pour j < k - 1 . Comme
toute dérivée (en x ou t) de u~ a encore la même forme (en oubliant cette fois que
L5
ri!k2 est dans le noyau de D), on obtient

1 ttf2 (log t)5'tq/2 (log t)q' R~'5'Qk --

	

Rq,q'

où la somme > est étendue à tous les indices L, L', q, q', j, j' tels que £ > 0, q >
L+2L'_<j-1,q+2q'<_j'-1, j+j'=k .

En développant les fonctions R, on trouve formellement

t(m-25) 2 (log t)p Sm,p(r -- t, w), £ > 1, m + 2p < k -- 2 .

0,
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Le lemme 3.1.1 permet alors de "résoudre" DVk -i- Qk = 0 sous la forme

vk = 1r1/2

	

tm/ (log2

	

t)pEm ,p r- t ' w' 1 -E-

	

(log t)PL

	

.'
m+2p<k-1

	

r

	

2p<k-1

En effet, les termes en t-3/2 (log t)P dans Qk ne peuvent apparaître que pour
m > 1, donc pour 2p < k-3 ; le terme correspondant dans vk est alors en (log t)P+1 , où
2(p+ 1) < k-1 . D'autre part, pour m - 2~ -3, le terme de vk correspondant au terme
t(m-2t)/2 (log t)P de Qk est en t(m+3--2e)/2 (log t)P ; on écrit t(m+3-2t)/2 = t(m+1)/2 ,

et (m + 1) + 2p < k - 1 comme annoncé .
(b) Au point (a), on a obtenu vk telle que Ovk +Qk soit de l'ordre d'une puissance

de z arbitraire . On a donc D(uk-vk) de décroissance arbitraire à l'extérieur : par vitesse
finie de propagation uk - vk coïncide à l'extérieur avec la solution w de 0w = f, où
f est de décroissance arbitraire . Par une adaptation immédiate de [1], on obtient que
w diffère d'une solution libre par une fonction de décroissance arbitraire : uk - vk =
(L(r - t, w, r ))/r1 /2 + rk . La forme de uk est donc celle annoncée .

(c) Comme 0Uk -!- gaUk 9 2 Uk = Ek+1<t+L? ' <2k

	

' gauta2 ut,, et

<

	

t(t-1)/2

	

[~

	

k+1 k 2 3aa ut( - C r1/2 on a Uk + gaUk a2 Uk - D

	

t

On peut aussi écrire

et

s
r1/2

>

	

sh_m-2P Tm (P Fm,p ( o', w, z) .

	

Ü
m>0
p>0
h>k-1
rn+2p<h

6k-1--Q--2e' -r Ce' R,t' (a, w, z )

3 .2 . Les approximations à l'intérieur . Ici, on modifie le point de vue du §3 .1,
qui ne peut donner de résultats qu'à l'extérieur (voir §2 .1) ; nous nous contentons de
choisir pour les termes u4 des approximations assez grossières des uk, en portant une
attention spéciale au comportement symbolique en oet à l'approximation des solutions
d'équations d'ondes non homogènes .

Les développements de cette section sont très proches de la partie correspondante
de [1], dans le cas irrotationnel w 0 .

Le fait de travailler avec des données générales (c'est-à-dire non nécessairement
invariantes par rotation) n'apporte aucune modification non triviale ; en particulier,
le paragraphe 7 de [1] consacré au comportement des solutions de l'équation des ondes
non homogène s'étend sans difficulté au cas général, avec estimation des dérivées aw
(outre les dérivées en 8) . Néanmoins, il est nécessaire ici d'augmenter la précision
de la solution approchée, ce qui entraîne quelques complications techniques .

Nous nous contentons ici d'insister sur les aspects nouveaux de la construction,
renvoyant le lecteur à [1] pour les généralités. Nous noterons génériquement Sm une
fonction S(r - t, w) qui se comporte comme un symbole d'ordre m en la première
variable r = r - t .

3.2.1 On choisit pour ui la solution de Ou1 = 0, avec des données u1 ~t=o = uo ,

at u1(t-o = u~, c'est-à-dire u1

	

u1 .
Le comportement u1 ti (R(r - t, w))/r 1 / 2 est établi dans [4], [5] .
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3.2.2 On choisit pour u2 la solution de Due +Y âk u1 â u1 -- 0, avec des données
u2 (t=o = u2, 8t u2 i t=o = u2, c'est-à-dire u2 -= u2 .

Comme en [1], on introduit une troncature x = x r/ (1 + t)), où x e C°° (IR),
x(s)=0pours< 2,x(s)=1pours> 3 .

Le lemme suivant précise le comportement asymptotique de u2 .
LEMME 3 .2 .1 . On a u2 = û2 + z, avec ü2 = (1 -- 0(t)) 2 ./t/rXR' 2 , (rappelons

que 0 E C°° (R) vaut 1 près de t = 0) et z vérifiant les propriétés :
Il existe une fonction L(a, w) de classe C°°, supportée dans a < M, avec ~8! LI <

Ck (1 + lai)'!2, et pour L > 1,

(aw at LI 2 (a, w) da < C,t,

	

fO8LI < C,t, ,

telle que
(i) Pour r < Ct, (C< 1), lai >_ 1,

~aa a~ <	
c

i ,t

	

z`~

	

- (1 + t)1+ inf (k I,4) .

(ii) Pour r > Ct, (C < 1), lai >_ 1,

aa âQ
z _ L(r - t, w)

~,t w

	

r1/2

	

)

où f iht(a,w)1 2 da < 1 .

Preuve. (a) Il faut d'abord établir une forme précise du terme quadratique

Q2=g ~k u l a~u l .

D'après

	

on sait que u -= 1 F r- t w l où
r[5],

	

1

	

1/2

	

> r

8w âz âQ F(a, w, z) < C(1+

et par ailleurs, Iâa,t ul < Ca/(1 + t) 1+k I pour r < Ct, (C < 1)
•

	

Pour r < Ct, (C < 1), on a donc Q2 = O(1/(1 + t) 5) .
•

	

Pour r >_ Ct, on peut écrire

S--1/2

	

S1/2u1 =	 r]/2 + 7 +.+ . . .

+
	 512< Ca,p {

	

1+t (1 -~- t)3~2 }'

S' ._3/2

	

S__l/2

	

. . .

	

.Vu, = r1/2 -- r3/2 -F-

	

--- rk/2 +

	

,

On obtient donc

S
+ 2 + . . .1

r~/2

S 5 2

	

SL -3
D2 u,

S_4 S--3 S--2 S_ i So
Q2=-+-+-+2 3 4 +-+,r

	

r

	

r

	

r

	

r

	 / L . . . +	 2
r 1 /2

	

rc/2
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le premier terme valant en fait g(w)r

(b) On va maintenant relever les termes de Q2 . Remarquons que si

L E Sm,0 LX =
8m

X +r 1 / 2

	

r5/2

	

t5/2-m '

donc L
L't - +o( 1

r 1 ! 2 J

	

-2

	

- 2

	

r 1 ! 2

Comme

on a finalement

1
2'

ta = r°' +

'

	

L'

	

Sm

	

Sm+1	(3 .2.1) D(X
L

t) = _2px r3/2+

	

+ r3/2P + . . .) + °( t5/2 1m )

On en déduit, en commençant avec

en relevant les termes successifs, il vient

S-2 S-i So

	

1

(c) La solution de 0v = o(t5 ) peut être étudiée à l'aide du paragraphe 7 de [1] :
on a dans ce cas

8_3 S_2

	

1
m=-3, 02+Q2=r2 +~3 +" +o() ;

o(1
't 5

t g 2
U3 = (1 - O(t))-= -- (R'3 )',

8+k
LL r -'
k>1

Q3 xÇ'3 " +(R'L')' + Wi

donc a = 3. Les estimations du lemme, qui sont trivialement vraies avec L O pour
la partie explicite

S-2 S-i So
r

	

r2

	

r3
de z, résultent alors du lemme 7 de [1}, points b et c .

	

O

3 .2 .3 . Nous posons

U3 = ( 1- O(t))xgR'L'

et nous choisissons u = 113 + U3 .
Les raisons de ce choix résultent d'une analyse du terme d'interaction cubique

Q = g 13k Ui

	

2 + g 5k 2 a â 'Ui, qui est résumée dans le lemme suivant .
LEMME 3.2.2 . On a
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Q3=g~8k

+g~0k

+g~8k

C

1+t
D

18U210 <_ C(1 + t)1i2,

si cv4 1, on a facilement

I8aQI01	 C3 < - 1 t .

•

	

L'estimation de Q3 est plus délicate, et fait appel au lemme 3 .2 1 : on obtient

IaaQI0 <2	 C3 - 1 t

(b) Dans Q3, les termes obtenus en faisant porter les dérivées uniquement sur la
variable r - t des symboles valent

SERGE ALINHAC

et Du3 + Q3 = W2, avec

aa,t,w Wl ± 01a W < Cax

	

~ o

	

( x,t,w

	

2 ~ o - 1 -E- t

Preuve. (a) On a

	 R	L

	

L	R
(X,!2)a .(2+X,!2)

	

u+ g ~k u2 + x 1/2 8 x 1/2r

	

r

	

r

	

r

\ul-x r~ 2 / a~
U
2+g~~~ u2a~Cu1-x r~2l

R 2

	

L

	

~

	

L	R
(x r2 ) â2 . (z - x r1!2 ) -I- gz~ 8k (z - x r1!2 Z~

=Q3+`w3+`w3 •

•

	

Comme

aa Cul - x r i!2 )

2
2

	

(R'3 )" g

	

t+ x2 (R'L')' .g
x3

	

r

	

r

C
1 + t) 3 ! 2

Les différences avec les termes annoncés sont de la forme

1

	

1

	

1
(x - x2) t1/2 5-13/2 + (x - x2 ) S-3/2 = O t5/2

leurs normes L2 sont bornées par C/(1 + t)3!2 .
Sm
t3 ! 2 '

tous les autres termes faisant intervenir R et L sont

Tous les autres termes faisant intervenir R et u2 sont de la forme

< - 7 ou sont majorés par 1m

	

2

	

t5

majores par S

	

~
-3/2 ou sont O 1

	

Tous ces termes sont bornés en norme L p2 ar
t2

	

t9 ~ 2

avec

3.2.4. L'analyse des termes d'interactions Q~ _

	

g âk u~' ui» devient
vite fastidieuse pour £ > 4 . Il importe donc de systématiser un peu la construction .

•

	

La forme de la solution en zone II (t > E-') et l'exigence IIVitIto = 0(e 7 / 2 )

rendent nécessaire de choisir À > 3 . Les termes de Q qui sont négligeables sont ceux2

	

e
dont l'intégrale de la norme L2 jusqu'au temps e'' est o(E5/2-e) .
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De même

+g ; ak u2 a;
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• D'autre part, en supposant le terme principal de ut de la forme û~ = x at' (r -
t, w) t 2 (t 2 ), on trouve que le terme principal de Qt vaut x t 2 (t -4) g E(a,)'(a,,)" .gigi On
en déduit par récurrence que û~ a bien la forme voulue (grâce à la formule (3.2 .1)) .

•

	

Des deux points précédents on déduit que Qt lui-même est négligeable si
t 1 / 2 (t-4)+1/2+1 lt_e-a = 0(e 5 /2-1 ), i .e. -À/2(? - 1) > 2 - L, soit £ > 7 pour a
proche de 2 .

•

	

De même, les termes non principaux de Qt, qui sont de la forme S„2 x11/2 (e-4)-1/2 ,

sont négligeables si -- 2 (L - 2) > 2 - L, soit L > 4 pour À proche de 2 .
Nous devons donc encore analyser en détail Q4, exactement comme nous l'avons

fait pour Q3 au lemme 3 .1 . (c) .

g3 13/2

	

-

	

g2t
En notant u4 = x i (3 R'2 R"2 + R'3 R"), ZG4 = 2 r I2

(2 R' R" L' +
_6 r

R'2 L"), on choisit u4 = u4 + u4
LEMME 3.2.3 . On a

DU 4

	

= W avec a« W < C«[~4

	

Q4

	

3 ,

	

( x,t,cv 3 0 0 -
(1 + t) 1/2

Preuve . (a) On a

L
+9 ~ 0k(X r1,2

+g, 8k

a«

Q4

u1 -

J 3
a~ Q4 - x 1 2

= g2~ ak u2 8 . u2 + g2 ,ak u 1 a2~ u3 + g2j ak u3 a2~ u 1

= k. ak ~ 2 a2. + gisk. ak ~2 a?

	

L
gis

	

Z~ ~2

	

. x r1/2 )

(z-x rL2 ) +g~a~Cx rL2 )a~u2+g~ar~Cz-x rL2 )a~u2

X,rL2 la ~ (x rL2 )1]
L

a2~ (x)rl~z + g2~ ak

R

	

R
-F 9~âk(xr1!2)(au3+au3)-+-g~âk(2~3+4b3)â~(x r1!2 }

x rR2 )8 .u3-I-g~âku3a2 . ui- r1! 2 )]

2
akû2a?k

	

ï2 -- g t 2 wkwiwj (R2)(R'2)")''Z~

	

4 r x
<

o

«

	

- 2

	

L

	

_ 2 g

	

'2' ~~a ak u2 aie
x r1 /2

	

x 2 r w
k wi w~

(R ) L

(R'2 R"2)' + g2 (R' R" L')'
r1/2

R

	

2
a« (8k x

	

a2 ü3 -- x2
6
g R' (R 3)"wkwiwi)i

r1 /2

	

~

- Q4 + ( 4

C

1 + t)1!2 '

C
et que les autres types de termes Q4 ont leur norme L2 bornée par	

(1 + t)'! 2 '

C

o

	

(1+t)'!2

C

0 (1+t)'!2 '

il vient
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a« â

	

R
â?~ - x 2

r1!2
	 g R'(R'L')"wkwZ.w .

	

< Cx r1/2 Za 3

	

~

	

- 1 + t 'o

et tous les autres termes de 1 ont leur norme L 2 bornée par ( C

	

d'où``~4

	

1 + t)1/2~

u~ - uz =

(~ a I Qq - x{s (1~'(1~'3>/,>' ~- ~~ 2 (1~'(R'L'),)'}]L

(b) Par application de (3 .2 .1), on voit que les termes non principaux de Duo
satisfont l'estimation du lemme 3 .2 .3 .

	

D

3.2.5. Les termes 2G5, 266 et û7 sont de la forme indiquée en §3.2 .4, et

I8(EJ1e
«

	

+
Q) I0 <C(1 + t) 2

(t-4) .

Nous pouvons résumer toute la construction du paragraphe 3.2 dans la proposition
suivante .

PROPOSITION 3 .2 .1 . Posons ua = uâ = E ui + 62 1 2 + . . . + e 7 u7, où les u~ ont

été construits aux §§3.2.1-3.2 .5 . Alors, pour t <
cte

I0 t,wjaI 0~°~ Ca { 1 -~ t + e5 (1 + t)1
!2

-F
68(1

+ t)5
/
2 1 .

1

3.3. Recollement et estimation de l'erreur . On pose finalement, avec k > 7
à choisir,

u=(1--8(r-t+Co-1))ua+O(r-t+Co-1)u,

où uâ = 4 + . . . + 67 u7, et uâ = Uk .
On a alors l'estimation suivante de l'erreur Ja = Ja = Euâ + g âuâ 82 uâ .
PROPOSITION 3 .3.1 . Pour tout k et t <

cte
on peut choisir N et N' en

que

Ja o

et de plus, pour r - t > -Co + 1,

3<j<7
1/2

8<j<k

E~

3

< C« { 1 -I- t + E 5 (1 -I- t)1/2 + s$ (1 + t)5/2 } Ilog tlk-1 ,

'u .

e>1
£<2j -1

`8x,t , w Ja `) < C« ek+ 1 t 2 3 .0

Preuve . L'estimation est celle de la proposition 3 .1 .1 à l'extérieur, celle de la
proposition 3 .2.1 à l'intérieur .

Remarquons que pour 3 < j < 7, la différence uj - u; est formée de termes
contenant une puissance non nulle de z ou de (log t), ou de termes indépendants de z
et (log t) de la forme S(r - t, w)/r 1 /2 t~/ 2 , avec 0 < L < j - 3. Donc

(log t)eL4 +

C

sorte

t~ /2 (log t) ~' Rk,t' +

	

t ?/2 Rk' o
>_1

	

t<j-3e1>1£-}-2V<j-1



On en déduit
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3
II8(ue

	

~- uz ) IIo < C ~log tIk-1
{ (1 -f- t)1!2 + ~8t3 }'

et IISa(St

+ aT

)(u
e - ui ) ~

I

o < C ~log tlk-1
{

( 1±

t)3!2
+

e$t2 } .
On écrit alors, avec b = vi - ue,

o(eui + (1- e)ue) - eoui + (1- e)aue + [o,0]6 ,

ya(eui + (1- e)ue)a2(Bu= + (1- e)ue) = gÔ(ue + es)a2(ue + est
= 9 aue â2 ue + 6{9 Bue 82S + 9 âô 8 2 ue } -I- 0 2 g56826 + g[5 , 0] 652(06 )
+ 9as[a2, 0 ] 6 + gâue [02,0] s + g[a, B] 682 ue

_ (1 - 9) g Bue 5 2 ue + eg au2 52 ui + B(8 - 1)g86826 + crochets,
en sorte que

Ja = 0Ja + (1 - 0)Ja + crochets .

Comme [0,0] _ -29'(O + Or) - , on a
r

3

II[o,O]6ll o < C ~logt~~-1 {(1+t)3!2 +6 8 t 2 };

d'autre part, les termes quadratiques contenant des crochets sont bornés par	 110a6-
C
rl/2

	

110

qui est encore inférieur, d'où l'estimation .

	

0

4. La solution en période II . Soit dorénavant fixé A, 0 < A < Ao . Il s'agit
maintenant de prolonger, pour 0 < T < A, la solution construite en période I .

4.1. La construction à l'extérieur . Remarquons que

uâ = Uk =

	

6k-1-2t (t Lt +

	

6k-1 - t 2e' r t!2 (t' Rk,t' + . . .r'!2

avec les propriétés supplémentaires indiquées à la proposition 3 .1 .
Cela conduit à chercher une solution approchée de l'équation sous la forme u =

1/2 F(aw z T> > avec v= r- t z= 1 T=et, (= e 2 log
t,

F dépendant elle
r

	

r
même de e (nous ne l'indiquons jamais) ; F devra en outre s'écrire F = Fo + T G,
Fo(rr, w, z, () = F(o, w, z, 0, () vérifiant, identiquement en (, l'équation

QFo-
L
I-(4+8~)+2(1-z)8L -z2 8z

J
Fo=O (cf. (3 .1 .1)) .

4.1 .1 Les variables étant surabondantes, nous indiquons dans le lemme suivant
le choix opéré.

LEMME 4.1 .1 . Pour toute fonction F régulière, en posant

547

u= ----F r-t w e e2 lo t
r'!2

	

' r'

	

g

	

'
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on a
â2u =

	

(w2 F' + z Ai F) , ô .u = r1/2 (w2 w~ F' + z A2~ F) ,r1/2

	

~

où AZ et AZ~ sont des opérateurs différentiels en (oS, w, z, T, ~) . De plus,

2
Dcc-I-9âu â2u= r5!2 QFo+art z(1-QZ)QG- (F' + 4F)

(4.1)0

T vz
( 4 - 2âç F' - zâçF) + (1T2 ~z) âçF +

(1 T3 Qz)3
â~ F

~-(1-az)1/Zg~(wk F'+zAkF)(wiw~F"+zA2~F) } .

Preuve . C'est (3 .1 .1) pour µ = k = 0, où l'on utilise t = r(1 - orz) .

	

D

Nous définirons dorénavant, pour simplifier, l'opérateur H et la forme quadratique
q par l'identité

Du+gâuâ2u= r~2 QFo+ ~{HF+q(F,F)} .

Bien entendu, il nous suffira de résoudre l'équation d'onde à des approximations ar-
bitraires O(zN) + O(C'N' ) .

Les résultats de cette étude formelle en z et sont résumées dans la proposition
suivante .

PROPOSITION 4 .1.1 . (i) (Existence) . Pour tous N, N', et toutes fonctions çot(o w)
(~ < N - 2), on peut trouver une fonction F = Fo + TG définie pour r E [0, ri] telle
que QFo = O(zN), HF + q(F, F) = O(zN) + O(ç"'), avec

ôt 9 F(or, w, 0, 0, 0) _ çoe (o~, w) pour 0 < £ < N-2 .

(ii) (Unicité) . Si une fonction F = Fo+rG vérifie QFo = O(zN), HF+q(F, F) _
O(zN) + O(~N') et O az F(o, w, 0, 0, 0) _ çot(cr, w) pour 0 < £ < N - 2, elle est
déterminée à O(z 1 ) + o(ÇN') près .

	

-

Preuve. (a) Notons d'abord que Fo Î z=o détermine tout le jet en z d'une solution
de Q Fo = 0, car toutes les fonctions considérées sont bien entendu supportées pour
o< M . Inversement, on peut trouver une solution Fo de QFo = O(zN) pour laquelle
Fo l z=o est donnée .

(b) Posons G = > k>O Gk zk, Fo = Ek>o fk zk, et ordonnons l'équation HF +
q(F, F) = 0 selon les puissances de z .

•

	

Pour z = 0, on trouve

-TGô -- Gô + g(fô + T Gô) (f Ç + T Go) = 0 .

•

	

D'autre part, le terme en zk --1 dans QG vaut

- 1 +o Gk_1 +2kG' -2(k-1)G'-1 - (k-1)(k-2)Gk-1 •4

	

k

	

k

Remarquons que dans les opérateurs z AZF, z AZ~ F, les termes qui contiennent
des dérivées en z sont de la forme zk O, k > 2, ou z4 âz ; le terme en z~ dans z A~F
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ou z F ne fait donc intervenir que les coefficients f j , G j pour j < £ - 1 . Le terme
en zk dans q(F, F), que nous noterons qk (F, F), vaut alors

9 (fô + T Gô) (f + T G) + . . . + (.f + T G'k ) ( fo + T Go)
„-- 2 g (fo + T Go)(fk-1 + T G 1 ) + . . . + (f 1k-+ TGk_1)(f„o + T Go)

N

+g wi wj (fo + T Go) Ap(fk-1 + T Gk-1) + . . . + (fk 1 + T Gk-1) Ap(fo + T Go)

+9~ Wp{(f0 + T G0)`92i(fk-1 +T Lik-1 )+ . . . +(f_k 1 -}- TG~_1 )Âyj (f0 +T G0)}

+termes en G~ (j < k - 2) ,

où Ap et désignent les parties "de poids zéro" de A p et Ai j (qui ne contiennent
pas de dérivées en ~) .

L'annulation du terme en zk conduit à l'équation

(4.1)k -TG'~ + (2k - 1)Gk + l { - C4 + (k - 1)(k -2) + âw) Gk_1 - 2(k - 1)Gk

-4 (TÔk1_+Gk_1) + 4 (TG~-1 + 2Gk_i) - 2T2 8çG_1 }
1

+qk(F, F) = termes en Fo

	

G~ (j < k - 2) .

(c) L'équation (4 .1)o détermine Go en fonction de fo en particulier, Go =
2

9 (fô) 2 +
2g

T(fô) 2 fo +T 2 . . . .
2

Ecrivons (4.1)1

-T G' +G1' - 1 + a2 Go - 2 T 2 a G' -- 2T 8f ' +q1(F,F) = 0 .1

	

w

	

~ o

	

~ o2

Avec 'f = + 1 1 + a f2 0, posons G1 =

	

G~ T~ • Pour T = 0, on obtient de (4.1) 1l

	

~~ 1 ~ 2 4e>o

=0.

G°' - (2 + 8w) Go -{- termes en fo = 0;

l'annulation du terme en T dans (4 .1)1 fournit

-28g f r + g G fÇ ~ + f Go" + f ,
G„ +

fo l „
Go'

r (fÇ G' + f Ç Gô ) + termes en f oo

	

o

	

o 1

	

l o

	

2

Si l'on exprime G° dans la deuxième équation à l'aide de la première, on obtient
une équation en f o de la forme a~ fô + (termes en f o sans dérivées en ) = 0. Comme
fo IC=o = po, on en déduit fo à O(("') près .

Avec ce choix de fo, on résoud (4.1) o sur un certain intervalle [0, 'ri], et tous
les autres f k sont déterminés (à la même approximation), ainsi que G° ; si l'on noteN
G1 = G° + T2 G1, l'équation (4 .1)1 se réduit, après division par r2 , à

N
-T G1 - G1 + g(fô + T Gô) T Gï + g(f' + T Go) T G~ = termes connus .

Cette équation linéaire possède une (unique) solution sur le même intervalle [0, 'ri] .
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On a ainsi résolu (4.1)1, G1 n'étant déterminé qu'à un élément près du noyau .
(d) Abordons maintenant la résolution de (4 .1)k, k > 2 . A ce stade, Fo est connue,

ainsi que les G~, j < k - 2 . Le noyau de l'équation (4.1)k_1 est formé des fonctions v
vérifiant

-TV+(2k-3)v+Tg(fo +TG')v'=0.

Ces fonctions sont de la forme

v = hr23 + r2k-2 h
N

où h est arbitraire, h étant déterminé par h . Plus précisément

v = h r23 + ig .f h' r2k-2 + 1 2

	

2 h" + (g 2 .f .f " + gG)~ h' r2k-1 + T2ko

	

2 g (.fo)

	

o o

	

o

L'équation (4.1)k détermine les coefficients Gk de Gk = ~e>o G r~ pour £ <
2k-4 ; les coefficients G k_3 et G k_2 sont alors connus en fonction de h. L'annulation
du terme en r21-1 conduit à une équation en h de la forme

-28e h' + ( termes en h sans dérivées en ~) = termes connus .

Comme pour fo, la connaissance de hie-o = Spk_1 détermine h à O((N') près. On peut
alors trouver sur [0, Ti] une solution de (4 .1)k sous la forme Gk = > 0<t<2k2 - Gf Te +

N

	

N
T2k Gk, Gk satisfaisant une équation linéaire à point singulier régulier et à indices
négatifs .

	

D

4.1.2. Choix de uâ . Compte tenu de la structure de la solution Uk =
construite à la proposition 3 .1, on a

rV2
(

	

Uk)(0 , w, 0>0,0)=~EQLé(o>W,0)=~Po(~,w)~
E

	

e<~

r1!2
(aTQ az ) ( - uk/

	

o, o, o) = o .

Nous choisissons donc pour uâ la fonction rl/2 F, où F est donnée par la propo-
sition 4.1, correspondant aux fonctions Spo, çoi = 0, . . . , cp~ = 0, ~Po définie ci-dessus .
Comme (4. l)o signifie que v = fo + 'rGo est solution de 8Tv =

	

avec
2

v(cr, w, 0, ~) = fo(o, w, () = R(o, w)+O(E)+O(~), le temps de vie de Go vaut A0 +0(E) .
La solution construite uâ~'e existe donc et est régulière pour 0 < r < A, pour E

assez petit .

4.1 .3. Recollement. Dans la période de transition E-À < t < 2, la solution
Uk fournit une autre solution approchée (à E'_"(2) près) de Du + g âu â2u = 0
de la forme E F : la partie "unicité" de la proposition 4 .1 garantit que les deux

r 1 1 2
solutions diffèrent arbitrairement peu pour N, N' et k assez grands (pour a < 2 fixé) .

4.2 . La construction a l'intérieur . Comme en §4.1, nous nous limitons à
0 < r < A . Ici, on simplifie résolument la construction à l'extérieur, mais, comme
en §3.2, on doit apporter un soin particulier à l'étude du comportement en o, et au
recollement entre les deux périodes .
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4.2 .1 Les symboles R(a, w) et L(cr, w) ont été définis au 3.2. Définissons S =
SE(o, w, r) comme la solution de

(4.2 .1)

	

8T S -- 9 (8S)mi 2 = 0,

	

S(a, w, 0) = R(cr, w) + eL(o, w) .
2

Par analogie avec le traitement de [1], nous posons

(4.2 .2)

	

u = uâ = Eut + e2z + x rl/2
K(r - t, w, r),

ou
K(Q, W, T) = S(o~, W, T) --

u1 et z ayant été définis au paragraphe 3 .2 a et b .
L'approximation obtenue par le choix (4 .2 .2) est précisée au lemme suivant .
LEMME 4.2 .1 . On a âx t w Ja IO

	

2< Cc ( .I t
Preuve. (a) Calculons Du : d'après le lemme 3 .2.1 et sa preuve, Dz = W satisfait

â ~&W 0~ < Ca /(1 + t)3/2 . Donc

Du=e 2W- E
2
X ÔT K'-~-H1,
rt

ou

r 1 / 2 (Xtt
- x") K - 2K'(xt + x') +

	

âTK

	

x~

	

xt 4t
2

+ aTK-x 1 +â2 Kx
4t

	

r2 4

Par ailleurs, on peut écrire u sous la forme

e S(r - t, w, z)

	

R(r - t, w)

	

L(r - t, c~)
r1!2

	

+ E (u l - x r1!2

	

) + E 2 (z - x

	

r1!2 )
e

= x r1 !2 S(r - t, w, r) -I- ETl ,

les estimations de r1 résultant du lemme 3 .2.b. On a donc

2
Q •(~ uâ 2•u = e 2 g•

x S'S" +e 2 H2,r
avec

2
H2 =

{8k(,!2)2
r

-E-

	

. â

	

S d?. r -E- . â r 8?

	

S

	

-I- ~. 8 r â? r

	

= H 1 + H 2 .
gZa ~ x rl/ 2

	

2~ ~

	

9z~ k l 2~ x rl/ 2

	

92~ ~~ ~~ 1

	

2

	

2

Finalement

e2

	

t -- r

	

x(x - 1)
Ja -= C2W + Hl -f- E 2 H2 + X

	

A S'		 ~2g S'' S'"
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(b) On voit facilement, comme dans [1], que S est borné en a, tandis que S'
est essentiellement en Q (fo f -~ +oo). On en déduit que K = 2 fô Ri 2 (o, w, s) ds
se comporte en a . D'autre part, à l'intérieur, la fonction S ne présente aucune
singularité pour T < A, à cause de (ND) . On a alors

Un terme typique de HZ est

a (

f9aHi < ~
l + t~2

et la˓Y
H2 lo <_

	

c1 + t)3/2

rS 2 ){â~(~i-x~R 2)+Eôk(z-x r~ 2 )}

le premier produit est majoré par
S_ 3

le second par e 5
2 ce terme est donc

t2 ~

	

t 3 / 2
majoré en norme L 2 par

C

	

Ce

	

C
(1+t) 3 ! 2

	

1+t ~ (1+t) 3 !2 '

quant au terme ak ri a ri, il est majoré par

S_2

	

S_, + e2 S_ i
t3 + t5/2

	

t 2

et

u" - uI

Au total, faa H2 f o < C/(1 + t)3!2 . Les autres termes de Ja sont négligeables, et l'on
trouve

Cet

	

Ce

	

e
fDa Jf<ao

	

(1+t)3!2 + (1+t)2 ~ c (1 + t )
2

4.2.2. Le recollement. Les solutions uâ construites en périodes I et II aux
§§3.2 et 4 .2 .1. se recollent très bien en période de transition e " < t < 2e . En effet,
on peut écrire

2
uI = cul + x 2
	 g

rl/2
eT Ri2 + e 2z +

6xgrl/2 eT
2(Ri3)r +	 xg ~2TR'L'

rl/ 2

	 93
+x 6r1/2 6T3

	

i2R +
"2 Ri 3R"92 e2 T2

	

R" L' + R'2 L"(3R

	

) + x2rl/2

	

(2 R'

	

)

3- g T3 (3 R'2 R"2 + R'3 R"i) - a5 T4R")

+e u5 + E6 6 + E7 u7,

X rl/2
S(r - t, w, T) - R - g r R'2 - g T2(R'3)'

2

	

6

- a6T5 - a7T6 }
1

e

e2
- x 1 , 2 L+gTR'L' +

92 T2 2R'R"L' -~- Ri 2 L"
2

	

(

	

)r

Il faut d'abord éclaircir la structure des termes principaux û~ = xa~ (r -- t, w t 2 & 2))

de ut, en affinant l'analyse amorcée au §3 .2 .4 . (ai (a, w) = R(a, w)) .
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LEMME 4.2 .2 . L'expression ~ e> l T~-1 a'(, w) est le développement de Taylor en
z de la solution R(Q, w, r) de l'équation

(4.2 .3)

	

aTR = 2 (E,R)2 ,

	

R(o, w, o) = R(u, w)

Preuve . (a) Le terme principal de Qt _

	

g âk ut' a ut» vaut

t 2 (t-4) g >2(al.e,)'(ale„)" = gt 2 (t-4)

	

(ai',) '
(al.e,,)' + [(a1

1

	

~
' 2x

	

)2e

d'où, pour L > 2 d'après (3 .2 .1),

a1 _ t1	 lg
-

(b) Pour une donnée arbitraire A, (c, w), soit A(a, w, r) la solution de OT A
9 (A') 2 , A(~, w, 0) = A1(o, w) . Elle s'écrit formellement
2

A=A,+TA2+T2A3+ . . . .+TkAk+,+ . . .,

en sorte que l'équation

A2 + 2T A3 + . . . + k r ' Ak+, + . .

conduit aux relations

soit

A2 g
2 (Ai)2 ,

Donc, pour £ > 2, grâce à (3.2 .1),

(k-1)Ak

tt,+t,<t „ , „=

g
2

g A1 +TA2 + . . . +TkA 1 +
2

	

+

l
{2 A'~, A'~,,

~~ {gj âk ïLt, â ût" + g 8k ~ct' 9 it»

x t2 (t_5) g

	

+

+ (A,2) 2 }k

(a,)'é(agi„)' + (4, )' (4)' + (as)' (a ,2 )' } .é

}2

Comme ai = R(o, w), le lemme est prouvé .

	

D
De la même façon, en notant ûQ = x aé (r - t, w) t 2 (t_3) le terme "sous principal"

de ut (ai = 0, a2 = L), on obtient le lemme suivant .
LEMME 4 .2.3 . L'expression > t>2 Tt_2 a~ (o, w) est le développement de Taylor en

r de la solution L(cr, w, r) de l'équation

(4 .2 .4)

	

arL = g(âg R) (â,L),

	

L(~, w, 0) =

la fonction R(cT, w, r) étant définie par (4.2 .3) .
Preuve. (a) Le terme "sous principal" de Qt est le terme principal dans l'expression
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(b) Pour une donnée arbitraire B2(a, w), soit B(cr, w, T) la solution de

= gA'B',

	

B(a',w, o) = B2,

oùA=A1+TA2+» .
Elle s'écrit B = B2 + TB3 + • • • + Tk Bk+2 + • • •, en sorte que l'équation

B3+ . . . +kTk-lBk+2+. . . . =g(A1+ . • . +TkA +l+ . . .)(BZ+ . . . +TiB~+2+ . . .)

conduit aux relations

(t- 2) B~ = g

	

A'e, PI-'t" .

	

a

Compte tenu des lemmes 4 .2.2 et 4 .2 .3, on peut donc écrire

u" - u I

(4.2 .5)

(car t ~ e-a, À> 2 ),

(4 .2 .6)

x r1!2 {S(r - t, W, T) - R(r - t, w, T) -- e L(r -- t, w, T)

E
r1/2{R

(r - t, w, T)

+x r1'2 {Lr (- t, w, z)

1<t<7
Q-iaé(r-t, w) y

2<t<4

Le premier terme est étudié au lemme suivant .
LEMME 4 .2 .4 . La solution S(a, w, T) de (4 .2 .1) s'écrit

S(Q,W,T) = R(O',W,T) +~L(O',W,T) +e2S(O', T),

où R et L sont définis respectivement par (4 .2 .3) et (4 .2 .4), et où S ° est intégrable en
o, ,

Preuve . En remplaçant dans l'équation de S, on trouve

aTR + ~ aTL + ~2 aT s = g (a~.R + ~ a~L + ~2 a~ s)2 = g (a~R)2 + ~g(a~R) (~~L)2

	

2

+e 2g8 RDQ S+ (aL) 2 ) iQ+eg3 EJaLD,S+ g ~4 (a~S) 2 ,
2

	

2

soit

E-2 aé (r - t w) } .

0T s = g(D~ R + e O L) 8 ' + e2 g ( 3)2 +2

	

2
S( r, w, 0) = 0 .

On voit facilement (comme dans [1, Lem . 5 .1 .1]) que R(a, w, T) se comporte comme
un symbole d'ordre - â en o7, tandis que aaL est dans L 2 (II~~) . On en déduit que S
est intégrable en .

	

D
On obtient finalement les estimations suivantes

ax,t,w ~u7I
_ u')10 ~ c

es .} Cea(l + t)7!z + CE5(1 + t)3!2

Ce8(1+t)7!2

Ilaa euII -uI>Il o ~ Ce$cl+t>3 .



4.2.3. Estimation de Ja en zone de transition et choix de À. On pose,
pour 6 ' < t < 2 s- ~`,

u = ua = B (t e+") uI + ( 1 - 9 (t +~` ) ) uII .

LEMME 4.2 .5 . En zone de transition, on a, si 2 < a < s ,

aa

	

T j < cA`
l x,t,w a l o-

	

2t

Preuve . On écrit

Ja = ODuI + (1 - B)DuII + 2e+a B'(uI - uII) + e+2# 9"(uI - uII)

+g â 82 ak uI a â u
I + g (1 _ 6)2 ak uII 8a uII

+8(1 - e)g (ak uI ô . uII + ak uII a uI ) + r

où r regroupe les termes contenant au moins une dérivée de 6, d'où

62+À

Donc

Ja = 9 Ja + (1 - 0) JII + r + (26+a e' + 6+2a e")(uI - uII )

+8(8-- 1) g~akula ul + g~akulla~ u"

-g (ak uI a uII + ak uII a uI)

et le dernier terme vaut 8 (8 - 1) g ak (u' - uII) a (u' - uI I ) . Finalement

~BaJa~ o <_ C(1+t +E5(1--~t)1~2+s8(1-~t)5~2-t- ~i+t~z + ~l+t~
i~al

..~E+a+sil + t~7/2 . .~ ~is~l + t~s ,sl < C ~1 + t~J

pour2~a<s .

	

Q
On fixe dorénavant À = 9 .

4.3. Le recollement intérieur/extérieur . On procède exactement comme au
§3.3 .

•

	

On a
ue =

	

F r t 1 Ta

	

rl/2

	

r.' ~ ~ ~

et avec les notations de la proposition 4.1 .1, F = fo + TGo + O(z) . D'après (4.1)0, la
fonction v = fo + T Go est solution de

(4.3.1)

(4.32)
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a~rl ° ~ C (1 -F~ t) 1 ~2

v(a~, w, O, C) = fo(a, w, ~),

et la fonction fo satisfait, par construction et grâce à (4 .1 .1),

.fo = ~o + o(~) = R(~,W) + ~L(~,W) + ~ ~e LP(a, w, o) + o(C)
2<e<k
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On a donc

(4.3 .3)

	

~f8a(S-v)ffo <_ Cae2 (logt) .

•

	

Par ailleurs, dans la zone de recollement,

R

	

L
u1 - rV2 et z - r1!2

se comportent comme les premiers termes négligés qui sont de la forme

5112(r - t, w)
et S_2(r - t, w)

respectivement . Donc

(5.2)

fat + Or ) I e (ui -
L

0

A 2

r3!2

l«

(5.3)

	

I Ô~ t w V(u - 2Ga ) ~

r~2 ) +&2 (z_ r~2 ),

~logt
Ja l o < Ca	2t

(5.1)

	

L Ox° t,w Ja o ds < Ca
X23/9 f log

I IaJa I I

o < Ca
6p

o

r

	

'

CaE23/ 9 f lOg EI .

<C ~ .t5/2o

La preuve est alors identique à celle de la proposition 3 .3.1 et conduit au résultat
suivant.

PROPOSITION 4.3 .1 . Pour ua = u / = Ou â + (1 - B) uâ on a

5 . Conclusions pour les périodes I et II. On a fixé A, 0 < A < Ao et
`42l'on a construit aux paragraphes 3 et 4 une solution approchée u a (Pour t -i-)<

	

dee
l'équation ou + gâuâzu = 0 sous la forme

ua = 9(tea){B(r - t + Co - 1)uâ' 2 + (1- B(r - t +Co - 1))u4'e }

-B)(teÀ){B(r-t+ Co -1)uâI'i-I-(1-9(r-t-FCO-l))uâl'e}l~= 91 ,
\

	

I

pour laquelle on a prouvé l'estimation

(c'est une conséquence immédiate des propositions 3 .3, 4.3 et du lemme 4.2 .5) .
En fait, pour tout p e N, on peut choisir q en sorte que ua vérifie, à l'extérieur,

Un argument standard d'inégalités d'énergie (cf . [5], [1]), utilisant l'hypothèse d'in-
duction sur le temps

II 0 ,t,(u - ua)IIou, < r E	
l

	

1

permet alors de conclure que, pour 0 < A < Ao et e petit, on a, pour t <
A2
2'



A2

Le même argument,

	

_utilisé cette fois dans un domaine t > Co, t-Co <_ _r < 2 +M-t.

	

~ 2
où seule (5.2) intervient, montre qu'en fait, pour tout p, on peut trouver q tel que

(5.4)

	

A l'extérieur, II8 t,V(ua w

	

- ua) II o < Ca er .

6. La solution en période III. Nous n'avons pour l'instant étudié ua et u que
pour T < A, O <A < Ao .

Nous abordons maintenant l'étude du moment où T s'approche de la valeur cri-
tique T* (e), où les dérivées secondes de ua deviennent infinies quelque part à l'extérieur
(cf. §2) .

A l'intérieur, nous conserverons la solution approchée uâ I ' Z construite au para-
graphe 4.2, puisqu'elle n'explose pas .

6.1. Nous allons d'abord simplifier la structure de uâ I ' e en remarquant que, pour

e 2

	

QE2\ -1
T>A>0,

	

z=-(1+

	

2T2 )

Le lemme suivant est une variante du lemme 4 .1 .
LEMME 6 .1.1 . Pour toute fonction F, en posant u =

	

F(r - t, w, T), on ari~2

(s.1 .1) Ou +g8u82u
2

-È'+ F'F"+62 - 1 1+â2
F- crg F'F»- F + F

rt

	

g

	

T 3 4

	

2T2

	

4T 2 4T

+g wk F' Aii F' + wi w~ F" Ak F + e4 R(F)

où les Ak, AZ~ sont des opérateurs différentiels en 8, eT d'ordre 1 à coefficients
réguliers en (w, i, E2 4r), et R est une expression quadratique de dérivées de F précisée
en (6.2.1) .

Preuve. (a) D'après (3.1 .1), on a

e 1

	

2

	

e2

	

F l
~ = r5!2 ( 4 + â~,) F

	

rt (F''+

	

e3 F
4r1 frt4

(b) On a, pour i > 1,

2
F = r1 / 2 â F = wF' +

	

t
j

	

-
wZ

F + w,~ 1 OWFZ
rl/2

	

Z

	

T 2 r

	

2

âoF

	

62 .
=0OF--F'+,

2T

et
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557

w9 +62 A 1 ak-1 +64A2 a ~-2 + . . .

	

2k kâ

	

a ~

	

a ~

	

+ Aa

donc 9 = w2 ô +62 AZ, où AZ est un opérateur du premier ordre en 8, ôT , à coefficients
t

	

Q -1
réguliers en (w, T, e2 cr), car - = (1+ 2 -)~ .

r

	

T2
De façon générale, pour a l = k,
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où Aâ est un opérateur d'ordre k en (&, aT ), à coefficients réguliers en (w, r, E 2 cr)
On notera en particulier a F = w2 w~ F' + s2 AZ~ F' + s4 BZ~ F, en sorte que les

termes quadratiques g au a2u s'écrivent

DuD2u= 9k1âkFâ2.F=~2 g

	

2~ r

	

Z~

1

r = A,

1
{g' FF" + E2 g (AkFwi w~ F" + wk F' A2~ F')

r

at ~u-u~~=atu- r~2 (-F++ ~Z F'+ J ,

+E4 g (Ak F Aii F' + wk F' B 2i F) + E 6 g Ak F BZjF

On obtient ainsi le résultat, avec

(6 .1 .2) R(F) =(~)1/2{g~(Ak FA F' -~wkF'B2~F)+e 2 g~AkFB2iF}
J

+ * g (wk F' AZ ~ F' + w2w~ F" Ak F) +

	

*

	

F,
(a~<2

* désignant des coefficients réguliers en (a, w, r) .

	

D

Dorénavant ' nous noterons E(F) le terme - 1 1 + aw F + • • • entre crochets
T3

4

au lemme 6.1.1 .
rl/2

Désignons par FA(a•, w) la valeur prise en r = A par

	

uâ, construite au §4 .1 .
Notons alors F la solution de

(6 .1 .3)

	

D,-F = 9 (EF) 2 ,

	

~ F(o,w,A) = FA(a,w),
2

et G la solution de

(6.1 .4)

	

DAG - g a~F 8 G = f E(F) ds,

	

G(a, w, A) = 0 .
M

Enfin, posons

III,e	 E
rl/2ua = ua

	

(F(r - t,
w, r) -}- E 2 G(r - t,

w, r)) .

6.2. Estimation de l'erreur sur r = A . Le raccord (brutal) entre les périodes
II et III est justifié par le lemme suivant .

LEMME 6.2 .1 . La fonction S étant définie par (4.2 .1), on a
(i) FA(a,w) = S(a, w, A) + O(E 2 log E),

(ii) Pour r = A, II w (Yc(uaa,at - ua)Ilo < Ca,kE8 , où 9 désigne la dérivée à
A2droite en t = 2 .

Preuve . (a) L'estimation (i) est prouvée au §4 .3 .
(b) Notons u/ = rV2 F± (r - t, w, r) les solutions approchées en périodes II et

III (pour t < A2/E 2 et t > A2/E2 , respectivement), exprimées en variables (cr, w, r)
au voisinage de r = A .
On a, pour



en sorte que

(u-ua)-a(u-ua) =	((F+ _F)'_	(F+ - F_)) = -(F - F_),

à cause des choix (6.1.3), (6 .1 .4) (F+ = F + 62 G).
Or, si une fonction régulière F satisfait une équation du type

-F' + g F' F" + 62 [dérivées de F] + . = r,

la donnée FI T A détermine FIT A à une erreur près de l'ordre de r .
Pour F_, r est arbitrairement petit, tandis que r = 0(64) pour F+ ; donc

.

(F+ - F_) = 0(64 ) .

Comme d'autre part on sait par (5.4) que II0xw(a )k ('i - u a )41 0 CŒ 6, on obtient
(ii) .

	

D

6.3. Estimations des dérivées de F, G et ua . La fonction y = -g F' est
solution de l'équation de Burger .

6.3.1. Solutions de l'équation de Burger .
LEMME 6.3 .1 . Soit y = v(a, w, T) la solution de l'équation de Burger

(6.3 .1)

	

8v + v8,v = O,

	

v(a, w, o) = w(a, w),

où w e C est supposée telle que inf é3 aw =

	

< O. Pour O T <T*, on peut
a,w

	

T*
définir X = X(cr, w, T) et D = D(X, w, T) par

(6.3.2)

	

X + Tw(X,w) = a,

	

D(X,w,T) = 1 + T(0,w)(X,w) .

Alors toute dérivée O ~w 8~ y (i + j + £ = k) est de la forme

(a w)
(6.3 .3)

	

8JL0v(a,w,T)=

	

apq(X,w,T) Dk+p
O<2p<k-1+qq<k-1

pour certains coefficients a pq réguliers .
En particulier,

(6.3.4)

	

8 9 v(a, w, T)
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0t u-u a )=8tu-
2J

<
C

D 3k/2 h/ 2

Preuve. (a) Il est bien connu que v(a,w,T) = w(X,w), d'où i%v = (C7aw) âa X,
âwv = (w) &X + &w, DT V = (âaw)8TX, avec

Da

	

DX=, &X=-T, X=-,

w, T),
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ce qui prouve (6.3 .3) pour k = 1,
(b) La dérivation (en or par exemple) d'un terme apq (w)/DPa~qk+produit une

somme de la forme

aX apq Dk++1 + Dk
ap	w	()q

	

2

	

1
+n q( )4-1

(5gD
) - (

k + p)apQ Dk++i T(a°w) D '

d'où (6.3 .3) par récurrence .
(c) Comme D >_ 0, on a ~Vx,WD) < cte D 1 ! 2 , soit T( Iââw I + I 8w âow~) < cte Dl'z .

Comme D > cte > 0 pour r > 0 petit, on en déduit 1t9wIô+ (âw âaw~ <_ cte DV 2 .
La majoration (6.3 .4) découle alors immédiatement de (6.3 .3) .

	

D

6.3.2. L'équation de Burger inhomogène .
LEMME 6 .3 .2 . Soit h(cr, w, -r) la solution de l'équation

(6.3 .5)

	

8Th + vaah + hOQv = (X, w, r),

	

h(a, w, 0) = 0 ,

où v et X sont définis au lemme 6 .3.1, et / est donnée .
Alors, pour r <r, toute dérivée 8 8 8Th (i + j + £ = k) est de la forme

(6 .3 .6)

	

0, 8L 8e h =
e~~<k

L'<2(k-L")
q>28~-3(k--L")

où C(X, w, T) = f(D)(X,w,s)ds .ô
En particulier,

(6.3 .7)

(0w)q
*(X, w, r) D1+e ,+e"

aQo`i0Th <C	 11+ 3k-E~~ aX,w,T~
"<k D

	

2

Preuve . (a) On utilise les variables (X, w, r) et on cherche h sous la forme h(or, w, r) _

H X w T L' éuation 6.3.5 devient alors âTH+
0,,W

H = ' eut écrire, en(

	

).

	

q

	

(

	

)

	

D

	

~~qu on p

posant H= , âTC= Db, soit C= fT Dbds.oD
(b) On a alors

•

	

h =

•

	

h =

aTh -

1

	

1 - CT
â2w

•

	

X D D3 ~ '

l (OxCOwX+a C) - D2c (a Da x+&)D),•

	

W x w (OxCO,-X 1+ aTc) - (OxDO,-Xc + 0Dr

	

D2

	

T ),

ce qui prouve (6.3.6) pour k = 1 .
(c) La dérivation (en or par exemple) d'un terme de (6.3 .6) produit une somme

de la forme

( )0"Cq ~( )q-1 	~„

	

( )q+1

	

~~~

	

*

	

( )q
* D2+~'+~" + *q D2+t , +t» 8 C + * D3+t ,+t„ â C + D2+~'+~" â

	

C .

Ces termes sont du type voulu, car q - 1 >_ 2(2' -1- 1) - 3(k + 1 - 2"), q + 1 >
2(2' + 2) - 3(k -F- 1 - Q") etc .
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(d) Puisque L'-

	

(
q < 3 k-L"

) '
1+ L'+L"- q < 1+

3 -

	

d'où
(6

.3.7) .

	

0
2 - 2

	

2 -

	

2 2
6.3.3. Estimations de F et G. Nous allons maintenant utiliser ces lemmes

pour préciser les comportements de F et G définies par (6 .1 .3) et (6.1 .4) ; on a alors
v = -g F', h = --g G', w = -g F . On notera X et D les fonctions définies par (6.3 .2)
et T* (A, e) le temps de vie pour ce w là, et on posera, pour •r <r* (A, e)

(6.3 .8)

	

X (v, w, T) = X (Q, w, T - A),
D(x, w, z) = 1 + (T - A) (8ow) (x, w) .

LEMME 6 .3.3 . Pour r < A -+- T* ( A, e), on a les inégalités
(i) f F1 + fV,W,TFf

	

a <_ C,

(ii) ia~ w ,TF~ < Ca/D(X, w, r)(3k1 2 )-2 pour faf _ k > 2,
(iii) f Gf < C, '& w ,T" < Ca/D(X, w, ,r)3k/2-i/2 pour ,a4 -= k > 1 .
Preuve. (a)

	

_Si i > 1, t9 c` wF =

	

( \-v et l'on applique (6 .3 .4) . Si £ >_ 1,
g

a F -
v2

	

et (8t')()=z

	

v2

	

* âk, vâk„ v
T

	

~

	

Q w T2g

	

2g

C

	

C
est majoré, grâce à (6.3.4), par D(3(k'+k»))/2- < D3k/2-2

(b) Comme
1

F(~, w, T) _ --

	

v(s, w, r) ds,
g M

on obtient par le changement de variable x = X (s w T), dx = ds

1

	

X (o w,T )

F(cr, w, T) =

	

w(x, w) D(x, w, r) dx .
g M

Donc

(gF( w, r))

k'+k"k-i

et

fX

	

rX
_ -(Dw)(X, w, T)&X - J âW(wD) dx = T(wâ~,w)(X, w, T) -

J
. . . dx,

M

	

M

X
0w(9F) =Tâw(wBWw) -T 2 âX(wâWw) ~ww +TFL,(wD) ~ww -

r J
â~(wD)dx .

D M

A partir de là, le même raisonnement que pour les fonctions v et h implique (i) et (ii) .
(c) En posant, dans (6.1 .4), h = -gG', on obtient (6.3.5) avec « X, w, r) _

-gE(F) . Rappelons que

EF - 1 1 +o F-

	

vv'+*v2-+-*v2v'+*vw+*v'VF( )

	

T3 4

	

2 r2

	

'
g
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en sorte que D/' est une fonction régulière de (X, w, T), ainsi que C . On déduit donc
de (6.3 .7 ) a T a

	

<	C
w T - D1+3k/2

On a alors, -si i>1, ai â~ G = c~ a2-1 -

h
•sit>1Q w

	

w cr

	

~

	

_. ,
g

d'où

Enfin,

d'où

et (iii) .

	

D

6.3.4. Estimations de ua . Il résulte de ce lemme que, dans la fonction F+s2G,
2

les dérivées de F dominent toujours celles de G pourvu que 3 < cte. Par ailleurs
D2

a2(F(r - t, w, T)) = F'wi + awFO(s2),

	

ât(F(r - t, w, T)) _ -F' +	 F,

pour évaluer les dérivées de ua, il suffit donc de considérer F et de négliger w et r .
Cela conduit au lemme suivant .

LEMME 6 .3.4 . (Dérivées de ua) Pour r < A + T* (A, s), on a les estimations
(1) Iua I + V x,t,w uaI < C E 2 .

(ii) Pour a _ k > 2,
s 2

I ~~ t w ua I < Ccv
' '

	

D(X, w, T)3k/2--1/2 °

6.3.5 . Estimations des dérivées de Ja .
LEMME 6 .3.5 . On a, pour r < A + T* (A, s),

s
(1) IJa I <C,7D2 8
(11) Iox Ja I + Iaw Ja I <_ c D5

8
(iii) IVx Ja I + iaw vx Ja I + IaW Ja I < C D13/2, où D = D (X, w, r) .
Preuve. D'après (6 .1 .3) et les choix de F et G, on a

G'
G"

- 1 1
a2

G -- ~g F'
G" + F" G'

	

G + G
+ g

	

T3 4 + w

	

2r2 (

	

) -- 4r2 4Trt
+g (wkF'AijG' + wk G' Ail F' + wi w~ F" Ak G + wi w~ G" Ak F

+Q(F + s2G, F + s2G) +2(_

	

~og
G' G" + gk (wk G' Ail G' + wi wiG" AkG)

2 T2

	

.7

fX
BTG= gvh- ~ /M (D)dx,

./

ai a~ a~- 1 a G <

	

ak'v Iak"hI
+	c	 <	

C
Q w T

	

T

	

-

	

(

	

(

	

D(3')/2)'/2

	

Di- 3k 2-1(
k'+k"<k-1

1
f
~C

	

1
f
X

G(a•, w, T) _ ---

	

D
(X, w, T) ds

	

C(x, w, T) dx,
g M

	

g M

C f
X

aw(g G) _ +r 0ww -

	

awC dx,
M
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Le terme R(F) est contrôlé par les dérivées secondes de F, tandis que le terme le plus
singulier entre les accolades est g G' G" . On obtient alors les estimations du lemme
sans difficulté à partir du lemme (6 .3 .3) .

	

D

6.4. Non dégénérescence et estimations L 2 des erreurs Sous l'hypothèse
(ND) (ou (ND)'), nous précisons maintenant le temps de vie T* ( A, e) de (6.1 .3), ainsi
qu'une minoration du dénominateur D des estimations des lemmes (6 .3.4)-(6.3 .6) .

LEMME 6.4.1 . Sous l'hypothèse (ND), il existe C tel que, en posant

T = T (s) = T* (s) - C s' ' - C s 2 I log si,

on ait
(i) T* (A, e) ? T -A,
(ii) cte /('î -- T) < sup~ ,w lg F" (cT, w, r)1 < cte +1f? - T,
(iii) Il existe une fonction ao(s) et une constante C1 > 0 telles que

D (x, w, T) >_ cte I T - T - i- Cl ( IW - Wo I + Ix - ~o (E) U k)

Dans le cas invariant par rotation, et sous l'hypothèse (ND)', (i) et (ii) restent
vraies tandis que (iii) est remplacée par

(iii)' D(x, T) > cte T - T + C1 Ix - cio(e)l k .
Preuve . (a) D'après l'hypothèse (ND), nous avons

-gR"(a, w) > -gR"(ao, wo) + Cdk

où d = I° - °o1 + ~w - wo l • Cela implique

- g (R" + sL")(cr, w)
> -g R"(ao, wo) + eL"(ao, wo) - C's(ia- mol + (w - wol) + Cdk,

d'où
g(R" + sL")(a,w) > - -9( )(o,wo)

	

a~- C" s 1 + ç dk .2

Les propriétés élémentaires de l'équation de Burger montrent alors que

-g S"(a, w, A) _
1

A+ _g(R„+sL")(çb(a,W))

1

	

-1> A +.	,~	
C

	

4
--g(

)(ao,wo)
- C" s -1 + 2

l(a,w)

	

~-
(ao,wo)i

où f-1 (u, w) correspond au déplacement sur les caractéristiques de l'équation de
Burger, à w fixé, entre r = 0 et r = A, et -1 (uo, wo) _ (uo(5), wo) . Comme est un
difféomorphisme et A < Ao, i(°~, w) - (uO, wo) l > cte d, où d = (w - wo l + l° - cro (s) l
(çb, comme uo dépendent de s, mais les constantes des estimations n'en dépendent
pas) .

D'où, pour un C1 > 0,

_g S" (v, w, A) > (A +
-9( )(oo,wo)

1

1
Cs' ' + C1 dk .



564

	

SERGE ALINHAC

Comme
1

9( )(ao,wo
le lemme (6.2.1(i)) implique

-6.4.1

	

- F" w > 1

	

- Ce'-1 - Cet lo e+ C d~(

	

)

	

9 A( ' ) - -A A o eA

	

~ g ~

	

i '+ + i

avec de plus -gFy(QO(e), wo) = A 1 Tw -1- O(e 2 ~log e t ) .
De (6.4.1), on déduit que

T(* A,e)=inf1 >T-A .
gFA

Comme
sup g F" ` < cte+

T(A, ) - (T -- A~,w

	

*

	

)

est vraie pour toute solution d'une équation de Burger, on obtient (ii) .
On a enfin

= Ao + e A1 +0(E2 ),

1

D (x, w, r) = 1 - (T - A) g F'(x, w) > cte (r* - T - C e i - C e2 Ilog eI + Cl d~

d'où (iii) .

	

D
Il s'ensuit en particulier que les lemmes 6 .3.3-6.3.5 sont vrais pour r < .
La minoration (iii) de D nous permet d'obtenir des estimations en moyenne

meilleures qu'elles ne seraient si on avait Cl = 0 .
LEMME 6.4.2 . Il existe v1 > 0 tel que, pour A < T < T, dans la zone extérieure,

on ait
( i) ( Ja 10 ~ C e7/( '- -

(ii) IVJa I0 + JOwJal0 < Ce 7/(T - r) " ;
(iii) IV2 Jaf0 + IOw VJaI0 + I9'JaIo Ç Ce 7 /(T - T)s-vl .
Preuve. (a) Supposons qu'une fonction f (cr, w, r) > 0 satisfasse f(a, w, r)

1/D(X, w, T)À . On a alors

f f2(aw T)

	

-
dadw < f dw	

d~ 	
ff	
~	dxf D(XwT)2À

_

	

DxwT 2a-1(

	

)

< cte dw

	

dx
~ Za1-(T--T+CiIx--ao(e)i)

En coupant l'intégrale en x en (x - ~o()( l~> T - T et < T - T , il vient

(f

	

1/2
f 2 (cr, w, T) dc7 dw

	

<

	

~-T -

cte
r) 2

(b) L'application de la remarque précédente avec f = I Jai etc., pour les valeurs
À = 2 , 5 et 2 conduit au résultat, avec v1 = 2~ .

	

D
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INSTABILITY OF STATIONARY BUBBLES *

ANNE DE BOUARD

Abstract. The paper is concerned with the study, by means of a linearized operator, of the
instability of stationary solutions of a nonlinear Schrbdinger equation with nonvanishing "boundary
conditions." We prove that this operator possesses a real positive eigenvalue, and that when they
exist, the stationary "bubbles" are always orbitally unstable.

Key words, nonlinear Schr6dinger equations, solitary waves, stability
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1. Introduction. In this work, we study the instability theory of stationary
solutions of a nonlinear Schrbdinger equation

(1) i- + ZX + F([[u) 0 in

under general assumptions on F. The solutions considered here, unlike the classical
standing waves of equation (1), satisfy the particular "boundary condition"

(2) (x, t) --. V when

where p0 is a real positive constant and F(po) 0. They are the stationary case of a
new class of solitary wave solution of equation (1). For example, in the context of a
Boson gas with two-body attractive and three-body repulsive interactions, described
by the "!Pa -5,, nonlinear Schrbdinger equation

(3) 0

where 2(x,t) E C,x n,t +,n 1,2, or 3, and a3, a5 > 0, these stationary
solutions can be interpreted as "rarefaction bubbles." They represent the nucleation
of a stable phase, which is given by the stationary solution 0, into a metastable
phase, given by the solution fp-, where 0 and p0 are two minima of the potential
V corresponding to equation (3)

i
[4

I
v(ll  111 +

if V(0) < V(po) (see [2]).
In space dimension one, some localised solutions traveling with a velocity v, having

the form (x, t) (x- vt) and corresponding to nonstationary "bubbles" have also
been found (see [1]). The "boundary condition" is then

lim (x t)- v/-Pe:F

* Received by the editors September 14, 1992; accepted for publication (in revised form) August
26, 1993.

Laboratoire d’Analyse Num4rique, Universit6 Paris Sud, Bat. 425, 91405 Orsay, Cedex, France.
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where # is a real number depending on the velocity v, with # 0 when v 0.
These solutions seem also to have interpretations in other fields of physics where

equation (3)occurs (see [2]).
Here, we will be concerned with the general equation (1). Our aim in the paper

is to give criteria for the existence of stationary solutions having the same behaviour
as those described for equation (3), and to show that for any F satisfying those
assumptions and for any space dimension n, such solutions are always unstable. This
means that if is such a solution, then one can find initial data arbitrarily close to
such that the corresponding solution of equation (1) quits any given neighborhood of

in a finite time to.
In [2] (see also [4]), Barashenkov et al. considered the linearized evolution equa-

tion around such a stationary solution and studied the operators L1 and L2 (see 3
for a definition of these operators) to conclude to the existence of a time exponen-
tially growing solution for this equation. We will use a more refined analysis of this
linearized operator to show our result (see Theorem 4.1), and in particular, we prove
that it possesses a real positive eigenvalue.

The nonlinear Schrhdinger equation possesses some other localised solutions which
have been extensively studied during the last few years: the stationary states. These
solutions are written in the form

(see for example [8], [11], [13], [18], [19]). Some stability and instability results for
such solutions of equation (1) with a pure power nonlinearity, i.e., when F(I]2)
AIIP-I, 1 < p < _22, A > 0, were proved in [5], [8].

A general theory about stability of solitary waves in Hamiltonian systems was
introduced by Grillakis, Shatah, and Strauss [13]. This allows one to obtain stability
and instability conditions for some stationary states of equation (1) for more general
nonlinearities.

This theory does not seem to apply to the solutions we consider here because
these solutions do not belong to L2(In), and because of the "bad" spectral structure
of the Hamiltonian operator.

Let us also.mention two papers from Grillakis [11], [12] concerning the study of
the linearized operator around a stationary state and the analysis of the instability
mechanism.

This work is organized as follows. In 2, we define what we call the "stationary
bubbles" and give some existence results for such solutions. Section 3 is devoted to
the study of the spectrum of the linearized operator and to the proof of the fact that
this operator possesses a real positive eigenvalue with maximal real part. In the last
section, we use the result of 3 to show the instability of the stationary bubbles (see
Theorem 4.1). The appendix contains the proof of a few technical results used in 3
and 4.

The notations are as follows. Given equation (1) where is a complex valued
nfunction of x E ]n and t e , and where A -’j=l (02/Ox), we assume that F is

defined and continuously differentiable in +, except in the last section, where F is
assumed to be more regular. We also assume that there is a real positive constant po
such that F(po) 0 and we set ro v/-. For any positive integer rn, Hm(In) will
denote the Sobolev space of real-valued functions defined on n whose partial deriva-
tives up to order m are in L2(In). IEm(In) will denote the space of complex valued
functions whose real and imaginary parts are both in Hm(]n) and will sometimes be
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identified with Hm(iR) Hm(R). If A is a linear operator on a Banach space, then
we will represent its spectrum by a(A), and its resolvent set by p(A) C\a(A).

2. Existence of the stationary bubbles. In this section, we give some ex-
istence results of radially symmetric stationary solutions of equation (1) having the
behaviour (2) as Ixl goes to infinity. More precisely, according to the definition from
Barashenkov et al. [2], a stationary bubble is defined as a real-valued function of
x E ]Rn, satisfying

(i) V(x) (r) (i.e., is radially symmetric),
(ii) A

(iii) 0 < (r) < ro r E [0, oc), limr-+o (r) r0, and
(iv) r(0) --0, r(r)
Because of condition (iii), we will look for solutions such that u r0- belongs

to H (Rn). Hence if satisfies (ii), then u is a solution of

(4) Au F((ro u)2)(ro u) 0 in ]n, u e HI(]n).

We set

(5) V(s) F(T)dT.
0

Then we may write the energy associated with equation (1) in terms of u ro :
1

IVul2dx+ V(Iro ul 2(6) E(u) - - dx.

We begin with the case n _> 2, since the existence results are not exactly the same as
in the case n 1.

2.1. The case n > 2. In this section we assume that

(7) F’(po) < O,
(8) pl such that0<_pl<p0 and V(p)<O,

where V is defined by (5).
Then the following result holds.
THEOREM 2.1. Suppose that F satisfies assumptions (7) and (8); then there exists

a real-valued function (2(Rn), which is a stationary bubble, i.e., which satisfies
conditions (i)-(iv). Moreover, under assumptions (7) and (8), any stationary bubble
o is twice continuously differentiable in ]n and satisfies the following property:

(v) C > 0, 6 > 0 such that V Nn with I1 <_ 2, IO((x)-ro)l <_
Ce-ll, /x R.

Proof. This theorem is proved by applying Theorem 1 of Berestycki and Lions
[7] if n >_ 3 or Serestycki, Gallouiit, and gavian [6] if n 2 to equation (4), or more
precisely, to the equation:

(9) -Au-- g(u), u e H(Rn), u O,

where g is defined by

-F((ro s)2)(r0- s)
0

if 0 <_ s _< to,
if s _> r0,

ifs < 0.
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Then there is a positive, radially symmetric, decreasing solution u of (9), and since u is
positive, and u < r0 by the maximum principle, u is a solution of (4). Hence, ro-u
is a stationary bubble. Laminas 1 and 2 in 4 of Berestycki and Lions [7] then show
that any function satisfying (i)-(iv) is twice continuously differentiable and satis-
fies (v).

Remark 2.1. Conditions (7) and (8) will be fulfilled if we assume that V has
a minimum at po with V"(po) > 0 and at least one more minimum at pl, with
0 < pl < p0 and V(pl) < V(po). It was suggested in [2] that such potentials V should
lead to the existence of stationary bubbles.

Remark 2.2. Any solution u E HI(In) of the problem --An g(u) satisfies the
Pohozaev identity (see [7])

where G is defined by G(() f: g(s)ds. This identity enables one to show that
assumption (8) is necessary for the existence of a stationary bubble: if V(p) >_ 0 for
0 <_ p <_ po, then such a solution cannot exist.

2.2. The case n 1. This case is of course much simpler, and in fact, we have
in this case necessary and sufficient conditions for the existence of a stationary bubble.
Also, the solution is unique as soon as it exists. The following result holds.

THEOREM 2.2. A necessary and sufficient condition of the existence of a station-
dry bubble for equation (1) is that

(11) /0 sup{r/, 0 < r/< P0, V(V) 0} exists, 0 < 1o < po and F(lo) < O.

When (11) is satisfied, such a solution is unique. Moreover if F’(po) < O, then
satisfies (v) (i.e., Oa(- ro) is exponentially decreasing for all lal < 2).

Proof. This theorem can be proved by applying Theorem 5 of Berestycki and
Lions [7] to the problem

(12) -u" -F((ro u)2)(r0 u) g(u).

If we set G(() fo g(s)ds, then one has G(2r0) 0 and we can easily show that
condition (11) is equivalent to

(0 inf{( > 0, G() 0} exists,

o>0 and g(o)>O,

which is the necessary and sufficient condition of Theorem 5 of [7].
Remark 2.3. Consider the ,,3 5,, nonlinear SchrSdinger equation (3). This

equation can be rewritten in the following form by a rescaling and a change of function
(see [1]), at least in a restricted domain of the parameters ci"

0
i-- +A + (112 po)(2A + po alvl2) o.

Here we have U(p) (p- po)2(p- A), and condition (11) is satisfied if and only if
0 < A < po. The stationary bubble is then given by

(x) vfcsh(ax)

( + sinh2 (ax))1/2,
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where
V/po(po A).

3. The linearized operator. This section is devoted to the study of the lin-
earization of equation (1) around a stationary bubble and to the proof of the linearized
instability.

In what follows, is a (real-valued) stationary bubble satisfying properties (i)-(v)
of 2, and F is supposed to satisfy F’(po) < O.

Since F is in CI(]R+), the function h:z F(Izl2)z is in C1(]2), i.e., h’ is defined
by

h’(z)w lim -1 [h(z + ew) h(z)]
e--0

for any z, w E C. Then if + u is a solution of (1) with u(x, t) e C, u satisfies

i- + Au + h( + u) h() 0

and we may write the linearized equation for u as

.Ou
-gi + ZXu + ()u o

or

Hence we set

i- + Au + F(2)u + 2F’(cp2)ne(cpu) O.

(x,t)

where Te u is the real part of u and/:m u is its imaginary part. We then obtain

(13) Ot

with

and

-L2 0
Lv -Av + qv,
L2v -Av + (ql -- q2)v,

q() q() -F(.()),
q2(x) q2(r) -2p2(r)F’(p2(r)),

We then consider the space L2(") of 2-valued radially symmetric functions of
L2 (I’) L2 (I"); A is seen as an unbounded operator on L2 (11n). Then, since q
and q2 are in L2(I’) + L(lI(n),L and L2 are self-adjoint operators with D(L)
D(L2) H2r(n) H2(In) NL2(n) (see [17]) and A is closed with maximal domain

D(A) ]E2(n) IE2 (1n) A L2 (In).

Because the aim of this section is to study the spectrum of A, we have to complexify
this space. Accordingly, we consider

L() () +(),
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which is identified here with the space of C2-valued, radially symmetric, square inte-
grable functions. Similarly,

+

with a similar identification. ]r2(IRn) is endowed with its natural inner product

((u, v)) +

where
]) (Vl, V2) e 2r(n)

We also set

<u, v> f, u dx for u, v e

We are first interested in locating the "essential spectrum" of the linear un-
bounded operator A; by this we mean the set of all the values of the spectrum which are
not discrete eigenvalues of finite multiplicity (see [17, Vol. IV] for a precise definition).
This question is studied in the following lemma.

LEMMA 3.1. ae(A) C ilR where ae(A) is the essential spectrum of A.
Proof. We have

lim qx (x) 0 and lim q2(x) -2poF’(po) co > O,

and qx, q2 converge exponentially to their limit. Thus, A is a relatively compact
perturbation of

A0 A co 0

Let us first show that ae(Ao) CiR. For any complex number

(14) (Ao + A)(Ao A)= Ao2 -/k2 (A(-A +0c)- ,k2

A(-A +0co) )2 )
and the spectrum of the differential operator with constant coefficients A(--A + co) is
imbedded in the set of values of its symbol

p() -112(1]2 + co).

Hence a(A(-A +co)) C]-cx, 01 and if A t i]R then A2 IR- and A- A2 is invertible,
showing that the nullspace of Ao A is {0}.

Moreover, since if A2 ] -cx, 0], there is an a > 0, depending on A, such that

we have for v e H2(]R)
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Hence for/4 e r2 (]Rn)

This together with (14) and the fact that A- 2 is invertible shows that the range
of A0 is L(Rn) and that a(Ao).

Now, even if Weyl’s theorem does not exactly apply here because A is not self-
adjoint, an adaptation of the proof of this theorem, using for instance Lemma 3,
XIII-4 of [17] (see Lemma A.1 of the appendix for the statement) shows that the
essential spectra of A and A0 are the same. Indeed, it is not difficult to prove that
sumption (ii) of Lemma A.1 is satisfied. The proof of Lemma 3.1 is then com-
plete.

Remark 3.1. If A h an eigenvalue with positive real part, then it is necessarily
an isolated point of the spectrum, by the preceding result. Note that the discrete
eigenvalues of A are symmetric with respect to the imaginary axis: if (u, u2) is
an eigenfunction of A corresponding to an eigenvalue , then (fi, fi2) and (u,--U2)
are eigenfunctions of A corresponding respectively to and -A. We shall show now
that A does have an eigenvalue with positive real part.

We begin with the proof of a few properties concerning the self-adjoint operators
L and L2.

LEMMA 3.2. L is a positive operator, i.e., (Lu,u) > 0 for any u e H(n)
with u O.

Proof. Since L -A + q(r) with lim+ql(r) 0, we have aL)=
[0, +[. Now, L 0 and 0 < (0) (r) < r0 for all r 0, thus q(r) and
for u e H(n)

lu’2dx(Liu,

a= being the meure of the unit sphere in n. Hence, integrating by parts, we obtain

(Lu, u) an lulr-1 dr 2an --ne(ufi)rn- dr

+
dr

and this leads to

O’n f0
(Yn f0+
rn f0

2
2

rn- dr

which proves the lemma. [2
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LEMMA 3.3. he(L2) [co,-t-oc[; L2 has at least one negative eigenvalue, and only
one if n- 1.

Proof. Since L2 -A+ ql (r)+ q2(r) and limn-+ q2(r) co, we have he(L2)

Assume first that n >_ 2; then we have

LIo 0 - n-1
r+q(r).

Differentiating this equation with respect to r, we obtain

n-1
r

n-1
’rr + (ql(r) + q2(r)) +- r2= r 0.

This gives
n-1

L2(flr
r2

Since E C2(1=) and r is exponentially decreasing when r -- +oc, we have
r U(]n) and r/r L2(Rn). Moreover (52r, r) < 0, hence by the min-max
theorem, L2 has at least one negative eigenvalue.

Now if n 1, we have L2r 0 and r is a generator of the kernel of L2
in L2(ln), because any solution of the differential equation L2u
independent of r satisfies u(x) uoeCoz where uo and thus is not in L2(Rn).
Since vanishes only for r 0, we deduce by the Sturm-Liouville theory that L2 has
a unique negative eigenvalue, corresponding to an always-positive eigenfunction.

Remark 3.2. 0 G ae(L),L is self-adjoint, and 0 is not an eigenvalue for L1,
consequently, the range of L is dense in L2(]Rn) and we can define Li- as an un-
bounded operator with dense domain in L2(]Rn), as was noted in [2]. Assume now
that b/- (ul, u2) is an eigenfunction for A corresponding to a real eigenvalue A, i.e.,

Then u e D(L{),u2 AL{lu, and (L2 + ,)i2Li-1)Ul 0, which tells us that ill
is in the nullspace of L2 + )2Li-1. Conversely, if we prove that there is a positive /
such that L2 + /Li- has a nontrivial nullspace N(L2 + /L{) and D(L2 + /L{)
D(L2) /D(L-), then taking u N(L2 + ")’Li-1 and u2 v/-L-ul, we obtain an
eigenfunction (Ul, u2) of A for the positive eigenvalue f.

Thus we have to study the operator L2 + A2Li- for A l*.
LEMMA 3.4. For any I*, the operator L2 + A2L{ satisfies the following

properties:
(i) L2+25-1 is self-adjoint on its maximal domain, which is D(L2)CD(L{).
(ii) a(i2 + )25i-1 C [co, +0[.
Proof. (i) Since L2 + A2Li- L + A2Li- + q2 and u - q2u is a bounded self-

adjoint operator on L2r(IRn), it suffices to prove that D(L + A2Li-1 D(L1) N
D(L{), and that L1 + A2Li-1 is self-adjoint on D(L) D(L{). The result is then
obtained by applying the Kato-Rellich theorem (see [17, Vol. IV]).

Now, since L is self-adjoint, positive, and since 0 is not an eigenvalue of L1, the
spectral theorem gives
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Thus L1 + A2L-1 is self-adjoint on

D(LI + A2L{-1) u e L2(ln), # -b d(Pu, u)<

But if u E D(L + A2Li-) then

+_5# d(Pu, u) <

a(P u,

Hence u e D(L) n D(L-). This proves (i).
To prove (ii) let us first show that

a(L2 + A2Li-1) a(-A + co + A2Li-).

Using Weyl’s theorem, we only have to prove that u (q / q2- co)u is relatively
compact with respect to -A +co + A2Li-. Consider D(-A +co + A2Li-) H2(In) gl

D(L{-1), endowed with the graph norm

Then we have

with a supr>o q(r). Hence if u D(L1) ClH2r,

and D(-A + co + A2Li-) is continuously imbedded in Hr2(In). Now, since u -(ql + q2 -co)u is compact from Hr2(In) into Lr2(Rn), we obtain by Weyl’s essential
spectrum theorem that

a(L2 + A2L-) a(-A + co + A2L{-).

On the other hand, we have

inf
uED(-A+co+A:L’ 1)

<(-A + co + )2L-)u,u> >_ co,

and hence
a(L2 + A2L{-) C ae(-Zk + co + A2L{-) C [co, +x[,

which proves (ii).
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Now we are able to prove the following theorem about the existence of a real
eigenvalue for A.

THEOREM 3.1. The operator

-L2 0

defined on 2r(]lC,n) has a real positive, eigenvalue with maximal real part, given by

]
1/2

(L2u, u>
uEHr (Rn )CID(L’ 1)

Proof. According to Lemma 3.4, L2 has a negative eigenvalue. On the other hand,
D(L1) R(L1) is dense in i2r(Rn). In fact it can be proved that D(L) N H(R’)
is dense in Hr(n) (see [9] for the details). Hence, there is a uo E D(L) Hr(Rn)
such that (no, L2uo) < 0. Since L- is positive, we deduce that

-oc < inf
(u, L2u) < O.

o (u,Llu)
u6D(L- )NHI (Rn)

1/2Let us show that this expression is finite. If u E HI(Rn) 3 D(L-I), then with L1
and L-1/2 as defined by the spectral theorem, we have

(L2u, u> (LIu, u> / (q2u, u>
> (Llu, u> ][ul[ 2

L2(Rn) sup q2(r)
r>_0_

(Lu, u) Z(Lll/2U, nl/2u)
(Lu, u) (Llu, u)I/2(LXu, u) 1/2

>---(Lu u)
4

where we have used Young’s inequality in the last estimate. Hence,

2inf
(u, L2u) > >

o (u,Lu) 4
uED(L’ )NH(Rn)

Now, let u, e D(L-1) 3 H(In), with IlUnll2L 1 and

lim
(un, L2u,)

inf
(u, L2u)

o (u,Lu) -"n-+c (Un L’lun)
_

uD(i )nHr(litn)

Then (un, Llun) is bounded, since if it was not, (un, L2u) would not be bounded
either. But (Un, L2un) is negative for large n and

hence (un, L2un) is bounded.
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This proves that
lim <L2un -t- L- un, un 0.

Now, for all u in Hr f3 D(nl), <(n2 + "L)u, u) > 0 and 0 is exactly the infimum
of the spectrum of L2 + /L-1. Moreover, since from Lemma 3.4, he(L2 + /L) C
[c0,+oc[, 0 is necessarily an eigenvalue for L2 + "L-1, i.e., N(L2-4-/L-1) 0
and using the argument in Remark 3.2, this implies that x/ is an eigenvalue for
A.

If A2 > " and u E H2 3 D(L), u # O, then

<(L2 + A2L-)u, u> _> <(L2 + "L)u, u> + (A2 --)<L-1

_> (A2 /)(L-u, u> > O.

u, u)

Hence we have N(L2 + A2L-1) 0,VX > vf, and is a maximal eigenvalue for
A.

Remark 3.3. If z is a (not necessarily real) eigenvalue for A, and if (u, u.) is a
corresponding eigenvector, then

z2 <L2u,
<Llul,ul>

and hence z2 E IR. This shows that x/ is of maximal real part among all the eigenvalues
of A.

Remark 3.4. For the case of the usual stationary states, which are solutions of
equation (1.1) having the form (x, t) etu(x) with u satisfying the equation

Au --u + F(lu12)u O, u e H(n),

linearizing around one of those real-valued solutions leads to the linearized operator

-L 0

with
L -A- F(u2) + ,

2uF (u2)+ .i -A- F(u2) 2

Although A has a form similar to our operator A, the main difference is that 0
is an eigenvalue for L’ since u L2(]n). If we define P as the orthogonal projection
on [N(L)] +/-, the existence of real eigenvalues for A can be proved by studying the
kernel of PLOP + X2(L’)-I defined on [N(L’)] +/-. Now, in our proof of Theorem 3.1,
the fact that L2 has at least one negative eigenvalue was essential. But here, even if

L always has a negative eigenvalue, it may happen that PLOP is a positive operator
and hence that N(PLP+A2(L)-) {0} for all A e It(. This shows that in the case
of stationary states, unlike the case of stationary bubbles, a more refined study of the
operator PL’P + 2(L)-1 has to be done to draw conclusions about the stability or
instability of the solutions (see the works of Grillakis [11] and [12] for some results in
this direction).

4. Instability of the stationary bubbles. In this section, we prove the main
result of the paper (Theorem 4.1), which is the instability of the stationary bubbles,
using the results of the preceding section concerning the linearized operator. But to
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prove such a result, some regularity has to be assumed for F, and we will also need
some regularity about the bubbles we consider.

We assume in what follows that (7) and (8) are satisfied, and thus by Theorems
2.1 and 2.2, any stationary bubble satisfies property (v) of 2.

The following proposition shows that the stationary bubbles are regular when
F is.

PROPOSITION 4.1. Assume that F is in Cm(IR+) with m a positive integer. Let
o be a stationary bubble; then ro -o E Hm+2(n).

Proof. We set u r0- o. Since o satisfy properties (i)-(v) of 2, we have
u E H2 (Rn) g L (JRn), and u satisfies

--An g(u)

with g(s) -F((ro- s)2)(r0- s), i.e., g e Cm(]R2) and g(0) 0. The result then
follows from Moser’s composition inequality ([15, I-2]).

nIn what follows we assume that F m+2(]n), with m an integer larger than 5"
We consider the space of functions u Im(IRn) defined in 1, this space is identified
with Hm(ln) x Hm(]n).

We give a very classical result concerning the existence of solutions for the
evolution equation (1), such that ro Hm (IRn ). D

PROPOSITION 4.2. Let uo e IEm(IRm). Then there exist T+, T_ el0, +cxz] depend-
ing only on Iluoll, such that the equation

(5) 0t + Au F(Ir0 ul2)(r0 u) 0

has a unique solution u e C(]T-,T+[,IEm(IRn))fCI(]T-,T+[,]H[m-2(IRn)) satisfying
u(O) no.

Proof. The proof is obvious since iA generates a unitary group in ]HIm(JR) and
v - F(]ro -vl2)(r0- v) is locally Lipschitz on ]S[m(lRn) for m > (see for example
the proof of Proposition A. 1).

The following theorem is the main result of the paper.
THEOREM 4.1. Let o be a stationary bubble (satisfying properties (i)-(v) of 2).

Then is unstable in the following sense. Se > 0,V > 0,2u0 6 Hm(IRn) satisfying
]luo[[s. < 5 and such that if u(t) e Im(]n) and v(t) u(t) + is the solution of
equation (1) with v(O) uo + , then Sto > 0 such that Ilu(to)ll. > .

Proof. Let be a stationary bubble; if v + u is a solution of equation (1),
then u is a solution of

Ou
i- + Au + h’()u + [h(p + u) h(o) h’()u] 0,

where h(z)- F(Izl2)z. From Proposition A.1, we get

Hence u satisfies an equation of the form

(16)
OH AU + f(U),Ot

u: (,) ( u,Zn ),
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where A is the operator defined in 3 and

It follows from Proposition 4.1 that ro-p E Hm(Nn). Therefore, ql F(o2) and
q2-co 2992F’(02)-c0 are in Hm(lln), and for any/A (ul, u2) E ]I-]Im, the following
holds:

((AM, b/)) (Llu2, Ul)m (L2ul, u2)m
(qlu2, Ul)m ((q + q2)ltl, lt2)m

< (211qllU"" + IIq211i + IIq2- C011U)ll/gll 2

where we still denote by ((., .)) the inner product of the real Hilbert space NIm(Nn),
and by (-, ")m the inner product of Hm(n).

This shows that A generates a CO semigroup S(t) in IEm(Nn) satisfying

(17) IIS(t)ll() <_ Met,

where et is the spectral radius of S(t) and

w= t>oinf { In [[S(t)[[ }>t V/"max > O"

Then Proposition A.2 applies with X ]I-]Im(]n) and the instability of the fixed point
0 in equation (16) follows, which means that there is a positive s such that for any
positive 5, one can find L/0 IHIm(]Rn) with IIL/011- < 5 such that if b/(t) is the solution
of equation (16) with L/(0) b/0, then there is a positive to for which IIb/(t0)llr > s.
This proves Theorem 4.1. 1

Remark 4.1. Although the linearized operator A possesses an eigenfunction u0
Hm(Nn) corresponding to its maximal eigenvalue Amax > 0, it remains unclear whether
this eigenfunction provides a nonlinearly unstable solution u(t). The difficulty lies in
the fact that the real number co in estimate (17) may be greater than Amax. The
existence of a positive eigenvalue Amax only allows us to say that co is positive.

Remark 4.2. When a family of traveling waves v(x- vt) is considered, with
v - v continuous with values in X, then one has to study the stability modulo
translations, because if IV1--V21 is small then [o-ow. Ix is also small, but one cannot
expect supteI (" vt) 9. (" v2t)lx to be small since the two traveling waves
are propagating with different velocities. In the case of the bubbles, in dimension
n 1, the family of traveling waves is not continuous with values in HI(Rn) and
one has moreover if v - v2, limll_.o Ov (x) - limlxl_. 9-. (x), so that 9 -9
is not in H(II). In addition, a paper from Barashenkov and Panova [3] tends to
show by numerical computations that the (one-dimensional) cubic-quintic traveling
bubbles, which seem to be unstable for low velocities and to become stable after
some critical velocity v, present a real stability for v > v and not only a stability
modulo translations. Therefore it is not obvious whether this form of instability has
to be considered here. However, the remark after Theorem 2 in [14] allows us to say
that the stationary bubbles are indeed unstable modulo translations, since if is a
stationary bubble, then the family {o(-- a) -qo, a IR} is a C family with values
in H (Nn).

Appendix. The first lemma, which is a well-known adaptation of Weyl’s essential
spectrum theorem to the case of closed unbounded operators, follows for instance from
Lemmas 2 and 3, XIII-4 in [17].



INSTABILITY OF STATIONARY BUBBLES 579

LEMMA A.1. Let A and.B be closed unbounded operators with dense domain on
a Banach space. We assume that

(i) a(A) has an empty interior set in C,
(ii) each connected component of C\a(A) contains a point in p(B), and
(iii) there is a Ao in p(B)gp(A) such that (A-Ao)-I-(B-A0)-1 is a compact op-

erator.
Th o(A) (B).

Proof. Using Lemma 2, XIII-4 in [17], one can connect a(A) and a((A-Ao)-l);
then [17, Lem. 3, XIII-4] applies to (A- ,0)-1 and (B- o)-, which are bounded
operators.

Now, we prove a proposition which allows us to linearize equation (1) in IH[m(lt(
n and which is used in the proof of Theorem 4.1.ifm>

n and let 2 2 bePROPOSITION A.1. Let m be an integer greater than -, g
a function of class Cm+2 on N2. Then for any v e Nm(Nn) Hm(Nn) x Hm(If(n)
there are positive constants a and b, depending only on Ilvll, such that, for any
e Im(]n) with Ilull. <_ a,

Proof. Let u (u, u2)t, v (Vl, v2) e IEm(In). Then

/o( + 1 ( ’(1 ( tl"( + t(,
2

01 02gE uuj (1 t)OyOy (v + tu)dt.
i,j=l

Hence

( o II 02g
(v+tu)

02g
(0) dr).

Since Ou, Ougk Cm(R2) for i, j, k { 1, 2}, it follows that

I 02gOyiOyj y,O2g(v) o,o(0) c(vll)( + llv.),

in the proof of Proposition 4.1.
The lt term is bounded with ]]vs and this proves Proposition A.1.
The following proposition, which makes the connection between linearized and

nonlinear instability, follows from a theorem due to Henry, Perez, and Wreszinski [14];
we recM1 it here for the sake of completeness, but in a slightly weaker form, which is
in fact sufficient in our ce.

PROPOSITION A.2. Let X be a Banach space, A a linear unbounded operator on
X, and consider the equation

(s)

where f :R+ --, R satisfies
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Assume that A generates a CO semigroup S(t) on X satisfying IIS(t)ll(x)

_
Met

with

w= inf { ’[S(t)’[(x) l >
t

Then 0 is an unstable fixed point of equation (18), i.e., 2 > 0,5 > O, 2b/o X with

IlUolIx < and Sto > 0 such that IlU(to)lIx > where H(t) is the solution of (18)
with (0) o

Pro@ We denote by T(t) the nonlinear semigroup sociated with equation (18),
i.e., T(t)No N(t) where (t) is the solution of (18) with N(0) No. Also, we denote
by ][. the norm on the Banach space X.

Since f(N) O([[2) [[N 0 there are constants a > 0 and c > 0 such
that

[[N[[ < a [[f(N)[[ c[[N[[ 2.

Assume that 0 is a stable fixed point of T(t), i.e., > 0, 2 a > 0, [[o < a
[[T(t)No[[ < for all positive t. First, let us take e a; then Sao > 0 such that
[[No[[ < ao [[N(t)[[ < al,Vt O, where (t) T(t)Ro.

But we have

(19) T(t)lo S(t)blo + S(t- r)f(bl(r)) dr.

Thus, we have for t e [0, to] and IIb/o < ao

and using the Gronwall lemma,

(20) Ilu(t)ll et(M + eMCt)lloll

as soon as t e [0, to] and lib/oil < ao.
Then using equation (19) again, we obtain for to > 0 and lib/oil < ao

t
IIT(t)blo S(t)blol] <_ IlS(to r)llllf(Lt(r))]l dr

and with (20),

llT(to)Zo S(to)Zoll <_ b(to)llb/oll Vto > o and ll/,/oll < ao.

From now on, we take a positive to and assume, by changing b if necessary, that

ewto 1
(21) b- b(to) >_

8aoM2
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Then let
ewto 1 }s<inf a,
32M3b

and let a > 0 be such that ]lHoll < a = II//(t)ll <_ , for all positive t. Take A e a(S(to))
with IAI eto. Note that eto is the spectral radius of S(to), i.e., A eieto, with

Let N be an integer large enough so that

ewto
(22) eNo <

16M3ba

and

1
(23) leiN 11 < 12"

Then, since A e a(S(to)), we can find and e X such that I]ll 2 + II}l 2 1 and
IIS(to)( + iT) A( + i)llx+ix is arbitrarily small. To be more precise, we choose
and in X such that IIr/]l <_ I111- 1 and satisfying

IIS(Nto)(5 / i) AN(5 / i)llx+x < 2eN.
Then we have

IlS(Nto) ne(AN( + i))ll IlS(Nto)5 eN(cos(NO) sin(NO))ll _<
12

Since it follows from (23) that

cos NO[ >_ 1
12

and

we obtain

Now, let

1
sinN0l <_ 1-’

IIS(Nto)ll >_ eNto.
ewto 1

16M3bewNto
It follows from (22) that 5 <_ a, and thus if we take/do 6, we must have

[[T(t)/Aoll <_ for all positive t. We will show that this is not satisfied, and more
precisely that [[/,/(Nto)[[ IIT(Nto)b[oil > e.

For 0 <_ n <_ N, we have

n-1

bl(nto) T(nto)blo S(nto)blo + E S((n- 1 k)to)[bl((k + 1)to) S(to)bl(kto)]
k=O

n-1

S(nto)blo + E S((n- 1 k)to)[T(to)Lt(kto) S(to)bl(kto)].
k=0
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Then, it is easy to show by induction, using (21) and (20), that

ewntoIlu(t0)- s(,UolUoll < - O<n<N.

We deduce that

ewto 1
32M3b >- e,

and this proves the result.

Acknowledgments. I am indebted to J. C. Saut who brought the subject to
my attention, and J. Ginibre, who considerably simplified some of the proofs.
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HEARING POINT MASSES IN A STRING*

ROBERT CARLSON

Abstract. The spectral and inverse spectral theory for certain singular Sturm-Liouville prob-
lems is developed. These boundary value problems arise when considering the wave equation corre-
sponding to a string with finitely many embedded point masses. These singular eigenvalue equations,
their solutions, and the associated Hilbert space operators are constructed as limits of regular prob-
lems. The eigenfunctions of the singular problem are shown to be solutions of a regular eigenvalue
problem with interior point conditions.

Expressions describing the distribution of large eigenvalues are developed. Algorithms are given
for extracting information about the singularities from eigenvalues corresponding to one or two sets of
boundary conditions. In the generic case a single spectrum determines the (unordered) set of lengths
of the intervals separating the singularities.

Key words. Sturm-Liouville problem, inverse eigenvalue problem, inverse spectral theory

AMS subject classification. 34A55

1. Introduction. The one-dimensional linear wave equation for the transverse
vibrations of a string in the absence of exterior forces with constant tension 1 is [3]

Ou 1 Ou
Ot p(x) Ox’

subject to appropriate boundary conditions. "Hearing" the string density p(x) is the
problem of recovering p from the eigenvalues of the linear operator, which sends func-
tion f in its domain to f’/p. We are interested in direct and inverse spectral problems
suggested by the physical model where the string density includes two contributions:
a fixed, possibly inhomogeneous background density, and a finite family of masses
with fixed "locations" and densities increasing to infinity. For technical convenience
we use the reduction to Liouville normal form [5, p. 296] to remove the influence of
the background density from the leading coefficient.

The main purpose of this work is to understand the effect of pointmasses on the
sequence of eigenvalues of the string, and to extract information about the locations
of the point masses from a single Sturm-Liouville problem. To make sense of point
masses, we begin with ordinary differential operators of the form

-1
Lf [f"(x) + q(x)f(x)],

with p integrable and real-valued, and q continuous and real-valued. The functions in
the domain of the operator are assumed to satisfy the self-adjoint boundary conditions

(1.a) af(O) bf’ (O) O,

cf(1)- dr’(1) =0,

*Received by the editors February 16, 1993; accepted for publication (in revised form) November
16, 1993.

Department of Mathematics, University of Colorado, Colorado Springs, Colorado 80933.
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584 ROBERT CARLSON

where a, b, c, d are real. The limiting behavior is considered when the coefficients p(x),
e > 0, converge in the sense of distributions to

J-1

+
j=0

mj>0.

Under suitable hypotheses, the eigenvalues A,k converge to A0,k. The asymptotic
behavior of A0,k is described, and we give an algorithm for the recovery of the lengths
lj x xy_ from the tail {A0,k }k>N of a single eigenvalue sequence. This algorithm
has a natural approximation when only a finite set of eigenvalues is known; it also
provides an approach for approximating lj when the masses have large but finite
density.

The analysis of inverse spectral problems for second-order differential equations
has led to a substantial body of literature. Early work on these problems was done by
Borg [6], followed shortly thereafter by extensive work in the Soviet Union [14]-[18].
In particular, Krein [16] considered string equations with measures as coefficients; an
extensive development of the spectral theory for such operators is in [15]. Inverse
spectral problems are usually considered in the Liouville normal form

-y’ + q(x)y Ay.

Unless q(x) is even or otherwise constrained, one needs the spectra from two sets
of boundary conditions, or one spectrum and a sequence of norming constants, to
uniquely determine q(x). Such inversion problems were solved for string equations
with measures as coefficients by Krein [16].

More recently, new geometric ideas were developed for these problems by McKean
and Trubowitz and their coworkers (see [21] and the references therein). Much of the
recent work stressing irregular leading coefficients is motivated by geophysical models
for oscillations of the earth. Hald [12] poses problems with an interior jump condition.
Andersson [2] and Coleman and McLaughlin [11] consider problems of the form

(p2y) + Ap2y 0

with coefficients too irregular for the classic reduction to Liouville normal form. These
and related results are surveyed in [19] and [8].

The investigation begins in 2, where convergence results show that the eigenvalue
equation has meaningful solutions in the infinite density limit. In particular, Lemma
2.3 shows that the limiting solutions of the eigenvalue equation can be characterized
as solutions of the "background" equation (no point masses) with interior point con-
ditions at the point mass locations. These interior point conditions explicitly involve
the mass at that point and the eigenvalue parameter.

Section 3 is devoted to an operator theoretic interpretation of the infinite den-
sity limit. For technical convenience we assume that 0 is not an eigenvalue of the
"background" problem. We show that the limiting solutions of the eigenvalue equa-
tion from 2, which also satisfy the above boundary conditions, are the eigenfunctions
of a self-adjoint Hilbert space operator with compact inverse. It is interesting that
the Hilbert space on which the operator acts is not L2[0, 1] but can be viewed as a
finite-dimensional extension of this space [10].

Section 4 addresses the direct and inverse spectral theory for the limit operator.
There is a fairly simple description of the eigenvalue asymptotics (Theorem 4.1), al-
though they are more complex than in the usual case with regular coefficients. Turning
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to the inverse spectral problem, we show that the eigenvalues are the zeros of an entire
function f(A) of order 1/2, which can thus be recovered, up to a constant factor, from
the eigenvalues. An analysis of this entire function shows that in the case of Dirichlet
boundary conditions, and generically for other separated boundary conditions, the
unordered set of lengths {1i xi -xj-i} is (constructively) determined by the tail
{Ak}k=g of an eigenvalue sequence from one set of boundary conditions. In the case
of embedded point masses in an otherwise homogeneous string (q(x) 0), additional
results refine what was previously known about eigenvalue inversion for a string.

For the reader’s convenience we mention some notational conventions. When
convenient, x(j) is written for xj. Also, cox is used for O/Ox. A piecewise continuous
function has limits f(x)= limxix f(x) and f(x)= limxT f(x).

2. Limiting solutions of the eigenvalue equation. Consider first the be-
havior, as e -- 0, e > 0, of the solutions of the initial value problem

(2.a) Leye Aye, ye(O, ) b, y’(O, )) a,

with

Write

+

pc(x) I + Be(x) I + E mjbe,j(x),

and assume that the functions beb(x) >_ 0 are supported in the intervals [xj -e, xj + e]
and satisfy

be,j(x)dx 1.

The first lemma provides bounds for lye(x, A)) and ly’(z, A)] independent of e. Let
M-

LEMMA 2.1. If y(x, A) is the solution of (2.a) then, independent of e, there is a

function g(a, b, q) such that

g exp(]Im]x)exp(]M)
and

lye(x, ,k)l

_
K[1 + Ix/l] exp(IImvf-Ix)exp(IVfMI).

Proof. First introduce the solutions C(x, t, ), S(x, t, ) of the equation

-y"(x) + q(x)y Ay(x),

which satisfy
C(t,t,A) 1, C’(t,t,A) O,

o, i.

We will write C(x, A) for C(x, O, A) and S(x, A) for S(x, O, A). The eigenvalue equation
can be rewritten

-Y’ + qYe Aye BeAye.
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This leads by variation of parameters to the equivalent integral equation

(2.b)
x

y(x, A) bC(x, A) + aS(x, ) S(x, t, ,k)B(t)y(t, A) dt.

The function S(x, t, A) in turn can be represented as the unique solution of

(2.c) S(x, t, A) sin(V[x t]) f
/

x sin(x/[x u]) q(u)S(u, t, A) du.

Defining the iterates

So(x t, A) sin(v’A[x t])
v/

Sn+l (x, t A) sin(v[x t]) ]t
"x sin(x/[x u]) q(u)Sn(u, t, A)V + v du

we find that
IS0(x, t, A)I _< exp(llm(v )llx

and, if K1 Ilqllo,

[Sn+l (X, , ))--Sn(X, t, ")l K1 exp(lIm(v/)l[x-ul)lSn(U, t, )--Sn--1 (lt, t, ")1 du.

By induction these inequalities yield the estimates

ISn+(x,t,A) Sn(x,t,A) <_ exp(lIm(x/)llx tl)[Klx tl]n/n!,

and since 0 <_ x, t <_ 1 there is a constant K2 such that

IS(x, t, A)I <_ exp(lIrn(v/-N)llx tl)exp(Kltx tl] <_ K2 exp([Irn(x/)[lx t[).

Differentiation of (2.c) gives

x sin(v[x- u])q(u)OtS(u t,A)du,OS(x, t, a) cos(4[x t]) + v
so that an argument like the previous one yields, with a new constant,

lOtS(x, t, A)I <_ K2 exp(lIrn(v/)llx t[).

The estimates for y(x,A) and y(x,A) are similarly obtained by using Picard
iteration. Suppressing the e for notational convenience, define

0(x, A) bC(x, ) + aS(x, ),

and for n > 1,

x

Cn(x, ),) o(x, A) A S(x, t, A)B(t)_ (t, A) dt.
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It is simple to see that there is a function K3(a, b) such that

x

]1 0[(x, A) _< K3[A[ exp(lImV[x) Be(t)dt

and then, by induction [20, p. 331],

ICn Cn--ll(x, )%) <-- g31l exp(lImVlx) B(t)dt In!.
o

Summing, we get the estimate for lye(x, )1. Differentiation of (2.b) and a parallel
argument produces the estimates for lye(x, A)I. D

LEMMA 2.2. As -- O, the functions ye(x,A) converge uniformly on compact
subsets bf [0, 1] C to a continuous function yo(x, A).

Proof. Let v/<_ e. Using (2.b), we find

lye Y,I <- S(x, t, A)B(t)[y(t, ) y,(t, )] dt

x

+ S(x, t, A)[B(t) Bv(t)]yv(t, ) dt

The last integral is estimated first. Since

yv(t, ) yv(xy , ) + Ouyv(u, A)du,

we can write

S(x, t, A)[b,y(t) bn,y (t)] Oyn(u, ) du dt
xj --e --e

On compact subsets of [0, 1] [0, 1] C, the second sum directly above goes to 0
as e --, 0 because of the uniform bounds on IOuyv(u, )1 derived in Lemma 2.1, and
because the support of b,y and bv,y are in [xy -e, xy + el. The first sum goes to 0
because of the continuity of S(x, t, A) and the uniform bounds on

Thus for any > 0 and any compact subset of [0, 1] [0, 1] C we can find e such
that

S(x, t, A)[B(t) Bn(t)]yn(t, ) dt <

For such e, , we have

x

ly Yv[ <- + Ku[A[ exp([x/XI)lB(t)ly(t, A) y,(t, A)[ dt.



588 ROBERT CARLSON

By Gronwall’s inequality [13, p. 24],
x

lYe- Y,I-< exp(IK2"l exp(Ivfl)lB(t)l dr)
and so we have convergence to a continuous limit uniformly in compact subsets of
[0,11 x C.

LEMMa 2.3. The functions yo(x, ) satisfy the differential equation

(2.d) -y) + q(x)yo )yo, x 7 xj

and interior point conditions

xMoreover, y( ,) converges uniformly to y(x,,k) on compact subsets of {[0, 1] \
{}} x c.

Proof. To see that the equations and interior point conditions are satisfied by the
limiting solutions y0(x, ,), first observe that the functions y(x, ,) satisfy the equation

so that the uniform limit satisfies the differential equation away from xj. Differentia-
tion of (2.b) gives

y(x, ) bC’(x, ;) + aS’(x, ) ; OxS(x, t, A)B(t)y(t, ;) dt.

Thus y)(x-, ,) and yD(x-, ,k) exist and satisfy

o( ) bC’(x. ) + S’(. ) ..OS(. x.)(, ),
i<j

(,) bc,(. ) + aS’(. ) }2"’s(. x,. )(, ).
<_j

Subtracting gives the desired interior point conditions, cl

Suppose that yl (x, ,k, e), y2(x, ,, e) are solutions of (2.a) for e > 0, satisfying the
initial conditions

yi(0, A,e) 1, y2(1, A,e) 0,

y(0,,,e) 0, y(1,,,e) 1.

Then the variation of parameters formula gives us solutions of the inhomogeneous
equation

[L-A]f-g, f(O)=O-f’(O)
in the form

with

f(x, ,k, e) G,(x, t, ,)g(t) dt

Ge(x, t,/) -Yl (x,), )y2 (t,/, ) -1- yl (t,/, )y2 (x,), ).
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As a consequence of Lemma 2.2 we have the next lemma.
LEMMA 2.4. As e --, O, the kernels Ge(x,t,)) converge uniformly on compact

subsets of [0, 1] [0,1] C to a continuous function Go(x, t,A) with Go(x,x, )--O.
3. The limit operator. As is well known, there are self-adjoint Hilbert space

operators associated to the operators L with boundary conditions (1.a). It will be
convenient to have a Hilbert space operator interpretation of

Lo lim L.
--*0

This is most conveniently done when there is no nontrivial solution of

-y" + q(x)y 0

that satisfies the boundary conditions (1.a). In this situation we will establish a
convergence result for the inverses of the operators Le.

For continuous functions g(x), consider the boundary value problems

(3.a) --= [Of / q(x)f] g,
P

af(O) bff (O) O,

=o.
When 0 is not an eigenvalue, the self-adjoint operator -02 + q(x) with these boundary
conditions has an inverse which is an integral operator K with continuous kernel
K(x, t) [9, p. 192]. Rewriting the differential equation as

-02f + q(x)f g + Beg

and applying K results in the equation

f(x) K(x, t)g(t)dt q- K(x, t)Bg.

Since K(x, t) and g(x) are continuous, this equation will have a limiting form, and we
have

LEMMA 3.1. For each g E C[0,1], lim-.0f(x) exists, and the operator R
c[0, c[0,

(3.b) Rg ife(x) K(x,t)g(t)dt + mjK(x, xj)g(xj)

is continuous and linear.
R will not extend continuously to L2[0, 1], so we consider a new inner product on

C[0, 1] given by

(f, g) f(x)O(x)dx + mjy(xj)O(xj).

Define 7-/ to be the completion of C[0, 1] with respect to this inner product, i.e.,
7-/= L2([0, 1], #), where # is the Lebesgue measure plus 7j mj5(x- xj).
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THEOREM 3.2. R extends to a compact, self-adjoint operator on 7-l with trivial
null space. Every function f in the range of R is continuously differentiable except at
{xj}, where f’(x) and f’(x) exist.

Proof. It suffices to test R on the continuous functions in 7-/. If g is continuous
with Ilgll <- 1 then Ilgl12 -< 1 and the closure of

Ilallu < 1

is compact in C[0, 1] and consists of functions whose derivative is (absolutely) continu-
ous on [0,1]. Since the functionals given by evaluation at xj are continuous on C[0, 1],
the set also has compact closure in 7-/. The remaining term ’]j mjK(x, xj)g(xj) is a
continuous finite rank operator, so the R extends to a compact operator on 7-/. The
structure of the second term in (a.b) [9, p. 192] gives the jump discontinuities of f at
xy.

To prove that R is self-adjoint, we simply compute

+
J

--(g, Rh).

We can finish the argument by showing that when K has a trivial null space, so
does R. Suppose that Rg 0 for some g E T/. Then we would have a sequence {gn}
of continuous functions converging in so that Rgn --* 0 in 7-/. The sequence
has a limit h E L2[0, 1], which must satisfy

1

K(x, t)h(t) dt Z ajK(x,

Since the left-hand side is continuously differentiable, all a 0, and then h 0. As
a consequence, gn

Let L0 be the densely defined inverse of R. From (3.b) we see that if f E
where E (f has two continuous derivatives, the boundary conditions (1.a) are
satisfied, and f and f" vanish at all xj}, then Lof -02f + q(x)f. Further, a
sequence of continuous functions gn, which peak to a value of one at xj and vanish
for Ix xyl > l/n, will converge in 7-/to a vector v lx(j) with Rv mjK(x, xj), so
that F span (K(x, xj)} is in the domain of L0. Further, L0 acting on E + F has
dense range in 7-/.

THEOREM 3.3. The eigenfunctions k of Lo R- are the functions satisfying
the differential equations

-(x) + q(x)bk(x) AkCk(X), x =/: xj
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and the boundary and interior point conditions

aCk(0) b(0) 0, cCk(1) d(1) 0,

I(z7)
Proof. Since 0 is not an eigenvalue of R, all eigenfunctions k of R, with eigen-

values #k 1/;k, are in the range of R and must be continuous. Using (3.b), we
consider

i g(x,t)k(t)dt + E mjK(x, xj)k(Xj) #kCk(X).

If we compute the difference of the derivatives from above and below xy we find [9,

Of course, for x 7 xj these functions satisfy #k[-- + q2k] k.
Conversely, suppose Ck satisfies the equation and boundary and interior point

conditions. Then the function h 2 k -j mjK(x, xy)k(xj) satisfies the differ-
ential equation

-h"(x) + q(x)h(z) )kCk, x =/= xj,

the boundary conditions, and has a continuous derivative on [0,1]. Thus h satisfies
the equation for all x E [0, 1] and we have

E mjK(x, xj)k(xj) ;kk 01 K(x, t)(t) dt,

which is what we wanted to show.
To establish the convergence of the eigenvalues of L to those of L0, we first

provide a lemma using the technique of [21, p. 30]. Suppose y0 is as described in
Lemma 2.3, satisfying the initial conditions

(3.c) y(0) b, y’(0) a.

LEMMA 3.4. If is an eigenvalue for Lo, then

Ox[cyo(1) dy/(1)] - 0.

Proof. For x - xj, differentiate the equation

(3.d) -yo + q(x)yo ;yo

with respect to ,k to get

(3.e) -[0xy0]" + q(x)Oxyo Yo + AOxyo.

Multiply (3.c) by Oxyo, equation (3.d) by y0, and subtract to get

[(Oxuo)’ o x o) ol
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Integration yields

-[(Oo)’o (o)o](X-)
J-1

O),yo)Yo](X-;)’ (O,xyo)y](x-f_
j’-i

[(oo)’o (o)o1() +

or

Differentiation of the interior point conditions

gives

Placing this into the above, we find

J-1

E (i(Oo),o- (Oo)l(x;)- i(Oo),o-
j=0

J-1

j=0

J-1

j-0

J-1

j=O

Thus we have

At an eigenvMue An we must have cyo (1, An) doy’ (1, An) 0. At least one of
c, d is not zero. Suppose it is c. Then we find

[(dO,xyo)’(1, An) cO.yo(1, An)lYe(I, ,kn) C y + mjy(xj, An)
j=0

and so
O,[cyo(1, An) dYo(1, An)] 0.
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The argument is the same if d - 0.
Finally, let ,k denote the eigenfunction ofL corresponding to the kth eigenvalue

,k,k and satisfying the initial conditions

’ a.

THEOREM 3.5. For all k 1, 2,...,

,k lim A,k
e--*0

and
Ck(x ,k) = lim ,k(x, ,,)

e--0

uniformly for x e [0, 1].
Proof. We begin the proof with some bounds on the eigenvalues of L. The oper-

ator n is self-adjoint with respect to the inner product (f, g) f f(x)y(x)p(x) dx.
If (x) is one of its eigenfunctions with eigenvalue Ae,n, then

)e [-"(x) + dx

If the eigenvalues of _(2 + q(x) with the boundary conditions (1.a) are nonnegative,
then so is the right-hand side. Otherwise let 1 be the smallest eigenvalue of -02 +q(x)
with the boundary conditions (1.a). Since p(x) >_ 1, if ,k,n < 0 we have

fo [-"(x) + q(x)l(x) dx
1.>-

fo
Thus there is an a priori lower bound for the eigenvalues of all Le, e > 0.

Now suppose that ,kl is the smallest eigenvalue of L0. By virtue of the description
of the eigenfunctions given in Theorem 3.3, the dimension of the eigenspace is one.
Since O[cyo(1, io) dy(1, ,0)] 7 0, the function.cy0(1, ,0) dy(1, ,k0) has values
of opposite sign in any neighborhood of A0. By virtue of the convergence results in
Lemmas 2.2 and 2.3, for small e the operator Le has an eigenvalue ,ke,i, the ith largest
independent of e by continuity of the eigenvalues, with lim-0 ,,i A1. Let be the
minimum of 0 and the smallest eigenvalue of -0x2 / q(x). If i 7 1, then the inequalities,, > ,e, > imply the convergence of a subsequence of ,e, to an eigenvalue of L0
which is smaller than ,, an impossibility. Thus i 1. The rest of the eigenvalues are
handled in similar fashion.

4. Eigenvalue asymptotics and inverse problems. In this section, using
the characterization of the eigenfunctions of L0 in Theorem 3.3, the behavior of the
eigenvalues ,kk of L0 is described as ,k cx. Procedures are given for recovering the
point masses and their positions from one or two spectra.

Given a basis for the solutions of the eigenvalue equation (2.d) on the intervals
between the points xj, we can find transition matrices which describe the change
of representation as each xj is crossed. For notational simplicity define w

l xj xj_, x_l 0, and xj 1. The eigenfunctions are first represented in the
bases

C(x, xj-1, ), S(x, xj-1, ), xj-1 < x < xj.
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Writing the coefficients of a solution y of the eigenvalue equation with respect the
these bases as a column vector and using the interior point conditions

it is routine to compute that the transition matrix at xj has the form

x_,T C’(x,x_,))
S(x, x_ )) ) ( 0
S’(x,X_l,),) m C(x,x_,)

Of course, the transition across all of the points xj is then represented by T
T_...To.

In looking for eigenvalues we can assume that y(0, ) b, y’ (0, A) a, and then
the condition that the boundary conditions at both ends are satisfied is

c C(x, x_, ))-d) C’(xj,xj_l,A) St(XJ, XJ-I,) a

It is well known [21, p. 13] that the following estimates are valid for all x E [0, 1],
A E C, and for all coefficients q satisfying a uniform bound:

K
exp([Im(w)l)IC(z, x, ) cos([x x])l <

K
IS(x, x#, A) sin(w[x x#])/wl <_ -[ exp(llm(w)[),

IC’(x, xj,A) + wsin(w[x xj])l <_ g exp(llm(w)l),

K
exp(lIm(w)l)"S,(x,, ) co([ ])l

Based on these estimates, we see that if

(1 0)()= o o

then

Tj G(w) sin(w/j)
sin(wlj) )cos(w/j) + 0 --w exp(llm(w)l)

-.c() [( 0
cos(/)

Thus T has the form

sin(w/)
/ 0 exp(llm(w)l) G-l(w).

[(o(4.b) T G(w) BI B2
m’"mj-l(-w)J +O(wJ-lexp(JIIm(w)l)) G-l(w)

with
B1 (w) cos(w/0) sin(w/i).., sin(w/j_),

B2(w) sin(w/o).., sin(wlj_).



HEARING POINT MASSES IN A STRING 595

Let QT G-1TG.
The location of the eigenvalues of L0 is approximately given by the zero set of an

elementary entire function.
THEOREM 4.1. There is a sequence {ONIN --O, 1,2,...} satisfying N2 <_ Og <

[N + 1] 2 such that for N sufficiently large, the number of eigenvalues Ak of Lo with
k < OIN agrees with the number of roots r < aN of the entire function h(A), where

h(A) AJ cos(w/0)sin(w/1--).., sin(wig_l) cos(wlg) if bd O,

h(A) Agsin(wlo) sin(wlj_)
cos(wig) if b O, d O,

h(A) AJ cos(w/o)Sin(w/---) sin(wlg)
if d O, b O,

h(A) Agsin(wlo) sin(wlg)
if b--O, d- O.

Moreover, if rk is the root of h(A) closest to Ak, then

Proof. Details will be provided for the cases bd O. The other cases are similar.
The proof is similar to the discussion in [21, p. 27]. We begin with the observation

that if

Iz-nr > >0, n=0,1,2,...,

then there is a constant cz such that

exp(lIm(z)l) < cl sin(z)l,

and similarly, if

Iz [nr + r/2]l >/ > 0, n-- 0, 1,2

then
exp([Im(z)l < cf[ cos(z)[.

Based on the explicit form of h(A) one sees easily that aN can be chosen so that
there is a > 0 with ICON --r > whenever h(r) =0.

The condition that there is an eigenvalue at w2 is the equation

cy(1, ,) dy’(1, ,k) c cos(l-d G
-sin(wig)

sin(wlg) ) QTG- ( b ) 0.cos(/) a

Using (4.b) we see that in case db 0 this equation has the form

(4.c) cy(1, ,k) dy’(1, )) -dbcos(wlj)B (w)wJ+ + O(wJ exp([J + 1]lIrn(w)l)) O.

On the contour I1 O/N there is a constant K so that

Icy(l, ) dy’(1, ) + dbh()l < Kh()
For N sufficiently large, Rouche’s theorem yields the first part of the theorem.
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For more precise information about eigenvalue location, let Zj denote the set of
roots of sin(w/j) or cos(w/j), depending on which trigonometric function appears in
h(A). Then

sin(w/j)l _> -dist(w, Zj),

and similarly for cosine, so that

J

h()) >_ KlWJ+ H dist(w, Zj).
j=0

Again, by making use of (4.c), we have, for large

Icy(l, ) dy’(1, ) + dbh(A)l < IKwJl..

Thus at any eigenvalue Ak we must have

J KH dist(x/, Zj) _<

Letting Z JUj=0Zj implies

dist(x/k, Z) _< K2k-1/(2j+2). [-]

Among the set : of (J + 1)-tuples lj such that 0 < l0 < < 1j and ’j lj 1, it
will be convenient to distinguish a certain subset. If the vectors Bi (fi,0,..., i,J),
i 1, 2 are distinct and where i,j +/-1, then the subset of 2 satisfying an equation
of the form

is a hypersurface, and the set U C/2 consisting of those (J + 1) tuples that satisfy
no equation of this form is an open dense set.

THEOREM 4.2. If b d O, or if b2 + d2 0 and the size ordered lengths lj,
j 0,..., J are an element of U, then the lengths lj are determined by the eigenvalues
{)k k > K} of Lo.

Proof. Again, we emphasize the case bd O, leaving the minor modification
needed for the other cases to the reader. To begin, we assume that all eigenvalues Ak
of L0 are known. From (4.c) (and its analog for the other boundary conditions), we see
that the entire function cy(1, A) dy’(1, )Q, whose zeros are precisely the eigenvalues
of L0, has order 1/2. Thus [1, p. 207]

cy(1, ))- dy’(1, )) K1 H(1 A/Ak),

where K1 is a nonzero constant (recall that zero is not an eigenvalue).
From the function f(A) 1-I(1 A/Ak), we can recover h(A) up to a constant

multiple. Rewriting h(A) with exponentials, we find that

(4.4) h(A) [] J+I E aB exp (iwEJ,Blj)j
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where the index set B consists of vectors (rio,..., J) with flj +1, and O/B

For real u, consider the integrals

(4.e)
X

lira X-1 exp(-i,w)w-t’f(A) dw.
X---*o

From (4.c) and (4.d) these limits will all be zero for # > J / 1, and there will be a
finite set of with nonzero limits for # J + 1 corresponding to the coefficients of
dbh(A) in the representation (4.d). Thus the eigenvalues of L0 determine J and they
determine h(A) up to a constant multiple.

The assumption that the size ordered set of lengths is in U means that the terms
’B Yj flj,Bly appearing in (4.d) are all distinct. Consequently, the set of these B
will be exactly those for which a nonzero limit appears in (4.e).

The lengths lj can be found as follows. The largest value is UB - l. The
next largest is j lj -2/0. Thus l0 can be found. Proceeding inductively, after finding

Klo < < 1K and discarding those values of B of the form y lj- 2 k=0 :t:lk, the
next largest is li- 21k+l.

Note that the same procedure is applicable if the eigenvalues A1,..., AK are un-
known: Let #1,..., #K be real and nonzero, and consider the function

K

II II
k--1 k>K

HkS1 (1
K1-Ia= (1 A/Aa)

For all values # k J + 1, the integrals

X
lim X-1 exp(-i,w)w-.g(A) d.w.

X----oo
real

will yield the same values, up to a nonzero constant factor, since

I’IK=I (1 A/At:) =1

In case b 0 d, so that h(A) is a product of sines, the lengths can be recovered,
without any restrictions, by using the location of the zeros of h(A). The location of
the first positive zero gives the value of the largest lj, and the multiplicity of the zero
gives the number of intervals of that length. By successively examining the larger
zeros of h(A) we can get all the lengths lj.

Without restrictions on the lengths l, some ambiguity can arise in the cases other
than b 0 d. In particular, if 211 + 2/2 1, the lengths (211,12,12) and (11,11,2/2)
will not be distinguished in case we have the boundary conditions b 0, d 0, which
can be seen by observing that

sin(2/lw) sin(/2w) cos(/2w) 2 sin(2/lw) sin(2/2w) sin(/lw) sin(2/2w) cos(/lW).

Since the proof of Theorem 4.2 only depended on the leading asymptotics of the
function cy(1, )- dy’(1, ), the information about the lengths lj and thus the points
xj was obtained without necessarily knowing q(x). The remaining results address the
case of point masses embedded in an otherwise homogeneous string, so that we can
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assume q(x) O. It is convenient to express solutions of the eigenvaIue equation in the
basis cos(wx), sin(wx)/w on each interval (xj, xj+i). A straightforward computation
shows that the transition matrix at xj has the form

mjw Aj (w)] G-1 (0d),a() + e
where

sin(2wx/)Ay (w) -1 cos(2wxj)

Let T Tj-i... To and let

Qii() -()r()() (

Expanding the product for T gives

miw ( sin(2wxj)(1 + -I -co(x)
J

1 cos(2wxy) )sin(2wxj) +’""

Now the condition that ,k is an eigenvalue can be written as

(4.f)

f(A)=(c -d)G(w)(cs(w) sin(w))-sin(w cos(w) G-l(w)G(w)Q-G-l(w) a

aC[cos(w)Qi2 + sin(w)Q22] + bc[cos(w)Ql + sin(w)Q2]

+ ad[sin(w)Q12 cos(w)Q22] 4- bdw[sin(w)Qll cos(w)Q21] 0.

Since q(x) 0 is known and T(0) I, (4.f) gives

f(0)=(c -d) -w sin(w)
sin(w)/w a)

Also,
f() K I]( /),

so that K f(0), and knowing the eigenvalues of L0 determines
If we expand the product for Q-, gathering the terms with like powers of w, we see

that f(,k) can be written as a polynomial in w with coefficients which are generalized
trigonometric polynomials with the form k[ck COS(fkw) 4 fla sin(fw)]. Analogous
with the proof of Theorem 4.2, the frequencies and coefficients can be extracted from
the sequence of eigenvalues by considering

X
lim X- cos(v,w)w-f(,k) dw,

X--,oo

X
lim X-1 sin(,w)w-,f()) do.;.

X---*oo

Consider in particular the terms of lowest degree in w with a nonconstant coeffi-
cient. These are

J-1
ac

(4.g) - y mj[cos(w) cos(w[1 2xj])], ac 7 O,
j=0
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j=0 -- my[cos(w) + cos(w[1 2xy])], a c 0.

j=0

Since the distinct frequencies and the coefficients of the terms with distinct frequencies
are determined from the eigenvalues, expressions (4.g) yield the following theorem.

THEOREM 4.3. Suppose q(x) 0 and ac 0 or a c O. Then the eigenvalues
of Lo determine the points xy up to reflection about x 1/2, and they determine the
sum of the masses at xy and 1 xj. If ac 0 but not both a and c are zero, then the
eigenvalues of Lo determine the points xy up to reflection about x 1/2 if the masses
at xy and 1 xy are not equal. In this case the difference of the masses at xj and
1 xy is determined.

Of course, by imposing additional constraints such as symmetry of the mass
locations or restriction of the masses to (0, 1/2), this result will give conditions for the
unique determination of the positions and masses from a single spectrum.

Next, while still restricting to q(x) 0, we consider the case when two spectra
are given with different boundary conditions (that is, not differing only by scalings),
with respective constants al,bl,cl,dl and a2, b2, c2, d2. We first consider the case
when alcla2c2 0. By a simple scaling we can assume .al a2, cl c2. Now notice
that if, after this scaling, blc + adl b2c2 + a2d2, or equivalently b/a + d/c
b2/a2 + d2/c2, then if we form the difference fl(A)- f2(A) and use (4.0 with the

J-1expansion of Q- in powers of w, we can find Ey=o my(bc + ad)sin(w[1 2xy]). By
knowing rnx(y) + rn_x(y) and rnx(y) -m_x(y), we can find the masses at each
Other cases are argued similarly. In summary, we have the following theorem.

THEOREM 4.4. Suppose q(x) 0 and the eigenvalues of the operator Lo are
known for two linearly independent sets of boundary conditions. Then the masses my
and locations xy are determined if

acla2c2 O, bl/al + d/c b2/a2 + d2/c2

or

a11 0, blCl -- aid1 O, a2c2 O.
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EIGENVALUES OF THE FAR FIELD OPERATOR AND INVERSE
SCATTERING THEORY*

DAVID COLTONt AND RAINER KRESS:

Abstract. An eigenvalue-free region is determined for the far field operator corresponding to
the scattering of time harmonic acoustic or electromagnetic waves by an inhomogeneous medium.
In addition, a simple proof is given showing that for a nonabsorbing medium the far field operator
is normal. These results are then used to derive a new method for solving the inverse scattering
problem for acoustic and electromagnetic waves.

Key words, inverse scattering, far field operator
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1. Introduction. The unitarity of the scattering matrix for nonabsorbing media
is a basic result in scattering theory [1], I5]. For absorbing media, the scattering matrix
is no longer a unitary operator and little is known about its. spectrum. Closely related
to the scattering matrix is the far field operator, which plays a central role in the dual
space method for solving the inverse scattering problem [3]. Indeed, for nonabsorbing
media, we will show in this paper that the unitarity of the scattering matrix follows
from the proof of the normality of the far field operator. Since the far field operator
is compact, zero is always an element of the spectrum, and of particular concern in
the dual space method is the question of whether or not zero is an eigenvalue. In
particular, if zero is an eigenvalue the dual space method does not work and this has
led to various modifications of the far field operator to avoid this problem (c.f. [2],

In this paper, we shall consider an approach other than changing the far field
operator for modifying the dual space method. In particular, instead of modifying
the far field operator F, we shall consider AI- F where is not in the spectrum of
F. Then, instead of considering modified far field operators, the corresponding dual
space method makes use of the adjoint of the Herglotz operator discussed in 5.5
and 7.4 of [3]. In this sense the present approach can be viewed as an extension of
the method of Kirsch and Kress for solving the inverse obstacle problem (c.f. [3])
to the case of an inhomogeneous medium. We mention in passing that although in
this paper we are only concerned with the scattering of acoustic and electromagnetic
waves by an inhomogeneous medium, our ideas are also easily extendable to the case
of obstacle scattering.

To accomplish the above program, we begin by establishing a relationship between
the far field operator and Herglotz wave functions. As a consequence of this analysis,
we obtain a region in the complex plane that is free of eigenvalues of the far field
operator and, in the case of nonabsorbing media, a simple proof of the normality
of the far field operator. We then combine these results with a denseness argument
to derive a new method for solving the inverse scattering problem for acoustic and
electromagnetic waves in an inhomogeneous medium. In our view, this new method
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combines the attributes of both simplicity and flexibility and we hope to examine in
the near future whether or not numerical experiments confirm this view.

2. The far field operator for acoustic waves in an inhomogeneous medium.
We consider the scattering of a time harmonic acoustic plane wave by an inho-
mogeneous medium of compact support with complex valued refractive index n E
Cl(]R3),Imn _> 0. Then, if k > 0 is the wave number, w the frequency, and the
incident field is given by

Ui(x, t) exp[i(kx d wt)],

where x E IR3 and d IR3, Idl 1 is the direction of propagation, under appropriate
assumptions [3] the amplitude u of the total field U(x, t)= u(x)e-it satisfies

(2.2) Au + k2n(x)u 0 in IR3,

(2.3) (x) e + (), e Ra,

(2.4) lirnoo r -r ku8 O,

where r Ixl. From (2.2)-(2.4) it is easy to deduce [3] that uS(x) uS(x; d) has the
asymptotic behavior

(’sl (;e I1
s I1 --, o, where : z/Iz and is the fr field pattern of the scattered field s.

Now let B denote an open ball (or some other domain with connected boundary)
containing the support of m := 1 -n and let u be the exterior unit normal to OB. If
fl denotes the unit sphere in IRa, then any solution of the Helmholt equation

(2.6) Au + k2u 0

of the form

(2.7) v(x) ] eikx’dg(d) ds(d),

where g L2(Ft) is called a Herglotz wave function with kernel g [3]. Solutions of (2:6)
satisfying (2.4) are said to be radiating. Such solutions have the asymptotic behavior
(.) [1.

LEMMA 2.1. Let vS,ws CI(IR3 \ B) be radiating solutions to the Hehnholtz
equation with far field patterns voo and woo, respectively. Then

B 0------- ds -2ik/ voowoo ds.

Proof. By Green’s theorem, the value of the integral on the left-hand side remains
the same if we replace OB by a sufficiently large sphere of radius R centered at the
origin. The lemma now follows from

OvS(x) -2iko() () (1)o()() + o
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and letting R tend to infinity.
LEMMA 2.2. Let vs E CI(]R3\B) be a radiating solution of the Helmholtz equation

with far field pattern v and let Wh be a Herglotz wave function with kernel h. Then

(- )vOw Ov
13

wh ds 4 v[t ds

Proof. From [3, p. 20], we have the integral representation

(2.9) fo { -- }v(&) - B vS(Y)-ff O---(y)e-ik’v ds(y) & e a

Hence, since

(2.10) w(x) In eik x’d h(d) ds(d)

we have

(2.11)

We now define the far field operator F L2(gt) - L2(fl) corresponding to the far
field pattern u by

(2.12) (Fg)(&) :-/n u(&; d)g(d) ds(d)

and note that F is a compact operator on L2(). The connection between the far
field operator and Herglotz wave functions is given by the following theorem.

and Vh be Herglotz wave functions with kernels g,hTHEOREM 2.3. Let vg
L2(t), respectively and let Vg, Vh be the solutions of (2.2)-(2.4) with eik’d replaced by
vg and vh, respectively. Then

ik2 / /t3 Im n vaFK dx 2r(Fg, h)- 2r(g, Fh) ik(Fg, Fh),

where (., .) denotes the inner product on L2().
Proof. Let v, v denote the scattered fields corresponding to Vg and Vh, respec-

tively and let v,o, Vh,o be the corresponding far field patterns. Then, using Green’s
theorem, Lemma 2.1, and Lemma 2.2, we have

(2.13)
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+
B
V O------V-- ds

/o /o--2ik vg,va, ds + 4r vg,h ds 4 gvh, ds

-2ik(Fg, Fh) + 4r(Fg, h) 4r(g, Fh),

noting that Fg is the far field pttern corresponding to the incident field va.
COROLLARY 2.4. Assume that Imn 0. Then, except for possibly zero, F has

no real eigenvalues.
Proof. Let Fg Ag with A and A 0. Then, choosing h g in Theorem

2.3, we have

ik2 [ .[, Im n ]vg]2dx 4i Im(Fg, g) ik(Fg, Fg)

(2.14) 4i Im AIIgll 2 ikllFgi[ 2.

Since Im A 0 we now have that Fg 0 and hence, since A 0, g 0.
COROLLARY 2.5. Assume that Imn 0. Then F is nodal and hence has a

countable number of eigenvalues.
Pro@ om Theorem 2.3 we have that

(2.15)

and hence

ik(Fg, Fh) 2r{(Fg, h) -(g, Fh)}

(2.16) (g, ikF*Fh) 2r{(g, Fh) -(g,F*h)}

for all g, h E L2(f). We can now conclude that

(2.17) ikF*F= 2r{F- F*}.

By reciprocity [3, p. 53], we have

and hence if we define R" n2(gt) --. n2(f) by (Rg)(d) := g(-d) we have that

(2.19) F*g RFRO.

From this, observing that (Rg, Rh) (g, h) (, 0) for all g, h e L2(fl), we find that

(2.20) (F’g, F* h) (RFRh, RFRO) (FRh, FRO)

and hence, from (2.15),

(2.21) ik(F*g,F*h) 2r{(FR,RO) (R[,FRO)} 2rr{(g,F*h) (F*g,h)}.

If we now proceed as in the derivation of (2.17), we find that

(2.22) ikFF* 2r{F- F*}

and the proof is finished.
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We note that (c.f. [1], [5]) the far field operator F is related to the scattering
matrix S by

ik
(2.23) S I -t- F.

From (2.17) and (2.22) we now see that SS* S*S-- I, i.e., our analysis provides
a rather simple proof of the well-known fact that the scattering matrix is a unitary
operator.

3. The inverse scattering problem for acoustic waves in an inhomo-
geneous medium. The analysis of the preceding section suggests a new method
for solving the inverse scattering problem for acoustic waves in an inhomogeneous
medium. To see this, let F be a smooth surface contained in the interior of the sup-
port of m such that k2 is not a Dirichlet eigenvalue for -A in the interior of F. For
v E L2(F), define the single-layer potential

(3.1) u(x) "= r &(x, y)(y) ds(y), x e IR3 \ F,

where

1 e
(3.2) (x,y):= Ix-y[

x#y,

and note that the far field pattern of u is given by

1 fr e-i(3.3) u,(&) ’Y(y) ds(y).

Finally, for 0 define g L2() by

(3.a) .=

and the Herglotz wave function v9 by

(3.5) vg(x) := fn eikx’dg(d)ds(d).

Now let u be the far field pattern corresponding to (2.2)-(2.4) and let a(F)
denote the spectrum of the far field operator F corresponding to u. For a(F),
let ge L2() be the unique solution of

1
(3.6) Fg- Ag

ki+

where is a spherical harmonic order of l, 0, 1, 2, Then, since the scattered
field is uniquely determined by its far field pattern [3, p. 32], we have from (3.6) and
unique continuation that if there exists a unique solution t of the integral equation
Ag u, (c.f. [3, p. 128]) then

(3.7) u(x; d)g(d) ds(d) v (x) u (x) h)(kx)(&)
for x 3 B, where hl) denotes the spherical Hankel function of the first kind
of order l,-L L. To solve the inverse scattering problem of determining n
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from uo, one now tries to construct n from the overdetermined system (3.6), (3.7).
If this system is formulated as an optimization problem as in [3, pp. 266-268], then
the minimum value of the cost functional will be zero provided the following theorem
is true, where

Y :- (w e C2(/) Aw + k2nw 0 in

W’= w-vg-u, " (F), g=u,, wEY

and B is as defined in the previous section.
THEOREM 3.1. Suppose A a(F). Then W is dense in L2(OB) L2(OB).
Proof. We first note that if j0 is the spherical Bessel function of order zero then,

since [3, p.. 31]

we have that

eik d’(-V)ds(d) 4rjo(klx

(3.9) vg(x) - jo(klx Yl)(Y) ds(y)

Now suppose a, b e L2(gt) satisfy

/o {(3.10) (w va u)a +
B

for all w e Y and L2(F). Then, setting w 0 and defining

(.11) v(z).= v(,)a() + V(x )() d() e

where

1
(3.12) V(z, y) := jo(k]x y]) + (x, y),

we have from (3.10) that

(3.13) v ds 0

for M1 e L2(F). Hence v 0 on F nd, since k2 is not a Dirichlet eigenvalue for -A
in the interior of F, we have that v 0 in the interior of F. By unique continuation,
v 0 in B and hence the L2-jump relations for single- and double-layer potentials
[3, p. 44] imply that

(3.4) v+ b, + - o OS,

where + denotes the limit taken from the exterior of B. Setting 0 in (3.10) now
implies that
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for all w E Y.
We now define

(3.16) vs (x) ((z, y)a(y) -t- ((z, y)b(y) ds(y)

for x e IR3 \/) and

1
jo(,x ,)a() + 0.() jo(x )() d()(.) (x) := $

for x e 3 and note that from (3.8), v is a Herglotz wave function

(3.18) v(x) f eik’d (d) ds(d)

with kernel e L2() defined by- () + d().

om (3.16) and (3.19) we now see that v has the far field pattern v
In (3.15) we now set

where , and use Green’s theorem to deduce that

Z (Ov -’ v(3.21) (x) e (x) N e ds(x)
B

Z(ovo )+ N (x)(z;-)- v(x) (x;-) d(x) o.
B

Substituting (3.18) into (3.21) and interchanging orders of integration, we now have
from (2.9) and reciprocity that

[(; d)(d) d(d),

(3.23) F v ,.
Since, a(F) we have that 0. This implies v 0 and hence vs 0 in
IR3 \/) and v 0 in IR3. Hence, v 0 in IR3 \/) and from (3.14) we now have that
a b 0. The theorem is now proved.

4. The far field operator for electromagnetic waves in .an inhomoge-
neous medium. We now consider the scattering of a time harmonic electromagnetic
plane wave by an inhomogeneous medium of compact support. In particular, factor-
ing out the time harmonic term e-it and letting n CI(IR3), Im n _> 0, denote the
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refractive index, we have that the (normalized) electric field E and magnetic field H
satisfy [3, p. 239] the Maxwell equations

(4.1) curl E ikH O, curl H + iknE 0 in IR3,
where k > 0 is the wave number and E E + E8, H H + H8 with (Ei, Hi) being
the incident electromagnetic field and (ES,Hs) the scattered electromagnetic field.
More specifically, (E, Hs) satisfies the Silver-Miiller r.adiation condition

(4.2) lim(H x rE) 0

and we will assume that the incident field (Ei, Hi) is given by

(4.3)
i eik x.dEi(x) Ei(x;d,p) curlcurlp ik(d p) deikx’d

H (x) H (x; d, p) curlp eik x.d ik d p eik .d,
where d is the direction, d E ]R3, Idl 1, and p is the polarization, p E ]R3, of the
incident plane wave.

From (4.1) and (4.2)it is easy to deduce [3] that the scattered electric field
E (x) E (x; d, p) has the asymptotic behavior

(4.4)
exp(iklxl) E(&" d, p) + 0 -E(x;d,p)

ix
as Ixl -- c, where Eoo is the electric far field pattern. We again let m := 1- n,
assume that m has compact support, and let B denote an open ball (or some other
domain with connected boundary) containing the support of m with the exterior
unit normal to OB. A solution to the Maxwell equations

(4.5) curlE-ikH=0, curlH+ikE=0

of the form

(4.6)

E(x) la Ei (x; d, g(d)) ds(d),

H(x) Hi(x; d, g(d)) ds(d),

where g T2(gt) := {g t --. 3 g L2(t), g. 0} with being the exterior unit
normal to the unit sphere Ft, is called an electromagnetic Herglotz pair with kernel
g [3]. Solutions of (4.5) satisfying (4.2) are said to be radiating. Such solutions are

easily seen to have the asymptotic behavior (4.4) [3].
LEMMA 4.1. Let E,H e CI(IR3\/) and E,H C(lR3\) be radiating solu-

tions of the Maxwell equations with electric far field patterns E,, E2,, respectively.
Then

(u E. curlE u E. curl E) ds -2ik E,. E2, ds
B

Proof. By the vector Green’s theorem, the value of the integral on the left-hand
side remains the same if we replace OB by a sufficiently large sphere of radius R
centered at the origin. The lemma now follows from

,(x) E(x). curlE (x) ,(x) E(x). curlE(x)

ixl 
+ 0
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and letting R tend to infinity.
LEMMA 4.2. Let ES, Hs E CI(IR3 \ B) be a radiating solution to the Maxwell

equations with electric far field pattern Ec and let E,H be an electromagnetic
Herglotz pair with kernel h. Then

OB(u x ES curl E--h U X E-h CUrl E) ds -4rik /aE - ds"

Proof. From [3, p. 157], we have the integral representation

ik^(4.8) E(:) -x x {u(y) x E(y) + (u(y) x H(y)) x k}e-ike’y ds(y).
B

Furthermore, since

(4.9)

we have

E(x) Ei(x;d,h(d)) ds(d)

(4.10) fOB u(x) x E (x). curlE(x) ds(x)

and

(4.11) B u(x) X E(x).curlE(x)ds(x): ikB E(x). u(x) x H(x)ds(x)

Equations (4.8), (4.10), and (4.11) now imply the lemma.
We now define the electc Nr field operator F T() T(n) corresponding

to the electric Nr field pattern E by

(4.12) (Fg)() :=

and note that F is a compact operator on T2 (). The connection between the electric
Nr field operator and electromagnetic Herglotz pairs is given by the following theorem.

THEOaEM 4.3. Let E,H and E,H be electromagnetic Herglotz pairs with
e respectively and let E and Eh be the solutions 4 (4.1)-(4.3)

with E H replaced by E H and Eh, H, respectively. Then

k f Im nE. dx -2r(Fg, h) 2r(g, Fh) (Fg, Fh)

where (., .) denotes the inner product on T().
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Proof. Let E,E denote the scattered electric fields corresponding to Eg, Ha
and Eh, Hh, respectively and let Eg,, Eh, be the corresponding electric far field
patterns. Then, using the vector Green’s theorem, Lemma 4.1, and Lemma 4.2 we
have

(4.13) 2ik2 I IB Im n Eg E--- dx ];B (v Ea curl-E-h V -h Curl Ea) ds

I ( E;. curl E--h E. curl E) ds
JoB

+ u x E. curlE u x E. curlEg ds
B

+ I (u E. curlE u E--. curl E) ds
JoB

-2ik Eg, Eh,c ds 4rik E, h ds 4rik g" Eh, ds

-2ik(Fg, Fh) 4rik(Fg, h) 4rik(g, Fh),

noting that Fg is the electric far field pattern corresponding to the incident electric
field E.

We note that the different factors ik2 and k occurring in Theorems 2.3 and 4.3 are
due solely to our normalization of the Herglotz wave functions and electromagnetic
Herglotz pairs and have no mathematical or physical significance.

COROLLARY 4.4. Assume that Imn _> 0. Then, except for possibly zero, F has
no purely imaginary eigenvalues.

Proof. Suppose Fg Ag with Re 0, # 0. Then, choosing h g in Theorem
4.3, we have

(4.14) k .I .I. Im n IEal2dx -4r Re(Fg, g) (Fg, Fg)

-4r Re AIIgll 2 IIFg]l 2.

Since Re 0 we now have that Fg 0 and hence, since - 0, g 0.
COROLLARY 4.5. Assume that Imn O. Then F is normal and hence has a

countable number of eigenvalues.
Proof. From Theorem 4.3 we have that

(4.15) (Fg, Fh) -2((Fg, h) / (g, Fh)}

and hence

(4.16) (g,F*Fh) -2r((g, Fh) / (g,F*h)}

for all g, h T2(). We can cow conclude that

(4.17) F*F-- -2r(F + F*}.

We now note that by reciprocity [3, p. 179] we have

(4.18) (Fh, g) .I).IE(d;&,h(c)) g(d)ds(&)ds(d)

[[
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for all g, h E T2(12) and hence

(4.19) (F*g)() -/ Eoo(-;-d, g(d)) ds(d)

If we now define R: T2(12) T2(g/) by (Rg)(d):-- g(-d) we have that

(4.20) F*g RFR.
Now proceeding as in the proof of Corollary 2.5 we find that

(4.21) ff* -2r{f / f*}

and the proof is finished..

5. The inverse scattering problem for electromagnetic waves in an in-
homogeneous medium. As in the scalar case, the analysis of the preceding section
suggests a new method for solving the inverse scattering problem for electromagnetic
waves in an inhomogeneous medium. In particular, let F be a smooth surface con-
tained in the interior of the support of m such that k is not a Maxwell eigenvalue [3,
p. 168] for the interior of F. For o E T2(F), define the vector potential

(5.1) (A)(x) :- fr (x, y)(y) ds(y), x e IR3 F,

and corresponding electromagnetic field

1
(5.2) := curl A, := curlk
and note that the electric far field pattern, of is given by

ik e_(5.3) E,(&) x .V(y) ds(y).

Finally, for 0 define g e T2() by

and the electromagnetic Herglotz pair E9, Ha by

Hg( ) H (x;Eg(z)

Now let E be the electric far field pattern corresponding to (4.1)-(4.3) and F
the far field operator corresponding to E. For a(F), let gi) e T2(Q) be the
unique solution of

(5.6) Fg- g ()

where 0, 1, 2,..., i 1, 2, and

(5.7) E() 1, Gr,
, ki+

x Grad,
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with Grad denoting the surface gradient. Then, since the scattered electric field
is uniquely determined by.its far field pattern [3, p. 157], we have from (5.6) and

unique continuation that if there exists a unique solution ) to the integral equation

Ag)= E, (c.f. [3, p. 197]) then

E(x; d, gi) (d)) ds(d) Egi) (x) -/,i.) (x) Ei) (x)

for x E IR3 \ B, where

(5.9) E1) (x)" curl curl{xh1) (klxl)]Q()}

E2) (x)" curl{xh1)

As in the scalar case, one now tries to solve the inverse scattering problem of determin-
ing n from E by trying to construct n from the overdetermined system (5.6)-(5.9).
If this problem is formulated as an optimization problem, then, as in the scalar case,
it is easily seen that the minimum value of the cost functional will be zero provided
the following theorem is true, where

Y:= {(, 7-/) e C1(/) x C1(/): curl g- ikTl- O,
curl 7-/+ ikn(x)g 0 in B},

W’= {u x (- Eg -/), u x curl($ Eg ,)"
e T2(r), kv, , e Y},

and B is as defined in the previous sections.
THEOREM 5.1. Suppose ikA a(F). Then W is dense in T2(OB) x T2(OB).
Proof. We first note that from (3.8) we have

/.

Eg(x) ik ./ eik’d g(d) ds(d)

1
curl f (y)jo(klx Yl) ds(y).

Jr

Now suppose that a, b T2(OB) satisfy

fo
{( Ea -/)-5 + curl($ Ea ,) }ds 0

B

for all (, T/) e Y and e T(r). Define

(5.12) A(x) "= 5 curl curl (x, y)a(y) ds(y) + curl (x, y)b(y) ds(y)
B B

for x ]R3 \ (B, where is given by (3.12). Then E := curl A is given by

E(x) curl OB q2 (x, y)a(y) ds(y) + curl curl OB (x, y)b(y) ds(y)
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for x E lR3 \ OB and hence curl E k2A for x E IR3 \ OB. Setting $ 0 in (5.11)
and using the vector identities

(5.14) curly{(x, y)a(x)}, a(y (x). curl{(x, y)a(y)},

curly curly{(x, y)V(z)} b(y) V(x)" curlx curlx{(x, y)b(y)}

now shows that

(5.15) fr E ds 0

for all T2(t). Hence u E 0 on F and since k is not a Maxwell eigenvMue
for the interior of F we have that E 0 in the interior of F. By unique continuation,
E 0 in B and hence A 0 in B also. The L2-jump relations for vector potentials
[3, p. 165] now imply that

(5.16) ucurlA+=, uA+=b on0B

where + again denotes the limit taken from the exterior of B. Setting T 0 in (5.11)
now implies that

(5.17) OB{U X g curl A+ u x A+ curl g} ds O

for all (, 7-/) Y.
We now define

(5.18) A (x) := curl curl (z, )a(y) ds(y) + curl (z, )b() ds()
B B

for z IRa \/) and

1A(x) := - curl curl jo(klx y])a(y) ds(y)
B

(5.19) + curl jo(k{x y{)b(y) ds(y)
B

for x e IR3 and note that from (3.8) we have

A(x)- f eikx’d (d)ds(d),

where

1/o(5.21) (d)" 4rA B

-iy.d {(d a(y)) d + ikd b(y)}ds(y).

In particular, from (5.10) and (5.21) we see that the far field pattern Am of A8 is

given by Am A.
In (5.17) we now set

(5.22) $ (x) E (x; -2, p) + Es (x; -, p),
7-l(x) Hi(x;-2,p) + HS(x;-,p),
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where 2 E gt, p E ]R3, and use the vector Green’s theorem to deduce that

{v(x) x E (x; -2, p). curl As (x)
B

-u(x) x As (x) curl E (x; -, p)} ds(x)

-" 0B{I](X) X Es (x; -$, p). curl A (x)

-v(x) x A (x) curl Es (x; -, p)} ds(x) O.

Setting ikBs := curl As and using (4.8) we now see that the first integral in (5.23) is
given by

(5.24)
fo

{(x) Ei(x; -2, p). curl As (x)
B

-u(x) x As (x) curl E (x; -, p)} ds(x)

-ik OS{Ei(x;-2’P)" (x) BS(x)

+Hi(x;-S,p). (x) AS(x)} ds(x)

k2p (2 x B{(x) x AS(x) + ((x) x BS(x)) x

-4rikp. A().

Inserting (5.20) into the second integral in (5.23) and interchanging orders of integra-
tion, we now have from (4.8) and reciprocity that

fo
{(x) ES (x; -2, p) curlA(x)

B

-u(x) x A (x) curl Es (x; -, p)} ds

=ik /a (d). (dx s{--(x) xES(x)+

+ [u(x) x HS(x)] x d}eikx’d ds(x)) ds(d)

4p. Jn Eo(2;d,[?(d))ds(d)

4rp. (F)(2)

From (5.23)-(5.25) we now have that

(5.26) F ikA ik [7.

Since ik a(F), we have that 0. This implies Ao 0 and hence As 0 in
IR3\/ and A 0 in ]R3. Hence, A 0 in lR3\/ and from (5.16) we now have that
a b 0. The theorem is now proved.
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THE INVERSE EIGENVALUE PROBLEM WITH FINITE DATA FOR
PARTIAL DIFFERENTIAL EQUATIONS*
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Abstract. This work is concerned with the inverse eigenvalue problem for the partial differential
equation 72u + (A q(x, y))u 0. We study the problem of reconstructing the coefficient function
q(x, y) (or at least a numerical approximation to it) using only a finite amount of spectral data, say,
kn(q) for n 1, 2,..., N. One of the essential tasks considered here is that of determining how
much information about the unknown function can be contained in such a fixed and finite amount
of spectral data. A numerical method, based on a constrained least squares procedure, is devised
for extracting such information, and several examples are given. A proof of convergence for the
numerical method is provided. We show that the main difficulty with the finite inverse problem is
that the eigenvalues are continuous in some very weak topologies. This work is a higher-dimensional
version of the problem considered by Barnes [SIAM J. Math Anal., 22 (1991), pp. 732-753] for
ordinary differential equations.

Key words, inverse eigenvalue problem, continuous dependence

AMS subject classification. 35B25

1. Formulation of the finite inverse problem.

1.1. Introduction. Assume that 7:) is a bounded piecewise smooth domain in
the x, y plane, let be a unit normal vector on 07), and consider the eigenvalue
problem

Ou
(1) V2u + (A q(x, y))u O, with alu + r2- 0 on (07).

Here, al and 2 are given functions, but both cannot vanish at the same time. Denote
the eigenvalues of (1) by An(q) and let q*(x,y) represent the unknown coefficient
function. Suppose that a finite amount of spectral data A (A, A2, ,AN) is
given so that An (q*) An for n 1, 2, N. We want to construct the best possible
approximation to q*(x, y) using the given data. A problem similar to this has been
considered by Seidman [13]; however, he assumed that the domain 7) was the unit ball
in N-dimensional space and that the coefficient functions were all radially symmetric.
Such symmetry reduces the higher-dimensional problem to the one-dimensional case.
Our work does not make such assumptions. For some additional results concerning
this problem, see [3]-[5], [10], and [12].

Clearly, such a finite inverse problem cannot be solved uniquely. Therefore, we
understand that a solution to such a problem is simply a sequence of functions qN(x, y)
which has the correct spectral behavior--that is, a sequence satisfying the following
interpolation condition: For each N, there is an eN such that

(2) IAi(qN) Ai(q*)[ < N for i 1,2,... ,N and N---0 as N-c.

Next, we must provide a proper mathematical foundation for understanding the re-
sults. In particular, it is critical that the sequence qN(x, y) should converge to q* (x, y)
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in some suitable topology as Nc. If so, it is necessary to understand something
about the topology used and how accurate the approximation is. Also, for a given
fixed value of N, we need to have some idea of how many different functions (in
addition to q*) might satisfy the spectral conditions ,(q) A.

Theorem 2.4 and Corollaries 2.3 and 2.7 provide some partial answers to these
questions. They show that, assuming a uniqueness condition, as N--.c, the approxi-
mating sequence aN(x, Y) converges to q*(x, y) in a certain norm (we call it the 1Max
norm) and that the eigenvalues are continuous in the topology generated by it. The
continuity theorem indicates what kind of variation in the solution of such an inverse
problem is still possible, even assuming that the uniqueness condition is satisfied and
that all of the requirements of a finite amount of spectral data have been met. This
analysis provides a proper mathematical foundation for the finite inverse problem.

A useful tool is the following variational characterization of eigenvalues using the
Rayleigh quotient [6], [14]. Let :(.) be a self-adjoint operator defined on a dense
subspace D of a separable Hilbert space. Suppose that the lower part of the spectrum
of :(.) consists of isolated eigenvalues A1 _< A2 <_ A3 _< ..., each with finite multiplicity.
Let ui denote the eigenfunction corresponding to Ai and let /An be the subspace
spanned by the first n eigenfunctions ul, u2, u,. Let Vn be any other n-
dimensional subspace of D. Let 7(u) denote the Rayleigh quotient for :(.). It is
defined by

It follows that

An
_
max 7(u) and that An max 7(u).

2. The topology of the finite inverse eigenvalue problem.

2.1. Continuity properties of the eigenvalues. In a bounded two-dimen-
sional domain :D, let C(T), H) be the class of measurable functions q(x, y) with domain
:D satisfying Iql <- H. It is convenient to assume that all functions in C(:D, H) vanish
outside of :D. A major part of the theory of the finite inverse problem hinges on
a topological analysis of the continuity properties of the eigenvalues An(q), which
are simply real-valued functions defined on (:(:D, H). To understand why, consider a
classical theorem which says that the eigenvalues are continuous functions of q in the
Lo norm. It is clearly not possible to construct any kind of reasonable approximation
to the partial derivatives of q(x, y) using only a finite amount of spectral data. But
this continuity theorem does provide a little insight into the information content of
the spectral data.

On the other hand, it follows easily from Corollary 2.3 that the eigenvalues are
still continuous in the much weaker L2 norm. Therefore, we cannot even construct
a uniform approximation to q*(x, y). With each new and weaker topology in which
the eigenvalues are continuous, we understand more about the information content
of the spectral data because we know more about what kind of information that
the data does not contain. This leads us to consider the problem of characterizing,
in an understandable way, the weakest topology in which the first N eigenvalues are
continuous. It is this topology which provides an accurate measure of the information

A basis for the open sets in this topology may be taken as the collection of subsets of C(:D H)
which are inverse images of an open interval under the mapping An q-*N for n 1, 2,..., N.
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content of the spectral data. Because the topology depends on N, it seems to be very
difficult to characterize it exactly, but we will provide some approximations to it.

We will be especially concerned with the following three different topologies de-
fined on tT(/),H)" the topology of weak convergence of a sequence,2 denoted by
qn(X, y) " q(x, y), and the topologies defined by a pair of norms I1" II1Max and I1" IIv-.
First, we will define the norms.

Given a function q(x,y).E C(/),H) and coefficients al, a2 defined on 0/), let -be a unit normal vector and let f(x, y) be the solution of the problem

of(4) V2f=q(x,y) with 2alf+a2=O on c9/).

Since an extra factor of 2 is included in the boundary condition of (4), the integral
formula

/fz) f/z) 2dsdt I/z) f(x’y)[V2u2n]dsdt2 ds dt [V2f(x, y)] tnq(s,t)Un

will hold. It is easy to check that the following relation defines a norm I1" IIv on

C(/), H). For q(x, y) e C(/), H), let

max If(x,

with f defined by (4). Using Green’s function (x, y, s, t) for (4), it follows that

f (x, y) ff9 G(x, y, s, t)q(s, t) ds dt,

so that the 72 norm also may be expressed as

max If(x,y)l max
x,yET x,yET) ’] G(x, y, s, t)q(s, t) ds dt

We will also be concerned with the 1Max norm defined by

x

foo
y

q(s, t) ds dt

We are assuming, for convenience, hat the domain 79 is contained in the positive
quadrant and that q(x, y) vanishes outside /). In analogy with the V2 norm, the
1Max norm could also be defined as the maximum value of the function f(x, y), the
unique solution of the characteristic initial value problem fxu q(x, y) with boundary
conditions f(0, y) f(x, O) O.

Now that these three topologies have been introduced, we will show that, in fact,
all of them are equivalent in the class C(/), H). Therefore, compactness of C(/), H) in
the weak topology gives compactness in both norm topologies. One reason to consider
two different but equivalent norms is that it is difficult to compute I1" ]Iv since the
Poisson equation (4) must be solved while it requires only a quadrature to compute

2 Weak convergence means that f fz) f(x,y)qn(x,y)dxdy-- f f(x,y)q(x,y)dxdy for every

function f(x,y) having f fTf2(x,y)dxdy < o. The weak topology is useful because it makes

C(/), H) compact [6].
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[[" []lMax. However, it turns out that, at least for the study of inverse problems, it is
analytically more convenient to use I1" [Iv2. Furthermore, we will show later that, if
H-cxz, then the three topologies are not equivalent.

THEOPEM 2.1. If q(x, y), q,(X, y) E C(T), H), then as n--oc, the following are
all equivalent:

q(x,
(2) [[q
(3) Ilqn q[[Max---O.
Proof. We will prove the logical implications (1) : (2) and (1) : (3). First,

supposing that (1) holds, use Green’s function to define Qn(x, y) by

Qn(x, y) =//z) G(x, y, s, t)q(s, t) ds dt.

Let Aqn qn q and AQn Qn Q. Then the weak convergence implies, for each
fixed point (x, y), that

AQn(x, y) =//) G(x, y, s, t)Aqn(s, t) ds dt---O.

However, AQn(x, y) is uniformly bounded and equicontinuous, implying that there
is a uniformly convergent subsequence. Since the limit must be unique, every such
subsequence must converge to the same function. Thus, the overall convergence is
uniform. Using Green’s function characterization of the V2 norm (5) shows that
I[qn --q[[v -+0"

Now suppose (2). Let h(x, y) C(D, H) be any function smooth enough so that,
for some choice of r(x, y) L2[D], it can be represented in the form

Consider

h(x, y) =/fv G(x, y, s, t)r(s, t) dt ds.

(h, Aqn ././ h(x, y)Aq(x, y) dx dy

//o.I,.,> (f d,d,

ffvr(s,t) Q.(s,t)d.dt= (r, AQ.).

Since AQ(s, t) converges uniformly to zero, it follows that (h, q)0, which implies
weak convergence for smooth functions h(x, y). Since such smooth functions are dense
in C(V, H), condition (1) follows.

Now suppose (1). Given (x, y) , let h(s, t) 1 for s x and t y; otherwise,
let h(s,t) 0. Weak convergence implies the following pointwise convergence (in
(x,u)).

(h, Aqn)= f h(s,t)Aqn(s,t)dsdt= fffjff Aqn(s,t) dtdsO.

However, the sequence of functions fx__fy_ qn(s, t)ds dt is uniformly bounded and
equicontinuous so that it will converge uniformly. Thus,
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Now suppose (3). It follows that, if X(s, t) is the characteristic function of any
rectangle contained in 2), then ffz) X(s, t)Aqn(S, t) ds dt0. Taking linear combina-
tions of such characteristic functions shows that the same result holds for any step
function defined on a rectangular grid. Since such functions are dense, it follows that

q(x,
Incidentally, this theorem shows that the topology generated by the v2 norm is

really independent of the terms a and a2 used in the boundary conditions of (4).
We will now show that the eigenvalues of (1) are continuous on C(:D,H) with

respect to these three topologies. Of course, since all three are actually identical, we
will need only one proof.

THEOREM 2.2. Let An(q) denote the nth eigenvalue of (1) corresponding to
q(x,y), and let ql,q2 E C(I),H). Let #n denote the nth eigenvalue of (1) corre-
sponding to the constant function q(x, y) H so that #n An(H). Then for all
n-- 1,2,...,N,

(6) I/k(ql)- A(q2)l < 4N(H + I#NI)llql --q211V2"

Proof. Let u be any function of the general form

N N

U OiU where ai i
i--1 i--1

where ui are eigenfunctions corresponding to some coefficient function p E C(/), H).
We will show that any such function u satisfies the inequality

u2(ql q2) dA

By assuming for a moment that this is true, we see that

I/z) u2q dA <_ f/z) u2q2 dA + 4N(H + ]#NI)l[ql q2[[V-
The Rayleigh quotient for this problem is given by

2 2 + q(x, y)u2 dA + fo uOu/O- ds

Equation (7) shows that n(u, q) < T(u, q2) + 4N(H + INI)llAqllv.. Now take the
maximum over all functions u in the space spanned by the first N eigenfunctions
corresponding to the function q2. It follows from the Min/Max principle (3) that
An(q) < An(q2)+4g(H+l#NI)llAqllv. Reversing the roles of q and q2 and repeating
this argument gives the other half of (6) and proves the theorem. Now we need only
to prove (7).

2 1 and suppose that f solves (4). ThenLet u N= ciu with N= a
(8)

J/)u2AqdA= f/gu2V2f dA= ]’fz)fV2u2dA
N

fv dA.
i,j=O
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Now ui, uj are eigenfunctions corresponding to some other function p E C(T, H)
so that V2ui (p Ai (p))ui. Thus,

IV2(uiuj)l
_

]ujui(p- Ai(P))I + 2]VuillVujl + luiuj(P- Aj(P))I.

This inequality shows that the expression Iffz) fV2uuj dAI is bounded above by the
following term:

(9) ]lAqllxT J/v ]ujui(p Ai(p))l -t- 2lVullVujl + luuj(p Aj(P))I dA.

Using the elementary inequality lujui(p- Ai(P))I - luiuj(H + #N) followed by the
normalizing condition and Cauchy’s inequality shows that the integral of the first and
last terms in (9) are bounded by H / #g. Combining the relation f f IVuil2Ai-
f f qu dA with a second application of Cauchy’s inequality shows that the middle
term of (9) is bounded, by (H + ]i)/2(H + )/2. Now, replace (p) and (p)
with the larger value g, add all three terms together, and substitute into (8). Finally,
use Cauchy’s inequality again and the normaling condition to obtain (7).

COROLLARY 2.3. The eigenvalues An(q) are continuous on C(,H) with respect
to weak convergence as well as with respect to the 1Max and the V2 nos.

Since the Lp no is stronger than either the 1Max or the V2 no, it also
follows that the eigenvalues are continuous in the Lp no for any p 1.

The second part of the corollary follows from the inequality

[[q[[1Max max q(s, t) ds dt
x,yET)

<_ Iq(s, t)l ds dt <_ Ilqllp.

The assumption that the functions q are uniformly bounded is crucial to the
success of Theorems 2.2 and 2.4. All three topologies become very different if we let
H--,oc. For example, let T be the unit square, use Dirichlet boundary conditions,
and take a perturbation in q(x, y) of the form Aq,(x, y) H sin(irx + jry) where
i, j are integers. A short calculation shows that IIAq,jllMx 3H/(ijTr2). Solving
for f in the equation V2f Aqi,y gives

-H
f(x, y) (,-2 + 3 )-2"r2 sin(irx + jry) so that

H
IlAq,yllv (i2 + j2)r2"

Now, take i 1 and H j to find that II/kql,j IIiMax 3, while IIAql,j Ilv.--0 as j--.cx.
In the L2 norm, however, Ilql,yllL--*o. Since the L2 norms of any weakly convergent
sequence must be uniformly bounded, Aqi,j(x, y) does not converge weakly. It is also
easy to construct examples where IlAq,dlllMax0 without converging weakly.

Thus, the eigenvalues are continuous in some very weak topologies, and this is the
root of the difficulty with the finite inverse eigenvalue problem. To illustrate further,
suppose we are trying to find a numerical solution of such a problem for (1). Suppose
that the unknown function is q*(x, y) and let f*(x, y) be the corresponding solution
of (4). Then any other solution f(x, y) of (4) that is a good uniform approximation to

f* (x, y) will provide an equally valid solution to the finite inverse eigenvalue problem.
This means that, at most, the only information contained in a finite amount of spectral
data is a uniform approximation to f*(x, y). Therefore, reconstructing a pointwise
approximation to q*(x,y) requires one to apply the operator V2(.) to the uniform
approximation f, resulting in a very ill conditioned operation. Unfortunately, the fact
is that a finite amount of spectral data simply cannot yield any better information
about the function q*(x, y).
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2.2. Some convergence theorems. Although the spectral data may not con-
tain all of the information we want it to have, we will now show that, under a unique-
ness condition, any sequence of interpolating functions (2) will converge to q, in
the weak topology as N--,cx). The fundamental tool is the compactness of the class
C(T), U).

THEOREM 2.4. Let An denote some spectral data for the problem (1). Suppose
that the data is sufficient to insure that the infinite inverse eigenvalue problem always
has a unique solution. That is, there is a unique function q* E C(7), H) for which
An(q*) An for all n. Let qN be any sequence of functions which interpolates to the
data An(q*) as in (2). Then as

qN ,z q* and IIqN q*lllMax-0 and IIqN q*lllMax-0-

Proof. The proof follows the lines of the one given in [4]. Let qN be the sequence of
interpolation functions. Since C(T), H) is compact, we may select a weakly convergent
subsequence qg ,z - C(T),H) as j--cx). The interpolation condition (2) shows
that An (q*) ,n() for all n so that q* . Thus, for any convergent subsequence,
qN q* as j--,c so that qN

Of course, the difficulty with this theorem is that currently very little is known
about the uniqueness of the inverse eigenvalue problem for partial differential equa-
tions, although progress has been made in the corresponding problem for ordinary
differential equations [11]. In one of the few known uniqueness results dealing with
the inverse problem for (1), Nachman, Sylvester, and Uhlmann [12] gave the following
condition under which the infinite inverse problem will have unique solutions.

THEOREM 2.5 (Nachman et al.). Consider (1) with Dirichlet boundary conditions.
Suppose that ql(x, y) and q2(x, y) are two functions for which n(ql) )n(q2) for all
n and also that on the boundary of 7), the corresponding eigenfunctions, called u
and U[n2], have equal normal derivatives

O 0

then ql q2.

Combining Theorems 2.4 and 2.5 yields the following theorem.
THEOREM 2.6. Suppose that q* and qN are functions in C(T), H) that satisfy

)n(q*) )N(qN) for n 1,2,...,N and suppose that all of their corresponding
eigenfunctions satisfy the normal derivative condition (10). Then as

(11) qN q* and IIqN q*llMax-0 and IIqN q*lllMax’-*0.

Since C(T), H) is compact, we can find a function, " C(T), H), and a weakly conver-
gent subsequence, qN--*, as i--,cx). However, Theorem 2.1 shows that An() An (q*
for all n. Theorem 2.6 implies that q* ’. Since every convergent subsequence of qN
converges to the same q*, it follows that qN must converge to q* as

It is easy to see that an analogous theorem will continue to hold under any kind
of condition .on the spectral data or on the class C(7:), H) that gives uniqueness of the
infinite inverse eigenvalue problem.

Still, it seems likely that many other inverse problems for (1) will not have unique
solutions when the class of functions C(7), H) is unrestricted. It seems more reasonable
to expect a uniqueness result if the class C(T), H) is constrained in some waymsay,
by requiring the functions q(x, y) to be convex or to have some kind of symmetry.
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Frequently, in applied inverse problems, a great deal is known about the qualitative
behavior of the unknown function. An elementary example of such a constraint is
used in the numerical calculation given in 5 below.

As another use of the idea of a subclass of C(), H), consider the case in which it
is known that the function q* satisfies a uniform Lipschitz condition

(12) Iq*(x,y) -q*(s,t)l <_ L(Ix-y + Is-
Thus, we may also constrain the interpolating functions qN to satisfy (12) and still
be assured of obtaining a solution of the inverse problem. Then weak convergence
implies uniform convergence so that qN converges uniformly to q. Even if the unique-
ness condition is not satisfied, then compactness still assures us of the existence of a
uniformly convergent subsequence. If the Lipschitz condition is assumed to hold only
on some subset of the domain :D, then we may select the interpolating sequence qN

to satisfy the Lipschitz condition there; thus we are assured of uniform convergence
on the subset and, at least, of weak convergence elsewhere. We will show below how
such constraints on the interpolating sequence qN may be numerically implemented.

2.3. The isospectral equivalence classes CN (), H) ofC(, H). Since unique-
ness is not readily available, we will consider the behavior of the set of isospectral
equivalence classes on C(T, H). We assume that only a finite amount of data is given.
Thus, two functions ql, q2 are equivalent if An (ql) ,n(q2
Call this set of equivalence classes CN(:D, H), which inherits a natural topology from
C(T, H). Reinterpreting Theorem 2.4 in the light of these equivalence classes provides
the following result.

COROLLARY 2.7. The infinite inverse eigenvalue problem has a unique solution

if and only if the diameter (as measured in the 1Max norm) of each equivalence class
CN(:I, H) tends to zero as Nx.

Let RN be Euclidean N-dimensional space and define a mapping

b C(I),H)--.RN by (q)= A(q),

using the brief notation ,k(q) (Al(q), A2(q),..., AN(q)). Let S(T, H) C RN be the
range of . Define a topology on S(:D, H) by using the component-wise convergence
criteria ,,k(qj)--.X(q*) if and only if, for each n 1,2,... ,N, ,kn(qj)--*An(q*) as
Now topologize C(T, H), using the weakest topology in which the first N eigenvalues
are continuous. This simply means that qj--q* as j---,cx if and only if ,kn(qj)---,kn(q*)
for each n 1, 2,..., N. Now induces a natural mapping of the equivalence classes
CN(:D, H) onto ,S(T, H) C RN, and the map will be both continuous and one-to-one.
Thus, CN(:D, H) is homeomorphic to a subset of ordinary N-dimensional Euclidean
space. This determines the weakest topology on CN(:D, H), in which the eigenvalues
are continuous. Unfortunately, knowing the topology on CN(2), H) still does not
easily translate into usable conditions on the coefficient functions q themselves which,
of course, belong to C(T, H) and not to eN(/), H).

3. Higher-order equations in many dimensions. Similar methods can be
applied to more general eigenvalue problems. We will use the standard notation
and terminology for general partial differential operators as given, for example, by
Friedman [7].

Let gt be a bounded set in p-dimensional space, let a

multi-index, and let D D’D...D where Dj O/Oxj. Let Ilullm be the
Sobolev norm of order m for functions u defined on Ft. Let : be the differential
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operator defined by/2 -lal<2m aa(x)Da where x E Ft. Details of the conditions
on ft and/2, under which eigehWalue problems for such operators are well posed, have
been studied extensively [7] and will not be repeated here. We will simply assume that
the operator is such that the variational principle (3) is valid and that the following
standard a priori inequality will hold for all u in an appropriate Sobolev space [1], [7]:

_< c (llC(u)ll0a + ilull0 ).
The constant C is independent of u. This inequality takes the place of those used in

2.2.
As an example of what can be done with these methods, we will study the eigen-

value problem

(13) :(u) + (A q(x))u 0 with --0 on OFt for j=0,1,2...m-1.

Here, tt is the outward normal to the boundary. To define the appropriate norm of a
function q(x), let f be the unique solution of the Dirichlet problem

/:(f) q(x) with

Now define the norm Ilqll by

=0 on Oft for j=0,1,2...m-1.

Ilqllz: max If()l.

The following theorem gives the continuity of the eigenvalues of (13).
THEOREM 3.1. Let An(q) denote the nth eigenvalue of the problem (13). There

is a constant Cn(H, :D) which depends only on H, n, and Z), .for which

Proof. Proceeding as before, we see that u2 satisfies the boundary conditions (13),
so that

f Aqu2 dV=/a/(f)u2 dV=/a f/(u2)dV <- [[fl[/a [(u2)[ dV.

Suppose that the eigenfunction is normalized so that Ilullon 1. Now for any u
the expression (u2) can be written as a linear combination of terms like DaukDjul.
The Schwartz inequality shows that Ja I(u2)l dV is bounded by a sum of terms like

CIlukllllull, where C is a constant. The rest of the proof is much like that for the
two-dimensional case.

It is now clear that all of the two-dimensional theorems have generalizations to
these higher-dimensional, higher-order problems. It is also interesting to observe that
the higher-order problems are more poorly conditioned than the lower-order ones.
To justify this observation, consider the problem of attempting to obtain pointwise
data about q from the spectral data A. Theorem 2.6 shows that the only information
about q that is contained in a finite amount of data is a uniform approximation to the
solution f of (f) q(). So reconstructing q requires that the differential operator
/2(.) be applied to the uniform approximation to f, resulting in a very ill conditioned
operation. Such a manipulation becomes more ill conditioned as the order of the
operator increases.
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4. Application to optimization problems. These continuity properties also
have applications to certain variational methods for isoperimetric inequalities. One
application is to the existence theory for "eigenvalue gap" problems like those consid-
ered in [2]. These problems ask for the extremals of quantities such as 2(q) hi(q)
or A2(q)/Al(q). Given our continuity theorems, it is easy to show the existence of
extremals for such problems on C(/), H) since the differences and ratios of eigenvalues
are continuous functions on a compact set.

5. Numerical examples.

5.1. Introduction. In this section we present three examples illustrating the
numerical solution of the finite data problem in two dimensions. Our approach here
is a least squares method that generalizes the algorithm described in [4] for the inverse
Sturm-Liouville problem. The first example uses Dirichlet eigenvalues to construct
an approximation of a function q(x, y) defined on a rectangle and containing certain
symmetry properties. In the second example, the symmetry assumptions are dropped,
and an approximation to a general q(x, y) is accomplished, using eigenvalues from four
sets of boundary conditions. Finally, our third example exhibits the approximation
of a characteristic function q(x, y).

In each of the examples, the given spectral data A consists of N eigenvalues of
(1). Using the data A, functions qN,M C= ,(’I), H) of the form

M

(14) qN,M(X, y) E khk(x, y)
k--1

are constructed to approximate q(x, y). In general, the number of basis functions M
is assumed to be at least as large as the number of given eigenvalues N. In [4], for
example, M was taken to be N _< M _< 2N, and here we generally use M N.
For qN,M(x,Y) of the form (14), the resulting spectral data )(qN,M) depends on
the parameters/ (/l,... ,M)t, and we denote it by )(f). Our approximation
qN,M(X, y) is then found by solving for the f that minimizes the norm IIA- A(/)II2.

Although any well-behaved basis could be used, our choice for {hk(x, y)}M= will
be piecewise constant functions: subdividing 7:) into disjoint subsets I,.Jk=1MDk, we define
the function ht:(x, y) to be 1 on Dk and 0 otherwise. The condition qN,M E ((), H) is
easily implemented by requiring Ifl <_ H for each k. As discussed earlier, other kinds
of useful and interesting constraints may be imposed on the coefficients f. An efficient
way to implement such ideas numerically has been given by Hanson and Haskel [8].
The program can solve constrained least squares problems for matrices. Specifically,
it solves the following problem:

(5)
Minimize subject to constraints

Ef=F and Gf}_>K.

Letting B(H) denote the set

B(H) { e RM Ikl - H},

we will consider the nonlinear constrained least squares problem

(16) min IIA- ()11 -IIA- (Z*)II.
feB(H)
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To minimize the norm IIA- A(fil)ll2, we approximate the nonlinear problem (16)
with a sequence of linear least squares problems. Beginning with an initial guess/30,
,k(fit) in (17) is replaced by its linearization L0(/) )(fi}o) + F0(fil filo) about 0.
Finding fil e B(H), which minimizes IIA- n0()l12 over the set B(H), constructs
our new approximation. One may then repeat this procedure to produce a sequence
of successive approximations by computing the linearization Li() of )(fil) at/i and
by finding a solution fil+1 E B(H) of

(7) min IIA- Li()lla ]]A-
ieB(H)

At this point, the least squares method of [8] may be used to implement any additional
constraints on

Much of the computational cost of the method lies in the construction of
To compute the linearization of the spectral data ,k(D) (/kl(D),... ,/N(I)) at
/ -----/i, one must compute eigenvalues and eigenfunctions of (1). In our numerical
examples, we use the Rayleigh-Ritz method to estimate the eigenvalues ,k(/). To
compute the linear component F of the linearization, note that if/kk(/i) is a simple
eigenvalue with L2-normalized eigenfunction Ck(x, y), then a formal calculation [9] of
the derivative of Ak(D) at g} Di yields

Oj
() hj(x, y)(x, y) dA (x, y) dA.

The linearization Li(/) ,k(/i) / Fi(-/3i) is then computed by forming the N x M
matrix F given by

=//7 Ck (x, y) dA.[r]

In our numerical calculations, we chose not to update Fi at each step, but rather to
take F0 as an approximation to Fi and to replace (17) with the minimization problem

(18)

where ,i(f) ,k(/) + F0(/Y- fi).
5.2. Recovery of a symmetric potential on a rectangle. Our first example

is a generalization of the inverse Sturm-Liouville problem with symmetric potential.
Here we consider a rectangular domain 7) [0, r/a] [0, r] with functions q(x, y)
defined on 7) that are symmetric with respect to the two midlines of the rectangle,
i.e.,

q(Tr/a- x, y) q(x, y) q(x, 7r y).

Our spectral data A are the first N eigenvalues of (1) with the Dirichlet condition
u 0 on 07). Such an inverse problem was previously considered in [10], where an
algorithm based on the Rayleigh-Ritz method was used to construct approximations
to a truncated Fourier series expansion of q(x, y).

A piecewise constant approximation to q(x, y) is constructed by dividing 7) into
a uniform grid of 4M subrectangles. Dk will denote a subset of 7) consisting of four
of these smaller rectangles symmetrically chosen around the midlines x r/2a and
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FG. 1.

FIG. 2.

y r/2 of 7:) (see Fig. 1). Each of the resulting M step functions hk(x, y) is then
symmetric with respect to the midlines of 7:).

The rectangle here will be 7:) [0, r/0v/.95] [0, r]. The choice of a 0v/-.95
guarantees that the lowest 50 eigenvalues of f 0 are simple, allowing the lineariza-
tion formula to be used at f0 0. The function for which we will construct an
approximation is as follows:

exp(-- d(x,U)) if d(x, y)
q(x, y)

0 otherwise.
2Jb- -4(Y-)>0

The graph of this function is shown in Fig. 2. Starting with/50 0 as an initial
guess of a solution to the nonlinear problem (17), up to five iterations of the linear
least squares problem (18) were solved over the set B(1) for N 9, 16, and 25. The
subrectangles of 7) were formed by dividing 7) into a uniform grid of 2x/ 2v/
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TABLE

N M Grid IIA- (qN M)]]2
9 6x6 0.0029
16 8x8 0.0011
25 10xl0 0.0060

q q,N,M I,I1
0.180
0.050
0.023

True q(x,y)

2

Y

2

Constructed Approximat ion

2

Y

2

Gray Scale

0.i 0.2 0.3 0.4 0.5

FG. 3.

for a total of 4M rectangles. For each N, the final computed fi 6 RN was used to
construct qN,M given by (14). Estimates of the resulting errors IIA- A(qN,M)II2 and
IIq- qN,M IIIMax are shown in Table 1.

Fig. 3 displays a density plot representation of the actual q(x, y) along with a
density plot of the piecewise constant approximation constructed on a 10 x 10 grid
using N 25 eigenvalues.

5.3. Recovery of a general potential on a rectangle. Our next example
illustrates a generalization of the two-spectra inverse problem for the Sturm-Liouville
equation. We will continue to consider q(x, y) defined on a rectangular domain 7);
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FIG. 4.

however, here q(x, y) is no longer assumed to be symmetric with respect to the mid-
lines of the rectangle. The spectral data A used to construct an approximation to
q(x, y) will consist of eigenvalues from four different sets of boundary conditions. In
particular, we use A -kJ4__lAi, where Ai are eigenvalues resulting from the following
boundary conditions:

A

A3

A4:

(, o) (, o) (,) (/a,) o,
(x, o) (, o) (,) (/a,) 0,
(x, O) (, O) ,(x, ) (/a,) O,
u(x, O) (, O) (x,) (1,,) O.

A piecewise constant approximation to q(x, y) is constructed by dividing I) into
a uniform grid of M subrectangles Dk. As before, the M basis functions hk(x, y) are
taken to be 1 on Dk and 0 otherwise.

On the rectangle [0, r/.95] x [0, r], we constructed an approximation to
the function

a(z, ) 0.5 cos(x).

The graph of q(x, y) is shown in Fig. 4. The constructed approximation used
N 100 eigenvalues (25 eigenvalues from each boundary condition) and M 100
basis functions (a 10 x 10 grid of :D). Beginning with an initial guess of/0 0, seven
iterations of the linear least squares problem (18) were solved to find ]37 E/t1. The
resulting piecewise constant function qloo,oo(x, y) was estimated to satisfy

IIq q00,x0011XMx 0.033 IIA A(qx00,00)ll= 0.0052.

Density plots of q(x, y) and qoo,oo(x, y) are shown in Fig. 5.
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True q(xy)

i 2

Constructed Approximat ion

Y

2

Gray Scale

-0.4 -0.2 0.2 0.4

FIG. 5,

5 4. Recovery of a characteristic function. Our final example is a special
case of the preceding problems, namely, the reconstruction of a function of the form

1 if (x,y) 6 S,q(x, y) 0 otherwise,

where S is a subset of 7). The algorithm proceeds as in 5.3; however, once has
been computed, we then take

SN,M U Dk
f_>o.5

as an approximation to S.
Returning to the rectangle7) [0, r/v/-.95] [0, r], we exhibit an approximation

to the characteristic function for the region S shown in Fig. 6. This set is comprised
of two parts, namely, the lower half of a disk with radius 0.5 centered at the center
of 7), and a square with side length 0.2 centered at (3r/4.95, 3r/4).
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True Region S

2

Y

2

Reconstruction i0 I0 grid

m

mmmmmmmm

2

Y

2

Reconstruction 12 12 grid

2

Y

2

FG. 6.

Using 100 eigenvalues (25 from each boundary condition), two approximations to
S were constructed, one on a 10 10 mesh and a second on a 12 12 mesh. The
resulting approximations $10o,loo and $100,144- are shown in Fig. 6.
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FREE BOUNDARY PROBLEMS FOR POTENTIAL AND STOKES
FLOWS VIA NONSMOOTH ANALYSIS*

SRDJAN STOJANOVIGt AND THOMAS SVOBODNY

Abstract. A new approach to some free boundary problems of the type of jets and cavities for
potential flows is introduced. Both potential and Stokes flows are considered. The variable domain
problems are relaxed so that they become nonsmooth optimization problems on fixed domains for
somewhat singular state equations. State equations are considered, and multivalued generalized
gradients of the variational functionals are studied. The method is constructive.

Key words, free boundary, Stokes problem, nonsmooth analysis

AMS subject classification. 35Q

1. Introduction. Consider the following now-classical variational problem in-
troduced and solved by Alt and Caffarelli [2], and studied extensively by Alt, Caf-
farelli, and Friedman. (See [3] and [8] and references, given there.) (See also [14]
for numerical considerations; for the simplicity of presentation we discuss the very
particular geometry: 2 (-a, a) (0, 2).)

Find w E H:(gt) satisfying the boundary conditions

(1.1.1) w--0in{(x, 0);-a<x<a}, w--2in{(x, 2);-a<x<a}

such that the variational functional

(1.1.2) J(w)

is minimized. Here ID is a characteristic function of the set D, i.e.,

1 ifx E D,(1.1.a) I(x) 0 if z D,

and 9 >- 0 is a given function.
It is well known (see [2]) that, under certain conditions, a minimizer w satisfies

(1.1.4)

Aw=O in flg{w>O},
IVw[=g, w=O in gtO{w>O},

w=0in{(x,0);-a<x<a}, w=2in{(x, 2);-a<x<a},
wx 0 in {(+a,y);0 < y < 2}.

REMARK 1.1.1. Moreover, if gy <_ 0 then, using monotone rearrangemets (see
[11]) one can easily show that that there exists a minimizer w such that wy >_ O. That
implies that there exists a function u u(x) such that flNO{w > 0} {(x, u(x));-a <
x < a}. Furthermore, if g Ck’a(t) then, by the theorem of Alt and Caffarelli,
u Ck+:’a.
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1993.
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The applications of this problem are mainly in potential fluid mechanics, i.e., in
free boundary problems of the type of jets and cavities for potential flows. (See [8]
and the references given there.)

Unfortunately, the above variational approach failed, in the case of Stokes and
Navier-Stokes equation. The reason is that there is no known analog of the functional
(1.1.2).

In this paper we introduce a new approach to this problem. The approach is
discussed in the case of potential flow (2), and in the case of the Stokes flow (3).
Results of the 2 were announced by Stojanovic in [15]. See [4] for a related method.

2. Potential flow.

2.1. Statement of the problem. To further motivate our approach, we observe
that the "Euler equation" for the minimizer of the functional (1.1.2) is

Aw aao{>0} in :D’
w 0 in {(x, 0);-a < x < a}, w 2 in {(x, 2);-a < x < a},

(2.1.1) Wx 0 in {(+a, y); 0 < y < 2},

where for any regular surface F, the measure r is defined by

(2.1.2) r() Jfr gda.
Of course, (2.1.1) is a very difficult equation since the measure on the right-hand

side depends on a solution. On the other hand, if the right-hand side does not depend
on a solution, i.e., if the equation is merely

Aw=r in T)’

w=0in{(x,0);-a<x<a}, w=2in{(x, 2);-a<x<a},
(2.1.3) wx 0 in {(+a, y); 0 < y < 2},

for some given (fixed) regular surface F, then (2.1.3) is a fairly simple equation. So
the idea is to study (2.1.3) and then to look for F such that if w is the corresponding
solution of (2.1.3), then

r a > 0}.

So, consider the set of admissible shapes (see Remark 1.1.1)

(2.1.5) U {u e H03(-1, 1);0 _< u(x) _< 1,-1 < x < 1}.
Denote

(2.1.6) Fu {(x, u(x)); -1 < x < 1},

and extend u E U as zero outside of (-1, 1). Define the domain

(2.1.7) tu {(x, y); Ixl < a, u(x) < y < 2}.

Let w w", be the solution of

Aw 0 in t2,,

w=0in{(z,0);-a<x<-lorl<x<a}, w=0inF,

(2.1.8) w 2 in {(x, 2);-a < x < a}, wx 0 in {(+a,y);0 < y < 1}.
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We could also take a cx3 in (2.1.8), i.e., consider a flow in an infinite channel. Then
the last condition in (2.1.8) is substituted by the requirement that w is bounded.

In the context of potential fluid mechanics, w is a stream function. If a stream
function w is known then, of course, the velocity vector field v can be computed easily

The problem we propose is the following.
For given g g(x, y) such that (we will not always have to assume this much)

(2..) e c,(),
(2.1.10) g 0 in t {Izl > 1},

find (if possible) u E U such that, if wu is the corresponding solution of (2.1.8), then
also

(2.1.11) Iv --IVwUl g in Fu.

We note that by the Bernoulli’s law

1
(2.1.12) P + [VwU[2 const

throughout the fluid (here P denotes the pressure). Hence, we see that requesting
specific velocity profile on the immersed obstacle is equivalent to requesting the specific
pressure (and hence, force) profile. In 3 we shall study the exactly analogous problem
for the Stokes equation. So the method introduced here, although not as satisfactory
as the variational method of Alt and Caffarelli [2], is applicable to more important
equations.

2.2. A relaxation of the problem. Suppose that there exists an u E U such
that corresponding wu solves (2.1.8) and (2.1.11). We shall say then that u is an exact
shape. Now, extend wu from flu to

(2.2.1) zU on Ftu,
0 on t\f.

Lemma 2.2.1 follows.
LEMMA 2.2.1. If u U is an exact shape, then zu Hl(t), and it is a solution

of the following elliptic boundary value problem (with singular right-hand side):

(2.2.2)

AzU u in

z 0 {(, 0);- < x < a}, n {(x, );-a < x < },
(zU)x 0 in {(+a, y); 0 < y < 1},

where u H- (12) is a measure given by

(2.2.3) u() Jfr gda.

Proof. The proof is obvious, since by elliptic estimates wu is regular in tu,
zu C,1 (t) (regarding regularity near corners, see the beginning of the proof of the
Theorem 2.3.1), and in particular zu E Hi(12).
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By the trace theorem,

(2.2.4) IlgllL (r )ll llL (r ) C IIglIH ( )II IIH ( ),

So, in particular, u E H-l(ft). Also, since g >_ 0, u is a measure.
Now, more explicitly, (2.2.2) can be written as the following: Find z E Hl(t)

such that

zu 0 in {(x,0);-a < x < a}, zu 2 in {(x, 2);-a < x < a}

and

(2.2.6) /o VzU V fr g99da

for all 99 H(gt) such that

99 0 in {(x, 0);-a < x < a} U {(x, 2);-a < x < a}.

To check (2.2.6), we note that by the maximum principle, a solution of (2.1.8) is
positive. Hence (2.1.11) and the boundary condition in (2.1.8) imply that

(2.2.8)
Own
Ov

-g in F,

where Uu is the exterior unit normal to 0ftu. Hence,

(2.2.9)

which completes the proof of the lemma.
LEMMA 2.2.2. Let zu be a solution of (2.2.5)-(2.2.7). If it happens that zUlr O,

then zUln is a solution of (2.1.8)-(2.1.11), i.e., u is an exact shape.
Proof. In the next section we shall prove that zu is regular enough so that calcu-

lations performed here are legitimate. More precisely, by (2.3.6) below, it suffices to
assume that 99 C (t). We have

(2.2.1o)

Let u be exterior to gtu, and let

(2.2.11) zu,int dej ZUl\u, zU’ext dej zU

Then (2.2.10) implies that

(2.2.12)
OZu,int 0ZU’ext /
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So,

lgzu,int 0zu,ext
(2.2.13) g-- Ou 0v onFu.

We observe that (2.2.13) always holds for the solution of (2.2.2).
Now, if zUlr O, then zla\n 0, so that (Ozu’int)/Ol] O, and then g

--(0zU’ext)/0/] on Fu, i.e.,

(2.2.14) g IV (zUla,) on Fu,

i.e., (2.1.11) holds.
Lemma 2.2.2 motivates the following.
DEFINITION 2.2.1. u* E U is said to solve the relaxed free boundary problem if

the corresponding zu defined by (2.2.2) is such that

1 fF (zU)2da(2.2.15) O(u)

is minimized, i.e., u* U is such that

(2.2.16) O(u*) min O(u).
uEU

Of course, an exact shape is a minimizer, i.e., a solution of (2.2.16). On the other
hand, a solution of (2.2.16) is an exact shape, provided an exact shape exists.

We do not consider whether an exact shape exists. Rather, we shall study the
relaxed problem introduced in Definition 2.2.1.

2.3. The state equation. It will be convenient to state the regularity theorem
for the general boundary value. So let be a given function on f such that zu

on 00f c Oft. We assume that the boundary and b are sufficiently regular (see [16]
for details; also, we shall give some details in the case of the boundary and boundary
values in our case). For any z e Hl(f), we define IIZIILo(Oft) aS

(2.3.1) [[Z[[Lo(O) de____f inf {m >_ 0;-m <_ z <_ m on 0t in Hl(t)},
where inequalities in Hl(gt) are defined in, e.g., [16]. Also, we define

 o=e >

We have the next theorem.
THEOREM 2.3.1. For any u U the state equation (2.2.2) has a unique weak

solution. Let q be such that 2 <_ q < cx. If g w’q(f), then

(2.3.3) z e W’q(gt)fq C(t \ F),

and the a priori estimate

(2.3.4)

holds. If in addition q > 2, then
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Moreover, if g W2’q(gt), and (2.1.10) holds, then (see (2.2.11))

(2.3.6) Zu’ext

and the a priori estimates

and

(2.3.8)

hold.
Proof. Since u H-I(Ft) existence and uniqueness of a weak solution zu of

(2.2.2) is trivial. Also, since z is harmonic in ft\Fu, it follows that z C(Ft\F).
Few words are needed here because of the presence of corners in Ft. To prove regularity
of zu in the neighborhood of corners, say, in the neighborhood of (-a, 0), one can
extend z in (x < -a, 0 < y < 2} as zu by the formula

(2.3.9) ’(x, y) def_ { z(x,zu(-2ay) X, y) ifif Xx <>_ --a,_a.
Then since z’ is continuous on {x -a} and z’x 0 on {x -a}, it is elementary
to show that z" is harmonic across {x -a}. Indeed, let Bo(A B1U(B(A)N{x
-a}) U B2 C {0 < y < 2} be a ball centered at A e {x -a} with radius p. Here,
B1 B(A)Cl {x > -a} and B2 B(A) C {x < -a}. Then,

(2.3.10)

for all e C(Bo(A)), so that z’4 is harmonic across {x -a} as claimed. Hence-
forth zu is as regular in the neighborhood of (-a, 0) as the (extended) boundary data
is. In our case the boundary data is 0, so that (2.3.3) follows.

Set o - zu in (2.2.6). It easily follows that

(2.3.11)

Now since zu (zu -) + , using Poincar inequality, we have

(2.3.12) < c (llVz"llL’(a) +
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Combining (2.3.11) and (2.3.12), we get

(2.3.13) /IIzIIH()IJIIH() / H()"

In (2.3.13) the inequality follows from the proof of the trace theorem (see, e.g., [12]
or [7]). Indeed, one can see ([7], p. 132) that for 1 q < , one h

< +

which implies

(2.3.15) IIzllL(p) c (1 + IIllCo,*(-,))
Dom (2.3.13) we eily conclude that (2.3.4) holds for q 2.

1 andProceeding, we sume + g

(2.3.16) C (1 + 11]1Co,(_1,1))

So, (W’q’ ())* (here X* represents the dual space of the space X) and

(2.3.17) IIll(w,,’())* c (1 + IIllco,,(-,))Ilgllw,,().

We know (see, e.g., [1]) that h a representation ()
for some fi Lq(), 0, 1, 2, and

2

i=0

Now from elliptic regularity (see [16], p. 179), we have

om (.a.7)-(.a.) and since (.a.4) is already proved in the ce q 2, we
conclude that (2.a.4) holds.

To prove (2.a.s), we recall (see, e.g., [16], p. 10a) that if q > 2 and if z N 0 on

00 in the sense of H(), then

(2.3.20) ess sup zu
a

c( ’,fi’]L()+
=o ]]zu"L2())

Hence,

(2.3.21)

esssup (zu --]]zullLo,,(Oa))

--C("fi"Lq(Ft)"’"zu"L2()zt-"zu"L’:’(O))’i-o
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and similarly for -zu + IIzllLo(O), This easily implies (2.3.5).
Now, we shall consider further regularity of zla and z la\a. Since the singular

set is on Fu, we expect higher regularity in the tangential direction. To prove that
this is the case we flatten the Fu first, since then it is easier to differentiate.

Define v, 9, and by v(x, y) z(x, y+u(x)), 9(x, y) g(x, y+u(x))v/1 + ut2(x),
(x, y) (x, y + u(x)) and operator L by Lv Av + vyy(uz)2 2vxyux vyux. Of
course, L is uniformly elliptic, since the matrix

(2.3.22) [/iJ]=[ 1-u 1-u]+u2
is positive definite. Indeed, lijj (1 -ux2)2 + 22. So, if c is such that ]uzl <_ c,
then if 121 < c111 then (1 uz(2)2 > 1/412. On the other hand, if 121 >- c111 then

>h--l" So, it is easy to see that if we take c min (1/4, g) then ljj >_ o112
Also let .=. be the map with the image f given by the formula

(2.3.23) ,=. (x, u) (x, , + (x)).

Then, Az o .=.u Lv, and since IdetD..] 1 (here D.=. is the gradient matrix of
the map Eu so that IdetDEul is the Jacobian)

(2.3.24) (Lv)((p) (Az)().

Hence

(2.3.25)

So

(2.3.26) Lv

in the sense of distributions. Since the singular set is now on {y 0}, we expect
higher regularity in x direction. To prove that, we want to differentiate (or more
precisely, difference) equation (2.3.26) with respect to x. Somewhat more precisely,
define the standard difference operator (in the x direction) 5 as

(2.3.27)
1
(u(x + h, y)- u(x, y)), h # O.(I1 (x)=

Then from (2.3.26) we get

(2.3.28) (Lv) () ()
We shall discuss in some details only the right-hand side. We have

(2.3.29)

(6-) f=o6_x
f{y=O} (5) @dx -- f{y=O} txCfldx,
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as h 0. We conclude that (Lv)x() x(5), and hence

(2.3.30) Llv vyy2uxux + vu,

where Lw Aw + (ux)2Wyy- 2uwxy- 3uxxwy, and where x() d f{y=o} xdx.
We observe that the differencing performed above is legitimate, since

Indeed, g W2’a(); lso, observe that ux L2 and that L2 (W’a’) *. Also,
since L has the sme principM part as L, L is uniformly elliptic well.

Now we can conclude from (2.3.30)-(2.3.31) that Vx e W’. This implies, by the

trace theorem, that vx]{y=o} W-’, so that

(2.3.32) v]{y=o} e W2-’q.

We observe that because of (2.1.5) and (2.1.10), the preceding analysis is true also in
the {y > 0} neighborhood of (the preimage of) (1, 0), so that (2.3.32) holds up to
the initial and terminal points of (the preimage of) F. Elliptic regularity then yields
v(0} e W’q.

Unfortunately, we cannot claim the same global result for v{uh0} because of the
nonsmoothness of 0( u), i.e., we have to localize in (y < 0}. This concludes the
proof of (2.3.6). Now, regarding estimates (2.3.7) and (2.3.8), we have

lIZu’extlIw2,q()
(2.3.33)

and similarly (crier localization in (y < 0)) for Zu’int, which completes the proof of
the theorem.

COROLLARY 2.3.1. y g W2’q() for some q > 2, and g (2.1.10) holds, then
0,1zu {v>0}_oc() and the following a priori estimate holds:

(2.3.34)

for any e > O.
Proo nora (2.3.7) and (2.3.8) and by the imbedding theorem (see, e.g., [9]), we

have

(2.3.35)

This implies (2.3.34).
COROLLARY 2.3.2. If g w2’q() for some q > 2, and g (2.1.10) holds, then

(2.3.36)

and the following a priori estimate

(2.3.37)
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holds.
The interest in this corollary is due to the lack of (9t \ tu)-global regularity of zu.
Proof. Let T and u be unit tangent and unit normal to F. More precisely, set

T 1/(V’l + U’2) (1, u’/, and u 1/(V’l + u’2) (u’,-1 It is elementary to compute
~u,int U’/(V/1%-U’2)zu’int 1/(%/1%- ,2 u,intu )% Since, by Theorem 2.3.1that then y

_
~u,int u,extr~u’int zu’ext and (also, by Lemma 2.2.2) g %-

_ on Fu, we have

( ?./,’ 1 Zuu,ext] )_.u,ext [g %--u’int
U#2 z. t#2

(2.3.38)

The corollary follows due to the fu-global regularity of z’ext, and by the imbedding
theorem. Indeed,

u _.u,ext’int lIcO,IIz,, - () v’ + ’- / +’ co, ()

< cllull..-,,) [llz<’Xtllc,,,- () + Ilgllco,,- (1]
< 1111.-,, [ll’<’extll,.r,.) +

(2.3.39)

_
c (1111-(-,), Ilgllw-,.(n), IIllwi,(n))

We finish this section with the consideration of existence of a minimizer. Now,
in order to claim existence of a minimizer, i.e., existence of a solution of the relaxed
problem, one needs compactness. One way of introducing compactness would be to
bound the set of admissible shapes to

(2.3.40) Vb { e U; I111,--(-,,) <_ ),
where b is some prescribed (large) positive constant.

PROPOSITION 2.3.1. Let g E wl’q(t), for some q > 2. Then, there exists an
u* Ub such that

(2.3.41) O(u*) min O(u).
u6Ub

Proof. Let (Un)n=l,2 CUb be a minimizing sequence. By Theorem 2.3.1 we
know that

(2.3.43)
(2.3.44)
Recall that

(2.3.42) IIz’<, I1.,( + I1’<: IIc,_) _< .
By taking subsequences, if necessary, we can assume without loss of generality that
there exist u* Ub and z* e H (Ct) such that

un -- u* in H2(-1, 1),
zu z* weakly in H1 (), zU __, z* in CO (t).

(2.3.45) SvzU V99- fr goda
un

for all %0 6 Hl(gt) such that l{=0} o1{=2} 0. If, in addition, o 6 Cl(t) then
it is easy to see that

(2.3.46) nlimoofr 9%ada= L 9da.
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Hence, for such we can pass n --, cx) in (2.3.45) to conclude

(2.3.47) -/Vz* Vo jfr goda

for any o E C1() such that ol{y=0} ol{y=2} 0. But then, by the density,
(2.3.47) holds for all o e HI() such that ol{v=0} ol{v=2} 0. We conclude, by
uniqueness, that z* zu* Now since O(Un) 1/2 fr (zu)2da, (2.3.43) and (2.3.44)
imply that limn_. O(un) (I)(u*), which completes the proof of the proposition.

2.4. Differentiability properties of the variational functional (I). Since
our problem is to minimize functional (I), we want to derive information about the
multivalued generalized gradient of (I) (see also Remark 2.4.1).

To make our results more precise, we shall introduce several definitions.
Let (I) be a real-valued function on the subset U of the Banach space X.
DEFINITION 2.4.1. is said to be directionally differentiable at u U if the

limit

(2.4.1) lim
(I)(u + v) (I)(u)

o A

exists for any v X such that u+ Av U, for small enough A > O. If that is the case,
then the limit in (2.4.1) is called directional derivative and it is denoted by ’(u; v).

DEFINITION 2.4.2. (I) is said to be subdifferentiable at u, if there exists an f X*
such that

(2.4.2) (I)’(u; v) _> f(v)

for every v X such that u + Av U, for small enough > O. Set of all such f’s is
called subdifferential, and it is denoted by O.(u).

DEFINITION 2.4.3. is said to be superdifferentiable at u, if there exists an

f X* such that

(2.4.3) (I)’(u; v) <_ f(v)

for every v X such that u + Av U, for small enough > O. Set of all such
f’s is called superdifferential, and it is denoted by O*(u). If (I) is both sub- and
superdifferentiable at u e int(U), and moreover O.(u)N O*(u) , then O.(u)
O*(u) is a singleton and (I) is Gteaux differentiable.

We go back now to our problem. Of course, X H03(-1, 1), U is defined in
(2.1.5).

Proceeding, define the adjoint variable pU, as a solution of the (adjoint) equation

Apu r/ in ,
v 0 {(x, < < a} 2);-a < x <

(2.4.4) p 0 in {(+a, y); 0 < y < 2},

where / e H-I() is a (signed) measure given by

(2.4.5) u(o) jfr zUoda.

Obviously, (2.4.4) is the same type of equation as (2.2.2).
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In this section, as before, Zu’ext ZUlFtu and Zu’int zUlFt\tu; also, later we
shall use the notation pU,eXt pUln and pu,int pU]f\. That is essential in this
calculation, since zu and pU are not differentiable across the F.

LEMMA 2.4.1. Let g E w2’q(t), for some q >_ 2. Then

(2.4.6) 2qpU,ext e w2’q(u), pu,int e W{y>O}_loc( \

and the a priori estimates

(2.4.7)

and

(2.4.8)
liPu’int IIW2,q ((2\Ft)N{y>_

hold.
Proof. Comparing (2.2.2) and (2.4.4) we see that the only difference is in right-

hand sides. Namely, in (2.4.5), zu q[ w2,q(Ft). Nevertheless, for example, zu,ext

w2’a(t), and since flu depends on zu only through the trace on Fu, and since zu

and Zu’ext have same traces on Fu we easily conclude the proof of the lemma.
defWe shall use the usual notation: v+ def= vI(v>0}, and v- -vI{v<0}. So,

V--V-b_V--o
Now we are ready to state the following.
THEOREM 2.4.1. Let g W2’q(f), for some q > 2. Then p is directionally

differentiable at any u U such that u(x) > 0 for -1 < x < 1, and

(2.4.9)

Moreover, if

(2.4.10) u U U u,ext (gpU,extZ Zy ’int - (9pU’int)y
_

Z Zy zr- )y a.e. in (--1, 1),

then is subdifferentiable at u and

On the other hand, if

(2.4.12) Z
u_ u,int

__
(gpU,int)y > Z

u_ u,ext _[_ (gpU,eXt)y a.e. in (-1 1)Zy Zy
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then is superdifferentiable at u and

Proof. We attempt to differentiate (I). To this end, for given u E U and a suitable
direction v E H03 (-1, 1) (suitable in a sense that u + Av U for small enough A > 0)
we try to compute the (one-sided) directional derivative (I)’ (u; v). Using the regularity
result (Theorem 2.3.1, and Corollary 2.3.2), we compute

(I)’ (u; v) lim

(2.4.14)

( + ) ()
0 A

lim (frj,o+,
(zU+V)2da-jfr (zU)2da)

zU(zU,extv+ u,int 2
1- )ffl+ +(z)

+lim ((z+)- (z)) d,
XO

Before proceeding with the proof, we shall need the following lemma (more precisely,
its corollary).

LEMMA 2.4.2. Under previous assumptions on u, and v, and for any c < 1 the
following estimate holds:

(2.4.15) Ilz,+x, z’llco(a) < cA.
Proof. We need to compare z+v and z. This is difficult to do in the original

domain gt since the (singular) right-hand sides of the equations that they satisfy act
on disjoint sets, so that there is no obvious cancellation. So, the idea of the proof is
to map the original domain into different domains in such a way that the cancellation
takes place.

As before, let .=. be the map with the image fl given by the formula ..(x, y)
"-l(x,y) (x,y U(X)), and (set A (x,y)) dist .--1(x, y + u(x)) Then =.... (.-.+v (A)

-I(A)) < cA. Now consider 5u+)’" and 5 defined as

(2.4.16) 5u Z
uu+Av Zu+Av o u+Av o

and operators Lu and L+x. defined by

(2,4.17)

(2.4.18)

Luw Aw + wyy(ux)2 2wxyux WyU,

n+. A +(+) (+) (+)
L,w + [wv(2uxv + $v2) 2wxvvx wvv].
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Then +v satisfies the equation

(+ )
(2.4.19) 9’- [.u+)’"(2uxvx -t- Ave) 2u+’v +’v

k-YY xy x y xxj

in =--1 1_+(a) n (a), wh

(2.4.20) () d"2 [ (a G) dx
y=0}

and where

(2.4.21)

Observe that

(2.4.22)

Now since

G (x, y) def g(x, y + u(x) + Av(x)) V/I+ (u’ (x) + Av’ (x))2,
a2(x,y) de____f g(X, y--u(x)) V/1 + (u’(x))2.

(2.4.23) dist (0 ,-,-1(=,,+,,,(a)), o (.=.-’(a))) <_

and because of the HSlder continuity of zu+ and z, we conclude that

(2.4.24) ]]u+v [[co(o(:(a)n’(a))) cA"

Then (2.4.19), (2.4.22), and (2.4.24) imply that

( ) c(2.4.25) {+ [c0
Then we have (set A (x, y))

Iz+’(A)-z(A)l

< [Su+v - 5u -(=+(A))-
+

(2.4.26)

In (2.4.26), we also used the HSlder continuity of 5. This completes the proof of the
lemma.

COROLLARY 2.4.1.

(2.4.27) lim
1 (z+X. 2

o z) da=0.

Pro@ Take a > in the lemmm Then

(,.4.s) IIz+- 1co(fi) <cAz =2a_1>0.
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Now we can proceed with the proof of the theorem. We compute the last term in
(.4.14).

(2.4.29)

Now from (2.4.14) and (2.4.29) we conclude that is directionally differentiable, and
that (2.4.9) holds. Furthermore, if (2.4.10) holds, then

(2.4.30)

for all

(2.4.31)

[ u u,int (gpU,int Ut2e + +
_u,ext

__
(gpU,eXt)y) V/1

__
/’2]ZUZy

This proves that is subdifferentiable at u and that (2.4.11) holds. Similarly, one
can consider superdifferentiability of . So the theorem follows.

REMARK 2.4.1. The previous suggests the numerical algorithm (the steepest
descent method) for minimization of , i.e., for the numerical solution of the relaxed

free boundary problem:
Choose uo E U. If Un U is already known, then Un+l is determined as follows:
compute z" as a solution of (2.2.2);
compute pU as a solution of (2.4.4);
if (2.4.10) holds, compute an Un+ such that

(2.4.32) tn+l e (tn pnA-1 (0.O(un))) N U, p > 0,

and if (2.4.12) holds, compute an Un+ such that

(2.4.33) tnZt.1 (tn pnA-1 (0*(I)(tn))) V Pn > O.
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Here, A is the isomorphism between H03(-1, 1) and its dual. More precisely,
A-1(l) means that t solves the following boundary value problem:

d6
-dx--. in (-1, 1),

2.(-1) 5’(-1) 5"(-1) 5(1) 5’(1) "(1) 0.

If neither (2.4.10) nor (2.4.12) holds, i.e., if is neither convex nor concave at
the point un, then it is more delicate to determine the steep( est) descent direction.

3. Stokes flow.

3.1. Statement of the problem. The purpose of this section is to extend the
previous results to the case of Stokes flow.

We consider a motionless body B in a viscous incompressible fluid moving in a
bounded region A containing B. The boundary of the region A will be denoted as 0A.
Fluid is moving at the velocity h at 0A, and h is such that fOh h" nda 0, where n
is the unit (exterior) normal to 0A.

The boundary of the body OB consists of two disjoint and connected parts E and
F, 013 E tO F. We shall suppose that F can be described as

(3.1.1) r F {(xl,u(xl));-1 < xl < 1}

for some function u E U, where

(3.1.2) U {u E H03(-1, 1);0 <_ u(xl) <_ 1,-1 < xl < 1}.
So, if we want to emphasize the dependence on u U we shall write also B By.

Denote by lu the actual flow region gtu de___f A \ Bu. Also, we assume that E is
such that OB is sufficiently regular. Finally, denote,

(3.1.3) {(xl,x2); -1 < xl < 1, 0 < x2 < u(xl)} tO U r,

so that gt \ {(xl,x2); -1 < Xl <: 1, 0 < x2 < t(Xl)}.
Now, the velocity vector field of the fluid w w, and the pressure p, are the

solution of the Stokes system

(3.1.4)
-uAw+Vp=0in, V.w=0in,

w=0inFUE, w=hin0A

We observe that the pressure p in (3.1.4) is determined only uniquely up to the additive
constant.

The problem we propose is the following:
For given g g(xl,x2) such that (we will not always have to assume this much)

(3.1.5) g @ cl’l(’)2,
(3.1.6) g 0 in 9t f3 {]Xll " 1},

find (if possible) u U such that if wu is the corresponding solution of (3.1.4), then
also

(3.1.7) -pnj + u + Oxj ] ni gj in F, j 1, 2,
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where n (n)=1,2 is the unit normal exterior to gtu. We observe now that if (3.1.7)
is to be satisfied in addition to (3.1.4) (and if (3.1.7) and (3.1.4) have a solution) then
pressure p is determined uniquely. Also, we note that condition (3.1.7) means that
fluid motion exhibits force distribution g on the boundary Fu. So, the problem we

propose is to find a shape of the immersed body so that the prescribed force field is
generated at the boundary.

We can simplify this problem right away. Let, as usual, V V(Ft) dej {U e
H()2; V’u 0}. We have the following lemma.

LEMMA 3.1.1. If w E V C H2(fl)2, and O C’, then

(3.1.8) Owi
--ni 0 on 0.
Oxj

Proof. Let C(R2)2 be an arbitrary function. We have

Ja OwO /a Owi O fo(3.1.9) 0
Oxi Oxj Oxj Oxi --x

So the lemma follows.
Lemma 3.1.1 implies that requesting (3.1.7) (in addition to (3.1.4)) is equivalent

to requesting

pnj +vn gj in F, j--1,2.
Oxi

Note that (3.1.10) is closely related to the equvalence of problems (3.2.2) and (3.2.3)
(and hence, (3.2.4)).

3.2. Relaxation of the problem. Suppose that there exist a u, and a pair
(wU,pU), a solution of (3.1.4), such that also (3.1.7) holds. So, we suppose existence
for the free boundary problem (3.1.4) and (3.1.7). To refer to such an assumption we
shall say that u is supposed to be an exact shape. Extend w from f to as zu"

(3.2.1) z 0 on gt \ tu,
wu on fu.

Lemma 3.2.1 follows.
LEMMA 3.2.1. If u is an exact shape, then zu Hl(t)2, and it solves the Stokes

system (with singular right-hand side)

(3.2.2) - f D(z)
2

D(o) (), go V,

(3.2.3) Vz . e v,

-vAzu + Vp , in 7)’(gt)2,
(3.2.4) V-zu 0, a.e. in ,
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where u E H-1 ()2 is a signed vector measure given by

(3.2.5) u() Jfr g" da.

Here, D(zU)’D(u) (. + .)(z + .), and throughout the paper the
summation convention is assumed.

Proof of the Lemma. The proof is similar to the proof of Lemma 2.2.1; see also
the proof of Lemma 3.2.2.

LEMMA 3.2.2. Let u U be given. Then, if zu is a solution of (3.2.2) and if
it happens that zUlr 0, then there exists pressure pU such that (zUl,pU]u) is a
solution of (3.2.2) and (3.1.7), i.e., u is an exact shape.

Proof. Observe that any test function V must satisfy 0 fa\ffu V.
fo(\5) " nda fr " nda. From (3.2.2) we see (here we assume the regularity of

zUln\ff and zUln, to be proved in the next section),

+ j D(zU)n" da + fo D(z)n. da.
(\)

To fix ideas, let n be the unit normal exterior to . Then (3.2.6) is equal to

(3.2.7) + Jfr p (D(zU)ext D(zu)int) n.

where lint de___f flfl\ff and fext de=f
We conclude that there exists p L2() such that

(3.2.8) Az= + Vp= 0 in fl \ flu,

(3.2.9) Az + Vpu 0 in

For such p we have

(3.2.10)
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Let [f]eXtint def__ fext IF fint Ir be the jump accross F. Then (3.2. 10) implies that

for all such that fr jnj 0. This implies

[ (0Zt 0Z?) ]
ext

(3.2.12) -pUnj - t
\ Oxi

-t- ni
int

gj (const)nj, j 1, 2.

We note that (3.2.12) holds for any pU such that (3.2.8) and (3.2.9) hold.
Now suppose that zlr 0. Then zla\ 0, and without loss of generality

we can choose pUla\ O. Then (3.2.12) implies

(3.2.13)
ru

gj (const)ny, j 1, 2,

for any p satisfying (3.2.9). So, there exists pU such that (3.2.9) holds and such that

(3.2.14) -pnj + u + ni -gj =O, j= l,2,

which is nothing but (3.1.7).
Lemma 3.2.2 motivates the following definition.
DEFINITION 3.2.1. U* E U is said to solve the relaxed free boundary problem if

the corresponding zu defined by (3.2.2), is such that if

(3.2.15) O(u) - Iz12da

then

(3.2.16) (u*) min (u).
uEU

3.3. The state equation. Let s be the segment

s= {-l <_x <_ l,y--O},

and let

(3.3.2) S {(x, y); dist((x, y), s) <_ e}.

Define

(3.3.3) 2,q def \

Now we have the next theorem.
THEOREM 3.3.1. Let q be such that 1 < q < c, and O C2. Let u U. Then

the state equation (3.2.2) has a unique weak solution zu, and

(3.3.4) e v c (a \
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More importantly, the following regularity results hold:
(a) LP-estimate: If g E wI’q()2, then

IIzllw,()

(3.3.5)

(b) maximum modulus estimate: If, moreover, q > 2, then

(3.3.6) (llgllw,,(.) +llhllL(O.))
(c) If g W’(), and (3..6) holds, then

(3.3.7) z’xt W2’q(), zTM W’floc(fl )
and the a priori estimates

(3.3.8)

and

IIz’intllw,((\S){y>,})- -I-IIP’intllw,((\S)r(y>})lR

(3.3.9) _< C (e, Ilulln(_l,), Ilgllw,(a), Ilhllw-,(o))
hold.

Proofi The interior regularity zu C( Fu)2 follows eily (see, e.g., [6]). The
proof of (3.3.5) is similar to the proof of (2.3.4). One has to use (see [5]) the following
L-estimate for the Stokes problem:

(3.3.10)

where F is the right-hand side; in our ce F() fr g" da.
We prove now (3.3.6). We use the following important result (see [13]) for bihar-

monic functions:
If A2 0 in , then

(3.3.11)

Let w solve the homogeneous Stokes problem

(3.3.12) -Aw + Vp 0 in

(3.3.13) V. w 0 in

(3.3.14) w h on 0,

wr h is suc tt
and (3.3.14) imply the existence of
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Also let curlv o Now, since curl curl -A, and since curlVp 0, weox Oy
conclude from (3.3.12) that A2o 0, and hence (3.3.11) follows. But then we have

(3.3.15) _< clIV IIL (O )= cllcurl llL (O ) 

Now, (3.3.6) follows by linearity from (3.3.5) and (3.3.15) and by the imbedding
theorem.

As in 2, define , i5, (g and 5 by (x, y) de__f Zu(X,y + U(X)),(X, y) de pU(x,y +
+ v/1 + (x), (x, y + u(x)). Define operator

L by Lv Av + vyy(ux)2- 2vxuuz- vyuxz, and 7 by 7/5 (/hz-/huux,ihy). Then,
as before, L is uniformly elliptic.

Let, also, E, be the map with the image 9t given by the formula E(x, y)
(x, y + u(x)). Then, (-uAz + Vpu) o .. -uL + V/5, and since [detDE, 1
(here DEu is the gradient matrix of the map ..u so that IdetDEul is the Jacobian)

(3.3.16) (-uL + 7i5) (5) (-Az= + Vp’) ().

Hence

(3.3.17)

/ g(x, u(x)). p(x, u(x)) V/1 + u’2(x)dx

]iy=0} . (pdx de=f

(3.3.18) L + V/5

in the sense of distributions. Then from (3.3.18) we get

(3.3.19) (-uL +) (6_h@) (-h)

We have

(3.3.20)

(5hb)=f{ , 5l hCPdx f{ (6hg)" Cpdx
=o} =o}

f{y=O} ," Odx dej __x (/)

as h --. 0. We conclude that (-uL, + 7/5)(5) x(5), and hence

uLlx +
(3.3.21) + v, (,yu2uzu .vux) + <yu, 0>,

where Llw Aw A-- (ux)2wyy 2uWxy 3uWy. The rest of the proof is similar to
the proof of (2.3.8).
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Again, in order to claim existence of a minimizer, i.e., existence of a solution of
the relaxed problem, one needs some kind of compactness. So let

(3.3.22) Ub {u E U; IlUllHa(-1,1) <_ b},
where b is some prescribed positive constant.

PROPOSITION 3.3.1. Let g E Wl’q(f)2, for some q > 2. Then, there exists an
u* Ub such that

(3.3.23) (I)(u*)-- min (I)(u).
uEUb

Proof. The proof is similar to the proof of Proposition 2.3.1.

3.4. Differentiability properties of the variational functional (I). Our goal
is to derive information about the multivalued generalized gradient of (I).

Define the adjoint variable u, as a solution of the (adjoint) equation

--uA + Vq r in :D’(12)2, V.= 0 a.e. in f,

(3.4.1) 0 on 0f,

where r e H-(a) is a vector (signed) measure given by

(3.4.2) rlu() [ zu. oda.

Obviously, (3.4.1) is the same type of equation as (3.2.2).
In this section, as before, Zu’ext Zu]flu and z=’int z=ln\nu; also, below we shall

use the notation u,ext Culfu and cu,int
LEMMA 3.4.1. Let g w2’q(f)2, for some q > 1. Then

(a \(3.4.3) ,ext W2,q(f)2, ,int E s-lot

and the a priori estimates

(3.4.4) Ilcu’extllw2,q(fu)2 C (IIIIH3(_I,1), Ilgllw2,q(f)2,

and

(3.4.5) _< 12 (,
hold.

Proof. The proof is the same as the proof of Lemma 2.4.1.
We have the next theorem.
THEOaEM 3.4.1. Assume (3.1.5) and (3.1.6). Then is directionally differen-

tiable at any u U such that u(x) > 0 for-1 < x < 1, and

’(u; v)

f_,( 1., u,., )Zu" (Zu’extv’t-y ZyU’intv-)v/1 + u’2 + lzU V/i :t- ,2 dx

-t- [ ((g" u’eXt)yV-t- (g" cu’int)yV--) da

(3.4.6) + g"
V/1 -t- u12
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Moreover, if

(3.4.7) zu _u,int ._ (g. u,int)y <_ Z
u _u,ext

__
(g. u,eXt)y a.e. in (--1 1),y y

then is subdifferentiable at u and

On the other hand, if

(3.4.9) zu ZyU’int + (g. u,inth/y >_ zu zy-’ext + (g. u,ext)y a.e. in ,(-1, 1),

then is superdifferentiable at u and

Proof. As before, we compute

(u; v) lim

(3.4.11)

v/1 + u’
dx

LEMMA 3.4.2. Under previous assumptions on u and v, and for any a < 1, the
following estimate holds

(3.4.12) IIz-+ - z"IIco(a) . _< cA

Proof. Let, as before, E be the map with the image fl given by the formula
-l(x y) (x,y u(x)), and (set A (x y)).%(x, y) (x, y + u(x)). Then .%

dist (.-.u+v(A)-=u"-i--1 (A)) <_ cA. Now consider +’v, u,/5u+, 15 defined as .+"
u+, pU+ o _=u+),v,i5 p o u and operators LZu+Av o ’’u+Av .u Zu o "’u,
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and Lu+),, defined by

(3.4.13)

and

Vw <w vu, w),
(3.4.14) u+),vw <Wx wy(u + Av), wv> Tuw <Avx, 0>.
Then u+xv u and corresponding u+),v u satisfy the equation_

(+ ) +%(+ u)
+ <, o>

(3.4.15)

in - -_+.() (), hre

(3.4.16)

and where

(3.4.17)

.() de f (G1- G2)pdx
y=O}

G (x, y) dej g(X, y "JV U(X) 2V ,V(X)) V/1 -- (’(x) -- vt(x))2,

(3.4.18)

Observe that

(3.4.19)

(2(X, y) de.._.f g(x, y -- (X)) v/i -[- (’(x))2.

(3.4.22)

Now since dist (0 --I(+()), (())) <_ cu otHcon-

tinuity of zu+v and zu, we conclude that

(3.4.20) [[u+v [co(o(=+()()))-- <- cA"

Then (3.3.6), (3.4.19), and (3.4.20)imply that

(3.4.21) I1+" UCO =+-(a)n(fl)

Then we have (set A (x, y))

Iz+"(A)- z(A)l
1+ (%o(A))- (;(A))
[u+v -1 u -1(+ )(+.(A)) (A)
+ I (.%.(A)) - (S;(A))

cA + cA cA.
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In (3.4.22) we also used the HSlder continuity of .u. This completes the proof of the
lemma.

COROLLARY 3.4.1.

(3.4.23) lim0 1 Jfr, ]zU+Xv zU2’ da O.

Now, we can proceed with the proof of the theorem. We compute the last term
in

(3.4.24)

Now from (3.4.11) and (3.4.24) we conclude that q) is directionally differentiable, and
that (3.4.6) holds. Furthermore, if (3.4.7) holds, then

(3.4.25)

for all

(3.4.26)

T E [’’[zu" _u,int ._ (g.-"u,int)y) V/1 + ut2y

(Zu _u,ext _[_ (g. u,ext)y) v/1 +

This proves that (I) is subdifferentiable at u and that (3.4.8) holds. Similarly, one can
consider superdifferentiability of (I). So the theorem follows.

Acknowledgment. We thank Eduardo Casas for useful discussions.
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ANALYSIS OF A ONE-DIMENSIONAL MODEL FOR
COMPRESSIBLE MISCIBLE DISPLACEMENT IN POROUS MEDIA*

YOUCEF AMIRAT AND MOHAND MOUSSAOUI:

Abstract. We consider a one-dimensional model problem for the motion of compressible mis-
cible fluids in porous media, without molecular diffusion or dispersion, governed by a nonlinear
hyperbolic-parabolic system. We assume the viscosity to be constant. We establish an existence
result for nonsmooth data for the concentration. In the case of Dirichlet boundary conditions for
the pressure, assuming the data to be smooth, we prove the existence and uniqueness of a smooth
solution.

Key words, nonlinear equations, hyperbolic-parabolic system, porous media

AMS subject classifications. 35B40, 76S05, 76T05

1. Introduction. We are concerned with the single-phase miscible displacement
of one compressible fluid by another in a porous medium, under the assumptions that
the fluids are miscible in all proportions and that there is no volume change due to
the mixing of components (in the sense of Scheidegger [10]). The composition of the
mixture is given by the mass concentration. We neglect the molecular diffusion and
dispersion and omit the gravitational terms. We only consider the one-dimensional
case which can be viewed as modelling experiments in a core sample. The equations
corresponding to the description given are as follows (see Chavent and Jaffr6 [4],
Douglas and Roberts [5]):

(1.1) a(x, u) Otp + Oq O,

(1.2) (x) Otu + q Oxu + b(x, u) Otp O,
k(x) Oxp(1.3) q=
#(u)

for x t, t > 0. Here gt =]0, 1[ represents the core sample, q(x, t) is the single-phase
Darcy velocity, k(x) the absolute permeability, (x) the porosity, #(u) the viscosity
of the mixture, p(x, t) the pressure,, u(x, t) the concentration, and

a(x, u) (x)(u (zl z2) + z2),
(,) (x) ( ) ( ),

where zi, 1,2, is the constant compressibility factor for the ith component. In
addition to (1.1)-(1.5), we consider the initial and boundary conditions (of mixed type
for the pressure):

(1.6) p(0, t) Pl (constant), q(1, t) ql (t), p(x, O) po(x),
(.) (0, t) (t), (x, 0) o(),

*Received by the editors June 22 1993; accepted for publication (in revised form) November 3,
1993.

Laboratoire de Math6matiques Appliqu6es, URA CNRS 1501, Universit Blaise Pascal, Clermont-
Ferrand-II, 63177 Aubire Cedex, France.

:Dpartement Mathematiques Informatique et Systmes, URA CNRS 740, Ecole Centrale de
Lyon, 36 avenue Guy de Collongue, 69131 Ecully Cedex, France.
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for x E , t > 0. The aim of the present paper is to discuss the existence of a solution
(p, u) under reasonable conditions on the data pl, ql, p0, u0 and u. In this study, we
assume the viscosity # to be constant, and for case of exposition, we consider a model
problem by taking 1, _= 1, z 2, z2 1. The case where # depends of u is
more complicated; we intend to address it in a forthcoming publication.

The paper is organized as follows. Section 2 introduces the notations and hy-
potheses of the model problem. In 3, we state the existence theorem and describe
the method employed. Roughly speaking, our results are as follows. If the data q
and p0 are sufficiently smooth and u0 and u are functions of finite total variation,
then there exists a solution (p, u) where p is a smooth function and u is of finite total
variation. This is obtained by the use of Schauder’s fixed point theorem. Section 4
is devoted to the proof of the existence theorem. In the final section, we discuss the
system (1.1)-(1.5) provided with initial and boundary conditions, of Dirichlet type
for the pressure. Assuming the data to be smooth, we then prove that this problem
admits a unique smooth solution (p, u).

Note that (1.1)-(1.5) have been considered in Amirat, Hamdache, and Ziani [2], [3]
for the related homogenization problems in two cases. For incompressible fluids, since
Zl z2 0, then a(x, u) b(x, u) 0; for two fluids with the same compressibility
factor z, b(x, u) 0 and a(x, u) (x) z.

2. The model problem. Let T be a strictly positive real number. We set
t --]0, 1[ and Q ]0, T[. Let a and b denote the functions defined as

{1 if s_<O,
(2.1) a(s)-- l+s if O<_s<_l, b(s)--s(1-s)if O_<s_<l,

2 otherwise; 0 otherwise.

We seek two functions u and p defined on Q, solutions of the nonlinear parabolic-
hyperbolic system

(2.2)
(2.3)

a(u) Otp 02xp O,
Otu (Oxp) Oxu + b(u) c3ep O,

satisfying the boundary and initial conditions

(2.4) p(0, t) pl (constant), Oxp(1, t) =q (t),
(2.5) p(x, O)= po(x), x e t,
(2.6) u(0, t) ul (t), t el0, T[,

0) e

t el0, T[,

Observe that we may suppose p 0 by considering (p- p) instead of p. We shall
do this in the sequel. The following assumptions are made about the boundary and
initial conditions:

There exists a function p e L2(0, T; H2 (ft)) g Hi(0, T; L2 (gt)) L(0, T;H())
such that (0, t) 0, -0p(1, t) q (t), t ]0, T[,

(x, 0) po (x) x.
There is a constant M > 0 such that

0 <_ -po(X), q (t) <_ M, x e t, t el0, T[,
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0 (__ nO(X), Ul (t) (_ 1, x E t, t El0, T[,

uo e BV(t), ul e BV(O,T).

We make the following comments about these assumptions.
(i) Conditions (2.8) and (2.9) are fulfilled if, for instance,

p0 e WI,(Ft), po(0) --0, -p >_ 0, ql e H/2(]0,T[)C([0,T]), ql >_ 0.

(ii) The optimal assumption which could replace (2.4) would be

p(O, t) pl(t), -Oxp(1, t) ql(t), t e]O, T[,

with p H3/4(]O,T[) so that for any fixed u in L(Q), 0 <_ u <_ 1, there exists a
solution p of problem (2.2), (2.4)t, (2.5) such that q -Oxp satisfies

q(x, t) >_ 0 for almost every (x, t) Q.

(iii) Since u stands for a concentration, it is quite natural to impose (2.10). Condi-
tion (2.11) seems to be a minimal smoothness condition to solve the transport equation
(2.3) in a reasonable sense.

(iv) Equation (2.3), subject to the boundary and initial conditions (2.6), (2.7), is
a well-posed problem whenever -Oxp(x, t) >_ 0 almost everywhere in Q. That is what
motivates Hypothesis (2.9) on the one hand and the boundary condition (2.4) on the
other for p on x 0.

3. The existence result and the method.
DEFINITION 3.1. A pair (p, u) is said to be a weak solution of problem (2.2)-(2.7)

if the following assertions hold true"
(i) p e L2(O,T;H2(t)) NHI(O,T;L2(t)), q e L(Q),

e o < <
(iii) p is solution of (2.2), (2.4), and (2.5),
(iv) u is a weak solution of(2.3), (2.6), and (2.7), that is, for any in C]([O, l[J

[0,TD,

/o[u( Ot + Ox(q )) b(u) Otp ] dx dt uo(x) (x, O) dx

tl (t) q(O, t) o(0, t) dt.

Above Co([O, l[J x [O,T[) is the space of C-differentiable functions having compact
support on [0, l[J [0, T[.

The main result is the following theorem.
THEOREM 3.2. Under hypotheses (2.8)-(2.11), problem (2.2)-(2.7) admits a weak

solution (p, u) in the sense of Definition 3.1. Moreover,
(i) Ou e L(0,T;
(ii) Otu e L2(0,T; M(12)), where M() denotes the space of Radon measures on
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This will be obtained by the use of Schauder’s fixed point theorem. Let us intro-
duce the closed convex set in LI(Q) defined as

C--(ueLI(Q), 0_<u_<l a.e. in Q}.

The idea is then to start from u in C. The pressure equation (2.2) with conditions
(2.4) and (2.5) admits a unique solution p. Next, we consider a solution w of the
concentration equation

Otw + qOw + b(w) Otp O,

where q -Oxp, subject to the boundary and initial conditions (2.6) and (2.7). We
then set T(u) w. So we define a mapping T from L (Q) into itself and the problem
(2.2)-(2.7) reduces to show the existence of a fixed point .of T. The main difficulties
are to show that T is continuous and that T(C) is relatively compact in C. In fact, we
obtain a solution (p, u) of problem (2.2)-(2.7) by the use of a sequence of perturbations
(Tv)v>0 of the mapping T. The concentration equation is replaced by

Otwv + qv Owv + b(wv) Otpv O,
o) t)

where qv,pv, u, u are suitable regularizations of q,p, uo and Ul, respectively. We
then set Tv(u wv. We establish that for any > 0, Tv has a fixed point denoted
u,. Finally, a weak solution (p, u) of (2.2)-(2.7) will be obtained as the limit of a
subsequence of (p, us)u>0.

Remark 3.3. There is no regularizing effect for the concentration. Indeed, taking
u0 1, Ul 0, and q a strictly positive constant, then (p, u) defined by

1 if x-qt>O,p(x,t)=qx, u(x,t)= 0 if x-qt<0,

is a solution of the corresponding problem (2.2)-(2.7).
4. Proof of Theorem 3.2. The proof is divided into several steps. First, one

has the following proposition.
PROPOSITION 4.1. Let a a(x,t) be given in L(Q), such that 1 <_ a(x, t) <_ 2

for almost every (x, t) E Q. Assume that conditions (2.8) and (2.9) are fulfilled. Then,
there exists a unique function p e L2(0, T; H2(Ft)) n H(0, T; L2(gt)) solution of

a(x, t)Otp- c92xp O, (x, t) Q,
(4.1) p(0, t) 0, -Oxp(1, t) q (t), t el0, T[,

p(x, O) po(x), xJ e 12.

Furthermore, one has the estimates

IIplIL.(O,T;H:(n)) + ]lOtpllL(Q) <_ C,

where C is a constant depending only on the function in (2.8), and

(4.3) 0 <_ -Oxp(x, t)

_
M for almost every (x, t) e Q,

where M is the constant in (2.9).
Proof. For a given smooth function a (for instance in C(Q)), the existence in
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L2(0, T; H2(12))H1 (0, T; L2 (gt)) of a solution of (4.1) is well known; see, for example,
Ladyzhenskaya, Solonnikov, and Ural’tseva [8]. Therefore, it suffices to derive estimate
(4.2) to obtain at the same time the existence of a solution of (4.1) with a in L(Q).
To do so, we put 15 p . One easily verifies that

(4.4) a(x, t)Ot- 02 f, (x, t) Q,
i5(0, t) 0, Olb(1, t) 0, t ]0, T[,

(4.5)
(x,0) 0, e.

Here f -(aOt- 02). Multiplying (4.4) by Ot and integrating over Qt t]0, t[
with 0 < t < T, one obtains

a(x,s) IOt12dxds + - [Ox(x,t)12dx f(x,t)Otdxds

_< - If(, t)l nn + I&l n.

Since a(x, t) >_ 1, one deduces

where W L2(O,T;H2(Vt))HI(O,T;L2(Ft))nL(O,T;HI(Ft)). Hence (4.2) and
the existence of a solution of (4.1) follow. The uniqueness is obvious. To prove (4.3),
we note that q -Oxp is formally a solution of

(4.6) (1Otq Ox a(x, ) Oxq =0, (x, t) e Q,

a,(0, t) 0, (, t) ,(t), t el0, T[,
(x, 0)= -(), x e .

Since q e L2(O,T;H()) and Otq e L2(O,T;H-()), then q e C([O,T];H-(t)).
Therefore the initial condition in (4.6) for q is meaningful. A reflexion procedure
with respect to x 0 allows the transformation of (4.6) to a mixed Cauchy-Dirichlet
problem over ]-1, l[x]0, T[. Then the maximum principle gives (4.3). This completes
the proof.

Now let us define the mappings T and the approximate fixed points u. With
any fixed u in C, we associate the solution p of

a(u) Otp 02xp O, (x, t) Q,
(4.7) p(0, t) 0, -Op(1, t) q (t), t el0, T[,

(x, 0) 0(x), x e .
Setting q -Oxp, p and q then satisfy estimates (4.2) and (4.3). Let us introduce a

regularization q of q, such that, for any > 0, small enough,
(i) <_ q(x, t) <_ M + 7, for every (x, t) E Q,
(ii) q converges, as r] tends to 0, to q strongly in L2(Q) and weakly in L2(0, T;

c where C is a constant independent on(iii) IO(q,)l <_ -,
Such a regularization exists and may be constructed as follows. First one extends q
by even symetrization with respect to 0, 1, O, T into a function q
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defined on ( =]-I,2[Jx]-T, 2T[. Then we choose a cutoff function in T(() such
that 0-- l on Q and 0 <_ 0 _< l. Then we set

Oq2 in Q,
0 outside.

One easily verifies that 0 <_ _< M and is bounded in L2(1Rt, HI(1R)). Next we
consider a regularizing kernel p with support in the unit ball satisfying p E T)(/R2),

xp >_ 0 and fzn. p(z, t) dx dt 1. Then we set pn(x, t) p(-, ). It is easily seen
that the function

qn(x, t) 7 + fln Pn(x , t T) (t(, T) d dT for (x,t) eQ

satisfies (i), (ii), and (iii).
By using similar techniques of regularisation, we define a C2 (Q) function Pn con-

verging to p in W L2(0, T; H2(f)) A HI(0,T; L2(f)) A Lc(0, T; H1 (f)), satisfying
the following properties:

(i) pn(0, t)=0, 0<t<T,
(ii) IlPnl]w <- K ][Pllw, g independent of 7,

(iii) [lOxpnllL(Q) <_ M’ with M’ independent of 7,

(iv) [Ipnl[c2() <- g(7)IlPlIw.
In the sequel M is set in place of max (M, M).
The regularisation of the data u0 and U is done through the following lemma.
LEMMA 4.2. Let vo BV(a) and v e BV(O, T) with 0 <_ vo <_ 1, 0 <_ Vl <_ 1.

Then for any 7, 0 < 7 < 1/2, there exist two sequences (v) C C(), (v) c Cl([0, T])
satisfying

(i) v(0) v(0),
(ii) (v)’(0) (v)’(0) 0,
(iii) O_<v_<l, O_<v_<l,
(iv) IIvllwl.l(n) + IIV]IIWI.I(]O,T[) <_ C (llvoIIsy(a) + IlVllIBV(O,T)), where C is a

constant independent of 7,

(v) (v, v) converges to (vo, v) in L(f) x LI(O, T) as 7 tends to zero.

Proof. The proof is a consequence of the following.
Let f in BV(fl), the latter equipped with the norm IlfllsY(a) IlfllL(a)+

TV(f) (or, equivalently, IlfllBY(a) IlfllL(n)+TV(f)). Then there exists a sequence
(gn) in C() and a constant C independent of 7 such that

(a) gn(0) g(0) O,

(c) (gn) converges to f in L(f) as 7 tends to zero; 0 <_ gn <- 1 if 0 <_ f _< 1.
First we introduce the sequence (fn) defined by

=f(x) if 27<_x<1,fn(x) 0 if 0<x<2J7.

Then it is clear that
(1) IIf, ll  (a) _< Ilfll  (a), o <_ f, <_ i if o <_ :f <_ 1,
(2) TV(fn) <_ C ]IflIBV(n), with a constant C independent of 7,

(3) In --* Y in Lp(f’t), for any p, 1 _< p <
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Next we consider the sequence (u) defined on/R by the convolution

where ]7 denotes the extension of fu by zero outside f and p is a nonnegative reg-
ularizing kernel, p e/9(]-1, 1[), f_+oo p(y)dy 1. Then one easily verifies that the
sequence (gv) obtained by restricting each to 12 satisfies (a), (b), and (c). Now we
define wv as the solution of

(4.8) w,(O, t) uT(t wn(x, O) u’(x) t el0, T[, x e f,

and set G(u) wv.
PROPOSITION 4.3. For any > O, the mapping T is well defined and has a fixed

point in C.
The proof relies on a priori estimates. We shall note those which are independent

of the parameter
LEMMA 4.4. For any u in C, Tv(u wv is well defined and satisfies the following

estimates:

(4.9) 0 <_ wv(x, t) <_ 1, for every (x, t) Q,

where C1 and C2() are constants which depend on the data, C1 independent of 7.
Remark 4.5. In Lemma 4.4, the compatibility conditions necessary for the exis-

tence of a smooth solution wn are

e
(4.12)

(0) (0),
u e C ([0, T]),

(u)’(0) + qv(0, 0)(u)’(0) 0.

Clearly, from Lemma 4.2, these conditions hold. Also notice that, from properties (i)
and (iii) of pv, we have

(4.13) -M <_ pn(x, t) <_ M.

Proof of Lemma 4.4. Let u C. From Proposition 4.1, problem (4.7) has a unique
solution p. We consider now the problem (4.8) where, for convenience we drop the
subscript except for qv, which will be denoted throughout the sequel; that is,

(4.14)
(4.15)

9tw + -q Oxw + Otp b(w) O, (x, t) Q,
w(0, t) ul (t), t el0, T[, w(x, O) no(x), J xE t.

Equation (4.14) may be reduced (at least formally) to a linear equation by introducing
an antiderivative of b-s), namely G(s) In (s_8) defined on ]0, 1[. However, the
boundary value problem is well posed only if u0 and u do not assume the values 0 or
1. We introduce a perturbation of (4.14), namely,

(4.16) Otw + -q Oxw + (b(w) + (1 + ))Otp O,
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where z > 0. Setting

1
Ge(s)

1 +2 ln( s+s)--e+l-s
sE[0,1],

it is readily verified that Ge(w) is solution of

cOt(Ge(we)) + - Ox(Ge(we)) + Otp O.

Following an idea used by Kazhikhov and Shelukin [6] and Serre [11], we introduce
the auxiliary function

he=Ge(we)+p.

Thus, he is a solution of

(4.17)

Othe +- Oxhe -q-, (x, t) e Q,
1

in (+ul(t) ) te]0,T[,he(O, t) h (t)
1 + 2----- e + 1 ul (t)
1. ln(s+uo(x) )+po(x),he(x, O) =- hg(x)
1 + 2e e + 1 -no(x)

xE.

According to (4.12) and (4.13), we have

h e C](t),
h(0) hi(0),

h e C([0, T]),
h’(0) + (0, 0) h’(0) -q(0, 0) (0, 0).

Furthermore, q and belong to C(Q) and is positive. Then, problem (4.17) has a
unique solution in CI(Q). Therefore, the function

we (1 + )e(l+2e)(h-P)
1 + e(l+2e)(h-p)

is a solution of (4.16). It remains to prove that (we)e>0 converges, as e tends to 0, to
a solution of and (4.15). To this end, we introduce the function

Ve
e(l/2e)h

1 -}- e(l+2e)h

A straightforward calculation shows that ve is a. solution of

Otve +-Oxve -(1 + 2e) ve(1 -ve)q-,

V (0, t)
-}- ltl (1--), t e 10, T[,
1 + 2e

(e + no(x))e(l+2e)p(x)ve(x, 0) (1 + e no(x)) + (e + uo(x)) e(I+2s) pO(x)

(x, t) Q,

xEFt.

Then, one easily verifies that, as tends to 0, (ve)e>0 converges in H(Q) weak and
in L2(Q) strong to a.v solution of

(4.18)

(4.19)

Otv + - Oxv -v(1- v) q, (x, t) E Q,
v(0, t) (t), t el0, T[,

no(x) e,o()
v(x, 0) (1 no(x)) + no(x)epo(x)’

x e a,
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satisfying, in addition, 0 <_ v(x, t) <_ 1 for (x, t) E Q. According to (4.12) and (4.13),
v belongs to CI(Q). On the other hand, we may be written in the form

we (1 + )e-(l+2)p v (1 v)
(1 ve) + ve e-(l+2e)P

It follows that, as e tends to 0, (we)e>0 converges in Hi(Q) weak to w given by

(4.20) w
e--P V

(1 -v) +ve-P

It is easily verified that w is a solution of problem (4.14) and (4.15) and satisfies (4.9).
Let us now prove estimates (4.10) and (4.11). They will be a consequence of the
following lemma.

LEMMA 4.6. Let v be the solution of Problem (4.18) and (4.19). Then

(4.21) IIVlIL(O,T;W,"()) + IIvlIw,(O,T;L()) C,

where C3 and C4(r/) are constants, C3 independent of ?.
Indeed, admitting this lemma for a moment, from the inequalities -M <_ p <_ 0

it follows that
1

_
(1-v)+ve-P

_
eM.

Then, using the relation

W
--P V

(1 v) + v e-P

together with (4.2) and (4.3), the estimates (4.10) and (4.11) follow immediately.
Proof of Lemma .6. From (4.18) and (4.19) it follows that

I(o, t) o(o, t)l (t)( (t)) q(O, t) (o, t) o, (t)l
1 1

M2-< -4 M(M + 7) + {Otul (t) _< - + {Otul (t){ for <M

for almost every t E ]0, T[, and thus

(4.23)
T 1

M2 T + IOu (t)l dt.IW(0, t) Ov(0, t)l dt <_ -Now we differentiate (4.18) with respect to x. We get

(4.24) Ot(Oxv) + 0(- Oxv) -v(1 v) (q 0- + - Ozq) + q- (2v 1) Ov.

Multiplying (4.24) by sign(0xv) and integrating in x yields

d-- IOvl dx+ 0(- IO:vl) dx

v(v- 1)(qO-+-qOq)sign(Ov)dz+ q-(2v- 1) lOvldm.
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Hence, by integration in time from 0 to t, 0 < t < T, we obtain

10(, )1 dx + (1, s)10v(1, )1 ds

_
IOxv(x, 0)[ dx + (0, )10v(0, )1 ds

+ - ([Oxql + Ic9-1) dx ds + 2 M2 li)xvl dx ds.

Using (4.23), Proposition 4.1 and the definition of , we obtain

IOv(x, t)l dx <_ K1 + 2 M2 IOxvl dx ds

for any t > 0, t _< T, where K1 is a constant independent of ?. Thus, in view of
Gronwall’s lemma, Oxv is bounded in L(0, T; Ll(gt)) by a constant depending on the
data but which does not depend on 7. That Otv is bounded in the same way follows
readily from (4.18). Hence (4.21) follows. To prove (4.22), we multiply (4.24) by Oxv.
We get

(4.25)
1 d

iOxvl2 + 0(- Oxv) Oxv Ox(v(v 1)q) Oxv.
2 dt

Then, by integration over Qt --]0,1[]0, t[, with 0 < t <_ T, we obtain

The first term on the right side is majorised in terms of HI(Ft) norm of’the data p0

and u0. For the second, we again use (4.18). We have

-(0, s)IOv(O, s)l 2 -ul (s)(1 u (s)) q(O, s) -(0, s) Ov(O, s) Otu (s) Ov(O, s)
11

M vIM + ? V/-(O s)IOxv(O s)l + 10(). lOv(O, )1

M3 1 1
(0, s)l 2+ (o, )o(o,) + Ou()l + o

M3 1 1<+ q(O,s)[Ov(O,s)[2+:[0tu(s)[2 since (0, s)>.
8

Hence - -(0, s)IOxv(O, s)[ 2 ds <_ t + IOtul (s)] 2 ds.

For the third term, according to the property (iii) of , one has

(Ox- IOxvl2)(x, s) dx ds <_ __C
r

IJOxv(x’ s)12 dx ds"
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For the last term, one has

I (2 v 1) qlOvl2 dx ds

+ v(v 1)(q 0x + Oxq) Ov dx ds,

where

Hence,

O(v(v 1)q-) Oxv dx ds.

I _< (2 M2 + 1) IOxvl2 dx ds + ([0x[2 .+ IOxql2) dx ds.

Finally, - IOxvl2(x, t) dx + - (1, s)IOv(1, s)l 2 ds

<_ K2 + K3 + K4 + Oxv 2 dx ds

where K2, K3, and Ka are constants independent of r]. Consequently, Ov is bounded
inL(0, T; L2 (gt)) by a constant which depends on the data, but also on the parameter
7. Thanks to (4.18), the same holds true for Otv. Lemma 4.6 is proved.

Clearly, by (4.9), T(C) is contained in C and, according to Lemmas 4.2 and
4.4, Tv(( is relatively compact in C since by (4.11) it is contained in a bounded set
of Hi(Q). To prove the statement of Proposition 4.3, it thus remains to show the
following lemma.

LEMMA 4.7. For any > O, the mapping T from into itself is continuous for
the L Q norm.

Proof. Let (u) be an arbitrary sequence which converges, as n tends to cx), to
a function u in L(Q). In fact, (un) converges, as n tends to oc, to u in Lr(Q), for
any r, 1 _< r < cx). The associated sequence (pn) with (u) is bounded in the space
L2(0, T; H2()) NH(0, T; L2(gt)). Then there is a subsequence, still denoted by (pn),
which is weakly convergent. It is easily seen that the limit p of (pn) is a solution of

a(u)Otp- 02p O, (x, t) E Q,
p(O, t) O, -Op(1, t) q (t),

o) e
t el0, T[,

Since this problem has a unique solution, the whole sequence (pn) converges to p. In
addition, the sequence q -Op" converges, as n tends to x), to q -Oxp, strongly
in L2 (Q). Indeed,

(qn) is bounded in L2(O,T;H(t)),
is bounded in L2(0, T; H-I(Ft)).

Consequently, by Aubin’s theorem (see Lions [9]), {qn} is compactly imbedded in
L2(Q). Therefore, (an) and (n) converge, respectively, as n tends to cx, to q and in
L (Q), for any r, 1 _< r < cx). Let us now consider w and wn the respective solutions
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of problems (4.14) and (4.15) with respective coefficients and n. We also introduce
the auxiliary functions v and vn by the definition

P W ep’ Wn
V-- V

(i 1 + ’ (i 1 + r
Clearly, (vn) is bounded in Hi(Q) and v is in Hi(Q) and they are solutions of the
corresponding equations (4.18), with respective coefficients (q,$) and (q,), with
the same boundary and initial conditions (4.19). Then, the difference zn v- vn

satisfies
OtZn + -n OxZn _(n ) OxV + -n qn (V + Vn 1) zn

+v(v i) (q q n).
Multiplying by sign(zn) and integrating in x it follows

Integrating in time, we obtain

/o ( )Izn(x, t)l dx <_ 2 M2 + -- Iz(x, s)] dx ds + -- In $2 dx ds

Jr (1_-n[ Jr Iq- qn[) dx ds.

For any > 0, we can find an integer N such that n > N implies

Igz(x, t)gl dx K5(V) ]Jz(x, s)gl dx ds + K6(V) ,
where Kh(V) and K6(V) are constants. So, putting yn(t) f3 [zn(x, t)[ dx we obtain,
with Gronwall’s lemma,

This means that vn converges, n tends to , to v in L(0, T; L()). Using the
fact that (pn) is uniformly bounded and weakly convergent to p, together with the
relations linking w and v, one readily deduces that (wn) converges, n tends to ,
to w in Lr(Q), for any r, 1 r < . Lemma 4.7 is proved. Hence Proposition 4.3
follows.

We are now in a position to prove Theorem 3.2.
Proof of Theorem 3.2. Take a real sequence (n) which tends to 0 n tends to. For any n, there is a pair (pn, un) solution of

(a.2) a() Op Opn O, (x, t) e Q,

(4.27) Oun + Ou + Op b(u) O, (, t) Q,

1/2
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satisfying the boundary and initial conditions (2.4)-(2.7), after a regulariza..ion in or-
der to verify (4.12) and (4.13). Since (un) is bounded in the space L(0, T; WI,I())N
Hi(0, T; L1 (Ft)) (see Remark 4.5), there is a subsequence, still denoted (un) which con-
verges to a function u in L(Q) and therefore also in, Lr(Q) for any r, 1
The sequence (pn) is bounded in L2(O,T;H2())A H(O,T;L2()). Then there
is a subsequence, still denoted (pn), which converges, as n tends to x, weakly in
L2(0, T; H2(gt)) N H(0, T; n2(fl)) to a function p. By a compacity argument, an
-Oxpn converges, as n tends to cx, to q -Oxp in L2(Q) for any r, 1
Therefore, n converges, as n tends to cx, to q in Lr(Q) for any r, 1 _< r < cx, and
also in L2(0,T; H(t)) weak. Trivially, a(un) (resp., b(un)) converges, as n tends to
cx, to a(u) (resp., b(u)) in Lr(Q), for any r, 1 <_ r < c. Then, we can pass to the
limit in (4.26). We obtain

a(u)Otp- 02zp O, (x,t) e Q,
p(O,t)=O, q(1, t)=ql(t), telO, T[,
p(x, o)= po(x), x e

On the other hand, for any n and any in C([0, l[J [0, T[),

T ./al(un OtCfl + Un Ox(-n ) b(un) OrBn eft) dx dt

no(x) (x, O) dx Ul (t) -n (0, t) dr,

and passing to the limit in each term is meaningful. Note in particular that the
convergence of to q in L2(O,T;HX()) weak implies that of-n(O,t) to q(O,t) in
L2(0, T) weak. The proof of Theorem 3.2 is now complete.

For uniqueness, we have only the following result.
THEOREM 4.8. Let us assume that the data are smooth and satisfy the necessary

compatibility conditions. Then, (2.2)-(2.7) has at most one solution (p, u) such that
u belongs to Ca(Q) with > O.

Proof. Note first that if (p, u) is a solution of problem (2.2)-(2.7) with u in Ca(Q),
c > 0, then it is well known that p belongs to C2+,+a/2() whenever the data are
smooth and satisfy the necessary compatibility conditions. Now let (p, u) and (i5, )
be two solutions, with u and in Ca(Q), c > 0. Setting q -Op, (t -Ox and
using equations of p and i5, one can find a constant C such that

(Q).

Using equations satisfied by u and and the previous estimate, we show also that
there is another constant C such that

In(x, t) t)l dx <_ C’ dx ds

for any t, 0 < t < T. Hence u by virtue of Gronwall’s lemma, which proves the
theorem.

5. A case of existence and uniqueness of a smooth solution. In this
section we are concerned with system (2.2)-(2.3), which is provided with the boundary
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and initial conditions

(5.1) p(0, t) Pl, p(1,t) P2, t e]0, T[,
(.2) (z, 0) o(), z e a,
(5.3) u(0, t) ul (t), t el0, T[
(.) u(x, O)= o(), e ,
where pl and p2 are constants. Comparing this problem to (2.2)-(2.7), we note that
we have only replaced (2.4) by (5.1). Assume conditions (2.10)-(2.11) are fulfilled and
in addition,

(5.5) p0 e C2,(gt), p0(0) p, p(0) p2, p(0) pg(1) 0,

(5.6) there exists m > 0 such that m _< -p,

(5.7)
uo e C’-5(), u e C"5/2([0, T]), with

o(O) (o), (o) (o) (o) o,

-pg >_ 0,

-5 > 0 to be chosen later. We then state the next theorem.
THEOREM 5.1.
(i) There is a constant , 0 < <_ -5, such that problem (2.2)-(2.3), (5.1)-(5.7)

is uniquely solvable in the space C2+f,lTf/2() x Cf().
(ii) If, in addition, 0 < no(x) < 1, 0 < u(t) < 1, then u lies in C+/2().
The proof requires several steps. The essential point is the following result of

Alkhutov and Mamedov [1], see also Krylov [7]. Consider the boundary value problem

OtV- K(x, t)02xV f, (x,t) E Q,
(.s) v(0, t) v(, t) 0, t el0, T[,

V(x,0) 0,

Previously, f is in Lp(Q) and K is a given function in L(Q) such that there is a
constant a > 0, with

1 <_ K(x, t) <_ a for almost every (x, t) e Q.

Then (see Alkhutov and Mamedov [1], p. 480) we have the following lemma.
LEMMA 5.2. Under the aforementioned hypotheses, there is co, 0 < ao < 1, such

that ifp e [2- a0,2+a0], then problem (5.8) is uniquely solvable in W’(Q) for each

f e Lp(Q) where W’(Q)= {v e Lp(Q); vt, vx, vx e Lp(Q)}.
The first step consists in proving the next proposition.
PROPOSITION 5.3. Problem (2.2), (2.3), and (5.1)-(5.4) admits a solution (p, u)

in the space n2(O,T; H2(gt)) O H(O,T; n2(gt)) HI(Q).
Proof. It suffices to prove the estimate (4.22) with a constant C4() which is in

fact independent of the parameter 7. To do so, first note, by means of the maximum
principle and the new boundary condition (5.1), that

m <_ q(x, t) <_ M for almost every (x, t) Q.

Next, using again the maximum principle, we can show that

Oxq(x, t) >_ 0 for almost every (x, t) E Q.
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Then, from (4.25), after integration over Qt gtx]0, t[, 0 < t < T it follows that- IOxv(x,t)12 dx + - -(1, s)lOxv(1, s)12 ds + - (Ox-lOxv(x,s)12)dxds- IOv(x, 0)] 2 dx + - -(0, s)]Ov(O, s)l 2 ds + Ox(v(v 1)q) Oxv dx ds.

Since the three terms on the left side are positive, we have a similar estimate to (4.22)
with a constant independent of 7 whenever

-(0, s)IOxv(O, s)JI 2 ds <_ C,

where C is a constant independent of 7. This can be performed as in Lemma 4.6 with
m playing the role of 7. Note that we have assumed, as is permissible,, that and
verify

-(x, t) >_ m, O-(x, t) >_ 0 for almost every (x, t) E Q.

We now use Lemma 5.2 to show the existence of a smoother solution.
PROPOSITION 5.4. Let r 2 + co, with ao given in Lemma 5.2. Then system

(2.2)-(2.3) subject to conditions (5.1)-(5.7) admits a solution (p, u) such that
I)I72,1(i) p e ,, (Q),

(ii) Oxu L(O, T; Lr(gt)),
(iii) Otu e nr(o, T; nr(t)).
Proof. We use the result of Alkhutov and Mamedov [1], for u given in C, and the

solution p of problem (2.2), (5.1), and (5.2) satisfies the estimate

Ilpllw.(Q) <_ C,

where C is a constant which depends only on the boundary and initial conditions on
p. The exponent r depends only on the values of a(u) and not on those of u. In fact,
we must show (ii) and (iii). To do so, we proceed as in 4 by introducing the function
v solution of

(5.9)

(5.10)

Otv + qOxv v(v -1)q, (x,t) Q,
v(0, t) ul (t), t e ]0, T[,

o) +

We must estimate Ov and Otv in L(0, T; L(gt)). This may be obtained as in the pre-
vious section by differentiating (5.9) with respect to x and multiplying by IOvlr-20xv.
This allows us to bound Oxv and Otv in L(0, T; L(t)) and therefore Ou and Otu in
L(0,T; Lr(Ft)) and Lr(0, T; Lr(gt)) according to the relation

U
e--Pv

(l-v) +ve-p

Proposition 5.4 is proved.
2 and assume/ < K. In view of Sobolev’sProof of Theorem 5.1. We put 1- 7

imbedding theorem, since u belongs to WI,r(Q), u is in C(Q). Therefore, we see that
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by using the pressure equation, if follows, according to Theorem 12.2 in Ladyzhen-
skaya, Solonnikov and Ural’tseva [8], that p belongs to C2+,1+/2(). Next, if we
assume that 0 < u0 < 1, 0 < ul < 1, we can introduce the function h (as in Lemma
4.4 with e 0) solution of the problem

Oth + q Oxh -q2, (x, t) e Q,

h(x, 0)= In (_u---0-u() +po(x),

h(0, t) In (- U-lu(-t)(-), t E]0, T[.

By the method of characteristics one can easily prove, since q and Oq are in CZ/2(),
that h is in C+Z/2(). The second part of Theorem 5.1 follows from the relation

U
1 + eh-p"

This completes the proof.
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ON ASYMPTOTIC SELF-SIMILAR BEHAVIOUR FOR A
QUASILINEAR HEAT EQUATION: SINGLE POINT BLOW-UP *

VICTOR A. GALAKTIONOV

Abstract. The author studies the asymptotic behaviour near a finite blow-up time T of
solutions to the degenerate quasilinear parabolic equation

uf (0, T),ut (u u)x / in ]

where a > 0 and fl > a / 1 are fixed constants. These values of parameters a, f correspond to
single point blow-up. The initial function is assumed to be bounded, symmetric, nonincreasing in

Ixl, and compactly supported. It is proved that the rescaled function f(, t) (T-t)l/(-l)u((T
t)’,t),m [f- (a / 1)]/2(f- 1) > 0, behaves as T like a nontrivial self-similar profile 0() > 0
in ], () 0 as o.

Key words, quasilinear heat equation, single point blow-up, asymptotic behaviour, noncom
stant self-similar solution

AMS subject classifications. 34E10, 35B40, 35K55, 35K65

1. Introduction and main result. We consider the Cauchy problem for the
one-dimensional quasilinear degenerate parabolic equation:

(1.1) u (uux)x + u for x E R, t > 0,

(1.2) u(x, O) so(x) >_ 0 in ; u0 0, sups0 < c,

where a > 0 and > 1 are fixed constants. This problem is a mathematical model
of combustion in a medium where both heat conduction coefficient k(u) u and
heat source Q(u) u depend upon the temperature u u(x, t) >_ O. Local in time
existence of a weak solution, uniqueness and comparison results for (1.1) and (1.2)
are well known; see [4]-[6], [25], [27]-[30], and the references therein. The solution
u u(x, t) is a nonnegative continuous compactly supported function, which is the
classical one at any point where u > 0. If 1 < f < a / 3, then for a given arbitrary
initial function u0 0, the solution blows up in a finite time T > 0 so that

(1.3) sup u(x, t) -. oc as t --. T.
xER

T is then called a finite blow-up time. If >_ a + 3, then (1.3) holds for any initial
function u0 large enough (cf. [15] and [30, p. 208]). We assume that the solution
u(x,t) of (1.1) and (1.2) blows up as t --. T, where T depends on the initial function
and exponents a, . We also assume that

(1.4)
uo --uo(Ixl), uo does not increase,

u0 is a compactly supported function,
sup I( g) l <
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f Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Square

4, 125047 Moscow, Russia. Present address, Departamento de Matemticas, Universidad Autbnoma
de Madrid, 28049 Madrid, Spain.
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Then by uniqueness and by the maximum principle we have that u u(Ixl, t) >_ 0 in
x (0, T), u(Ixl, t) does not increase in Ixl for any fixed t e (0, T), and

supp u(x, t) =_ {x e Ilu(x, t) > O) (-h(t), h(t)),

where h(t) > 0 for t E [0, T) is a continuous nondecreasing function. See a full list of
references in [25] concerning properties of interfaces corresponding to weak solutions
of degenerate nonlinear heat equations of the type (1.1).

For >_ a+ 1, heat interfaces of a general compactly supported solution have been
proved to be localized [11] (see also [30, p. 235]). Namely, there exists the constant, ,(a, ) > 0 such that under above hypotheses for any t E [0, T)

(1.6) h(t) < h(0) + ,T", m =/3 (a + 1)
2(/3-1)

>_0.

For/ a + 1 (m 0) we have ,(a, dr + 1) Ls/2 =- ?r(a + 1)1/2/o", and (1.6) yields
the best possible upper estimate [13] (see also [14]): h(t) <_ h(O)+ L8/2 in (0, T). If
1 </3 < a + 1 (m < 0), then the solution is not localized, u(Ix[, t) --+ oo as t T for
any x e I [15], [10] (see also [30, p. 383]), and there holds

(1.7) h(t) o(T- t)m(1 + o(1)) as t -- T
(cf. [30, p. 248]), where 0 0(a,/) > 0. Above estimates of interfaces of blowing up
solutions have been proved by the method of intersection comparison of u(x, t) with
explicit blowing up self-similar solutions of (1.1), which will be discussed later.

This paper is devoted to the analysis of the asymptotic behaviour of the solution
near a finite blow-up time for the case > a + 1 which corresponds to single point
blow-up; see [18] and [30, Chap. IV]. We prove that under above hypotheses on the
initial function, the solution has a space-time structure of nonconstant self-similar
solution near a finite blow-up time. The asymptotic stability of the unique nontrivial
symmetric self-similar solution u,(x,t) (T- t)-l/O(x) of (1.1) with a + 1
(regional blow-up) has been proved in [12]; see also [30, p. 243].

1.1. Self-similar solution for 3 > a + 1. Equation (1.1) admits a blowing up
self-similar solution of the form

(1.8) u.(x, t) (T- -Ixl/-(T-

where the function 0 >_ 0 satisfies the following nonlinear ordinary differential equation
derived by substituting (1.8) into (1.1)"

1
(1.9) A(0) _-- (00’)’- m0’- %---7 + 0 0 for > 0,

and the symmetry boundary condition

(1.10) 0,(0) 0 (0(0) > 0).

Problem (1.9), (1.10) with/ > a + 1 admits a positive strictly decreasing solution
[1] (see also [30, p. 190] for N-dimensional analysis of a similar equation) having the
following behaviour at infinity:

(1.11) 0() C,-2/(Z-(+1))(1 + o(1)) --, 0 as --,
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where the constant C, > 0 depends on exponents a and . Notice that any solution
6() > 0 in JR+ satisfies (1.11) with some constant C, > 0. Hence, (1.8) is the classical
blowing up solution defined in x [0,T). Any solution of (1.9) that satisfies (1.10)
and (1.11) is uniformly bounded:

sup0()< (3+a+1 /
i/(f-i)

eR (- 1)(a + 2)

(cf. [1] and [30, p. 187]). It follows from (1.8) and (1.11) that for x : 0

(i.i2) u,(x,t) C, Ixl-2/(-(+l)) as t -+ T.

Moreover, solution (1.8) satisfies u > 0 in x [0, T) [30, p. 190], and hence

(1.13) u,(x,t) < C, Ixl-/(-(+l)) in (IR\{0}) x [0, T).

Therefore, u,(x,t) blows up at the single point x 0. Uniqueness of self-similar
solution (1.8) with monotone for > 0 function 0 remains an open problem. Notice
that in general problem (1.9) and (1.10) has at least M -[-1/2m]- 1 ([p] denotes
the entire part of p) different positive solutions 01, 2,..., OM, where Ok() has exactly
k maxima and minima for k 0; see [1] and [30, p. 188]. The problem of the structure
of stable manifolds corresponding to such nonmonotone solutions Ok is open now.

1.2. The main result. We prove that the asymptotic behaviour as t --, T of
the solution u(x, t), 3 > a + 1, is described by a blowing up self-similar solution (1.8)
having the same blow-up time T. By using a standard technique, we now state the
above problem as follows. Let us introduce the new rescaled function:

(1.14) f((, T) (T t)i/(-i)u(((T t)m, t),

where T log(T t): [0, T) [TO, C), r0 log T, is the new time. Then f(, T)
satisfies the quasilinear parabolic equation

(1.15) f A(f) in l (TO,
(i.16) f(, TO) f0() =-- Ti/(-i)uo(Tm

where A is the stationary operator given in (1.9) and f0 is a nonnegative symmetric
compactly supported initial function. Denote by

(1.17)
(f0) {g g(ll) 0, g e c() j - such that

f(., Tj) --* g(.) as Tj --* OC uniformly on compacts in

the w-limit set of the solution to the problem (1.15) and (1.16). Therefore the problem
of the asymptotic behaviour of u(x, t) near a finite blow-up time t T is reduced to
the problem of stabilization as T --* oc to stationary solutions of equation (1.15).

We now state the main result of the paper.
THEOREM 1.1. Let > a + 1. Assume that (1.4) holds. Then

(1.18) o(fo) c {e--o(Igl) > o e(.) ,ti,s (1.9)-(1.11)}.
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If problem (1.9)-(1.11) admits a unique, strictly monotone solution 0 > 0 (we
expect that this is true in one-dimensionM case), then (1.18) implies that

uniformly on compacts in . Notice also that since w(fo) 0 by definition, (1.18) by
itself yields the existence of at least one nonnegative weak solution to the stationary
problem (1.9) and (1.10).

The main difficulties in the proof of Theorem 1.1 are as follows. The first one is
to prove that the constant profile 6} (- 1)-1/(-1) satisfying (1.9) does not appear
in the w-limit. On the other hand, the second difficulty is the fact that degenerate
equation (1.15) and (1.9) is not of divergence form, and any explicit Lyapunov function
with good properties cannot be constructed. We also need some additional sharp upper
and lower estimates of the solution near t T. See 2-5.

Finally, we note that in the semilinear equation (1.1) with a 0 the corresponding
w-limit set consists of the unique constant profile 0 (/- 1)-1/(-1). This has been
proved in [19] (see also [20]) by deriving certain upper and lower bounds of solutions
and using the construction of an explicit Lyapunov function for the rescaled equation
(1.15) and nonexistence result for equation (1.9), a 0, which was proved in [2]. Gen-
eral results on nonexistence of nontriviM self-similar solutions for the N-dimensionM
equation ut Au + u with 1 < f _< (N + 2)/(N 2)+ and the corresponding for-
mal Lyapunov analysis have been done in [22]. Necessary bounds of a wide class of
solutions were proved in [23]. It is interesting that a similar Lyapunov function yields
important results about w-limits for the heat equation with the critical absorption
exponent ut Au- ul+2/N; see [16] and also [30, pp. 121-125]. In this case the
choice of a unique, stable nonconstant asymptotic profile is made by using a so-called
energy equation for the norm of the solution in the corresponding weighted Ll-space
[16], [30, p. 125]. For the quasilinear equation u div(uVu)- ua+I+2/N with
cr > 0, a similar result has been proved in [21] without using a Lyapunov function for
the corresponding rescaled equation.

2. First estimates. We begin with simple lower and upper estimates of the
solution.

PROPOSITION 2.1 ([30, Chap. IV]). Assume that (1.4) holds. Then

f(O, 7") > (fl- 1)-1/(-1) --Oo > 0 for T > TO,

and there exists a constant #. > 0 such that

(2.2) f(, T) <_ #, in (TO,

Estimate (2.1) implies that w(fo) does not contain the function g 0. It follows
from (2.2) that w(fo) consists of uniformly bounded functions. Notice that f(, T) is
a compactly supported function for T > TO and (1.6) and (1.14) yield

(2.3) supp f(, T) {1 1 < p()},

where

--, --.
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By using (2.2) and Bernstein-type estimates in the form [3] (cf. general results in
[5] and [6]), we obtain the following estimate.

PROPOSITION 2.2. Under hypotheses (1.4) there exists a constant #1 > 0 such
that

I(f+l)l <_ #l in I x (TO,

This implies that the w-limit set, w(fo), is well defined by (1.17).
The stationary equation

(2.6) A(0) =0 inR

admits the unique nontrivial constant solution 0 0o in lit. The following result implies
that {g 0o} gl w(fo) g.

LEMMA 2.3. Assume that (1.4) holds. Then there exist constants Co > 0 and
/o > Oo such that as T --, oc

(2.7) f(,) _< Colel-/(-(+)) fo I1 > o,
(2.8) f(o, T) > "o.

Proof. It was proved in [18] by using the beautiful idea from [8] that under hy-
potheses (1.4) and the following additional assumption on the initial function

(2.9) uoau + oXUo <_ 0 in R+,

where Ao e (0, A,], A. a/(a + 2/) < 1, is an arbitrary constant, there holds J(x, t)
uux + Aoxu <_ 0 in N+ x (0, T). Consider now arbitrary initial data satisfying (1.4).
Fix to E (0, T) and 5 > 0 small enough. Since/ > a + 1, we have that u-Zux < 0
is not integrable in x on (h(t)- 5, h(t)). Therefore, for any t e [to, T) there exists

5(t) e (h(t)-5, h(t)) such that J(5(t), t) < 0. Since by the strong maximum principle
[7] (u+l)x(0,t0) < 0, we then conclude that J(x, to) <_ 0 in (0,(t0)) provided that
A0 > 0 is small. Hence it follows from [18] that J _< 0 in (0, h(t)- ) x (to, T). Since
5 > 0 is small, integrating this inequality over (0, x) yields (2.7) with

] 1/(f-- (a-F1))
Co= /- (+ )0

2

Since J(O,t) =_ 0 we have that Jx(O,t) =- (uaux)x / Aou <_ O. This implies that
ut <_ (1- Ao)uf for x 0, and integrating over (t,T) leads to (2.8) with 3’o
(1 ,o)-1/(/-1)0o E!

From (2.7) and (2.S) we conclude that if g c= w(fo), then

(2.10) g(O) > Oo and -, 0 as o.

The proof of Theorem 1.1 is based on the construction of a suitable Lyapunov function
corresponding to (1.15).

3. Lyapunov function. Set

(3.1) V(, T) fa+l(, T).
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Then v(, T) _> 0 solves the equation

(3.2)
(3.3)

vr a(v)v + b(, v, v) in ]R x (TO, C),
V(, 0) V0() f+i() in R,

where the coefficients

a(v)

b(, v w) -mw a + 1
+ +/-1

are now defined for arbitrary values v E ]. We shall use a general approach to the
construction of the Lyapunov function which is due to [31].

For fixed 0 >_ 0, v0, wo, denote by (o,, v0, w0) the solution to the ordinary
differential equation

(3.6) a() + b(, o,) 0

either for E [0, o] or for [o, oc), with boundary conditions

(3.7) T1=o v0, l=o w0.

Equation (3.6) is a degenerate one. Therefore, formally we have no automatically good
properties (e.g., existence, uniqueness, continuous dependence upon parameters, etc.)
of the solution that we need for the construction of a Lyapunov function. According to
[31], the existence of a Lyapunov function will depend on the aforementioned properties
of solutions .

3.1. Good and bad properties of functions . We begin with some sim-
ple preliminary good properties of solutions to (3.6) and (3.7). we shall denote by
’(0, , v0, w0) the derivative ’ (0, , v0, w0)

PROPOSITION 3.1 (see [1] and [30, Chap. IV]). For any fixed o >_ 0, vo, wo, there
exists a weak solution (o, , vo, wo) of (3.6) and (3.7), a C1-function for
which is bounded with its derivative ’(o, , vo, wo) on any compact in , and
at any point where O.

Thus, any local in weak solution of (3.6) can be extended for the half-space
[0, c). Notice that by well-known nernstein estimates, if I1 <- cl on a compact
K [1, 21 then ,’1

1 <- c2 on K, where the constant c2 depends on cl, K, a, and

By dividing (3.6) over a() and integrating over (1, 2), we have that I’]1 is small
provided that I] is small on K; see also [1] and estimates in [17].

The following result is the straightforward consequence of the structure of de-
generate equation (3.6) (cf. a similar result in [17, p. 169] for a different degenerate
equation).

PROPOSITION 3.2. Fix some o >_ O, vo, wo and an arbitrary compact K c I+
[0, oc), such that o K. Assume that the solution (o, , vo, wo) of (3.6) and (3.7)
satisfies

(3.8) 2 + (,)2 = 0 for any K.

Then the functions (o, , vo, wo) and ’(o, , vo, wo) are continuous on K with re-
spect to small perturbations of the parameters o, vo, wo.
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Since (3.6) is degenerate, the continuous dependence on parameters and the
uniqueness of the solution to (3.6), (3.7) on g may not exist if v + w 0, or,
in general, if (3.8) is not valid. But it is important that in any case we have the
uniqueness to the left of o > 0.

PROPOSITION 3.3. For any given o > 0 and vo wo 0 there exists the
following unique solution to (3.6) and (3.7) for < o:

(0, , 0, 0) 0 /o e [0, o].

This is easily proved by a local analysis of (3.6) in a small left neighbourhood of
the point - o; see [1], [9], and [24].

We now state some bad properties of "nonuniqueness to the right" to solutions
of the degenerate nonlinear equation (3.6).

PROPOSITION 3.4. For any fixed o > 0 and vo wo O, problem (3.6)-(3.7)
for > o has the unique solution o,(o, , O, O) > 0 in a small right neighbourhood of
the point

The proof is based on using the Banach contraction principle applied to the
integral equation being equivalent to (3.6) and (3.7) with vo w0 0 in a small right
neighbourhood of o. See a similar analysis in [24] and [9] of equations with a
degeneracy of the type as given in (3.6). The uniqueness result in Proposition 3.3 is
the direct consequence of the structure of the integral equation previously mentioned.
A local analysis of the integral equation yields the following behaviour of the solution
o, for > o:
(3.10a) ,(o,, O, O) (mo( o))+)/( + o()) as : --, :o + O.

In the case o 0 from the previous integral equation we have the estimate of a
solution which could be nonunique,

(3.10b) o,(0, , 0, 0) < (const 2)(+1)/ as --* +0.

By Proposition 3.3, we have that o,(o, , 0, 0) 0 for any E [0, o].
Thus, for any given o > 0 problem (3.6) and (3.7) with vo wo 0 has the

following one-dimensional family of different solutions:

9(o, , 0, 0) 0 for 0

_ _ .,
(o, , 0, 0) :t:. (., , 0, 0) for > .,

where . >_ o is an arbitrary constant. We now sum up bad properties which we will
need later.

PROPOSITION 3.5. There exists a maximal set B. C

_
{o > 0, vo E I, wo

I} of parameters (o, vo, wo) such that for any point S =- (o, vo, wo) B, the solution
o(o, , vo, To) satisfies

(3.13)
S, e [0,o] such that (cf. (3.8))

V(o, ,, o,o + ’(o, ,, vo, o 0,

and hence by Proposition 3.3

(o, , vo, To) 0 for e [0, ,].
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Notice that, by Proposition 3.2, if S B, then (3.8) holds on any compact K, and
hence there exist uniqueness and continuous dependence of the solution (0, , v0, w0)
on K.

The set B, that was given also has some good properties.
PROPOSITION 3.6. Fix arbitrary (0, v0, To) e B,. Then, uniformly on [0, 0], the

functions qa(0, , v0, w0) and qo’ are continuous with respect to a small perturbation of
parameters o vo wo and in particular

(3.15) (o, , v, w) 0 as v --, vo, w wo

uniformly on [0,,], where , e [0,0] is given by (3.13).
Proof. First of all, by Proposition 3.2 there exists a continuous dependence of the

solution qo and the derivative qo’ on any compact subset Ke [, + e, 0] (we now
suppose that 0 < , < 0), where > 0 is an arbitrarily small constant. Suppose
on the contrary that there is no continuous dependence of q(0, , v0, w0) on [0, ,].
Without loss of generality we may assume that there exist suitable sequences {0k} --o, {v0k} v0, {w0} -- w0 such that the functional sequence {(Ok,,VOk,WOk)}
does not converge to a(o,, vo, To) =- 0 as k --, cx uniformly on [0,,]. Then by
standard compactness argument for ordinary differential equations (see Proposition
3.1 and comments given after it), we conclude that there exists
such that

v0 ,, w0 ,) as k’

uniformly on [0, 0], where y3 E C is a weak solution to (3.6) on [0, 0] and 93 0 on

[0,,] by assumption. Since yh() qo(o,,vo, wo) on [,,0], we have that q?(,)
q?’ (,) 0. Therefore the assertion q 71 0 on [0, ,] contradicts Proposition 3.3. Thus,
3 0 on [0, ,] and that 99’ 0 as k --, oc follows from the gradient estimate stated
after Proposition 3.1. This completes the proof.

3.2. Formal construction of Lyapunov function. Assume now for a moment
that (3.2) is a uniformly parabolic equation with smooth bounded coefficients, and
suppose that there is no problem with integrabilities at oc of given functions on
solutions v(, T). Then, according to a general approach [31], there exists a formal
Lyapunov function of the form

(3.16) L[v](T) f (, v(), V(T)) d,

which is nonincreasing on evolution trajectories corresponding to different solutions

(3.17)
d
d--n[v](T) p(, v,v)(v)2 d <_ 0 for T > 0.

The functions p(, v, w) _> 0 and (I)(, v, w) are determined as follows.
By using the structure of (3.2) that has a general form, we deduce that (3:17)

holds if functions p and (I), assumed to be smooth enough, satisfy the following system
of linear partial differential equations:

(3.18) pb -Ov + vo + wvw, pa

where the coefficients a(v) and b(, v, w) are given in (3.4) and (3.5). Indeed, by formal
calculations
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Integrating by parts in the last term yields

Finally, since v =_ (v- -b)/a, we obtain that

d b ] 1 }+-,, v---O(v-)
a a

Hence, (3.17) is valid provided that (3.18) holds. From (3.18) we obtain the linear
first-order equation for the function p,

(3.19) bpw awpv ap p(wav + a b),

which can be easily solved by the characteristic’s method.
Denote

(3.20) F(, vo, wo)
wa + a

v=,(o,,vo,wo
w=,’ (o,,vo,wo

Then we have

(3.21) p(, v, w) G(vo, wo) exp F(, vo, wo) de
,o=,(,o,v,w)
wo=,’ (,O,v,w)

where G is an arbitrary smooth function to be determined later, and as above 99’(, 0, v,
w) 99 (, 7, v, w) with v/= 0, and

(3.22)

(3.23)

TM

(I)(, v, w) a (w r/)p(, v, r/) dr/+ z(, v),

z(, v) b(, #, 0)p(, #, 0) d#.

It is easily calculated that for coefficients given in (3.4) and (3.5) there holds

(3.24) F(, v0, w0)

where 99 99(0, , vo, wo). Hence, setting a(vo, wo) Ivol-/(+), we deduce that

(3.25) p(,., w)

exp -m 199(0, , 99(, O, v, w), 99’(, O, v, w))l-’/(+1) d

It follows from (3.22) and (3.23) that

(3.26)

)

(, v, ) !1-/(-+) ( r/)p(, v, 7) dr/

/o [o 1 ]p(, , 0) B i + (a + 1)11(-)/(+1) d.
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Notice that formally the Lyapunov function (3.16) satisfies the identity

(3.27) L[v](S) L[V](To) dT p(, v, v)(vr)2 d <_ 0

for any fixed S > TO.
It follows from (3.25), (3.26), and Propositions 3.2 and 3.6 that the functions

p(, v, w) and q)(, v, w) are bounded and continuous for v > 0. We set p(0, v, w)
(0, ,) (, 0, 0) (, 0, 0) 0.

PROPOSITION 3.7. For any >_ 0, v > 0, w <_ 0

(3.28) p(, v, w) <_ v-a/(a+l)

(3.29)
w2 [ 1

(, , w) _< + ( + ) (_ 1)( + 2)
v(+)/(+l) +

, ]+ a + lV(f+a+l)/(a+l)
In general, these properties are not enough to prove (3.27) for a weak solution of

the degenerate equation. We begin with the proof of a weakened form of (3.27) by
using some regularizing approach.

4. Regularized problem. It is well known (see [3], [5], [25], [271-[30], and
the references therein) that a weak solution of a nonlinear parabolic equation with
a degenerate diffusion operator of nonstationary filtration type can be constructed
as the limit of a sequence of classical solutions to a regularized problem. For the
Cauchy problem (1.15)-(1.16), this regularized problem can be stated as follows. Fix
e > 0 small enough, and consider the initial-boundary value problem in Be x N+, Be
{1(I < l/e}, for quasilinear uniformly parabolic equation (3.2) with the function a(v)
replaced by

(4.1) (v) (. +

and the boundary and initial data

(4.2) v((, 0) v0(() in Be,
(4.3) v 0 for -t-l/e, T > ’0.

For any small e > 0 problem (3.2), (4.1)-(4.3) has a unique local in time classical
solution ve ve(l[, T), which is strictly monotone in I(I; see e.g., [7] and [25]. By
well-known results (see [5] and [25]) we may conclude that

(4.4) ve(, T) V(, T) as 0

uniformly on any compact subset of N x (TO, OC). By general regularity results [5], we
also have that

(4.5) (ve) v as e 0

in Loc(l x (’0, oc)) and uniformly on compact subsets, and, in particular,

(4.6) ). (v")-, a= (a + 2)/2(a + l) ase---,0
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in Loc(l x (TO, OO)). Notice that by this construction at any point of nondegeneracy
(, T), where v(, T) > 0 is the classical solution, we have that as e - 0 the function
v converges to v with first derivatives. By Bernstein estimates we also have that on
any given compact subset of ]R x (TO, oc) as e --. 0

]Ve(, T)I

_
C1, I(ve(, T))I

_
C2.

(We shall denote by Ci > 0 different constants which are independent of e > 0.)
4.1. Lyapunov function for the regularized problem. Since the regularized

equation is uniformly parabolic, by the method given in 3 we can construct the
classical Lyapunov function. It can be easily calculated by (3.2)-(3.23) with a(v)
replaced by the function (4.1). Then instead of (3.25) and (3.26), we obtain the
functions

Pe(, V, W) (2
__

V2)--a/(2(a+l))

x exp -m ([e2 +02(0, , p(, 0, v, w), Pi((, 0, v, w))]-’/(2(+l))d(

(4.8)

As above, the function ((0, (, v0, w0) is the unique classical solution of the nonde-
generate ordinary differential equation

(4.9)
(4.10)

ae()o + b(, o,) O,

1=o v0, o1=o w0.

The following upper estimates of pe, (I) and the lower one of (I)e are direct consequences
of (4.7)and (4.8).

PROPOSITION 4.1. For any >_ O, v >_ O, w <_ 0

(4.11)

(4.12)

where

(4.13)

and

fle(, V, W)

_
(e2 + V2)-a/(2(a+l))

W2

(, ,) <_ - + p(),

Ps(v) (e2 + #2)-/(2(+)) + 1
1 # + (a + 1)#(+)/(+) d#,

(4.14)

where

(a + 1)2 V(+a+l)/(a+l)R() Z + + if v > v, og+ R(v) o if v < v,
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We now prove the main estimate following from calculations given above.
LEMMA 4.2. For any S > TO and > 0 small enough, there holds

(4.15) dT p(, v, (v))(Orv)2 d < C3,

where C3 does not depend on S.
Proof. Denote

(4.16) L[V](T) =/ (, v, v) d.

Then by construction,

(4.17)
d

Le[ve](-) -/B pe( ve (Ve))(Ov)2 d < 0 for T > TOd-

Integrating over (TO, S), S > TO, yields

(4.18) Le[ve](S) Le[ve](To) dr pe(, ve, (ve))(Ove)2 d.

It follows from (4.18), (1.4), and Proposition 4.1 that

(4.19) dT p(, v, (v))[(ve)]2 d + L[v](S) Le[vo] _< C4.

Then, using estimate (4.14)in (4.19) yields

(4.20) dT pe(, v, (ve))(Ov)2d <_ C4 + R(v(, S)) d.

By (4.4) and (2.2) we have that for large S, provided that > 0 is small enough,

(a + 1)2 #,+a+l for E ]R.(4.21) R(v(, S)) <_ 2
+ a + 1

Therefore, since by Lemma 2.3 and (4.4) on any compact subset K c

ve(,S)

_
2C+II1-2(a+l)/(f-(a+l)) on K,

we conclude that R(ve(, S)) =_ 0 outside some uniformly bounded neighbourhood of
the origin 0. Finally, we have

(4.22) f. S)) <_

Using this estimate in (4.20) implies that

(4.23) dT p(, ve, (v))(Ove)2 d <_ Ca + C5 C6,
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where the right-hand side is independent of S. This completes the proof. D

4.2. Passage to the limit -, 0. We first need to prove the following estimate.
LEMMA 4.3. For any fixed S > T1 TO + 1 and L > 0 small enough,

(4.24) &- p(, v, v)(vr)2 d _<

where the constant C7 does not depend on S.
We begin with some properties of the solution (0,,v0,w0) to the problem

(4.9)-(4.10).
PROPOSiTiON 4.4. For arbitrary fixed o > 0, vo I, wo uniformly on [0, 0]

(4.25) --, , -- as -- O.

Proof. The limit (4.25) is the straightforward consequence of the continuous de-
pendence of the solution e and derivative on the parameter provided the limiting
solution with 0 is such that 2 + (,)2 0 on [0, 0] (cf. the similar Proposition
3.2). If does not satisfy the aforementioned condition and there exists . E [0, 0]
such that 2 + (,)2 0 for . (hence 0 in [0,.]), then by using the idea
from the proof of Proposition 3.6 (based on the uniqueness result given in Proposition
3.3) we conclude that e -- 0 , --, 0 =- ’ as --, 0 on [0,.]. Here we use a
natural gradient bound, see Proposition 3.1 and remarks given after it. Hence, (4.25)
holds again, which completes the proof. D

We now introduce the "good" set

(4.26) G. I\B.,

where the "bad" set B, is given in Proposition 3.5. It follows from the definition that
G. can be defined also as follows:

(4.27) G. {(0,v0, w0) e ]R3+l(o,,vo, wo)satisfies (3.8) on K [0,0]}.

Then by continuous dependence of ’ on parameters (0, v0, w0) G. (see Proposition
3.2) we deduce that G. is open. It follows from (4.27), (3.25), and (3.26) that by
standard regularity results

(4.28) p and (I) are smooth enough on G.

and hence, by construction, these functions satisfy (3.18) and (3.19) on G. in the
classical sense. By Propositions 3.7, 4.1, 4.4, and (4.27), we obtain the following.

PROPOSITION 4.5. As -- 0,

(4.29) (2 q_ V2)a/(2(aA-1))pe( V, W) Va/(a+l)p(, V, W) on G..

Proof of Lemma 4.3. Fix L > 0 small enough and S > T1. It follows from (4.4),
(4.5), and Propositions 2.1 and 2.2 that for any ((, T) [0, i] x IT1, S],

(,ve, (ve))e [0, L] [-0g+l,2tt,a+l] [--2ttl,0] .A/IL.
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One can see from (3.6) and (3.7) that

.M[LCG, N v_ 2v0 >0

provided that L > 0 is small enough. Estimate (4.24) is now a straightforward conse-
quence of (4.15), Proposition 4.5 and (4.4)-(4.6). C]

A regularity of the functions p and and convergence of the type (4.29) on the
bad set B, are unknown. We have shown only that both functions are continuous on

R_; see 3.
5. Proof of Theorem 1.1. Let us rewrite the weighted estimate (4.24) for small

L>0-

dT (va/(+l)p(, v, v))(Orva)2 d <_ Cs,

where ( (a + 2)/2(a 4- 1). The function va/(+Dp in (5.1) given by (3.25) is non-
negative. Unfortunately, it is not strictly positive for v > 0. One can see that the
following result is valid.

PROPOSITION 5.1. There holds

(5.2) p(, v, w) 0 on B,, p > 0 on G,.

Proof. If (, v, w) E B,, then by the definition of B, there exists 0 e [0, ) such
that I(, , v, w)l ( 0)+ as - 0 > 0 and I(, , v,w)l 2(+1)/ as

--, 0; see (3.10)-(3.12). It follows that the integral in the right-hand side of (3.25)
diverges, and hence p 0. If (, v, w) G,, then 2 + ,2 0 on [0, ] by Proposition
3.5 and (4.27), hence p

By the definition of B, and Proposition 3.3, we also have the following good
property.

PROPOSITION 5.2. Let g() >_ 0 on a compact [0, 1] be a nonnegative nonincreas-
ing solution of (1.9) and (1.10) with g(O) > O. Then setting g+l we have

(5.3) B, e

Since the good set G, is open, we have the following.
LEMMA 5.3. Let g() be as in Proposition 5.2. For any point S0 (o,0(0),

0’(o)),0 e (0,1], there exists a neighbourhood Q(So) c If(+ x I+ x

_
such that

(5.4) B, Q(So) .
We now begin with some local version of Theorem 1.1.
LEMMA 5.4. There exists 1 > 0 such that

(5.5)
w(fo) C_ W(I) =- {g >_ O Ig satisfies (1.9) and (1.10),

ga+l

_
N, #+1 in [0,1], ga+l(0) _> no

Proof. By using Propositions 2.1 and 2.2, we conclude that for any 1 > 0 small
enough, the estimates

(5.6) no/2

_
v(, T)

_
N,, -#1

_
v(, T)

_
0
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hold for e [0, 1], T > TO. We derive a lower estimate of p(, v, w) in the domain

(5.7) {0_<_<l,n0/2<_v<_N,,-#l <_ w <_ O) C + ]R+ _,
given by estimates (5.6). It follows from the analysis of problem (3.6)-(3.7) considered
for E [0, 1], 1 is small enough, with arbitrary 0 E [0, 1] and boundary values
v- v0, w- w0 satisfying (cf. (5.6)) no/2 <_ v <_ N,,-#I <_ w <_ O, that for any

(0,1], e (0,), there holds

(.s) p(, , v, w) >_ no/4.

Then we deduce from (3.25) that in the domain given by (5.7),

{ }(5.9) p(,v,w) >_ v-/(+1) exp - - 2 _= C9v-/(,+1).

(Notice that a similar result follows from (4.30), (5.2) since the bounded set L with
L 1 is closed nd p is continuous on L.) Using (.5.1) with L implies that

(5.10) dr (0,v)2 d C0,

where by Lemma 4.3 and (5.9) the right-hand side does not depend on S.
Take now an arbitrary g e w(fo) so that there exists Tj such that v(, Tj)

g() j uniformly on [0,2]. Let us rewrite (3.2) With coefficients (3.4) and
(3.5) in the form

1
.v + (v)Z(5.1) 0 7 m(v) Z

in R x (T0, ), where 7 (a + 1)-. By Propositions 2.1 nd 2.2 and by generM
regularity results [5], [6] we conclude that

v(, Tj + s) - h(, s) as j --, cx)

in Loc(l+ C()), where h(,s) is the unique nonnegative weak solution of the
Cauchy problem for the same equation

1
h+ (h),(5.13) 08h’ /h m(h’) /3 1

which satisfies h(, 0) g() in IR.
By using a standard technique (cf. [26] and [4]), we have from (5.10) that h =_ g

is a stationary solution to (5.13) on [0, ] with arbitrary < . Indeed, using (5.10)
yields for s e [0, 1]

]v-(. + ) -(.,)((0,))

Iv"(, T + S) Va(, j)l2 d

d ]O,va(, T)I2 dT 0
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as j x). Hence,

(5.14) I1( + ) (’,)11 d((o,1))

< d lO-v (:, -,-)I d- 0 a j .
Therefore, we have that va(,Tj + s) ga().as j __, c in L2((0, 1) (0, 1)). Hence,
the function h(, s) in (5.12) does not depend on s (see the detailed analysis in [26]),
hence the result.

Proof of Theorem 1.1. We now make a continuation in (5.5) with respect to 1.
Assume for a contradiction that

(5.15) X. sup{ > 01(5.5 is valid}

Then by continuity we have (cf. (5.5))

(.6) (f0) c_ w(x,).

Then it can be easily seen that any g E w(fo) is a nonnegative monotone decreasing
function on [0, X.]. We now prove that the function

inf p(, v(, T), v(, T)) ---- p. (; X.)[o,x.]

satisfies

(5.18) liminf p,(T; X,) Cll > 0.

Indeed, suppose for a contradiction that (5.18) is false, and hence there exist sequences
(k} C [0, X.] and (Tk} oc such that

(5.19)

We can assume that v(.,k) gt(’) e V(X,) as k -- cx uniformly on [0, X,].
Let {k} --* 0 G [0, X,]. Then by compactness we deduce that v(k,’k) --* gl(o),
v(k, Tk) --* 0’(0) and hence by continuity of the functions p and g/() we have that

(5.0) p(,(,),(,)) --, p(o, 0(o), ’(o)) o.

Hence, by Proposition 5.1, (0,(0),’(o)) B, contradicting (5.3). Thus, (5.18) is
valid.

We now prove that there exists a constant C2 > 0 such that

V(, T) C12 on [0, X,] for large T.

If we assume for a contradiction that for some sequence {Tk } -- o
inf v(, Tk) =-- v(X., 7k) --* 0 as k --, oc,

e[0,x.]
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then, by compactness, there exists E YV(X,.) such that v(., Tk) 0(’) uniformly on

[0, X,]. By continuity of the heat flux [25] corresponding to the weak solution v((, T),
it then follows from (5.22) that v((X,, Tk) ---* O. Then by passing to the limit Tk -- Cc

we arrive at the equalities O(X,) O’(X,) 0, which contradict the nonexistence of
such a solution to the problem (1.9) and (1.10); see Proposition 3.3.

By Proposition 2.2, estimate (5.21) implies that for a small enough fixed 5 > 0,

(5.23) v(, T) >_ C13 in [0, X, + 5] for large T.

Therefore, since the equation for v(, T) is uniformly parabolic on [0, X, + 5] for large
T, we conclude that

(5.24) Iv(, T)I <_ C14 in [0, X, + 51 for large T.

In particular, this implies that for small fixed 5 > 0 any point (, v(, T), V(, T)), e
[X,,X, + 5], is contained in a small neighbourhood of the point (X,, v(X,, T),
v(X,, T)) for T > TO large enough.

We now prove that there exists small 50 > 0 such that (cf. (5.18))

(5.25) liminf p,(T;X, + 5o) C5 > O.

If it is false, then there exist a decreasing sequence {hk > 0} - 0 and {k} C (X,, X, +
5k) (see (5.18)), {Tk} "-* OC, such that (5.19) is valid. As previously seen, we have that
v(., Tk) 2(.) z,’+,z e w(fo) and by (5.16) there exists e )4;(X,) such that

(5.26) on [0, X,],

and by estimates (5.23) and (5.24)

and 2 are continuous at the point X,.

Since {} X, + 0, by passing to the limit k we deduce that by continuity

which by (5.26), (5.27) again contradicts Prbposition 5.2.
Thus, (5.25) holds for some 50 > 0. Hence, (, v, v) G, for any (0, X, + 50)

and T large enough. It then follows from Proposition 4.5 and (5.1) with L X, + 50
that (5.10) is valid with X, + 5, T replaced by T, >> 1, and arbitrary S > T,.

Using the method of the proof of Lemma 5.4 we conclude that w(fo) c_ ]/V(X, + 50/2),
which contradicts the definition of X, given in (5.15). Hence, X, c, which is

equivalent to (1.18), and this completes the proof of Theorem 1.1.
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TWO-PHASE STEFAN PROBLEM WITH SUPERCOOLING*

IVAN G. G)TZ AND BORIS ZALTZMAN$

Abstract. Both one-dimensional two-phase Stefan problems with the thermodynamic equilib-
rium condition O(R(t), ) 0 and with the kinetic rule O(R(t), t) -e/(t) at the moving boundary
x R(t) are considered. We study the properties of the regular solutions of the problem with equi-
librium condition. They are obtained as a limit of solutions of the problem with the kinetic law as
e 0. The peculiarity of our problem is the partial supercooling of the liquid phase (0 < 0) at the
initial state. First, we show that the simply connected supercooled liquid phase disappears in a finite
time, and after this the solution becomes the classical one. Second, under appropriate structural
assumptions on the initial data, we prove the smoothness of the free boundary x R(t) everywhere
except at a point . At this point the function R may have a jump R(+ 0) R(-0) > 0 exactly
equal to the interval in which 0(x,- 0) <_ -L. Here L is the dimensionless latent heat.

Key words, kinetic undercooling, supercooled, Stefan problem, blowup

AMS subject classifications. 35K05, 35R35, 80A22

1. Introduction. The problems considered are based on the usual Stefan model
for liquid-solid phase transitions. Let the curve x R(t) be defined as the interface
that separates the liquid phase {x > R(t)} from the solid one {x < R(t)}. We may
write the following dimensionless form of the Stefan problem on the space interval
(0,1)"

(1.1) Ot=xx in Qt2QT+,
where QT (x, t)’:l:(x- R(t)) > 0, 0 < t < T, 0 < x < 1), subject to the initial
and boundary conditions

(1.2) 0(x, 0) 00(x), 0 <_ x _< 1,

(1.3) 0(i,t)=0i(t), O <_ t <_ T, i O, 1,

and the Stefan condition on the interface

(1.4) nt(t) 0x(R(t) O, t) 0(R(t) + O, t),
R(0) R0, 0 < R0 <

Here is the dimensionless temperature scaled so that the equilibrium phase change
temperature is zero, and L l/c, where the constant heat capacity c is assumed to
be the same in each phase, and where is the dimension latent heat.

Assuming the phase equilibrium condition at the phase change interface

(1.6) 0(R(t), t) O, 0 < t < T,
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we complete the formulation of the problem. If no superheating and supercooling
appears, i.e.,

(:.7) O(x,t)(x- R(t)) >_ O in QT := {(x,t) O < t < T, 0<x<l},

then the problem (1.1)-(1.6) has a global classical solution under appropriate smooth-
ness conditions on the initial-boundary data. If the inequality (1.7) does not hold for
t 0, or x 0, 1 then a finite time blowup of a solution may appear. (See Sherman
[1], Fasano and Primicerio [2], Fasano, Primicerio, Howison, and Ockendon [3] and the
references therein.) That means that no global classical solution exists. Therefore we
shall mainly use.the weak formulation of the problem (1.1)-(1.6).

Problem (A0). To find functions R, which satisfy the boundary conditions
(1.3), the weak form of the equilibrium condition (1.6)

(1.8) O(x,t)O as x- R(t) for a.e. te (O,T),

and the following integral identity:

(1.9) U(x, t)t(x, t)dxdt + Ox(x, t)x(x, t)dxdt Uo(x)b(x, O)dx,
T T

for every ) e W’1 (QT), )(i, t) O, O, 1, t

_
O, )(x, T) O, 0 < x < 1; with

U(x, t) O(x, t) + L. H(x- R(t)), in QT,
Uo(x) Oo(x) + L. H(x- Ro), O < x < l,

where H is the Heaviside function

1, s>0,g(s) O, s < O.

Another natural way to complete the problem (1.1)-(1.5) is to introduce the
kinetic law of the supercooling and superheating on the melting boundary:

(1.6)e t) 0 < t < T,

with some positive relaxation parameter :. (See Visintin [4], Xie [5], Charach, Zaltz-
man, and Gbtz [6].)

Problem (A). To find functions Re, 0 satisfying (1.1)-(1.5) and (1.6),
Visintin has proved the existence of the weak solution for the problem (Ae) but

with Neumann boundary conditions. He also obtained the solution of the problem
(A) by letting tend to zero. We shall proceed in a similar way.

DEFINITION. The functions , R are a regular solution of the problem (A) if
there exists a sequence n --* 0 as n --, oc, such that the following convergence condi-
tions hold for the solutions , R of the problems (A):

weakly in L2(0, T; H:(0, 1)), strongly in L2(QT),
weakly star in BV(O, T).

In 2 we present some preliminary results concerning the existence of solutions
and the maximum principle. In the third section we obtain the smoothness (piecewise
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with respect to time) of a regular solution of the problem (A). Section 4 is devoted
to the verification of the inequality (1.7) for a regular solution after some time t,,
although it does not hold at the initial state t 0. That means the disappearance of
a supercooled liquid in a finite time t,. In the fifth section we study the fine structure
of a regular solution of the problem (A). We show that there exists at most one
blowup time t provided that the initial temperature O0(x) has only one interval
in the liquid phase where 0o(x) < -L. Before the instant and after it a regular
solution is smooth. At the point t the free boundary R(t) may have a jump
R({+ 0) R(-0) > 0 which is exactly equal to the interval where 0(x, -0) _< -L.

2. Preliminary results.
THEOREM 1. Let the functions O0, 0i, i 0, 1 satisfy the smoothness assumptions

0 e C (R) 3L(R), 00 e C [0, R0] f3 C JR0, 1] f3 C[0, 1],

the consistency conditions

(2.2) 0(0) 0o(), 0, l,

and suppose that

(2.3) the functions 0, 01 do not change sign for t > O.

Then the following three statements hold:
1. There exists a unique solution of the problem (Ae) for every > O, for some

T>0.

(2.4)
R e C(O,T), e C(-) C,’(),
O e C(qr \ { 0, }),

(2.5) either Te +x or min{ 1 Re (Te), Re (Te) } 0.

2. The following estimates hold independently of :

(2.6)
T

(O)2dxdt + e Ie(t)12dt <_ C(T),
T

T

I(t)ldt < C(T),

for every bounded T < Te.
3. There exists a regular solution of the problem (A),

(2.8) 0 e L2(0, T; Hi(0, 1))71Lo(QT), R e BV(O,T),

where T lim infe=-0 Te= for the corresponding sequence {n}.
The first statement of Theorem 1 is proved in [5]. One can obtain the estimates

(2.6) and (2.7) by multiplying the differential equations of the problem (Ae) by the test
functions 1 (x, t) := Oe(x, t)-f(x, t), and 2(x, t) := sign0e(x, t)-g(x, t), respectively,
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and then integrating by parts in each subdomain QT. Here f(x, t) :- O(t)+ (Ol(t)
0o(t))x and g(x,t) := sign0O(t) + (sign0l(t) sign0O(t))x. Similar estimates were
obtained by Visintin in [4], where it also has been proved that the estimates (2.6)
and (2.7) imply the convergence conditions (1.10), and consequently the existence of
a regular solution of the problem (A0) with the property (2.8).

LEMMA 1 (maximum principle). Under the assumptions of Theorem 1 the func-
tion 0e may have only positive local minima and only negative local maxima inside of
the domain QT. In particular,

(2.9) max{sup sup I 1} -< max{sup 10ol, sup le’(t)l} OM.
T T (0,1) tE(O,T),i--0,1

The function 0e may have local extrema inside the domain QT only on the curve
x Re(t). Therefore the statement of Lemma 1 follows immediately from the Stefan
condition (1.4) and from the kinetic law (1.6)e with positive constants L, .

LEMMA 2. Suppose that the strict inequalities

(2.10) 00(t) <--’)’, 01(t) > fort

_
O, for some " > 0,

hold under the assumptions of Theorem 1. Then there exist global solutions of the
problems (A), (Ae), i.e., T Te +oc. Moreover,

(2.11) <_ Re(t),R(t) <_ l 7 for t >_ O, for some ? > O..

Proof. Let us take the linear barrier function

(2.12) u(x) := - + Ax, x e (0, 1).

The constant A is chosen so that the function v "= u-Oe is positive for t 0, x E (0, 1)
andt>_0, x=0,1. Namely,

(2.13) A > max{ max 105(x)l, sup I0(t)l + }.
xe[o,l] t>0

Moreover, we must fulfill the inequality u(Ro) > 0, i.e.,

(2.14) A > Ro

The function v solves the homogeneous heat conduction equation in the subdo-
mains QT, hence it may have local extrema inside the domain QT only fo.r x Re(t).
We suppose that there exists to > 0 such that

(2.16)
v(x, t) > O, x e [0, 1], t e [0, to),
v(Re(to),to) =0.

Then

u(Re(to)) Oe(Re(to), to) -ee(to)

-(vx(Re(to) O, to) v(Re(to) + O, to)) < O.
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From (2.15) we find the inequality

d A
(2.18) -u(R(t)) At(t) -Aoe(Re(t), t) >_ ---u(R(t))

for t E [0, to]. Because of (2.14), we have u(Ro) > 0, and so the differential inequality
(2.18) implies that u(Re(t)) > 0 must hold for every t E [0, to], which is the same as

Re(t) > 1 7/A,. t >_ O.

We complete the proof of Lemma 2 by proving the second part of the inequality (2.11)
in a similar way and by using the convergence conditions (1.10).

3. Smoothness (piecewise with respect to time) of a regular solution
of the problem (A). Since a regular solution of the problem (A) is the limit of
the solutions for the problems (Ae), it is sufficient to prove estimates for the solutions
of the problems (A) which are local in time and uniform with respect to e > 0. The
idea of the following statement is similar to that of [7].

LEMMA 3. In addition to the assumptions of Lemma 2 let us suppose that the
following estimates,

/oeIR ()l <_ C, ((x, T))2dx < C,

hold for some - > 0 and for every n E N. Then there exist positive constants , C1
depending on C but independent of en such that

Proof. Let us define the function (x,t)= O(t)+ x(Ol(t)- O(t)). We multiply
equation (1.1) by the function (0[ -Ct) and integrate it over the intervals t-(t)"=
(0, R=(t)) and gt+(t) "= (R(t),l) Summing the results of the integration, we
obtain

(3.4)

The third term on the right-hand side is bounded, and the second one, 12, can be
estimated in a standard way:

(3.5) 1121 < 5 (9(x, t))2dx + C(5) for 5 > 0.

Defining z(t) fo On (x, t))2dx, we can estimate the first term on the right-hand
side of the identity (3.4) with the help of the following inequalities:

(3.6) IO=(R=(t)-0,t)l3 < [R(t)
J x

I(On(x,t))3zldx + IOx(x’,t)l3
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(3.7)

IO;(x,t)llO(x,t)ldx + IO(z’, t)l

IOg(, t)lgdx + - (t)

IOgr(x,t)ledx

IOSx (x, t)lddx + lOg (x,, t)l a

3
iOg(x,t)lZdx [Og(x,t)lZdx+ - (t) (t)

<_ 65 [ IOg(x,t)ledx + za(t) + IOg(x’,t)l,
-(t)

IOg(R(t) + O’t)la -< 65[+(t)a

3/2

+ IOg(x’, t)l 3

3
iOS(x,, t)1310g(, t)ldz + -gz3(t)A-, z

where x’ e (O, Re=(t)) and x" e (Re=(t), 1) are chosen so that

(3.8)

(3.9)

f
Ig(x’,t)l <- I (Og"(x,t))2dx/Re(t) < z(t)/,

-(t)

]Oex"(x",t)[ 2 <_ [ (OSx"(x,t))2dx/(1- R(t)) <_ z(t)/,
+(t)

and where the constant > 0 is defined as in Lemma 2. Applying the estimates
(3.5)-(3.9) to the identity (3.4) for sufficiently small 5 > 0 we get

(3.10) fo d (fol)(O[=(x,t))2dx + - (Og"(x,t))2dx + enL(/s= (t)) 2

_< C3(1 + z3/2(t) -t- z3(t))..

The standard method applied to this differential inequality with the help of the as-
sumptions (3.1) gives us the local estimate

(3.11) max z(t) <_ Ca,
t[r,r+]

with the constants u, C4 independent of en. Furthermore, integrating the inequality
(3.10) over the interval (T, T + U), we obtain the estimate (3.3). The estimate (3.2)
follows from (3.3), (3.6), and (3.7) coupled with the Stefan condition (1.4). That
completes the proof of Lemma 3. D

THEOREM 2. Under the assumptions ofLemma 2 there exists a finite or countable
number of intervals (ti, t), i E I such that

(3.12) I.(0, T) \ uiei(ti, t)[ 0 /or all T > O,

(3.13)
sup IR(t)l + sup

t(t+5,t-5) x (0,1),t(t +5,t -)
IO(x, t)l <_ c(5), for atl 5 > O, I,

where R(t), O(x, t) is a regular solution ofthe problem (AO).
Proof. At first we will show that due to the estimate (2.6) for almost every T > 0

one can choose a subsequence en - 0 fulfilling the conditions (3.1) of Lemma 3. If a
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contrary statement is valid then there exists a set T E (0, T) with nonzero measure
such that

f01 IO,(x, T)12dx + enlRn(T)l2 --, -t-cx as n -- oc

for every - E and for every subsequence en -* 0. However, in this case we have

(/0 )IO(x,T)12dx + enlRen(T)]2 dT

as n--- oo,

which contradicts (2.6).
By finding the value u(T) from Lemma 3 for every admissible T we determine the

set V :- U>0(T, T + V(T)). One can represent this open set as a unity of either a
finite or countable number of nonintersecting intervals V Uiei(ti, ti), which satisfy
the property (3.12). Moreover, due to the estimates (3.2) and (3.3), we obtain similar
estimates for a regular solution of the problem (A)

(3.14)

(3.15) ft,+, ]i 02td:cdt+ sup (Oz(x, t))2dx <_ Ci(5)
tE(t+5,t-5)

for every 5 > 0, I. From the embedding theorems we have

W(ti + & t 5) c H2/3[ti + 5, t 6],

where H2/3 is the space of Hblder-continuous functions with exponent 2/3. Hence

(3.16) RH2/3[ti+5,t-5] for allS>0, iI.

The estimate (3.15) implies

I10(., t)llL((O,R(t))U((t),)) Ilot(., t)llL2(0,1) <_ const

for almost every t (ti, ti) and therefore from the embedding W c H1+1/2 we obtain

(3.17) 0(., t) e H1+1/2[0, R(t)] n HI+I/2[R(t), 1]

for a.e. t (t, ti), I. We can now apply the results of [8] about solutions of the
heat conduction equation with the initial data from Hl+a in noncylindrical domains
of the class H-+-2 They state

(3.18) 0 Hl+a’--2 --:k
(Qt,e) a.e. te(ti,#), 5>0,

where Qt,:l:5 {(x, T)" (x, T) e Q-5, T > t}. In our case, (see (3.16) and (3.17)), we
can choose a 1/3. Then (3.18) and the Stefan condition.imply the desired estimate

(3.13). That completes the proof of Theorem 2.
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4. Finite time disappearance of the supercooled liquid. Henceforth, in
addition to the conditions on the boundary data (2.1), we assume structural restric-
tions on the initial data, namely, the following:

(4.1)
There exists so E JR0, 1) such that

> o, x e [0, # R0.

This condition prescribes the phase state of the material in different subintervals of

(0, Ro) H(x R0) 0, 0o(x) < 0 nonsuperheated solid,

(Ro, so) H(x- Ro) 1, Oo(x) < 0 supercooled liquid,

(so, 1) H(x- R0) 1, 00(x) > 0 nonsupercooled liquid.

The properties (2.10) and (2.11) imply that the point x 0 for t _> 0 is always
in the nonsuperheated solid phase (H(0- R(t)) 0, (0, t) < 0) and the point x 1
for t _> 0 is always in the nonsupercooled liquid phase (H(1- R(t)) 1, 0(1, t) > 0).
Therefore the supercooled liquid phase lies between the normal solid and liquid phases.
.The main result of the present section can be formulated briefly as follows: The
supercooled liquid phase disappears in a finite time, after that a regular solution of
the problem (A) coincides with the unique solution of the classical Stefan problem.
More precisely, see the next theorem.

THEOREM 3. Let us assume the fulfillment of (4.1) in addition to the conditions
of Lemma 2. Then there exists t, < t such that the following inequality,

O(x, t)(x- R(t)) >_ O,

holds for a.e. x e (0, 1), t >_ t,. Here t’ (UM + 2)/-y (see proof of Lemma 5) and
UM OM + L, OM is the maximum absolute value of the temperature (see (2.9)).

Proof of Theorem 3. We consider the functions

Ce(x, t) max{-0e(x, t)(x Re(t)), 0},
(x, t) max{-0(x, t)(x R(t)), 0}.

The statement of Theorem 3 is equivalent to the identity

(4.3) (x,t) 0, x e (0, 1), t >_ t,.

We use two auxiliary results, which we shall prove later.
LEMMA 4. Under the conditions of Theorem 3 the inequality

(4.4) e(x, t2)dx <_ e(x, tl)dx + C

holds for every tl, t2 such that 0 <_ tl < t2 <_ T.
LEMMA 5. Under the conditions of Theorem 3 there exists o > 0 such that for

every (0,0) we can choose t (0, t’) such that

(4.5) 1Ce(x, t)dx <_ C,

where the constant C is independent of .
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Let us continue the proof of Theorem 3. Due to the convergence conditions (1.10)
we can state

(4.6) Ce (x, t) -- (x, t) as en 0 a.e. in QT.

Therefore the inequality (4.4) gives us

fo (x, t2)dx <_ (x, tl)dx

for a.e. tl, t2 E (0, T), t2 > t. Moreover, using (4.4) and (4.5), we obtain

(4.8) fo fo0 < (x, t)dx lim (x, t)dx

< lim (x t)dx+Cen < lim(2Cn)-0
n’--O n--O

for a.e. t E (t,T), where to := limsup__.ot and the values ten are given in
Lemma 5.

Let us denote

(4.9) t. sup {t t (0, T), ess /oinf (x, r)dx > 0

By (4.8) we have t, <_ to <_ t’. On the other hand, the convergence (4.6) allows us to
choose the sequence Te --, t, as n - cx) such that

(x, "re dx -- 0

Therefore, letting n --, oc in the inequality (4.4) with tl T we finally obtain

(x, t)dx =_ (y, t) _= 0 a.e. y e (0, 1), t e (t., T),

which completes the proof of Theorem 3. [:]

Before starting to prove Lemmas 4 and 5 we study the structure of sets where
the functions and are positive or negative.

LEMMA 6. Under the assumptions of Theorem 3 there exist integrable functions
s, with s satisfying the inequalities

O <_ s(t) <_ l, O <_ se(t) <_ l, a.e. t G (O,T)

such that

(4.10) Oe(x,t)(x- ss(t)) >_ 0 a.e. in QT,
(4.11) O(x,t)(x s(t)) >_ 0 a.e. in QT.

Proof of Lemma 6. Due to the convergence (1.10) it is sufficient to find the func-
tions s for > 0. With the help of Sard’s theorem (see [10]) one can state that
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for almost every E R the level set F is a finite sum of smooth curves. Here
n := {(x, t). t) e t)

Let us now take an admissible a > 0, and an arbitrary point (2, ) E F. Now we
are going to prove that

(4.12) 0e (x, ) _> 0 for every x (2, 1).

In order to do this, we shall construct the continuous function S such that

Oe(S(t), t) >_ a for t e (0, ), S(0) e (so, 1), S() 2.

Then the inequality 0e _> 0 will hold on the parabolic boundary of the domain Q :=
{(x,t) t (0,), x (S(t), 1)}. Using the maximum principle (Lemma 1), we then
obtain Oe(x, t) >_ 0 for each (x, t) Q, which implies the inequality (4.12).

Now we construct the function S(t). There are two alternatives"
(i) There exists a Connected piece F C + n Q-) or F c (F n Q-) such that
e r.

(ii) There exists a neighborhood V of the point (2, ) such that Oe(x, t) >_ a (or
Oe(x, t) <_ ) for (x, t) g n Q.

At first we consider the case (i). Using the regularity of the level sets of the
solutions for the heat conduction equation (see [8, pp. 178-181]), we find [0, ) and
S C[, t’] such that

(1) Oe(S(t), t) a for t (, ), S({) c,
(2) (S(t), t) e F for each t e (, ),
(3)

If { 0 then we can afterwards consider the same alternatives (i) or (ii) at the new
point (Re(), ).

Now we consider the alternative (ii). Since the solution of the homogeneous
heat conduction equation might have minima or maxima only on the boundary of the
domain, 2 Re({) holds. However, using Lemma 1 we obtain

Oe(x,t) >_a on the set {x=Re(t)}nVnQ{.

Defining := max{0, sup{t Oe(Re(t),t) < a, t < }} and Sa(t) := Re(t) for t e (,)
we deduce that either/ 0 or alternative (i) holds at the point (Re(t’),/), because of
choice of o

Since the number of the connected pieces of curves F_, F is finite we complete
the construction of the function Sa (t) on the interval (0, ) by repeating this procedure
a finite number of times and consequently prove the validity of the inequality (4.12).

In a similar manner, we can prove that for almost every a < 0 and arbitrary (2, )
such that 0e(2, ) a the inequality

(4.13) Oe(x, {) <_ 0

holds for each x (0, 2). The validity of the inequalities (4.12) and (4.13) is enough
for the existence of the function se and, consequently, for the function s. We have
completed the proof of Lemma 6. D

Proof of Lemma 4. Let consider the set

t. (tl t2 e co(Re(t) seDr, :={(x t) t e ), x (t))} for0<tl<t2<T,
where co(xl, x2) (min{xl, x2}, max{x1, x2}) for every Xl, x2 e R.
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Due to (4.10) we have supp{} C DoT,

Oe(x, t)(x Re(t)) =_ 0 for (x, t) e Dc \ supp{}.

Hence

(4.14)

Moreover, the inequalities (4.10) imply Oe(se(t),t) O, O(se(t),t) >_ 0 for t E (0, T),
and so

(4.15)

Ox(x, t)(Re(t) x)dxdt dt Ox(x, t)(Re(t) x)dx
o(R(),:(0)

Summing up (4.14), (4.15), and taking into account that Oe(x,t)e(t) <_ 0 in DoT, we
obtain

(x, t2)dx <_ e(x,t,)dx + IOe(Re(t),t)ldt.

Estimating the second integral in the right-hand side of this inequality by using
the kinetic condition (1.6)e and the estimate (2.7), we end with

and complete the proof of Lemma 4. V1

Proof of Lemma 5. Due to the uniform boundedness of the functions Ce, it is
sufficient to estimate the value Ise(t)- Re(t)l. If so Ro then the inequality (4.5)
holds for te := 0 and every e > 0. Otherwise, if so > Ro then the value

:= sup{ : (t) R, > e (0, T)}

is positive for e < so- Ro. Let us consider the function r(t) Re (t)+ on the interval
(0, te). By the definition of te we have r(t) <_ se(t) for t e (0, re), and

(4.16) Oe(x,t) <_ O inD::{(x,t)" 0<x<r(t), O < t < te}.

We define the test function as follows:

(x t) (r(t)- x)/e for Re(t) < x < r(t), t e (0, t),
k x/Re(t) for 0 < x < Re(t), t e (O, te).
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Testing (1.1) by the function in the domain D we obtain the identity

where Ue(x, t) Oe(x, t)+ LH(x- Re(t)) in QT. The first integral on the left-hand
side of the identity can be estimated by the maximum of the function

(4.18) II:I _< 2UM.

Let us estimate the second integral on the left-hand side of the identity (4.17):

(4.19)

IS.l <_ u letldxdt UM (R,(t))2
dxdt

+ [ I(t)l dzdt < g
t

I(t)ldt < g
(t e

The first integral on the right-hand side of (4.17) can be estimated as follows:

(4.20) IJl (t)dtRe(t)

Because of (4.16) the second integral on the right-hand side of (4.17) is nonpositive,
and therefore (4.17)-(4.20) imply

7 e > O(t)lRe(t)dt > IOO(t)ldt >u + : + R
Using the definition oft’ and choosing eo < R0, we obtain t < t’ and Is(t)-R(t)l <
e, completing the proof of Lemma 5.

COROLLARY 1. If 80 Ro then t, O.
This follows immediately from the proof of Lemma 5.
COROLLARY 2. The function R is nondecreasing on the interval (0, t,).
Let us consider the values te, defined in Lemma 5. Obviously, liminfe--,0 te >_ t,.

On the other hand se (t) >_ Re (t) + e for t E (0, re), and hence

e(t) -O(Re(t), t)/e >_ 0 for t

Therefore the function R is monotone nondecreasing on the interval (0, t,) as the limit
of the nondecreasing functions Re.

COROLLARY 3.

(4.21) inf (iiminf S(T’) limsup R(r’)) > 0
O<r<t r’-+r r’--+r
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for every t E (0, t,).
Assume the contrary is valid, namely, that there exists t E (0, t,) such that

(4.22) lim inf S(T) <_ lim sup R(T).
’--t ’--t

The function 0 is continuous outside any neighborhood of the free boundary x R(t)
since it is the solution of the heat conduction equation in the domain QT+. Therefore
(4.22) implies O(x, t) >_ 0 for x > limsupr_,t R(T) R(t + 0) and so

lim (x, T)dx O.
’---t+O

Then from the inequality (4.7) we immediately conclude that

(x, T)dx =_ 0 for T e (t, t,)

and obtain the desired contradiction with the definition of t, (4.9).
5. Fine structure of a regular solution. Now we start to study the behavior

of a regular solution up to the time t,, i.e., in the presence of the supercooled liquid
phase. We assume the simplified structure of the initial data as follows:

There exist r0+, r- (R0, 1), such that

t0(x) < -i, x e (r-, r0+),
O0(x) > -L, x e JR0, r-) t2 (ro+, 1].

As we know from [2], the only reason for the blowup of the solution for the one-phase
Stefan problem is the presence of the set {0 < -L}. For the sake of simplicity we
consider the case when there is only one simply connected component of this critical
set.

THEOREM 4. Let us suppose, in addition to the assumptions of Theorem 3, that
the structure of the initial data satisfies (5.1). Then for a regular solution of the
problem (A) there exists at most one point [0, t,] such that

(5.2) sup
t(5,-5)u(+5,T)

I (t)l < > o.

Moreover,

(5.4)
+ 0) > 0),

0(x,- O) <_ -L for x e (R(- 0), R(+ 0)),
0(x, + 0) 0(x,- O) > -L for x (R(+ 0), 1].

Proof. At first we study the structure of the critical set

M:={(x,t): O(x,t)<-L, R(t) < x < l, O < t < t,}.

We show that, in spite of the nonsmoothness of the boundary x R(t), the structure
of the set M g {t } is similar to the structure of the set M g) {t 0} for every
T>0.
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LEMMA 7. Under the condition of Theorem 4 there exist functions r+, r- defined
on (0, tr), such that

R(t) <_ r-(t) < r+(t) < 1, for t e (0, tr),
(x,t) e M iff 0 < t < tr, t-(t) < x < r+(t).

Moreover the set M is connected.
Proof of Lemma 7. Using Corollaries 2 and 3, we can choose a function

C2(0, t,) such that

(.8)
(.9)

(.o)

R(t) < l(t) < s(t), t e (0, t,), l(O) e (r+o, so),
L < O(l(t), t) <_ O, t e (0, t,),

1
sup (()- R()) > sup (()- n()), t e (0,t.).
O<’<t O<’<t

Now we study the properties of the function 0 as the solution of the heat con-
duction equation in the domain ft: :- {(x, t) :0 < t < T, R(t) < x </(t)} with the
following boundary condition on the nonsmooth boundary x-- R(t):

(5.11) O(x, t) -- 0 as x --, R(t) + O, a.e. t e (0, t,).

Because of Corollary 2 we know only that the function R is nondecreasing on the
interval (0, t.). Let us approximate the function R by nondecreasing functions R5

C2(0, t,) for 5 E (0,50) such that

R(t) < R’(t) <_ RS(t) < 1, t e (0, t.), 5’,5 e (0,5o), 5’ < 5;
RS(t) --. R(t), --o O, a.e. t e (0, t.).

For every 5 (0, 50) we solve the problem

(5.14)

(0,),R (t)},0t-Oxx=O, in ft.--{(x,t).te .(t)<x<
O(R(t), t) o, 0 < t < ,
O(l(t),t) O(l(t),t), 0 < t < T,

06 (X, O) OO (X), R (o) < x < 1,

where T and 5o are chosen so that Ro(t) < l(t) for t (0, T).
C2(R(0),/(0)) satisfies the conditions

The function 0o

(.)
(.)
(.)
(5.18)

Oo(n(0)) 0, Oo(Z(0)) 0o(Z(0)),
0o(x) 0o5’ (x)

_
0o(X) 0 for x e (R(0),/(0)),

0o() - 0o() a - 0, e (n(0), Z(0)),
the function 0o(X) has the structure (5.1).

Conditions (5.15) and (5.16) imply the existence of the solutions 06 of problems

(5.14) which are continuous in ftr and smooth in ft and which satisfy

o(x, t) <_ o’ (x, t) <_ o(z, t) _< o i a
for every 5’, 5 (0, 5o), 5’ < 5.
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For arbitrary t to, to E (0, T) we consider the level sets

Ga := {(x, t)’Oh(x, t) a, (x, t) e Fttho}, a < -L

starting with t to. Since the function is continuous in to and greater than -L
on the side boundaries, the simply connected pieces of Ga can be represented for a.e.
a < -n by graphs of the functions ga e W(O, to) (see, for example, [9: pp. 178-181]),
i.e.,

Ga {(x,t) x ga(t), t e (0, t0)}.

We consider the domain D {(x,t): ga(t) < x < ga’(t), t e (0, t0)} for every
admissible pair a, a’ < -L such that ga(t) < ga’(t) on (0, t0). Since 05 < -L on the
parabolic boundary of the domain D (because of (5.18)), this inequality holds also
inside D, in particular,

05(x, t0) < -L for ga(to) < x < g’(to).

Since this inequality is valid for a.e. a, a < -L, we conclude that the set MC{x to}
is the interval

{(x, to) O5(x, to) < -L} (r;(to),r+ (to)).

Doing the same thing for every to e (0, T) we define the functions r on the whole
interval (0, ).

Let us take the function O(x, t)--the pointwise limit of the functions 05(x, t) as
5 --+ 0. It exists as a consequence of inequality (5.19). The functions o and solve
the same problem in the domain t. Moreover, due to (5.19), the values r+ (t) do not
decrease as 5 --+ 0 and the values r[ (t) do not increase as 5 -- 0, t e (0, T). Defining
the functions r+ as the pointwise limits of the functions r, respectively, we obtain

O(x,t) < -L t e (0, t.), x e (r-(t),r+(t)).

The set M := {(x,t): 0(x,t) < -L, t e (0,t.), x e (R(t), 1)} is connected, because
M UhM and the sets M := {(x,t): 05(x,t) < -L, t e (0, t.), x e (Rh(t), 1)}
are connected.

Now we need only to prove that the functions and 0 coincide. The function
v :- 0 solves the following homogeneous problem:

vt vxx O in,

(x, 0)= 0, R(0) < < (0),
((t), t) o, o < t < ,
v(x, t) --+ 0 as x --+ R(t) + O, 0 < t < T.

LEMMA 8. The function v(x, t) =_ 0 is the unique bounded solution of the problem
(5.21).

Proof of Lemma 8. For every positive 5,

5<50"= inf (l(t)-R(t))
0<t<’r

we define the function
r(t) R(t) + 5, t (0, T)
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and the domain
D {(x, t)" t E (0, ), x (r(t),/(t))}.

The distance from every point (x0, to) to the left part of the parabolic
boundary of the domain

((x,t) O < t <_to, R(to-O) < x < /(to)}

is no less than 5. Since the function v satisfies the heat conduction equation in this
domain, the local estimates of the solutions for parabolic differential equations imply
v W’I(D) for every 5 (0,50). Multiplying the differential equation of the
problem (5.21) by the function v, we obtain the following after integrating by parts in
the domain Ds:

v2(g(x) x)dx + v2dxdx + vvxlx=r(t)dt 0
2 j n(o)+

where g(x) sup{t (x, t) D}. Then, integrating this identity with respect to
5 E (0, 50) and applying the last condition in (5.21), we get

This inequality immediately yields v _-- 0 in gt for every T (0, t,) and completes the
proof of Lemma 8. [:]

Therefore, 0 0 in Ftt.. Together with (5.20), this identity also concludes the
proof of Lemma 7.

Let us continue the proof of Theorem 4. As we know from Theorem 2, a regular
solution of the problem (A) is piecewise smooth with respect to t. Now we going
to study the following question: On what does the size of every smoothness interval
depend?

LEMMA 9. Let us assume--under the conditions of Theorem 4--that for some
t, t" (0, t,), t < t" the following statements hold:

(5.24)

lOs(x, t’)l < const, x e [0, 1],
]/(t)l < C(5), t e [t’,t"-5) for every 5 > O,
limsup/(t)
t--t --0

Then

lim inf r-(t) R(t"- 0).
t--V --0
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Proof of Lemma 9. Suppose that (5.25) does not hold. Note that the function
is continuous inside of the domain {(x,t) 0 < x < 1, t < t < t’}. Therefore

r-(t) > R(t) for every t E It’, t’). Then the converse of (5.25) implies that

(5.26) > > 0 e

Because 9(R(t), t) O, 9(r-(t),t) -L, and O(x, V) > -L for x e (R(ff),r-(ff)),
we have 9(x, t) > -L for t e (t’, t"], R(t) < x < r-(t). Therefore we can choose the
positive value 5 and the function q C(ff, t") such that

q(t) R(t) > a12, t C (t’, t"),
O(q(t), t) > -L + 5, t C (t’, t"),
0(x, t’) > -L + 5, x e (R(t’), q(t’)).

Making the transformation

T:=t, y’=x-R(t)

and setting S(T):-- q(T) R(T), we obtain that , R solve the following problem:

0. lOy Oy 0 in Q’\ {y 0},
Ou(+O, T) Ou(-O, T) -L, O(O, T) O, T e (t’, t"),

where Q’ := {(y, T): T e (t’, t"),--R(T) < y < S(T)}.
We construct the following barrier function in the domain Q:

Ay, y<O,w(y) (A- Lfl)(1 -e-u)//, y > O.

One can choose positive constants A, fl so that the function v 0- w is nonnegative
on the parabolic boundary of the domain Q:

(5.3o)

A max max IO(x, t’)l, max 10(t)l}
-0<x<l t<t<t

A L (1 e-aul) < L,

where

yl=min{a/2 L-5_ }max0<z<l IO (z, t’)l
and the constant c is taken from the inequality (5.27). We can choose 3 to satisfy
(5.30), since the left-hand side of this inequality tends to -L as 3 -- +o. Thus the
function v satisfies the following problem:

v hvu vyu F(y, T) in Q’\{y=0},
o,

v(y, ) > 0 on the parabolic boundary of the domain

where

"i’) -( )Wy (Vy(--O, T)- Vy(q-0, T))wy/L for 0 < y < S(T),F(y, (T)Wy for R(T) < y < O.



TWO-PHASE STEFAN PROBLEM WITH SUPERCOOLING 711

Since ywy(y) <_ 0 and /(T) > 0, the function F(y, T) is nonnegative up to the
time when v(y, T) >_ O. However, under this condition the function v cannot have
negative minimum inside of the domain Q’, i.e., v(y, T) >_ 0 in Q’. Hence

0 <_ (vy(+0, T) Vy(--O, T))/L and

< Z, e (t’, t").

This contradicts the condition (5.24), and we have proved Lemma 9.
Let us continue the proof of Theorem 4 by applying Theorem 2. One can suppose

that (ti, ti) are maximal intervals from (3.13), i.e., for every i E I

(5.31) either limsup l(t) +c or t
t-t -0

and one of the following three statements is valid:

(i) t 0,

(ii) ti tk for some k E I,
(iii) ti lim tZ.

Let us take i I such that t > 0. Assume that

(5.32) there exists xo (R(t + 0), 1), such that 0(x0, ti) <_ -L.

Then by the maximum principle there are sequences converging to xn -- x0, T -t --0 aS n cx such that 0(xn, Tn) < -L. According to Lemma 7, we therefore have
r+(Tn) > Xn. The limit process as n (x gives us

(5.33) lim sup r+ (t) >_ x0 > R(t + 0).
t--t-O

Moreover, the assertionof Lemma 9 states

liminf r-(t) R(tk -0) for every k I, tk < cx.
t-- k --0

Therefore the alternatives (ii) and (iii) imply

(5.34) lim inf r-(t) R(t O) <_ R(t + 0).
t--t --0

Since the function is continuous outside every neighborhood of the boundary
x- R(t), the conditions (5.33) and (5.34) and the simple connectedness of the set M
immediately yield the inequality

(5.35) 0(x, ti) <_ -L, x (R(t + 0), xo)o

Let us choose t’ E (t, t) such that R(t’) < xo and

(5.36) O(R(t’), t) < O, t e (t, ti).
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Now we prove that the conditions (3.13), (5.35), (5.36) imply a contradiction,
which means that the assumption (5.32) is not admissible. Using the estimate (3.13)
we test the heat conduction equation for the function by (x-R(t’)) over the domain

+ < < < x < R(t’)},

Due to the condition (5.36) the third integral is strictly negative. The second integral
I25 can be estimated with the help of the Stefan condition

Ox(R(t) + O, t) Ox(R(t) O, t) Lt(t) >_ -Ll(t),

and hence

L
(R(t’) R(ti + 5))2.I2 <_ L(t)(R(t’) R(t))dt -+5

One can estimate the first integral I in the identity (5.37) by using the inequality
(.3),

(5.39)
r L

(R(t’) R(ti))2lim I O(x, t)(x- R(t’))dx < --5--*0 d R(t

Therefore, letting 5 --* 0 in the identity (5.37), we obtain the contradiction

L
(R(t’) R(ti))2

L
0 - -(R(t’) R(ti))2 > 0.

So the converse of condition (5.32) is valid:

(5.40) O(x, t) > -L, x e (R(t + 0), 1).

Since the set M is simply connected, (5.40) implies M N {t >_ t} 0. Then the
statement of Lemma 9 yields t cx. Thus there exists at most one interval (t, t), i E
I such that t > 0. If we denote :-- t > 0, then because of the properties (3.13) and
(5.40), we obtain the validity of the inequalities (5.2) and (5.5) from the statement of
Theorem 4.

In order to complete the proof of Theorem 4, we need only to prove the inequality
(5.4). Note that, by the definition of the weak solution for the problem (A), the
function U (see the formulation of the weak solution of the problem (A0)) solves the
heat conduction equation

Ut-U=O

in the domain
{(,t)" 0 < t < t,, x e (R(-0),R(+ 0))}.
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Here we have used the monotonicity of the function R on the interval (0, t.). Therefore

lim U(x, t) lim U(x, t), x e (R(- 0), R(T 0)),
t-,-0 t--+0

and

(5.41) 0(x,- 0) + L 0(x, + 0), x E (R(- 0), R(+ 0)).

From 0(x,t) <_ 0 for x (O,R(t)), t >_ O, we deduce O(x,4-0) _< 0, which
together with (5.41) implies the inequality (5.4). The proof of Theorem 4 is now
complete. [:]

COROLLARY 4. If We replace the condition (2.10) by

(5.42) 0(t)_<0, -L <_ t?l(t) _< 0 t>_0, 00(x) <_0, xG (0,1),

then under the condition (5.1) the statement of Theorem 4 also is valid.
But the lifetime of the solution might be finite in this case, since the moving

boundary can touch the fixed one, x 1. This setup of the problem is simpler,
because of 0e <_ 0, 0 <_ 0 in QT and the functions Re, R are nondecreasing over
the whole interval (0, T). The conditions (5.42) also describe the one-phase initial-
boundary data:

O(t) O, -L <_ 01(t) <_ O, t >_ 0;

00( ) 0, x e [0, R0]; Oo(x) < o, x e [Ro,

It is obvious to see that after the jump of the free boundary, the solution becomes
two-phase.

COROLLARY 5. The results of Theorem 4 can be proved also for the problem (A)
with Neuman boundary conditions

Ox(i, t) fi(t), O < t < T, i=0,1,

where in addition to the conditions of Theorem 4 we need the inequalities

fi(t)>_O, 0<t<T, i=0,1.

The last condition makes sure that the temperature is nonpositive in the solid phase,
and a new critical set {0 < -L) does not appear at the right boundary of the interval
x 1. However, similar to Corollary 4, we are able to study our solution only until
the moving boundary touches the fixed one.

COROLLARY 6. One can make the condition (5.1) less restrictive by introducing
a finite number N of connected pieces of the set {x" Oo(x) < -L}. Then there exist
at most N values ti [0,T], 1,...,M, M <_ N such that

sup I(t)l <_ C(5) for every 5 > 0, 0,... ,M,
tE(t+5,t+l--5)

R(ti + O) >_ R(ti 0), i= 1,. .,M 1,

0(x, ti O) <_ -L, x e (R(ti 0), R(ti + 0)), i 1,..., M,

where to 0, tM+l T.
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6. Conclusion. We have studied the qualitative properties of the regular solu-
tions of the problem (A). As follows from Theorem 4, the size of the jump of the
free boundary is uniquely determined by the values of the temperature. Namely, the
free boundary jumps exactly over the interval where 0

_
-L. Please note that the

arbitrary weak solution of the problem (A) does not have the previous property: The
size of the jump can be anything. This fact implies, in particular, the nonuniqueness of
the weak solution of the problem (A0) (see, for example, [7]). Therefore the remaining
open question is the uniqueness of a regular solution of the problem (A). It seems to
be that the main difficulty of this task is to prove the uniqueness of a regular solution
after the jump of the free boundary, i.e., with the following initial data at t -:

(x, + 0) O(x), x E (0, 1),
e c([o, + o)]), O(x) < o, 0 < x < + 0),
e C([R(+ 0), 11), (x) >_ -L, R(--t-0) <_ x _< 1,

lim (x) -n, lim (x) 0.
x-,R(+o)+o x-,R(+o) o

The one-phase Stefan problem of this type was investigated by Fasano and Prim-
icerio [2]. By using the maximum principle they proved the uniqueness of the solution.
Unfortunately this method does not work for the two-phase problem.
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DRIFT-DIFFUSION SEMICONDUCTOR DEVICE EQUATIONS*

FATIHA ALABAUt
Abstract. We consider the one-dimensional drift-diffusion semiconductor device equations,

under the assumption of zero generation-recombination. The uniqueness theorems that are given in
the literature for this system do not hold for large values of the applied bias. The purpose of this
paper is to introduce new techniques, which allow us to prove uniqueness theorems, in the case of
symmetric p-n and p-i-n junctions, which are valid for arbitrary values of the applied bias. These
techniques are essentially based on new monotonicity principles. As a direct consequence of these
principles, we prove that the voltage-current characteristic of a symmetric p-n or p-i-n junction is
strictly increasing.

Key words, nonlinear system, elliptic, semiconductor, uniqueness

AMS subject classifications. 35G30, 35J25, 35B50

1. Introduction. In this paper we consider the uniqueness and the qualitative
behavior of solutions of a system of differential equations that arises in the physics
of semiconductor devices. This system, derived by Van Roosbroeck [16], forms a
one-dimensional parameter-dependent system.

Under scaled form (see [11], [1]), the equations we consider are

(1.1) e" n p N,

(1.2) n’ n’ + Jn,

(1.3) p’ -pC’ Jp,

in D -] 1, 1[. This system is assumed to satisfy the boundary conditions

(1.4) (-1)-- @-1, @(1)-1,

(1.5) n(-1)--n-l, n(1)-nl,

where +1, n+l, P+/-I are given by

(1.7) Cx !og IN(x) + v/N2(x) + 454 I x=+l,

+ v/N (z) +(1.8) nx 2
x :1:1,
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-N(x) + v/N2(x)+ 464
(1.9) px--

2
x--+l.

System (1.1)-(1.6) models the transport of electrons and holes in a semiconductor
device under the effect of a parameter V, which acts on the device only through the
boundary condition (1.4). Our model assumes that the mobilities are constant and
that there are no generation-recombination effects. This last assumption (which is
not physically realistic under strong forward bias) implies that the unknown electron
and hole current densities are constant. We use this property throughout this paper,
so that our results do not apply (at least directly) to the case of nonzero generation-
recombination. The purpose of this paper is to derive qualitative new results on this
simplified model, rather than to consider a more complex one. We shall discuss in

4 how these results can be extended to more complex models, in particular to the
case of small generation-recombination terms. The unknowns are the functions , n,
p and the numbers Jn, Jp, which represent, respectively, the electrostatic potential,
the electron and hole densities, and the electron and hole current densities. The given
function N is called the doping profile. The number is a small positive constant,
-U(-1) and -U(1) are the voltages applied at the endpoints of , and 5 is a positive
number.

The parameter of interest in our study is

(1.10) V--U(1)-U(-1);

this is called the applied bias and it will be allowed to take values in all IR, whereas
and are kept fixed.
To express clearly that (1.1)-(1.6) is solved for a given V, we will refer to this

system, when necessary, by the notation (1.1)-(1.6)y.
Man results that concern the existence of solutions of the steady-state semi-

conductor device equations, (under a more general form than (1.1)-(1.6)), have been
proved (see, e.g.,[13], [11], [8], [19]). In particular, for all strictly positive numbers
and 5, for all V in IR, and for all piecewise-smooth functions N, (1.1)-(1.6)y admits
at least one solution

(1.11) (, n,p, Jn, Jp) E (Hi(D))3 x IR2o

Moreover, every solution (, n,p, Jn, Jp) that satisfies (1.11) satisfies n > 0 and p > 0
on

The situation is wide open (see, e.g., [12], [18], [7]) as far as uniqueness or mul-
tiplicity of the solutions of the steady-state semiconductor device equations is con-
cerned, even in the one-dimensional case. Moreover, the voltage-current curve (or
characteristic) of the device that expresses the unknown current

(1.12) I= Jn + Jp,

in terms of the applied bias, and that describes the electrical behavior of the semi-
conductor device, is of primary interest for the device engineers.

The purpose of our paper is to introduce new tools for considering the problem
of uniqueness of solutions of (1.1)-(1.6)y for arbitrary values of V, and for studying
the behavior of the voltage-current characteristic.

We first remark that, for physical reasons, the solution is not, in general, unique
(see [12], [17], and [20] for numerical examples of multiplicity). Actually, the physical
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performances of certain devices, like, for instance, thyristors, are explicitly based on
the existence of multiple steady-state solutions. However, in multidimensional cases,
uniqueness of solutions, holds for sufficiently small IV], uniformly with respect to
the doping profile N (see [13], [11], and the references therein, [9], and see also the
recent paper [14], which treats the case of weak solutions). Hence, it is important
to distinguish between the case of small IVI (that is close to equilibrium) for which
uniqueness holds uniformly with respect to the doping profile N, and the case of
nonsmall IVI, for which it is known, but not proved, that uniqueness does not hold
uniformly with respect to the doping profile (see [18]). Therefore, uniqueness results
for arbitrary V can be obtained only under additional assumptions on the doping
profile N.

The methods used for proving uniqueness for small IVI, in the above-mentioned
papers, and in [6] are essentially based on a perturbation argument for small IVI (or
small A as in [6]), either based on a monotonicity property of the second member
of the equation (1.1) with respect to (when n and p are defined as functions of
through the continuity equations (1.2),(1.3) and the boundary conditions (1.5),(1.6)),
or on a contraction property (as in [9]). This means that, for small IVI, the nonlinear
system formed by the semiconductor equations is weakly coupled (see [12]). This is
no longer true for arbitrary V. Therefore, one has to find other, techniques, not only
to get uniqueness results for arbitrary V, but also to find under which hypotheses on
the doping profile N such uniqueness results hold.

One of the goals of this paper is to introduce new arguments for proving such
uniqueness results. To formulate our results, we first recall here some basic definitions
concerning semiconductor devices. The semiconductor is said to be symmetric when
N is odd. A region where N is > 0 (resp., < 0) is called an u-region (resp., p-region).
A region where N 0 is called an i-region. The number of sign alterations of the
doping profile N characterizes the type of the semiconductor. For a pn-junction, N
has only one alteration of sign in the device. For a p-i-n junction, N has only one
alteration of sign, but it is equal to zero in the i-region. The junction is said to be
abrupt (resp., smooth) when N is discontinuous (resp., continuous) at the point where
it changes its sign.

The purpose of this paper is threefold. First, we identify general a priori con-
ditions on the solutions of (1.1)-(1.6) (see (2.2) and (2.3)), which are sufficient for
proving global uniqueness theorems. This is done by introducing and proving some
new monotonicity principles. More precisely, under the above-mentioned conditions
on the solutions of (1.1)-(1.6), and when N is odd and satisfies additional hypotheses
depending on the polarisation (i.e., on the sign of V) of the device, we show that the
electric field _t satisfies a local and a global monotonicity property with respect to
the current I. Whenever these monotonicity properties hold, we prove that (1.1)-(1.6)
has a unique solution. We also give (in Remark 2.7), a physical interpretation of the
above-mentioned conditions.

Second, we prove that these conditions are satisfied under additional assumptions
on the doping profile N and for arbitrary large values of IVI. This allows us to prove
that (1.1)-(1.6)v has a unique solution for all V _< 0 (i.e., in the reverse-biased case)
when N satisfies one of the following two hypotheses.

(i) N is odd and is in C1(), 0

_
N on (which is an example of smooth

pn or p-i-n junction);
(ii) N is odd, N 1 on [0, 1] (which is an example of abrupt pn-junction),
and for all V >_ V0 Vo(5, e) > 0 (i.e., in the forward-biased case) when (ii)
holds.
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The doping profiles N satisfying (i) or (ii) have at most one alteration of sign. There-
fore our results partially answer the conjecture formulated by Mock [12] and by Ru-
binstein [17], which predicts that, when N has at most two alterations of sign in the
device, then (1.1)-(1.6)y has a unique solution for all V.

Third, it is well known that numerical simulations and physical experiments pre-
dict that the voltage-current curve of a pn-junction is a strictly increasing function
of V. We establish that this property is a direct consequence of the new monotonic-
ity principles introduced in this paper and prove it for the devices described above.
This is, to our knowledge, the first proof of a result which was known from numerical
simulations, but was not demonstrated rigorously.

Furthermore, our results have obvious direct applications to current-driven mod-
els (see [10]), for which the current is assumed to be given, whereas the bias is an
unknown.

The results of the present paper generalize our previous papers [4], [5] in the
following sense. In [4], we consider two different types of devices, namely, bipolar
membranes and unipolar (or single carrier) devices. In this last case only one type
of charges (for instance, electrons) is transported through the device. Hence in the
unipolar case, the system (1.1)-(1.6)y reduces to a system of two equations (derived
from (1.1)-(1.6)y, by setting one of the concentrations n or p equal to zero). For
this case we prove global uniqueness of solutions for arbitrary V and for arbitrary
doping profiles N. For the bipolar membrane case, one has to consider the full system
(1.1)-(1.3). Of course, as is explained above, uniqueness of solutions of this full
system for arbitrary V does not hold for arbitrary doping profiles N. In [4], we obtain
uniqueness results in the case of bipolar membranes, for arbitrary large IVI, under
the strong assumption of a zero doping profile N. The technique used in [4] is based
on a decoupling method, which is valid whenever the doping profile N is piecewise
constant. However, to obtain uniqueness results, we apply a maximum principle that
for technical reasons is directly applicable only for a zero doping profile N. This
argument is no longer applicable directly for a nonzero doping profile N. In [5], we
obtained a first result for an example of nonzero odd doping profile (namely, N(x)
sign(x)). In [5] we use the decoupling method introduced in [4]. However, because
of the technical difficulties generated by the presence of a nonzero doping profile, we
need to apply a maximum principle on the first derivative of a function satisfying
a true third-order differential equation (see Remark 2.6 in the present paper). As
a consequence, we only prove in [5] a local uniqueness theorem for the solutions of
the symmetrized version of system (1.1)-(1.6)y (which is the system derived from
(1.1)-(1.6)v by only considering the symmetric solutions) when V <_ 0. In the present
paper, we introduce a new decoupling method, which is valid even if the doping profile
is not piecewise constant, but only in the case of symmetric (see Definition 1.2 in this
paper) solutions. As a consequence of this new decoupling, we prove more general
results, and in particular that (1.1)-(1.6)y has a unique solution (which is, of course,
necessarily symmetric) under the above given assumptions on N and V. We also
prove the monotonicity of the voltage-current curve in the cases given above.

Note here that the present results do not apply to the bipolar membrane case,
which is under consideration in [4]. In this last case there is no symmetry assumption
because of the boundary conditions for the bipolar membranes, which are slightly
different from the boundary conditions for semiconductors.

Note also that the local monotonicity property mentioned in this paper has indeed
been.-introduced in an informal way in [5].
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The paper is organized as follows. Section 2 is devoted to the reverse biased
case. In 2.1 we derive, for general symmetric devices, sufficient a priori conditions
on the solutions for proving uniqueness and monotonicity of the current. In 2.2 we
give applications of these results to symmetric smooth and abrupt pn-junctions. In
3 we study the forward-biased case. In 3.1 we give a priori sufficient conditions on
the solutions for proving uniqueness of solutions and monotonicity of the current in
the case of abrupt pn-junctions. In 3.2 we prove that these a priori conditions are
satisfied for strong forward biases.

Throughout this paper solutions of (1.1)-(1.6)y will always be assumed to sat-
isfy (1.11).

We assume from now on that the semiconductor device is symmetric (see [4]
and [3] for nonsymmetric devices). This assumption gives the following important
remarks.

Remark 1.1. Let (,n,p, Jn, Jp) be a solution of (1.1)-(1.6). We define the
corresponding symmetrized vector (8, n8, pS, jns, j) in (H (ft))3 ]R2 by

(1.13)

(1.14) Jns Jp, J; Jn.

Then it is easy to check that (8,nS,pS, J, J;) is also a solution of (1.1)-(1.6).
DEFINITION 1.2. A solution of (1.1)-(1.6) is said to be symmetric/f it coincides

with its symmetrized vector.
Remark 1.3. We deduce from Remark 1.1 that if (1.1)-(1.6) has a nonsymmetric

solution then it has multiple solutions.

2. Reverse-biased symmetric semiconductor devices. A symmetric semi-
conductor is said to be reverse-biased when N(1)V < 0. It is at equilibrium when
V 0. To fix the sign of V in the reverse-biased case, we assume, without loss of
generality, within this section that

(2.1) 0 < N(1).

We set D+ (0, 1).

2.1. Sufficient conditions for proving uniqueness of solutions and mono-
tonicity of the current.

THEOREM 2.1. Assume that NI-+ E CI(+) and let V

_
0 be such that the

following two hypotheses are verified.
(i) All solutions (,n,p, Jn, Jp) of (1.1)-(l:6)y are such that

(2.2) I’(x) _< 0 Vx E +,
where I is given by (1.12).

(ii) There exists a symmetric solution (, n,p, Jn, Jp) of (1.1)-(1.6)y that is such
that

o < p)(x) Vx e
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Then (1.1)-(1.6)y has a unique solution satisfying (1.11).
The proof is divided in two steps. We first prove that under hypothesis (i) of

Theorem 2.1 all solutions of (1.1)-(1.6)y are symmetric. We then prove uniqueness
in the class of symmetric solutions. These two results are independent, so that we

give them separately. Let us first give the result of symmetry.
THEOREM 2.2. Assume that NI-+ e C1(+) and let V <_ 0 be such that there

exists a solution (, 5,p, Jn, Jp) of (1.1)-(1.6)y satisfying (2.2). Then this solution is

symmetric.
Proof. We set

I- Jn + Jp, J-- Jn-- Jp,

(x) (x), (z) (z), (x) p(x) w e

and

() -(-), .() p(-z), p() (-) Vx e +.
Then (, n,p, in, ]p) and (, ,, ]p, in) are both solutions of (1.1)-(1.3) on

Because of Remark 1.1, we can assume without loss of generality that

(2.4) J <_ 0.

Let us first assume that V < 0. Since (2.1) holds, we have

(e.) < o.

From (1.1)-(1.3), we obtain

4(rip 5)’ -2Ie( )" + 2J(n + p + t + ) on

From (2.4) and since (#, ,i) is in Cl() x (C())2, we deduce that

4(rip- t) <_ -2Ie( )’ on

Since (,n,p, in, ]p) and (, ,i5, ]p, in) are solutions of (1.1)-(1.3), we obtain

(

We now replace in this last equation n + p by ((n p)2 + 4up) 1/2, do the same thing
for + i5, and use (2.2) and (2.5), (2.6) to obtain

(2.7) e( )(3)

where a is a smooth function on t+ and where a0 is given by

ao +i5- n+p++

From (2.2), it follows that

a0 > 0 on F+.
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Since (2.6) holds, we have

0 < ( )’(1).

However, we also have (- )’(0) 0, so that the maximum principle (see [15])
applied to (2.7) implies

(2.8) 0

Since

((n fi) exp (-))’ fiexp (-)( )’ + Jexp (-),

we obtain

(n )(x) _< -J exp((x)) exp(-(t))dt Vx in

From (2.2) and (2.4)-(2.5), we deduce that

(n- fi)(x) _< -J(1 x) Vx e

By following a similar argument for (p-/5), we obtain

(- )" N 0 in

This together with (2.8) implies that 05 on f+. The equations n gt, p 15, and
J 0 follow at once. This proves the theorem when V < 0. If V 0, we remark that
inequality (2.7) becomes an equality, so that the same conclusion holds.

This concludes the proof.
We now prove uniqueness in the class of symmetric solutions under weaker hy-

potheses than those of Theorem 2.1.
THEOREM 2.3. Assume that NI-+ i1(+) and let V <_ 0 be such that there

exists a symmetric solution (,n,p, Jn, Jp) of (1.1)-(1.6)v satisfying (2.2) and (2.3).
Then, the problem (1.1)-(1.6)v has a unique symmetric solution satisfying (1.11).

Proof. Assume first that V < 0 and let (, , i5, Jn, Jp) be another symmetric
solution of (1.1)-(1.6)v.

We set

I=Jn+Jp, [= + p

As in the proof of Theorem 2.2, we replace n + p by ((n- p)2 + 4np)1/2
finally, we obtain

(2.9) e( )(3) ( )"bl + 4’
n+p+ +(uP-

+ )’ + i on

so that,

where bl is a smooth function on
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Since J 0, we have

(2.10) 4(up )’ -2I(n p) / 2i( -/5) on fl+.

Let M be a primitive of N and x0 be an arbitrary point of gt+. Integration of (2.10)
yields

(2.11) 4(np- )(x) -2(I- i)(e’(x) + M(x) (b’(xo) + M(xo)))
-21( )’(x) + 21( )’(xo)
+4(np fiiS)(xo) Vx E f+.

We use this last equality in (2.9) to obtain

(2.12)
( )(3)(x) ( )"(x)bl (x) + ( )’(x)bo(x)

2’(x)+(I I)(1 (n + p + t + iS)(x)
(’(x) + M(x)

(’(xo)+ M(xo))))
’() + Vx+ (n + p + + \ ]

where bo is given by

bo n+p++

Using (2.2) and the fact that I and [ have the same sign, we obtain

0 < bo on t+.
Note that we can assume, without loss of generality, that

(2.13) I- i <_ 0.

We claim that the following inequalities:

(2.14) 0 <_ ( )’(0) and 0 _< (p b)’(1)

hold. To prove this, we proceed as in [5, Lem. 3.3]. Assume to the contrary that we
have

0 > (p )’(0) or 0 > ( )’(1).

We set E {x e [0, 1], ( )’(x) 0}.
Let us first assume that (- )’(1) < 0 holds and let y* be the largest element

of E. Hence, we have

( )’ <_ 0 on [y*, 11 and ( )t(y,) 0.

From (2.13) and

(2.15) ((n ) exp(-))’ fi exp(-)( )’ + ((I [)/2)exp(-),
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we deduce that

0 _< n "5 on [y*, 1].

In a similar way, we obtain

0 <_ (p i5) on [y*, 1].

Now, however, (1.1) implies

(2.16) ( )" (n ’5) (p i5).

Hence, we obtain

0 _< ( )" on [y*, 1].

This contradicts the inequality (- )’(1) < 0. Therefore, we can now assume that
we have

(2.17) ( )’(0) < 0 and 0 _< ( )’(1).

Let x* be the smallest element of E. Hence, we have

( )’ <_ 0 on [0, x*] and ( )’(x*) 0.

From (2.15) and since (0) 0, we deduce that

(n- ’5)(x) _< (n- ’5)(0)exp((x)) Vx e [0,x*].

In a similar way, we obtain

-(p ih)(x) <_ -(p ih)(0)exp(-(x)) Vx e [0, x*].

From (2.16) and since

(n p)(0) (’5 5)(0) 0

holds, we obtain

(2.19) ( )"(x) <_ 2(n ’5)(0)sinh((x)) Vx e [0, x*].

We now set x 0 and x0 1 in (2.11) and use (2.18) to derive

4(n ’5)(0)(n + ’5)(0) 2(I I)(’(1) + M(1) (’(0) + M(0)))
(2.20) -2i( )’(0) + 2ie( )’(1).

From property (2.3) we deduce that the function ’ + M is increasing on gt+. Since
(2.5) (with I replaced by ]), (2.13), and (2.17) hold we deduce that

(2.21) (n- ’5)(0) <_ O.

Now from (2.5), (2.2) and (0) 0 we deduce that

0 <_ sinh((x)) Vx e [0, 1].
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Using this last inequality and (2.21) in (2.19), we obtain

(- )" < 0 on [0, x’l,

which contradicts (2.17).
Hence we proved inequality (2.14).
The function ’ / M is increasing on gt+. Thus, from the inequalities b0 > 0,

(2.2), (2.5), (2.13)-(2.14), and from the maximum principle applied to (2.12), we
conclude that

(2.22) 0 < (- )’ on +.
This proves the theorem when V < 0. Moreover, if V 0, then

I _, np nip1 on

so that we get to the same conclusion. Hence theorem 2.3 is proved.
Observe that Theorem 2.1 follows from Theorems 2.2 and 2.3.
Remark 2.4. We have proved and applied in the proof of Theorem 2.3 two new

monotonicity principles that are satisfied by the symmetric solutions of (1.1)-(l=6)y
in the reverse-biased case. Let and be the electrostatic potentials, I and I be
the two respective currents corresponding to. two symmetric solutions. Then the first
monotonicity principle expresses a local monotonicity property of the electric field
with respect to the current in the following sense.

If (2.2), (2.3) hold, then

I<_i 0<_(-)’(0) and 0<_(-)’(1).

The second monotonicity principle expresses a global monotonicity property of the
electric field with respect to the current in the following sense.

If (2.2), (2.3) hold, then

I <_ i and 0 _< 0 <_ (-)’(1) 0_< (-)’ on +.
Remark 2.5. It is important to remark that the proof of the global monotonicity

property mentioned in Remark 2.4 relies on a new decoupling method (compared to
the one introduced in [4] and [3]), which uses he properties of the symmetric solutions
of (1.1)-(1.6) and allows us to prove that ( )’ satisfies a second-order differential
equation, namely (2.12), which is decoupled from the equations satisfied by n- and
p-p.

Remark 2.6. When the doping profile is not necessarily odd but is piecewise-
constant, we have introduced in [3] a general decoupling method. One main difficulty
in this case is to justify a maximum principle on the derivative of the solution of a
third-order differential equation, for which the zero-order coefficient is not vanishing.
Our new decoupling method allows us to avoid this difficulty in the case of symmetric
devices.

Remark 2.7. The a priori properties (2.2) and (2.3) have a precise physical
meaning. The inequality (2.2) means that the current I and the electric field -flow in the same direction. The inequality (2.3) means that the electron density is
larger than the hole density. We will see in 2.2 that this property is always satisfied
when N has only one alteration of sign. Moreover, we can remark that we have
already used (2.2) in [5] to justify a generalized maximum principle (see [15]), which
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allowed us to prove that the symmetric solutions of (1.1)-(1.6) are locally unique (see
also [3] for the forward-biased case). The new decoupling technique introduced here
and (2.3) are fundamental for the proof of global uniqueness.

We now study the monotonicity of the voltage-current curve.
THEOREM 2.8. Assume that NI+

e Ci(-+) and let V and be such that

V < V <_ O. Assume moreover that there exists a symmetric solution (2, n,p, Jn, Jp)
(resp., (, ,, in, ip)) of (1.1)-(1.6)v (resp., (1.1)-(1.6)ff) satisfying (2.2) and (2.3).

Then the following property holds:

(2.23) I < ,
& + J, + 2,.

Proof. From the hypotheses and Theorem 2.3, we know that (1.1)-(1.6)v (resp.,
(1.1)-(1.6)ff) has a unique symmetric solution. We claim that (2.2a) holds. To the
contrary, assume that

(2.24) 0 <_ I- I.

As in the proof of Theorem 2.3, we show that if ( )’(0) <_ 0 and ( )’(1) _< 0
hold, then we have (- ) _< 0 on +, which contradicts the hypothesis V < .
Hence we have either 0 < (- )’(0) or 0 < (- )’(1).

Let us first assume that 0 < (b- )’(1). Then, we claim that (- )’ changes
sign on /+. Assume to the contrary that ( )’ keeps a constant sign on +. We
deduce then from (2.24) that

0<(-)’ one+.
From this, we get

2(1 I) cosh on ft+,

which contradicts (2.24).
Therefore (-)’ changes sign on t+. We now proceed as in the proof of Theorem

2.3. Let y* be the largest element of

x {x e )’(x) 0}.

We use the inequalities 0 <_ (- )’ on [y*, 1] and (2.24) in (2.15) to deduce that

(n-fi) _< 0 on [y*, 1].

In a similar way, we obtain

-(p i5) <_ 0 on [y*, 1].

Thus we have (.- )" <_ 0 on [y*, 1], which contradicts 0 < (- )’(1). Hence, we
proved that we have

(k )’(1) _< 0.

Assume now that 0 < (- )’(0), and let x* be the smallest element of X. Since we
have 0 _< (- )’ on [0, x*], we deduce that

2(n )(0) sinh (x) < (b )"(x) Vx e [0, x*].
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Now setting x 0 and x0 1 in (2.11), we obtain

0 < (n-

From (2.2) and (2.5), we obtain 0 < on Ft+. So that finally, we obtain

0 < (- )" on [0,x*],

which contradicts the inequality 0 < (- )’(0). Hence (2.24) is impossible, and this
concludes the proof.

2.2. Applications to reverse-biased symmetric pn-junctions. We gave in
the previous subsection sufficient a priori conditions, in the reverse-biased case, to be
satisfied by the solutions of (1.1)-(1.6) in order to prove uniqueness and monotonicity
of the current. We now give applications of these results.

THEOREM 2.9. Assume that NI-fi E 1() and that

0 < N’ on +.
Then for every V <_ O, (1.1)-(1.6)v has a unique solution. Moreover, the function

is continuous and strictly increasing.
Proof. Assume that Y _< 0 and let (2, n,p, Jn, Jp) be a solution of (1.1)-(1.6)y.

Since N is in C1(), we obtain

(2.25) (3) (n + p)’ + I- N’ on .
Moreover, we also have

(2.26) "(-1) =0, "(1) =0.

Since N(1)V < 0, we obtain I < 0. The maximum principle applied to (2.25) subject
to the Neumann boundary conditions (2.26) implies

0 _< ’ on

Hence (2.2) is satisfied for every V < 0 and for every solution of (1.1)-(1.6)y. We
deduce from Theorem 2.2 that for every V < 0, all the solutions of (1.1)-(1.6)y are
symmetric. Hence, we have

(2.27) e(n p)" (n p)(e,2 + n + p) N(n + p) on +,
and

p)(o) o, (n- p)(1)= N(1) >_ 0.

Since 0 < N on +, an easy application of the maximum principle to (2.27) proves
that n-p satisfies (2.3).

Theorems 2.3 and 2.8 prove that (1.1)-(1.6)v has a unique solution for every
V <_ 0 and that the current is a strictly increasing function of V on (-(x), 0]. We
deduce the continuity of the voltage-current curve from this uniqueness result and
from [11, Thm. 3.5.2].
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Remark 2.10. In the case of abrupt symmetric pn-junction, N is discontinuous
at 0, so that " is also discontinuous at 0. Hence (2.25) does not hold in all t and
information is lost at the junction x 0. This is the reason why it is not possible,
in this case, to proceed as in Theorem 2.9 for proving (2.2). However, using a result
of [6] on the qualitative properties of the solutions of (1.1)-(1.6) in the reverse-biased
case, we can prove the following theorem.

THEOREM 2.11. Assume that NI+
1. Then for every V

_
O, (1.1)-(1.6)y

has a unique solution. Moreover, the function
V E] cx,0] I E lR

is continuous and strictly increasing.
Proof. Since N(1)V <_ 0, we have I <_ 0. This together with ’[6, Prop. 10]

prove (2.2). Moreover, as in the proof of Theorem 2.9, (2.3) holds for every symmetric
solution. This concludes the proof.

Remark 2.12. Mock [13] and aubinstein [17] made the conjecture that (1.1)-
(1.6)y can have multiple solutions for certain values of V (indeed in the forward-biased
case) only when N has at least three alterations of sign in the device. As a "corollary"
of this conjecture, uniqueness should hold for pn-junctions. Theorems 2.9 and 2.11
partially, answer this conjecture. Moreover the fact that N has only one alteration of
sign in the above-mentioned theorems is essential for proving inequality (2.3).

Remark 2.13. In addition to Remark 2.7, we can note that inequality (2.3)
expresses, in the case of pn-junctions, the following physical property: in an n-type
region of the device (that is, in a regioa where N > 0) the electron density is larger
than the hole density.

3. Forward-biased symmetric abrupt pn-junctions. A symmetric semicon-
ductor is said to be forward-biased when 0 < N(1)V.

It is well known that the semiconductor behaves very differently in reverse and
forward-biased cases. We will see now that this last case generates several difficulties.
First, it is easy to check that property (2.2) does not hold for all V > 0. On the other
hand, we will see in this section that even when (2.2) holds, the proofs of theorems
similar to Theorems 2.3, 2.8, and 2.11 require important changes, due to the fact
that the electric field has an opposite direction compared to the one it has in the
reverse-biased case.

3.1. Sufficient conditions for proving uniqueness of the solutions and
monotonicity of the current.

THEOREM 3.1. Assume that

(3.1) NI+
1,

and let V > 0 be such that hypothesis (i) of Theorem 2.1 holds. Then (1.1)-(1.6)y
has a unique solution.

We first prove, as in the reverse-biased case, the following result of symmetry,
whose proof (similar to that of Theorem 2.2) is left to the reader.

THEOREM 3.2. Assume that NI-5+ C(+) and let V > 0 be such that there

exists a solution ((, ,p, ]n, ]p) of (1.1)-(1.6)v satisfying (2.2). Then this solution is
symmetric.

We now prove uniqueness in the class of symmetric solutions under a stronger
assumption on N.
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THEOREM 3.3. Assume that (3.1) holds and let V > 0 be such that every symmet-
ric solution of (1.1)-(1.6)y satisfies (2.2). Then (1.1)-(1.6)y has a unique symmetric
solution.

Proof. Let (, n,p, Jn, Jp) and (, ,i5, 0n, 0p) be two symmetric solutions of (1.1)-
(1.6)y. We set

= j + J,, I= J + J,.

We can assume without loss of generality that (2.13) holds. As for the reverse-biased
case in Theorem 2.3, this implies that

(3.2) 0 <_ ( )’(0) and 0 _< ( )’(1).

We claim that

0 _< (- )’ on +.
Assume to the contrary that (- )1 has a strictly negative minimum at Yo in
Equation (2.12) is still satisfied, but M(x) is now equal to x for all x in t+ (since (3.1)
holds). Moreover, from (2.2) we deduce that bo > 0. We now choose xo Yo in (2.12).
We deduce from the maximum principle applied to (2.12) that

(3.3) 2ie( )’(Yo) + 4(np- ih)(yo) < 0.

On the other hand, there exists two unknown constants a and & such that

n+p=- ++c
t2

and

Hence we have, since hypothesis (i) of theorem 2.1, 0 < I and (3.2) hold,

(3.4) 0 < a & -(/2)( )’(1)( + )’(1).

Since (3.1) holds, any symmetric solution of (1.1)-(1.6)y satisfies (2.3). So we can

replace n-p by ((n + p)2 4up)1/2. We do the same thing for fi- i5; this leads to

(3.5) (n p + t 5)( )"(x)
( )I(X)Cl(X) + (t +p+ + #)(X) (( )(X) + a O)
+2(I- i)(e’(X) + X- (’(Y0) + Y0))
(2[( )’(Y0) + 4(up fi5)(y0) on +,
\ ]

where Cl is a smooth function on t+.
Now assume first that

o < ( )’(0).

Then (- ) attains a strictly positive maximum at a point x* E (0, Yo). However,
we obtain a contradiction by applying the maximum principle to (3.5) and using (2.3)
and (3.3)-(3.4). Hence we proved that

( )’(0) =0,
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which implies

0 < (n-
We now choose x0 0 in (2.12) and apply the maximum principle once again to this
equation. This leads to

0 < (- )’ on fi+,
which contradicts the assumption that ( )’ has a strictly negative minimum on

fl+. This proves that

0 <_ (- )’ on +,
and concludes the proof.

Remark 3.4. In the forward-biased case, the current I is positive. Hence if (2.2)
holds, the electric field is positive on t+ (whereas it is negative in the reverse-biased
case). This explains why we cannot conclude directly in the proof of Theorem 3.3
that 0 < ( )’ on Ft+ (as we did in the proof of Theorem 2.3), and why we have
to use in addition a maximum principle argument on - . This is also the reason
why Theorem 3.3 requires N to satisfy (3.1).

We now study the monotonicity of the current.
THEOREM 3.5. Assume that (3.1) holds and let V and (d be such that 0 < V < gal.

Assume moreover that every symmetric solution (2, n, p, Jn, Jp) resp., (, , i5, Jn, Jp))
of (1.1)-(1.6)y (resp., (1.1)-(1.6),) satisfies (2.2). Then the following property holds:

(3.6) I < i,

where

Proof. We deduce from the hypotheses and from Theorem 3.3 that (1.1)-(1.6)y
(resp., (1.1)-(1.6)) has a unique symmetric solution.

As in the proof of Theorem 2.8, we claim that (3.6) holds. To the contrary, assume
that

(3.7) 0 <_ I- i.

We first prove that if we have

(3.8) (- )’(0) < 0 and (- )’(1) < 0,

then (- )’ <_ 0 on fl+.
Hence assume that (3.8) holds; then if (-)’ attains a stictly positive maximum

at y0 E t+, we deduce, as in the proof of Theorem 3.3, that

0 < 2I( )’(Y0) + 4(rip fi/5)(y0).

By using a maximum principle on .- on (0, y0), we prove as in the proof of
Theorem 3.3 that we have a contradiction. Thus we get

(- )’ < o on

which contradicts V < .
Hence we have either 0 < (- )’(0) or 0 < (- )’(1). We conclude as in the

Proof of theorem 2.8 that this case also leads to a contradiction.
Therefore (3.7) is satisfied, and this completes the proof.
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3.2. Application to strongly forward-biased symmetric abrupt pn-junc-
tions. We prove in this subsection that the hypotheses of Theorem 3.1 are satisfied
for strongly forward-biased pn-junctions.

THEOREM 3.6. Assume that (3.1) holds. Then there exists Vo Vo(5, ) > 0 such
that for all V >_ Vo, (1.1)-(1.6)y has a unique solution.

Moreover, the function

V E IV0, +x) - I e IR

is continuous and strictly increasing.
From Theorems 3.2, 3.3, and 3.5, it is sufficient to find for which values of V

every solution of (1.1)-(1.6)y satisfies (2.2). As has already been mentioned at the
beginning of this section, this property does not hold for all V > 0.

However, we will see that this property holds asymptotically; that is, for suffi-
ciently large V. Since the proof is very technical, it is divided into some lemmas.

LEMMA 3.7. For all V satisfying

(3.9) V>log(1+x/1+454)2(2 (nl + pl)2’

every solution (, n,p, Jn, Jp) of (1.1)-(1.6)v satisfies

(3.10) ’(-1) < 0 and ’(1) < 0.

Proof. First, it is easy to check that V > 0 implies I > 0. Assume from now on
that

(3.11) V>log(1+v/1-454)252

and let us introduce as in [6] the functions

re(x) min(n(x), p(x) 1), M(x) max(n(x),P(x)- 1) Vx e [-1,0l,

h,(x) min(n(x) 1,p(x)), (x) max(n(x) 1,p(x)) Vx e [0, 1].

One can easily check that [6, 3, Prop. 21 still holds, so that m (resp., rh) has no
minima in (-1, 0) (resp., (0, 1)) and M (resp., M) has no maxima in (-1, 0) (resp.,
(0, 1)).

Several cases are now possible:
(i) 0 <_ ’(-1) and 0 <_ ’(1),
(ii) 0 > ’(-1) and 0 <_ 9’(1),
(iii) 0 _< ’(-1) and 0 > ’(1),
(iv) 0 > ’(-1) and 0 > ’(1).

Let us first assume that

(3.12) 0 <_ ’(-1).

From I > 0 and (3.12) we deduce that m p- 1 and M n in a right neighborhood
of-1. Therefore m is decreasing and M is increasing on (-1,
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We claim that does not vanish on (-1, 0]. Thus, assume that ’ vanishes on

(-1, 0] and let xo be the smallest element of the set

e 0], 0}.

Then there exists x* e (-1, Xo) such that n’(x*) p’(x*) O. This implies that
n < 0 in a left neighborhood of x* (x* being excepted), but this contradicts the fact
that M is increasing on (-1, 0).

Therefore, if (3.12) holds, then

0 < "(x) w e 0].

In the same way, we prove that

(3.14) 0 _< ’(1),

implies

(3.15) "(x) < 0 Vx e [0, 1).

Hence if case (i) holds, we obtain (-1) < (1), which contradicts (3.11). Thus, case
(i) is impossible.

Let us now examine case (ii). We set

(3.16) J Jn- Jp.

From (1.2), (1.3), we obtain

(3.17) 2(up)’ -I(n p) + J(n + p).

We claim that J > 0. Thus, assume that J <_ 0o
Then, we have 2(np)’ _< -I(n- p). Integration of this inequality from -1 to 0

and from 0 to 1 leads to ’(1) < ’(-1), which contradicts assumption (ii).
Hence J > 0 holds. Let now x0 be the largest element of the set

{x e (-, 0), ’() 0},

which is not empty since (3.15) holds. The maximum principle applied, on the interval
[-1,xo], to the equation

(3.18) (3) (n + p)’ + I,

subject to Dirichlet boundary conditions at -1 and x0, leads to

(3.19) ’<0 on [-1, xo).

Hence, has a minimum at x x0. We now apply the maximum principle, on the
interval [-1, xo], to the equation

(4) (n + p + ,2),, ,2 + j,,

subject to Dirichlet boundary conditions at -1 and xo.
This yields 0 < " on (-1, x0). Clearly, from (3.18) and from the definition of

Xo, we obtain

0 _< "(x0) < "(x) _< "(0-) on (Xo, 0],
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I < (n- p)’ on [0, 1].

Integration of this last inequality from 0 to 1 leads to "(0-) <_ 2- I, so that we
have

(3.20) 0 < I < 2.

From "(-1) 0 and 0 <_ " on [-1, x0], we deduce that 0 < (n- p)’(-1).
This, together with the right-hand side of (3.20), implies

2
(3.21) < ’(-1) < 0.

nl +pl

On the other hand, integration of the equation (n+p)’ (n-p)’ + J on the intervals
[-1, 0] and [0, 1], and elimination of the unknown constants, gives

(3.22) 2(0) 2J -4- (’(1) + ’(-1))(’(1) ’(-1)).

Using (3.20), (3.21) and J > 0 in this last equation, we obtain

(nl -t-pl)2
< (0).

Since (3.11) and 0 < ’ on [0, 1) hold, we obtain

V<log(1+x/i+464)22 (n + pl)2"

Hence, if (3.9) holds, then case (ii)is impossible.
Since case (iii) can be treated in a similar way, the proof of Lemma 3.7 is complete.
Assume now that (3.9) is satisfied, so that (3.10) holds. Then we have either

’(0)<_0 or ’(0)>0.

If ’(0) < 0, we conclude, from the maximum principle, that ’ < 0 on [-1, 1],
and (2.2) follows at once.

Therefore, the only case left is when (3.10) and 0 < b(0) are satisfied. Let us
examine this final case.

LEMMA 3.8. Assume that Y satisfies (3.9) and let (, n,p, Jn, Jp) be a solution

of (1.1)-(1.6)y, which is such that 0 < ’(0) and

(3.23) 0 _< J,

where J is given by (3.16).
Then the following properties are satisfied:

(3.24) 0 < " on [-1, 0],

(3.25) 0 >_ " on [0, 1].
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Moreover, there exists a constant

V* V*(5,e) > log11+ v/1+ 454 )22

such that for all V >_ V*, we have

(3.26) 0 < n’(1).

(rtl + pl)2’

Proof. From (3.23), we deduce (3.24) as in the proof of lemma 3.7. Now, since

(n+p)’(-1)=-’(-1)+J,

we have 0 < (n + p)’(-1). From this and the inequality 0 < (n- p)’(-1), we deduce
that 0 < n’(-1), which, together with (3.24), implies

(3.27) 0 < n’ on [-1, 0].

On the other hand, (3.17) and (3.23) imply ’(-1) <_ ’(1), which in turn yields
0 < (n- p)’(1). This proves that rh n- 1 and M p in a left neighborhood of 1.
One of the following two cases can now occur:

(3.28) 0 _< p’(1)

or

(3.29) 0 > p’(1).

Assume first that (3.28) holds. Thus, (3.26) is satisfied. Since rh has no minima in
(0, 1), rh is increasing on (0, 1).

Now let Y0 be the smallest element of {x e (0, 1), ’(x) 0} and assume that the
set Y {x e (Y0, 1), "(x) 0} is not empty. We call Yl the largest element of Y.
Then, has a strictly negative minimum on (yl,

Moreover, we have

0<’(1)+J<_’(x)+J<_’(y)+J Vxe[y,l].

From the maximum principle applied on the interval [yl, 1] to the equation

(3.30) (4) (n + p + ,2)9,, + ,(, + j),

subject to homogeneous Dirichlet boundary conditions, we obtain a contradiction.
Hence we have Y ), and therefore (3.25) is satisfied.

Assume now that (3.29) holds. Since we have M’(1) p’(1) < 0 and since M has
no maxima on (0, 1), M is decreasing on [0, 1].

We claim that the set Z {x e (Y0, 1], "(x) > 0} is empty. Thus assume that
this set is not empty and let Y2 be the first point of (Y0, 1], starting from x 1, where

vanishes by changing its sign.
Since M p on [y2,1], we havep’(y2) <_ O. Moreover M n- 1 on a left

neighborhood of Y2, so that we have n(y2) <_ 0. From this, we deduce

’(Y2) + J (n + p)’ (Y2) <_ 0.
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On the other hand we deduce from the definition of y0 that "(Yo) <_ O.
Now let Y3 be the first point, starting from x Y2, where " vanishes by changing

its sign. Then " has a strictly positive maximum on (y3, y2). This contradicts the
maximum principle, applied on the interval [Y3, Y2], to (3.30).

Hence Z-- 0, so that (3.25) holds. We deduce from (3.24) and (3.25) that

b’(1) + ’(-1) _< 2(1),

which together with the inequality ’(- 1) <_ ’(1) implies

(3.31) ’(-1) <log( 1 + v/1 + 454)252
V.

This, together with the inequality 0 < (n- p)’(-1), gives

252 (nl + pl) < I.

In addition, since 0 <_ J holds, we obtain

252 (n + p) < 2.J.

Since (3.27) holds, we have n_ _< n(0). Moreover, since (3.29) and (3.25) hold, we
have

p’ < 0 on [0, 1].

Therefore, we obtain

(3.34) p2 < n(O)p(O)

But, since J >_ 0 holds, we obtain

-I(" + 1) <_ 2(np)’ on [0, 1].

Integrating this last equation from 0 to 1, and using (3.34) leads to

0 < ’(0) <_ 2pI- + ’(1) + 1.

We use now (3.32) to obtain

252 (hi + pl)e
1
< (1) < 0.

We now set x 1 in (1.2) and use (3.33) and (3.35) to deduce that there exists a
constant

V, V,(5,) > log (1+ x/’1+ 464 )252 + (n + p)"

such that for all V >_ V*, (326) holds.
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This concludes the proof of Lemma 3.8.

Proof of Theorem 3.6. Let V be such that V > V* and let (, n, p, Jn, Jp) be a
solution of (1.1)-(1.6)y, which is such that 0 < ’(0).

We assume without loss of generality that (3.23) holds. From (3.25)-(3.27) we
obtain

(3.36) n-1 <_ n < nl.

If 0 < p’(1) holds, we deduce from (3.25) and from the property that M has no
maxima in (0, 1), that

min(p(0),p(1)) < p < max(p(0),p(1)) on [0, 1],

from which we obtain

nl- 2 < p < n + 1 on [0, 1].

In the same way we obtain

n 2 < p <_ n + 1 on [-1,0].

If now we have p’(1) < 0, we prove in the same way that (3.37) and (3.38) hold.
From these inequalities we deduce that

3
I"1 < on [-1, 1].

Double integration of this last inequality from -1 to 1 gives

3
22

Therefore, if V > V0, where

/
Vo max IV*’K

then we necessarily have ’(0) < 0.
This proves that for all Y > V0, every solution of (1.1)-(1.6)v satisfies (2.2).

We now apply Theorems 3.1 and 3.5 to deduce uniqueness and monotonicity of the
voltage-current curve on IV0, +cxz). The continuity of this curve is a direct consequence
of this uniqueness result and from [11, Thm. 3.5.2].

Remark 3.9. For all V > V0 we proved that the problem (1.1)-(1.6)v has a

unique solution (, n,p, Jn, Jp). Since this solution is symmetric, it is easy to check
that it satisfies (n + p)’(1) _< 0. Hence we deduce easily that p’(1) < 0 holds for all
v>_vo.

Remark 3.10. From Mock’s uniqueness theorem for small IVI, we deduce that
there exists a constant V in (0, V0) such that (1.1)-(1.6)y has a unique solution for
all V in [0, V1] tO IV0, +cx).
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4. Conclusion and discussion. We have analyzed in this paper the one-dimen-
sional drift-diffusion model. The uniqueness theorems that are given in the literature
for more complex models, as well as for the simplified one under consideration in this
paper, hold only for small values of the applied bias. The purpose of the present
paper is to show that uniqueness theorems that are valid for arbitrary values of the
applied bias can be obtained. Such results are obtained by proving and using new
qualitative properties, indeed monotonicity properties, of the drift-diffusion equations.
This allows to obtain uniqueness theorems for arbitrary values of the applied bias for
the case of symmetric p-n and p-i-n junctions.

We have considered the drift-diffusion model under the assumption of a zero
generation-recombination term R, constant mobilities and ideal ohmic contacts. We
shall discuss now how our results can be extended to more complex models. The main
restriction is due to the assumption that R vanishes. When R does not vanish and
depends on the unknowns n and p, as is the case for instance for Shockley-Read-Hall
or Auger recombination terms, the electron and hole current densities Jn and Jp are
no longer constant, since they satisfy in this case

Therefore, if R is not identically zero, J Jn- Jp is no longer constant, so that
the symmetry Theorems 2.2 and 3.2 and the uniqueness Theorems 2.3 and 3.3 do
not apply. However, the techniques introduced in this paper for obtaining global
uniqueness theorems in the case where R 0, lead (with minor changes) to local
uniqueness theorems under the same hypotheses. This, together with the implicit
function theorem, give local uniqueness theorems for the case of small generation-
recombination terms of the form TR, where - is a sufficiently small strictly positive
parameter. Of course the restriction on T depends on the applied bias V, which
limits the practical use of these results. It would be interesting to have an estimate
on the restriction on - in terms of V. The extension of these results to the case of
nonsmall generation-recombination terms is not trivial and requires probably other
techniques. Moreover, for technical reasons, our results do not hold for the case of
space-dependent mobilities.

As mentioned at the beginning of this section, we have considered the case where
the device has ideal ohmic contacts. This means that the boundary data for n and p
satisfy the following electro-neutrality condition

(4.1) n:-px-N(x)=O, x =t=1

and the following thermal equilibrium condition

(4.2) n-lp-1 nip1.

We consider in this paper the case of symmetric boundary data. This means that
+1, n+l, p+l satisfy

(4.3) -1 =-1, n-1 =p, p_ n.

Therefore, in the case of symmetric boundary data, (4.2) necessarily holds. It is easy
to check that the general uniqueness Theorems 2.1 and 3.1 (but also Theorems 2.2,
2.3, 3.1, and 3.2) ae still valid for arbitrary boundary data, this even if (4.1) does
not hold. These general theorems lead to uniqueness theorems for symmetric p-n and
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p-i-n junctions, provided that the solutions of the drift-diffusion model satisfy the a
priori conditions (2.2) and (2.3). One can show that these conditions are still satisfied
for reverse (resp., forward) biased p-n junctions provided that nl and pl satisfy

(4.4) N(1) _< (resp., >_) n p, 0 <_ n p.

so that the uniqueness theorems for reverse (resp., forward) p-n junctions are still
valid when (4.1) is replaced by (4.4). Therefore, the uniqueness theorems presented
here are valid for more general boundary conditions. We conjecture that they are
also still valid for sufficiently large IVI, even if (4.4) does not hold. Extension of these
results to the case of more general devices (nonsymmetric, multiple junctions, etc.),
should also be analyzed.
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LOCAL REGULARITY OF THE ONE-DIMENSIONAL
MOTION OF A VISCOELASTIC MEDIUM*

JONG UHN KIM

Abstract. We establish the local regularity of solutions to the Cauchy problem which arises
in linear viscoelasticity. Our method involves MacCamy’s trick and Hhrmander’s result on the prop-
agation of singularity.
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bicharacteristic strip

AMS subject classifications. 35B65, 35L99, 45K05, 73F99

Introduction. In this paper we shall investigate the local regularity of solu-
tions to the Cauchy problem associated with the one-dimensional motion of a linear
viscoelastic medium. The model equation is given by

(0-1) utt ao(x, t)uxx + al (x, t)ux + a2(x, t)ut + a3(x, t)u

+ {bo(x, t, s)uxx(x, s) -- bl (x, t, s)u(x, s)} ds

for (x, t) E R [0, cx), where u(x, t) denotes the displacement.
The initial conditions are

(0-2) u(x, O) uo(x), ut(x, O) ul (x), in R.

Throughout this paper, we assume that

(0-3) aj(x,t) C(R [0, c)) for j 0,... 3,

(0-4) all the derivatives of aj’s are bounded in R [0,

(0-5) ao(x, t) >_ c > 0 for all (x, t) e R [0, c) for some constant c,

(0-6) b(x,t,s) eC(R[O,)[O,c)) for j=0,1,

(0-7) all the derivatives of bj’s are bounded in R [0, cx) [0, c).
There are many mathematical works on dynamic viscoelasticity. Most of them are

listed as references in [4] and [11]. In particular, singularity of solution was investigated
in [1], [3], [5], [8], [9], and [10] among others. The memory term makes the equation
nonlocal and the qualitative behavior of solution depends on the regularity of the
memory kernel. A smooth memory kernel can cause the emergence of stationary
singularities, which is impossible for hyperbolic equations without memory. On the
other hand, a singular kernel can have a regularizing effect on solutions. The precise
statements of these phenomena can be found in [8] and [11]. The present work is
the outgrowth of an effort to extend some of the results in [8] to an equation with
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variable coefficients. We focus on the smooth memory kernel. The main result is
given in Theorem 2.1 below. Our method is different from the previous works. Our
argument consists of (i) MacCamy’s trick, (ii) Hhrmander’s result on the propagation
of singularity, and (iii) classical argument of the energy method.

MacCamy’s trick is to introduce a new unknown function so that the integral term
of the equivalent equation involves, lower-order derivatives. In order to obtain C
regularity, we repeat differentiation in x and t, respectively, and boost the regularity
step by step. This is a typical procedure in the classical energy method. In each
step, we use the result of Hhrmander [6] on the propagation of singularity to obtain
microlocal regularity along each bicharacteristic strip.

In 1, we present some preliminaries and notation. We state our main results in

2 and the proofs are given in 3 and 4.

1. Notation and preliminaries. We write R and Rx if R is the domain of the
variables t and x, respectively. When gt is an open subset of Rn, n _> 1, we employ
the standard notation H8(12), s E R, to represent a Sobolev space. For u
we say that u is H8 at x if there is a neighborhood O of x such that u Hoc(O).
For (x0,0) Ft (Rn \ {0}), we say that (x0,0) WF(u) if there is a function
(x) C(2) which does not vanish at x0 and a conic neighborhood F of 0 such
that for each N >_ 1,

(1-1) _< CN(1 + Icl) -N for all c ( F,

where " denotes the Fourier transform and CN is a positive constant depending on
N. WF(u) is a closed conic subset of (Rn \ (0}) and is called the wave front set
of u. For u :D’(), u is said to be microlocally Hs at (x0, 0) Ft (Rn \ (0}) if
we can write u t -]- u2, where ul Hoc() and (x0, 0) WF(u2).

2. Statement of the main result and reduction to an equivalent prob-
lem. Let u(x,t) be a solution of (0-1) and (0-2) where (no, ul) H(R) H-(R),
a E R. Our main result is the following.

THEOREM 2.1. Suppose that (x*,t*) R (0, cx) is a point such that each
bicharacteristic curve passing through it does not intersect sing supp u0 U sing supp u
at t O. Then there is a function to(x, t) C(R2) such that 1 in a neighborhood
of (x*, t*) and

(2-1) tcu C (R H+(Rx)).
Furthermore, if x* sing supp u0 U sing supp ul, in addition we have

(2-2) .u e

Here a curve x x(t) in the xt-plane is called a bicharacteristic curve if it satisfies

(2-3)
dx
dt V/aO(x, t)

or

(2-4)
dx
d-- v/a (x’ t).

For the proof of this theorem, we reduce equation (0-1) to an equivalent equation
whose integral term involves lower-order derivatives. For this, we employ MacCamy’s
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trick. Let us define v(x, t) by

(2-5) v(x, t) co(x, t)u(x, t) + bo(x, t, s)u(x, s) ds

for (x, t) e R [0, cx). Then we can solve (2-5) for u by treating x as a parameter to
find

foco(x, t------ v(x, t) + (x, t, s)v(x, s) ds,

where E C(R [0, c) [0, oc)) is determined by a0 and b0, and all the derivatives
of are bounded on R [0, T] [0, T] for each T > 0. By substitution into (0-1), we
obtain

(2-7) vtt co(x, t)vxx + al (x, t)vx + o2(x, t)v -- O3(X, t)v

where cj e C(R x [0, o)), j 1, 2, a, and j e C(R x [0, ) x [0, o)), j 1, 2,
are determined by the coefficients of (0-1). All the derivatives of c’s are bounded in
R x [0, T] and all the derivatives of ’s are bounded in R x [0, rl [0, r] fo each
T > 0. We present some known facts on the solution of (2-7).

TOaEM 2.2 (existence and uniqueness). Let (vo, vl) H(R) x Ha-I(R),
for a e R. Then there is a unique solution v(x,t) of (2-7) in C([0, oc)t Ha(R)) g

C ([0, oc)t Ha-(R)) which satisfies
(2-8) v(x, O) vo(x), vt(x O) v (x) in R.

THEOREM 2.3. Let v(x,t) be the above solution and let A C(R [0, c)
[0, cx))) be a function whose derivatives of every order are bounded in R [0, T] [0, T]
for each T > O. Then for each (t) e C((O, oc)), it holds that

(2-9)
and

(t)v(x, t) e Ha(R2)

(2-10) (t) A(x,t,s)v(x,s)ds e Ha-(R2).

Proof. When a _< 0, (2-9) and (2-10) follow directly from the Fourier transform
and the inequality

(2-11) (1 + IT[ + [[)" <_ (1 + Il)" for all (, ) e R2 and # <_ 0.

When a is a positive integer, we use

(2-12) Ot v e C([0, oc)t Ha-k(R)),
which follows from (2-7). If a > 0 is not an integer, we use the interpolation to get
(2-9) and (2-10).

THEOREM 2.4 (domain of dependence). Let x x+(t) and x x_(t) denote
the bicharacteristic curves so that

d
(2-13) -x+/-(t) :l: v/ao(x+, t),

(2-14) x:(to) Xo, to > O.
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If the interval Ix+(0), x_(0)] is disjoint from supp v0 t2 supp Vl, then the solution
of (2-7) and (2-8) vanishes in a neighborhood of (xo, to).

This can be proved by the argument on pp. 440-448 of [2] when v0 and vl are
smooth. In this case, we use the density argument for nonsmooth initial data.

Our assertion on the local regularity of solutions of (2-7) is the following.
THEOIEM 2.5. Let v(x, t) be a solution of (2-7) and (2-8). Suppose that (x*, t*)

is a point such that each bicharacteristic curve passing through it does not intersect
supp v0 2 supp Vl at t O. Then there is a function a(x, t) E C(R2) such that

1 in a neighborhood of (x*,t*) and

v C (Rt H+2(Rx)).

Furthermore, if x* supp v0 [2 supp vl, in addition we have

(2-16) v e C(R2).

The proof of Theorem 2.5 will be given in 3 and Theorem 2.1 will be proved in
4. We end this section by discussing the effect of the memory term. As mentioned in
the introduction, the integral terms in (0-1) and (2-7) make the problem nonlocal. In
fact, the integral operators associated with these terms are not even pseudolocM, and
more delicate analysis is required for the local regularity. The pseudolocal property
is one of the main properties of pseudodifferentiM operators. To highlight this point,
let us consider a simple integral operator T defined by

(2-17) (Tw)(x, t) a(x, t, s)w(x, s) ds,

where a(x, t, s) is a smooth function. Without specifying any particular function space,
we can easily notice that this integral operator :Y is not pseudolocM. For this, it is
enough to consider

t)

where g(t) C(R), g(O) O, and g(t) 0 for all t > 1. Then it is obvious that
(x*, t*) sing supp w(x, t) for any t* > 1 and x* R. However, for t* > 1,

(2-19) (:Yw)(x*, t*) f(x*) a(x*, t*, s)g(s) ds,

which can surely have singularity at (x*, t*) in general. Hence, T is not pseudolocal
in general. It is clear from (2-19) that the singularity of f(x) at x* can persist for
all future occurrences. This phenomenon is not restricted to the particular functions
above. The integral terms in (0-1) and (2-7) can transport the singularity of the initial
datum (in a milder form) along the straight line parallel to the t axis in the xt-plane.
The analytical mechanism for this is explicitly exposed in (3-34) and (4-5) below,
where the initial data have gotten out of the integrals to influence the local regularity
in the future.

3. Proof of Theorem 2.5. Let v(x, t) satisfy (2-7) in R (0, oc). If we differ-
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entiate (2-7) in t, we obtain

(3-1) (Otv)tt ao(Otv)zz + al (Otv)x + a2 + Otao (Otv)t
ao-- (Oral Cl Ota + l (x’ t’ t)) vxao

(Ot2 2 0ta 3)
+ (Ot3 W 2(x’ t’ t) Ota)
+ o(, t, )(,) + o(, t, )(, )

1

1 }
where we have expressed v in terms of other derivatives and an integral by using
(2-7). By induction, we can derive for k 1

(a-l (o o(o +(o

+( + -oo(o)
go

+ b,(O)-v) +... + b, v

+ {,(, t, )(, 1 + ,(, t, lv(, )}

where ao, 1 and are the same in (2-7) and the remaining eoeNcients depend
on k. It is ey to see that bk,j’s, ek,j’s, and all of their derivatives are bounded in
R x [0, T] for each T > 0, and tha ,, ,, and all of their derivatives are bounded
in R x [0, T] x [0, T] for each T > 0. Equation (a-2) will be the bic identity for the
proof of heorem 2.g.

Next we set

(a-a) (, t) a0(, t),

(3-4) Pl (X, t, , 7") T A- tY(X, t),

(3-5) p2(x, t, , 7") 7" a(x, t).

For j 1, 2, a bicharacteristic strip of pj is defined to be a solution (x(t), t, (t),
7"(t)) of

(3-6) d_.x Opj
dt O

(3-7) d_ Opj
dt Ox
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(3-8) d___T Opj
dt

which satisfies

(3-9) t, o,

(3-10) ((t), T(t)) :/: (0, 0).

Since a(x, t) and its derivatives are bounded in R [0, cx), each bicharacteristic
strip exists globally for t >_ 0. The curve in the xt-plane described by the above x(t)
is called a bicharacteristic curve, which was already defined by (2-3) or (2-4).

Next we choose any (x*,t*) such that t* > 0 and each bicharacteristic curve
passing through (x*, t*) does not intersect supp v0 t2 supp v at t 0. For j 1, 2,
let r(t) (xj(t),t, fj(t),Ty(t)) stand for a bicharacteristic strip of pj(x, t, f, T) such
that

(3-11) xj(t*)=x*.

Then, by virtue of Theorem 2.4, there is a positive constant e* such that

(3-12) the set {(xy(t), t)" 0 t e* } supp v(x,t) is empty for j 1, 2,

where v(x, t) is a solution of (2-7) and (2-8). We will first obtain microlocal regularity
in a conic neighborhood of Fy(t), e* t t* for j 1, 2.

LEMMA 3.1. For each k 0, j 1, 2, it holds that

(3-13) Ov is microlocally H on Fj(t), e* t t*.

Proof. (3-13) is true for k 0 by Theorem 2.3. Suppose that (3-13) is true for
k=0,1,...,m-i, and set

Oyv.

Then it follows from (3-2) that

(3-15) tt aoOxx + lOx + 2 + Otao
ao

where

(3-16) fl,m bm.l (O-lv)x +-" + bm,m vx

-" Cm,O OnV -I- am,10n--lv 2t- 2t- Cm,m V,

(3-17) f2,m {’Ym,l(x,t,s)vz(x,s) +’Ym,2(x,t,s)v(x,s)}ds.

Since (3-13) is valid for k 0, 1,..., rn- 1, we use Theorem 18.1.31 of [7] to find
that

(3-18) fl,m is microlocally H-1 on F.i(t) for e* t _< t*, j 1, 2.

Next it follows from Theorem 2.3 that

(3-19) f2,,, is microlocally H-1 on Fj(t) for e* _< t t*, j 1,2.



744 JONG UHN KIM

By virtue of (3-12), it is apparent that

(3-20) is microlocally H at Fj(e*), j 1, 2.

Now Proposition 3.5.1 of [6] yields that

(3-21) is microlocally H on Fj(t) for e* <_ t _< t*, j 1, 2.

By induction, this completes the proof.
Next we obtain local regularity.
LEMMA 3.2. For each k k O, it holds that

(3-22) Oktv is H at (x*,t*).

Proof. For k 0, (3-22) is true by Theorem 2.3. Suppose that (3-22) is valid for
k 0, 1,..., m 1. We define by (3-14) and rewrite (3-15) as

( ( ))(3-23) Oft aoOxx olOx o2 + Otao Ot fl,m + f2,m.
ao

Since (3-22) is true for k- 0, 1,... m- 1, it holds that

(3-24) fl,m is g- at (x*, t*).

Again by Theorem 2.3, we find that

(3-25) f2,m is g-1 at (z*, t*).
Now let us choose any (0, TO) = (0, 0) such that

(3-26) ’3 : co(x*, t*) .
It follows from Theorem 18.1.31 of [7] that

(3-27) is microlocMly H+1 at (x*, t*, o, TO).

Combining (3-13) and (3-27), we find that for every (, T) (0, 0),

(3-28) is microlocally H at (x*, t*, , T),
which yields that

(3-29) is H at (x*,t*).
By induction, the proof is complete.
For the above (x*,t*), we can find a positive number r < t* such that each

bicharacteristic curve that meets the ball B((x*, t*)) does not intersect supp v0 U
supp v at t 0.

Then we can apply Lemma 3.2 to each (x, t) E Br((x*, t*)) so that

(3-30) Ot v e Hloc(Br((x*,t*))) for each k >_ 0.

We note that r depends on (x*, t*), but is independent of k.
Next we will raise the local regularity. For this we need the following fact.
LEMMA 3.3. Let f2,m be defined by (3-17). Then, for each m >_ 1,

(3-31) f2,m e C([0, oo)t H(Rx)).
Proof. We already know that

(3-32) f2,me C([0, oo)t Ha-l(Rx)).
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Let us consider Oxf2,m:

(3-33)

of,(x, t) {(o,(x, t, ))v(x, ) + (oz,.(x, t, ))v(x, )

+ "Ym,1 (x, t, s)vxx(x, s) + m,2 (x, t, s)vx(x, s) } ds.

Since v is a solution of (2-7), we can write

(3-34)

,(x, , )v(x, ) ds

(,(x,t,)lao(,))[(,)-(,)-(x,)-v(x,)

{(,,vl(,l+(,,l(,vl}e]e

(,(,t, /o(,){(, (,(,}

o(,( t, /o(,)(,

+ {O(,(,t,s)/ao(,s)) +O(,l(Z,t,s)(z,s)/ao(z,s))}v(z,s)ds
+ (, tl.

Here, 7(x, t) is given by

(3-35)

where

(3-36)

n(x, t) (/m,1 (x, t, s)/ao(x, s)) [alvx(x, s) + a3v(x, s)] ds

{pl (x, t, s)v=(x, s) + p2(x, t, s)v(x, s)} ds,

pl(X,t,S) {’Tm,l(X,;,rJ)l(X,r],8)/aO(X,r])}dr],
8

(3-37) p2(x,t,s) {ym,(x,t,)2(x, ri, s)/ao(x, rl)}dr.

It is now evident that

(3-38) /m,l(x,t,s)vxx(x,s)ds e C([0, x)t Ha-l(Rx))

and consequently,

(3-39) Oxf2,m(X,t) e C([0,)t H-(R)),
which yields (3-31).
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Now (3-30) implies that

, +
from which it follows that

(3-41) fi,m E C([t* r
t , +

Let us rewrite (3-15) as

(3-42) (aoOxx + lOx)O Ott 2 + Otao Ot fl,m f2,m.
ao

By (3-31) and (3-41), we can infer from (3-42)

-, + ;--o -, +
Since m is arbitrary, we have

, +
which, in turn, yields

+ ;U5 x*- x*

Again by (3-3), (3-42), and (3-a5), w dri (2-5).
Next we further assume

(3-46) x* supp v0 W supp v.

Then there is a positive number p < r such that

(3-47) distance (x*, supp v0 supp v) > p.

We need the following identity for f2,m which was defined by (3-17).
LEMMA 3.4. For Ix x*] < p and t > 0, it holds that for each N 1,

(3-48)
Oxg f2,m(X, t) dm,N,Y-10N - Vt(X, t) +’’’ + dm,g,o Vt(X, t)

OxN-1 V(X, t) -[- 2t- m,N,O V(X, t)- m,N,N-

+ {gm,y,(x,t,s)vx(x,s) + gm,N,2(x,t,s)v(x,s)}ds,

where the coefficients depend on m and N and are infinitely differentiable.
Proof. For N 1, we recall (3-33) and (3-34). By virtue of (3-47), we have

(3-49) v(x, O) vt(x, 0) 0 for Ix x*] <: p.

Hence, (3-48) is valid for N 1. For N >_ 2, we repeat the same argument as
for (3-34) to establish (3-48) by induction.
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We now differentiate (3-15) in x N times to obtain

(-0)
m+2 N+I

mNao v(x, t) t)
k=0 j=0

{gm,g, (X, t, S)V(X, S) + gm,,2(X, t, S)V(X, S)} ds,

m,NSfor x- x*l < p, t > 0, where the coefficients ,y,k are infinitely differentiable.
Since we have

(3-51) Ov C([t* r
t* r +((x* r

x* r)))-, + ;-o -, +
for every m 0, it follows that

k=o j=o ’ + "’toc x*

By the same argument for (3-31), we can eily see that

By virtue of

(3-54) Ov C([t* r
t*

for every m 0, which, in turn, yields

k=O j=0

If N 2, then (3-50) implies that

, + "’to x* p, + p

for every m 1. We can continue this process until we arrive at

, + "’to P, + P

Since N is arbitrary, we have proved (2-16).

4. Proof of Theorem 2.1. According to (2-5), we have

(4-1) vo(x) 0(, 0)0(x),

Vl (X) ao(x, O)Ul (X) + Otao(x, O)uo(x) + b(x, 0, O)uo(x).

Suppose that (x*, t*) is a point such that t* > 0 and each bicharacteristic curve
passing through it does not meet supp u0 U supp ul at t 0. Hence, each bicharac-
teristic curve passing through (x*, t*) does not meet supp v0 t2 supp Vl at t 0, so
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we can apply Theorem 2.5. Then, by means of (2-6), we obtain the local regularity of
u(x, t). For this, we consider the local regularity of the integral in (2-6).

LEMMA 4.1. For the above (x*, t*), let r > 0 be the same as in (3-44). Then, it
holds that for each m >_ O,

/0 ([ ] (((4-3) On Z(x, t, s)v(x, s) ds e C t* -r, t* + -r ’loc’a+l x*- ’r x* +r
(4-4)

Proof. By induction, it is easy to see that

O (x,t,s)v(x,s)ds=qm,l(x,t)O-lv(x,t)+...+qm,m(x,t)v(x,t)

+ J,(x, t, s)v(x, s) ds,

where all the derivatives of qm,j’S are bounded in R [0, T] and all the derivatives of
Jm are bounded in R x [0, T] [0, T] for each T > 0. Through the same procedure
as for (3-34), we find that

(4-5)

Oxx Jm(x,t,s)v(x,s)ds
1

co(x, t) Jm(x, t, t)vt(x, t)

1
Jm(x, t, O)vl (x) + 7m,1 + Tm,2.co(x, o)

Here Tm,1 is a linear combination of v(x, t) and vo(x) with smooth coefficient
functions so that n,, belongs to C([0,x)t Ha(Rx)), and Tm,2 consists of the
integrals similar to (3-35), which obviously belong to C([0, cx)t Ha-(Rx)). Then,
by differentiating the integrals in x and integrating by parts as in (3-33) and (3-34),
we can easily showthat 7m,2 belongs to C([0, c)t Ha(Rx)). It now follows from
(4-5) that

(4-6) Jm(x,t,s)v(x,s)ds e C([0, cx)t Ha+(Rx)).

Hence, we obtain (4-3) from (3-44), (4-4), and (4-6).
Now (2-1) follows from (2-6), (3-44), and (4-3).
Remark 4.2. If uo e Ha(R) and u e Ha(R), then it is easy to replace (2-1) by

(4-7) u E C (Rt Ha+2(R)).
This is due to the improved regularity

(4-8) Vl E Ha (R),

which together with (4-5) yields

/0 ([ ] (()))(4-9) Jm(x, t, s)v(x, s) ds e C t* ,r t* +r loc’a+2 x*- ’r x* +r
Then, by (2-15) and (4-9), we get (4-7).



REGULARITY OF THE MOTION OF A VISCOELASTIC MEDIUM 749

It remains to prove (2-2). If x supp u0 U
identity. For all m >_ 0 and N >_ 0,

(4-10)

supp ul, we have the following

m+l N

C
j=o k=O

where all the derivatives of, s are bounded in R x [0, T], and all the derivatives
of m,,l and m,, are bounded in R x [0, T] x [0, T] for each T > 0. This identity
can be proved by induction. We can eily derive (2-2) from (2-16) and (4-10). Since
our problem is linear, we can use suerosition and the well-known regularity of
solutions with smooth initial data to replace the condition z" supp 0 U supp
by the condition z" sing supp 0 U sing supp . Now the proof of Theorem 2.1 is
complete.

Acknowledgment. The author thanks Professors K. Hannsgen, M. Renardy,
and R. Wheeler for useful information on this subject.
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OSCILLATIONS OF SOLUTIONS TO THE TWO-DIMENSIONAL
BROADWELL MODEL, AN H-MEASURE APPROACH*

ROBERT PESZEK

Abstract. We study oscillatory sequences of solutions u, u, u,u to the two-dimensionM
Broadwell model. We ask the following question: What will happen if at the initial time u, u, and
u converge strongly while u is left to oscillate? Can oscillations be created in u, u, or u at later
times? It turns out that the answer depends on the direction in which the oscillations occur. We
apply the H-measures to study this problem.

Key words. Broadwell model, H-measure, oscillations, Young measure

AMS subject classifications. 35L45, 35B05, 76P05

1. Introduction. In recent years, there has been a considerable interest in study-
ing oscillatory sequences (i.e., sequences that converge weakly but do not converge
strongly in Loc) of solutions to nonlinear hyperbolic systems. Most of the results
obtained were proven with the aid of compensated compactness theory and Young
measures. Unfortunately, the successful applications of these theories are restricted
to one-dimensional cases. Recent studies ([1], [8], [9]) tend to confirm the fact that
one needs new tools, other than Young measures, to attack multidimensional hyper-
bolic systems. Some of such tools already have been created (semiclassical measures
of Gerard [8], Wigner measures of Lions and Paul [9], and H-measures introduced by
Tartar [1]).

This note deals with propagation of oscillations in the two-dimensional (2D)
Broadwell model with the aid of H-measures. The results presented here can be
extended to the three-dimensional (3D) Broadwell model and to other similar mod-
els. For simplicity we restrict our attention to the 2D case and consider the following
system of partial differential equations:

(I)

u t)+ o

+
o-TUa(X, y, -with standard initial conditions imposed at time t 0.

System (1) and other similar systems were studied by many authors. We refer the
reader to the review paper of Ptatkowski and Illner [7] and to the references contained
therein for a survey of the theory of such systems. Equations (1) model a motion of an
idealized gas of particles that can travel only with prescribed velocities. Specifically,
Ul, u2, u3, and ua represent the number (or the density) of particles that travel with
velocities (1,0),-(1,0), (0, 1), and -(0, 1); :::(u3u4 --UlU2) are the collision terms;
and equations (1) are simply the balance identities for such a gas.

The compensated compactness theory was applied to such models in the one-
dimensional (1D)context by Tartar ([2], [3])who has studied interaction of oscillations
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the Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
was partially supported by the U.S. Army Research Office.

Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan
49931.
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in 1D semilinear hyperbolic systems. In particular, Tartar has considered the following
reduction of the system (1)"

obtained by assuming that Ul,U2,U3, and u4 are independent of y and u3 u4.
Assume that (u, u, u) is a sequence of solutions to (2) and that (u, u, u) lies in
a bounded set of L. Let a2, a22, and a] denote the variances of the Young measures
generated by the sequences u, u, and u, respectively. Tartar analysis shows that

(3)
__.0 (x, t) -[- 0 (x, t) < C(:r (x, t)0tO’l 0"1

-oo t) t) _< t)
o--ia3(x, t) <_ al (x, t)a2(x, t) Kaa(x, t),

where C and K are constants and K is positive if u, u, and u are all nonnegative.
Thus, the sequence u will be oscillatory only if the initial data u[ (., 0) oscillates; in
other words, oscillations of u cannot be created by oscillations of sequences u and

u. A similar statement is true for u but not for u. Assume that the initial data
u(., 0) converges strongly in L2. The last inequality in (3) shows that oscillations in

u cannot be created if only one of the sequences u and u is oscillatory. However,
one cannot rule out the possibility of creating oscillations if both u and u oscillate.
In fact, the creation of oscillations in the sequence u can be demonstrated by looking
at initial data in a periodically modulated form (see McLaughlin, Papanicolaou, and
Tartar [4]).

Our goal is to analyze the full 2D Broadwell model. However, as we will see, this
cannot be done without introducing new tools (such as H-measures). In this note
we consider a sequence u (u, u[, u, u) e L N L2 of solutions to the Broadwell
model

defined on a strip R2 x [0, T] {(x, y, t) 0 <_ t < T} and satisfying the initial
conditions

(5) (t t t t)(x, y, 0) (t) t}2 t t)4)(X, y)03, u) e L(R2) L2(R2).

We assume that

(6) IluTIIL (R tO,TI) <- M, i 1, 2, 3, 4

and note that local existence results and local bounds of the type (6) are easily
obtained for small time intervals [0, t], provided that the initial data (ul, u2, ua, u4
lies in a bounded set of L.

It is relatively simple to show that if the sequence u (Ul, u2, u3, u4 con-

verges strongly in L2(IR2) to uo (Ul, uo2, uoa, Uo4), then the solutions u (u[, u,
3, u) converge strongly in [Loc(_R2 [0,T])]a to a function u 3,
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which is a solution of (4). This fact was exploited by Peszek in [5] to show a strong
convergence of certain finite difference approximations to systems of the type (1) (Mso
see Peszek [6]).

We ask the following question: what happens if exactly one of the sequences ui
(say ul oscillates and if the others converge strongly in L27 Will u2 ua, or u oscil-
late at later times or will they converge strongly? This question cannot be answered
using Young measures simply because the answer depends on the direction in which
the initial data oscillates and the Young measures do not carry such information. We
will give an answer to this question with the help of H-measures.

We distinguish three directions in the (x, y)-plane given by unit vectors

It turns out that u2, u, and u will converge strongly if ul does not oscillate in
either of these directions (that is, if the H-measure # associated with Ul has no Dirac
masses at the direction points +/-vl, +/-v2, and +/-v3). This result will be proven in 3.

Conversely, one can construct examples of ul oscillating in the vl-direction and
such that oscillations of amplitude O(t) are created in u. Similarly, if ul oscillates
in the direction of v2 (or in the direction of v3), then O(t) oscillations will, as some
examples show, be generated in u (or in u). We address this topic in more detail in

4.
We must point out that the described result extends easily to the situation in

which both ul and u3 (or both ul and u4 are oscillatory, provided that oscillations
of ul do not occur in either of the specified directions, vl, v2, and v3, and that
oscillations of u3 (or u4 do not occur in the directions +/-v2, +/-v3, and +/-(0, 1) (see
the end of 4 for a detailed discussion).

2. Basic facts about H-measures. In this section we introduce H-measures
and review their basic properties. We refer the reader to the original paper of Tartar
[1] for all proofs and for a more detailed exposition.

For the sake of generality, we consider a sequence of vector valued functions
V f --/P defined on an open set f C _N. We assume that V converges weakly
in (L2())p to a function e (L2())p. We define SN-l,

to be the set of direction points and put U V V. It can be shown that after
extracting a subsequence (for which we will still keep the index e), there exists a

family # #J of complex-valued Radon measures, supp(#ij) C gt SN-l, such that

(7) (#iJ 12" (R) )= lim [
e--0 JRN

u;)()]* (/I I)d

e C0(U), e

where denotes the Fourier transform and z* denotes the complex conjugate of z.
The family # is called the H-measure associated with the extracted subsequence V
It turns out that # measures the oscillation and concentration effects. In particular,
# 0 for all i,j 1,...,p, corresponds to strong convergence (in Loc) of the
extracted subsequence.



BROADWELL MODEL 753

H-measures are Hermitian and nonnegative; that is,

p

#3 =tt3, i,j=l,...,p, and tti >_0
i,j--1

for every 1,.. Cp E Co (t), in particular

supp(#i) C supp(#ii) CI supp(#), i,j 1, ,p.

One obtains the following localization principle (which corresponds to the usual
compensated compactness theorem).

If V satisfy

i’--1 k=l

strongly in HL-ol ()

where Ajk C(), then

p N

(9) EEAJkkl’tJm 0, m 1,..., p
=1 k=l

in t2 SN-1
As a trivial example we consider a sequence v f/ R and let #v denote the

H-measure associated with this sequence. We let w gt x (0, 1) --, R be defined by

(10) we(x1,... ,XN,XN+l) ve(xl,... ,XN).

The localization principle applied to w shows that the support of the H-measure
#w associated with a subsequence of w is included in ( (0, 1)) Sv-, where

SoN-1 c SN is defined by

(11) SoN-1 { N N+I --0}

and can be identified, in a natural way, with SN-1. We point out that a more careful
analysis of (7) gives a relation between # and #v. It can be shown that, for all
0 < a < b < 1 and all measurable sets A C and B C SN-1 (= S0N-l),

(12) ttTM (A x (a, b) x B) (b- a)#v (A x B).

Unlike the commonly used Young measures, the H-measures satisfy transport
properties.

Assume that V (v, v) satisfy

(13)
N

0V

where bj are constants. Then, the H-measure it associated with (v, v) satisfies

(14) #11,
j=l
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for every test function (x, ) of class C on SN-1 with compact support.
Finally, we note that one can obtain a formula for change of coordinates. Here

we restrict our attention to the simplest case. We let W(x) V(F(x)), where F
is affine; F(x) Ax + b and A is an invertible constant matrix. We also let r rij

denote the H-measure associated with Wo One obtains the following formula:

for every and j.

3. Main result. We consider a sequence u (u, u, u, u) E L N L2 of
solutions to the Broadwell system (4). We assume that u (u, u, u, u) satisfy

(16) IlUIIL(R2[O,T]) <_ M, i 1, 2, 3, 4

and denote the initial data by

(17)

We assume that u2 u3, and t4 converge strongly in L2 to u2 u03, and no4, respec-
tively, and that u converges weakly in L2 to 0. We also assume that the sequence

u is associated with the H-measure #.
In this section we will prove the following result.
THEOREM 3.1. Assume that # has no Dirac masses at the direction points +v,

+v2 and =t=v3 defined by

vl (0, 1), v2 (x//2, x//2), v3 (x//2,-x//2).

Then u, u, and ua converge strongly in Loc(R2 [0, T]) to u2, u, and u, respec-
tively, the sequence u converges weakly to 1, and the function u (, u2, u, u4)
is the solution of (1) with the initial conditions

t0(X y, 0) (01, t2, t0 U4)(X, Y)03,

Proof. It is enough to prove that u, u, and u converge strongly. One can easily
show that there is at most one solution u (,u2,u3,u) (L(/2 [0, T)))4
of (1) that satisfies initial conditions u (x, y, 0) (01, u2, no3, no4)(x, y). Thus, it
is sufficient to show that there exists a subsequence of (u, u, u) (for which we will
still keep the index e) that converges strongly to (u2, u3, u4).

One easily obtains the following estimates:

(18)

where the terms O(t) are bounded independently of e (by a function of order O(t)).
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Plugging this into (4) yields

(19)

and

(20)

with the terms O(t) and O(t2) bounded independently of e (by functions of order O(t)
and O(t2), respectively).

We define the sequence of approximate solutions u’h in a recursive way by re-
quiring that for all k 1, 2,..., IT/hi and 0 _< t <_ h

(21)

and that u’h (x, y, O) ui(x, y) for i 1, 2, 3, 4.
Obviously (20) yields that

u’h(x,y,t)--U(X,y,t)=O(t2) forO<_t<_h and i=1,2,3,4.

One may apply an inductive argument to show that for all k 1, 2,..., IT/hi, and
O<_t<_h,

(22) u’h(x,y, kh + t) u(x,y, kh + t) O((kh + t)h)
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and, thus, that

(23) Ilu’h UIIL(R.[O,T]) O(Th), i 1, 2, 3, 4.

This follows from applying estimates of the type (20) to consecutive time intervals
[kh, (k + 1)hi with the initial conditions u)i(x, y) replaced by

u(x, y, kh) u’h(x, y, kh) + O(kh2), 1,2,3,4.

One easily obtains that, for sufficiently small h and 0 _< t <_ h,

u (x, y, kh + t) u’h (x, y, kh + t) + O((kh + t)h), i-- 1,2,3,4.

We observe that the terms O(Th) in (23) are bounded independently of e (by a
function of order O(Th)).

We proceed in a recursive way. For each k we extract (if necessary) a subsequence
of u’h( ", ", kh), -- 0 from the subsequence e -- 0 extracted in the previous step k- 1.

e,hWe denote -kh to be the H-measures associated with the subsequences u (.,., kh).
From (23) it suffices to show that extracted subsequences u’h converge strongly for
every given h and i 2, 3, 4. This, in turn, is equivalent to showing that, for k
1, 2,... IT/hi,

(I) if-kh has no Dirac masses at points +/-vl, +/-v2, and +/-v3, then (k+l)h has no
Dirac masses at these points,

(II) extracted subsequences u’h, i 2,3, 4 converge strongly in Loc(R2

[kh, (k + 1)hi).
We note that part (I) and part (II) can be applied in a recursive way to consecutive
time intervals to show the claimed convergence and that it is sufficient to show part
(I) and part (II) for k 0.

Part (I) follows from part (II) since

ui’h(x Uel’h (x
/

h, u’h x

+ fo + (x + + s,

ul (x h, y)A’h (x, y) + B’h (x, y),

and since A’h and B’h converge strongly as e -- 0 (which follows from part (I)).
The proof of Part (II) follows directly from localization and transport results for

H-measures. We will show that oscillations are not created in u3’h for t E [0, hi. Proofs
for u’h and u4’h are similar and are therefore omitted.

From (21) we obtain that, for t E [0, hi,

u’h(x,y,t) =U3(x,y- t)(1- fUa(x,y-- t + 2s)ds)
+ fu(x s, y t + s)u2(x + s, y t + s)ds

and since u2, u3, and u4 converge strongly we only need to show that

(24) D(x, y, t) itS)I(x s, y t + s)u2(x + s, y t + s)ds

converges strongly in Loc(R2 x [0, hi). We will proceed in two steps. First, we will
use the assumption that the H-measure # associated with the sequence u has no
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Dirac masses at the direction points +/-v2 +/-(v//2, //2) to show the convergence
of D in the case of u02 E C(IR2).

We write (24)in the form

0
De t) (x y)u2(x +() O_D(x , t) + (x, , t, t, )Ot -y

let Ve(x, y, t) u(x t, y)u2(x / t, y), extract (if necessary) a subsequence of
(De, U), and define (ij), i,j 1, 2, to be the H-measure associated with this
subsequence, supp(j) C R2 x [0, hi x S2. It can be easily shown that

where P is the H-meure sociated with. some subsequence of

Y(x, , t) u( t, ).
The localization principle yields that

su,(1) c (n: [0, hi) {+ 0}, su(::) c (n [0, ]) {+ 0}
(where (x, y, t) $2), and

() su,,() c (n [0, hi) {(/a, /a,-/a)}.
A more careful analysis shows that the H-meure P can be obtained from the H-
meure associated with the sequence Ul. To see that we recall that extends in a
natural way to the H-meure w sociated with the sequence w(x, y, t) u (x, y)
and that this extension is given by (11)-(12). H-meure P is then obtained from
pw by making the change of variables F(x, y, t) (x- t, y, x + t) and applying the
formula (15). We only point out that, since h no Dirac masses at the direction
points v2 (/2, /2), one obtains that meures P and ,22 have no Dirac
mses at the points (/3, /3,-/3) and that the inclusion

su,() c su,() a su,,(),
together with (26), yields 12 0.

The transport property for H-meure gives the following equation:

0 0 =2Re2(7) o" + =0

((27) holds in the distributional sense). Since ]D(x, y,t)] Ct independently of e
we obtain that 0, and that the extracted subsequence D converges strongly in

no(n [0, ]).
Now we can consider the general ce of u2 e L(R2) L2(R2). We observe

that if 2 denotes a sequence of continuous functions converging strongly in L2 to

uu and

(28) D’h(x, y, t) u)(x- s, y- t + S)0h2(x + S, y- t + s)ds,

then

(29) [[D’h DIIL,.(R2x[O,hl) <_ C[[02 u0h2[IL2(n=).
The previous argument shows that De,h converges in Loc for every given h, and,
therefore, from (29) it follows that D converges strongly in noc(R2 x [0, hi).

This observation completes the proof of the theorem.
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4. Concluding remarks. Our concern is in studying sequences (ul, u, u, u)
of solutions to the Broadwell model (4). We ask the question: What are the conditions
that guarantee that the oscillatory sequence of initial conditions Ul will produce
oscillations in sequences u, u, and u for later times t? The theorem proven in
the previous section shows that u, u, and u will not oscillate if the H-measure #
associated with ul has no Dirac masses at the direction points

vl (0, 1), v2 (v/-/2, v//2), and v3 --(x//2,-v//2).

One may conjecture that, if Ul oscillates along the direction of the y-axis, then
the integral term

Ul (X + t 2s, y)ds

will oscillate along the same direction and, thus, that oscillations of amplitude O(t)
will be created in u (cf. (20)). Similarly, one may argue that if Ul oscillates along
the direction of v2 (or along the direction of va), then the term

u(x s, y- t + s)u2(x + s, y t + s)ds

(or the term u) (x s, y + t s)u2(x + s, y + t s)ds

will oscillate, creating O(t) oscillations of u (or of u).
These speculations can be supported by considering Ul in the form

(x,

and by noting that

ul (x + t 2s, y)ds

We observe that the first sum in the above equation converges strongly to zero, since

the sequence e2ism/e converges weakly to 0 if m 0, and that the second sum con-

verges only weakly. This observation, together with (20), guarantees that oscillations
of magnitude O(t) are created in the sequence u. We also point out that the same

type of arguments can be applied to support the above conjecture about creation of
oscillations in sequences u and u.

It turns out that we cannot exhibit the phenomenon of creation of oscillations
in u, u, and u by using the language of H-measures. To illustrate this we will
construct a sequence Ul with the H-measure having Dirac masses at points +v and
such that the O(t) amplitude oscillations are not created in u.
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To do this we fix t and denote by u the H-measure associated with a subsequence
of Ue,t (x, y) f ul (x + t- 2s, y)ds. We write

u(x + t 2s, y)ds - (ul (., y) ’, X[-t,t]) (x)

and observe that, for 1, 2 E C0(_R2) and

One can construct a sequence Ul in such a way that 2"(u1) has its support contained
in two balls moving to infinity along the curve y Cx2, Cx > 0, and y _2, Cx < 0.
One may take, for example,

where w has bounded support. The H-measure # associated with ul constructed
above has two Dirac masses at direction points +vl. The formula (30), on the other
hand, implies that the H-measure associated with a subsequence of integral terms
U’t(x, y) fu(x+t-2s, y)ds is zero. This observation, together with the estimate
shown in the second equation in (20), guarantees that there are no oscillatory terms
of magnitude O(t) in u.

Finally, we would like to address the problem in which oscillations are imposed
initially in more than one of the sequences u,u2 u and u4 The theorem proven03
in the previous section extends easily to the situations in which u[1 and u3 or ul
and u4 are oscillatory, provided that oscillations of u[ do no occur in either of the
specified directions and that oscillations of u3 (or u4 do no occur in the directions
+v2, +v3, and 4-(0, 1). Similarly, one may deal with the cases in which, u2 and either

u3 or u4 oscillate.
It is much more difficult to characterize the cases in which both Ul and u2

oscillate (or both u3 and u4). It turns out that these problems cannot be solved if
we use only H-measures. TO illustrate this we consider the term

(31) i tl (X 8, y-/; - 8)t2 (X - 8, y- t "4- s)ds

occurring in the third equation in (20). We let

(x, y) v(x, y)ei(xn 

and observe that (31) takes the form

ei(x(m+n)+(Y-t)(m+n)) w(x-s,y-t+s)v(xA-s,y-t+s)ei(-m[+m+n+n.)Sds.
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Thus, the creation of oscillations depends on the behavior of -m +m+n +n. One
needs, therefore, to compare not only the directions in which ul and u2 oscillate but
also the relative frequencies of their oscillations. This suggest the use of semiclassical
measures of Gerard [8] or Wigner measures of Lions and Paul [9]. We hope to address
this problem in the future.
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FAMILIES OF TWO-POINT PAD] APPROXIMANTS
AND SOME 4F3(1) IDENTITIES *

JET WIMP AND BERNHARD BECKERMANN:

Abstract. In this paper, a family of two-point Pad approximants, that is, two polynomials,
each of degree n and depending on integer k, l, 0 _<

_
k

_
n, whose ratio approximates one function

to order (zn+l+l) at z 0 and another to order O(z-n+k) at z cx) is presented. The functions
in question are ratios of Gaussian hypergeometric functions. Explicit closed-form expressions for
the polynomials are given. Also, this derivation establishes some hypergeometric identities involving
functions of the form 4F3(1). Several interesting limiting cases, namely, [n,n] and [n- 1, hi Pad
approximants for ratios of confluent hypergeometric .functions and Bessel functions are given.

Key words, rational approximations, Pad approximations, hypergeometric functions, umbral
calculus, confluent hypergeometric functions, Bessel functions, hypergeometric identities

AMS subject classifications. 33A30, 41A20, 41A21, 44A45

1. Introduction. Many authors have discussed an unusual type of rational ap-
proximation. This approximation approximates one function to a certain order at
z 0 and another function to another order at z . For instance, in a recent paper
[Hen3], Hendriksen showed that a rational approximant P(z)/Q(z) had the property
that P and Q were both of degree n and

(1.1) P(z)

z 2F ( a’b+ l )c+l ;z
+

2Fl( a’b )c
;z

c2F1( b+ l-c’b+
2-a ;z-I)

(b+ l-a)2Fl ( b+ l-a ;z-l)
-t- O(z-n)

This type of rational approximant is called a two-point Padd approximant; see [Jon2]
for a reasonably complete bibliography. Actually, one may consider these approx-
imations to be approximants to a special case of the two-point continued fractions
discussed earlier by McCabe and Murphy [McCl], [McC2], and later by Cooper, Mag-
nus, and McCabe [Coo]. Hendriksen was able to provide closed-form expressions for
his approximants.
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In 1987 Wimp [Wiml] obtained a closed-form expression for a rational approxi-
mant R(z)/S(z), R and S both of degree n, with the property

(1.2) R(z)
z 2Fl ( a’b+ l

l ;z
-[" O(z2nq-1), Z -’+ O.

S(z)
2F ( a, z)

R(z)/S(z) is the In- 1, n] Pad approximant to the function on the right, without the
z factor. The formulas were closed-form expressions for rational approximants to the
well-known continued fractions of Gauss; see [Kho, p. 133ff].

The above two formulas led us to suspect that one could find a family of Pad(

approximants with order terms transitional between the order terms in (1.1) and (1.2),
respectively. Our suspicions turned out to be correct, and we present the derivation
in this paper.

nendriksen [nen3] and Wimp [Wiml] presented explicit formulas for the poly-
nomials they discussed. Our approach allows us to do the same. However, the pre-
vious authors used an unwieldly strategy that required the construction of bases of
solutions of complicated difference equations. Our approach, based on the umbral
calculus, more specifically, the use of projection operators applied to a two-element
umbral calculus of formal series, avoids the difference equation approach. The same
results may be obtained by the use of divided difference operators, but the umbral
calculus approach is less cluttered and more clearly shows the way to generalization.
(For some other recent applications of the umbral calculus, for instance, computing
generalized Laplace integrals or determinants of Hessian type matrices with operator
elements, see [Wim2]-[Wimb]. For background, we recommend the work of Garcia
and Joni [Gar], and especially Roman and Rota, [aoml]-[Rom3].)

Both Hendriksen and Wimp have commented on the prominent role that 4F3(1)
identities play in the theory of Pad approximation and orthogonal polynomials. Hen-
driksen displayed a sophisticated 4F3(1) identity that arose in the theory of Jacobi-
Laurent polynomials and asked whether it might be a special case of a known aF3(1)
identity. Wimp also derived several such identities. Our main results lead not only to
classes of rational approximations but also to an abundance of 4F3(1) identities and
reveals how these identities are related.

We point out that all of our recent discoveries in one-point Padd approximants
are well known in the context of continued fractions; see, for example, the book of
Wall [Wall, and in the context of T-fractions, some of the results for the two-point
Pad cases have been obtained by Jones and Thron [Jonl, 7.3]. What have not been
obtained by previous authors are closed-form expressions for the rational approximants
of the relevant continued fractions.

For special functions in this paper we use the notation of the Bateman manuscript
volumes [Erd]. For a background in Pad approximation, we recommend the references
[Bak] and [Gill, and for the interface with continued fractions, the book [Jonl]. A very
recent and extensive survey of the practical aspects of continued fractions, including
two-point Pad approximants, is [Jon2]. This paper contains 149 references.

2. A little (umbral) calculus. We denote by 7-/ the linear space of formal
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series with complex coefficients

7-l { h(z) }h(z) E AjzJ, Aj e C

It is important to note that the indeterminant z does not take on values. It is best
to think of zJ as simply a place marker in the series in (2.1). In fact, one could just
as well write the elements of 7-/as doubly infinite sequences (..., a2, al, ao, al, a2,...)
with addition and scalar multiplication being defined in the obvious way.

Define the following projection operator onto a finite-dimensional subspace of 7-/:

H,{f(z)} O, r>s.

This operator is called the (r, s) cut of h. We will often use the special cut operator
II0,k. This is simply the kth partial sum of a "Taylor" series.

The following properties are easily verified:

(2.3)

(2.4) f(z)}

k max{r,p}, l-- min{s,q}.

Also of use will be the formal two-element series

For these series the operators (2.2) commute:

(2.7) H,sHo Ho Hz
tU $,U r,8

Other useful properties of these operators are obvious and will be invoked as they
are needed.

The subspace of 7-/ of those series containing only a finite number of negative
powers, i.e., Aj 0 except for a finite number of j < 0, is a field; call it 7-/+.
Multiplication is Cauchy multiplication of series and division is defined recursively by
synthetic division. To multiply two such series of hypergeometric type, one uses the
formula
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(In the above, we employ the standard notation for representing expressions involving
a string of parameters.)

We shall later require the formula for turning around a terminating hypergeomet-
ric function

)(2.9) rT1Fs bs
z (--].)kzk (bs)k 8+lFr (-k, l b8 k (-1)r+8)1 ar k

Similarly, the subspace of 7-/ consisting of series with only a finite number of
positive powers is a field; call it 7/-. When z is replaced by 1/z in (2.8) we get a
similar formula in T/-. (One reason why the umbral calculus is useful is that one can
introduce an ingenious Laplace transform calculus on 7-/+ and 7-/- in which concepts
such as composition, fundamental shift theorems, and convolution have unexpected
analogues; see [Rom2], [Wim2].)

There is a natural isomorphism between the field of rational complex functions
and the subfield of rational functions in T/+ or T/-. Thus

is rational if and only if there is a linear difference operator acting on j with constant
coefficients that annihilates the sequence {Aj }_mo. If that is the case, there is a complex
rational function to which the above series converges for a complex variable z, Izl > r.

Conversely, we may identify any such complex series with a series in T/- that represents
a rational function. Analogous statements are true for series in 7-/+.

One of our basic theorems in 4 involves an umbral calculus analogue of the
ratio of gamma functions and its representation by means of Gaussian hypergeometric
functions.

DEFINITION (umbral gamma functions).

r(a, b, c; z) z exp
m(m + 1)zm [Bm+l (c) + Bm+(c a b)

m--1

Bm+l(C- a) Bm+l(C- k b)]}, k e Z,

the series on the right being an element of 7-/- constructed in the obvious way. (The
BE(x) are the Bernoulli polynomials, in the notation of [Erd, 1.13].)

THEOREM 2.1. For all series in

(2.12) 2F c + z
;1 r0(a, b, c; z),

(2.13) c_ z;1 Fo(a,-b,a + l-c;z).
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Proof. The left-hand side of (2.12) is interpreted as a series in 7-/- constructed in
the following way:

where Pm(a) is a polynomial in a of degree m. (Note the second equality is simply the
definition of #k(c).)

A little reflection convinces one that the right-hand side of (2.12), call it V(a, z),
can be written

o Qm(a)

m--0

where Qm(a) is a polynomial in a of degree m. We shall show that Qm =- Pm by
showing that they agree on the nonpositive integers.

Let a -p, p EAf. Using the fact that

(2.16) Bk+l (x / 1) Bk+l (x) (k + 1)xk, k Af,

allows us to write

V(-p- 1, z) z+c+p-b
V(-p,z) z +c+p

since the quantities in the exponents coming from (2.11) can be expressed in terms of
logarithms. Using the fact that V(0, z) 1 and iterating shows that

(c + z b)p
(c + z)

Thus

(2.19)
Qm(-p)- Coefficient z-m in V(-p, z)

Coefficient z-m in
(c + z b)p

(c + z)

However, in this case the left-hand side, by Vandermonde’s theorem [Sla, p. 2],
is the rational function (c + z b)p/(C + Z)p when z is a complex variable, so by
isomorphism the left-hand side represents the same rational function in 7-/-. Thus
Pm(-p) is also given by the right-hand side above, so Qm Pm on the nonpositive
integers, hence the two are identical.

The second statement of the theorem follows when z is replaced by -z and the
relation

(2.20) Bk(1 x) (--1)kBk(x), k e Af,
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is used.
The reader will observe that the exponential term in (2.11) is the asymptotic

series for
F(z -t- c)F(z + c- a b)

r(z + c- a)r(z + c- k b)
when z is a real variable, z --. oc. When either a or b is a negative integer, each series
in Theorem 2.1 represents a rational function given by the terminating 2F1 on the left
or, equivalently, by the appropriate ratio of gamma functions rewritten in terms of
Pochhammer symbols. One might be tempted to conclude that

( a,b ) F(z + c)F(z + c- a b)(.1) F +z;1 r(+:)(;+-b)’

2F1 ( a,b ) F(z + a + 1- c)F(z + b+l-c)
c-z;1 F(z+l-c)F(z+a+b+l-c)"

These equations are correct, when properly interpreted, in T/-. The first is widely
known to be correct when z E C, z not a pole of the right-hand side. The second is
not, since the right-hand side does not provide the correct analytic continuation of
(2.21).

3. Preliminary results. All of our work will involve cut operators operating
on products of Gaussian hypergeometric functions. The basic operand is the product

fk,,n(a,b, 5;z)= f(z)= 2F1 (?Sb;Z)
(3.1)

2F1( 1-a-k’-5-n ) k, leZ, near.
1-6-b-l-n ;Z

Define

(3.2) C (--1)k(a)(b)l.

THEOREM 3.1. For k >_ >_ 0 or for 0 >_ k >_ l,

(3.3)
(5 + b)n+tII,n+t{fk,l,n(a, b, 6; z)}

C(1 + 5 a)n_kII,n+t{znf_t,_k,n(1 b, 1 a, 6; l/z)}.

Proof First, assume k >_ >_ 0. Obviously, we can assume that n +l >_ k,
otherwise the result is trivial. Denote the left-hand side of (3.3) by G, the right-hand
side by H. Then for 6 Z,-n _< 6 _< 0, G H. (Just turn both series around, using
(2.10).) We can write

(3.4) C H + V(()n+l,

Also,

(3.5)
m }zn-mE Cm,j(5)j(-5- n)m-j(1 + 5 + j a)n-m-k
j=0
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where Cm,j is independent of 5 and z. H is a polynomial of degree at most n- k in
5 if k _< n, and is identically zero if k > n. One can similarly show G is a polynomial
of degree at most n + 1. Thus V is a polynomial of degree at most 1. The result is
immediate if 0. Assume > 0. Obviously

(3.6) ,n+l (()n+l (1 z)k- Am(5)
m--O

Z 1

A,(5) O(5-’).

We consider all 5 series to be members of 7-/-, all z series to be members of 7-/+. In
the previous step we have used Euler-type transformations on the 2Fl’s; see [Erd, vol.
1, p. 64, (22)]. It is easily shown that these transformations are valid in T/+. Because
of the order estimate on Am we have

(3.7) V-- n II’n+l ()n+l A’(5)(z)’(1- z)k-’-i0,/--1
m--0

(This step requires commutativity of the cut operators.) Since k >_ the quantity in
the inner brackets is a polynomial in z of degree at most k- 1, and consequently the
above expression is zero. The first statement of the theorem is established.

The second statement follows from the first. We let z - 1/z and use property
(2.3) of the cut operator, then property (2.4) with p- l- k. Finally, we replace k by
-l, by -k, a by 1 -b, b by 1 -a and interchange the two sides of the equation. 0

The above result will produce an abundance of aF3(1) identities when coefficients
of like powers of zr on both sides are equated. We shall display these identities later.
However, there is one case not covered by the above result, that is, when the coefficient
of z is selected in the case k n + 1. The resulting 4F3(1) identity is a generalization
of one that occurs in the theory of the associated Jacobi polynomials; see [Wiml].
The proof involves a delicate and interesting umbral calculus argument.

THEOREM 3.2. For 0 <_ <_ n,

(3.8) II.n{fn+l,t,n(a, b, 5; z)} ( a)(5 + b)n+l [(()n+l (( -[- b- a)t- (a)n+l (b)t].

Proof. Using an argument similar to that of Theorem 3.1, we can write

zn V
IIz (a, b, (; z)} C+ (()n+l,(3.9) (5 + b)n+t n,n{fnWl,l,n ( a) ( a)

where V is of degree at most in 5. Again as before, we get

(3.10) 0,1 (()n+l n,n (i- Z)n Am(6)
z- i

Because of the order estimate on Am we can truncate the sum after + 1 terms. Since
<_ n, the quantity inside the inner brackets is then a polynomial in z of degree n or
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less. By isomorphism, we may determine the coefficient of zn by considering z to be
a complex variable A, dividing by An and letting

(3.11)

v z m0,,
m:0 A-i

(_z)nii5 (6 a)(6 J- b)n+l
o, ()+ A()

()+ F1 ;1 x F -n-a, 1 b
l__b_/_n; 1

Using Theorem 2.1 we represent the 2F’s above by the umbral gamma functions
of definition (2.11). We find a substantial cancellation of exponential factors and
conclude that

(3.12) V (-z)nHo,l{(6 + b- a)l} (-z)n( J- b- a)t.

Putting this back into (3.10) gives the theorem.
Note explicit polynomial expressions for the quantities HZ,8 can be obtained by

using the formula (2.8) for multiplying hypergeometric series.

4. Some hypergeometric identities. Multiplying out the relevant hypergeo-
metric functions using formula (2.8) of 1 gives

(4.1) _(1-a-k)(-5-n) ( -r,a, 5,5+b+l+n-r
r!(1-5-b-l-) 4F3 5+b,a+k-r, 5+n+l-r ;1

Thus Theorem 3.1 yields

(4.2)

( )4F3 5+b,a+k-r, 5+n+ l-r ;1

r-n,l-b, 5,6+l-a-k+rE xFa +l-a,l-b-l-n+r,5+l+r ;1), O<_l <k<_r<_n+l,

where

(4.3) E (--1)k+rr!(( j- 1)n-r(b)l(b J- l)n--r(6 J- 1 a)r-k
(n r)!(6 + 1)r(a + k r)r-k(6 + b)t+n-r

(We interpret E 0 when r > n.) Note the functions are not Saalschutzian, so this
identity cannot be derived from known 4F3(1) identities, such as those given in [Bai,
p. 56]. A referee has pointed out that this identity can be proved trivially. First,
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assume 5 is an integer and none of the other numerator or denominator parameters
are integers. Reverse the summation index from j, say, to, 5- j. Write the answer
in terms of gamma functions and then let r --, a positive integer. Finally free the
parameter 5, which is permissible, since both sides are rational functions of 5.

Utilizing Theorem 3.2 gives the (known) identity

(4.4)

aF3 5+b,a+ l,5+ l ;1
(5-a)(5+b)t

+b-a)t (b)t 1 0<l< n.
(a)n+l (5)n+lJ

The reference [Wiml], shows the result also holds for n + 1. However, it does not
hold for > n + 1. (Just let a --, cx. The result should be finite.) This is a strange
identity. The left-hand side is a polynomial of degree n in l, and it would be tempting
to assume the result holds for all since it holds for n + 1 consecutive values of I.
However the right-hand side is not a polynomial in l. It is a transcendental function.

A referee has pointed out that this identity is actually a consequence of earlier
work of one of the authors and J. Fields [Fie]. It has extensions to q-series, which are
discussed in [Gas].

5. Two-point Pad6 approximants. Our main tool in this section will be The-
orem 3.1.

Define

Pk,l,n(5, Z) Pn(5, z) I],n+l{fk,l,n(a,b, 5;Z)}

=II,n+ 2F ;z 2F
1-a-k,-5-n
1-5-b-l-n ;z

Formula (3.3) shows that Pn is of exact degree n if 0 _< k <_ n. Since H0,n+t
1-[0,k-1 - Hk,n+l, the same formula shows that it is of degree at most n if k n + 1.
Thus

(5.2) Pn(5, z) II,n{fk,t,n(a,b, 5;z)}, 0 <_ <_ k <_ n + 1.

(5.3)

THEOREM 5.1. For 0 <_ <_ k <_ n we have the two-point Padd approximant,

zgn-1( -- 1, z)
P(,)

a, 5+1z2F1 5 + b+ l ;Z

(5+b)2F( l-b’5+lS+2-a ;-iz)
"- O(znW1+l), Z O,

l-b,5 I)(1+5-a)2F1 5+1-a;7
+ O(z-+), z-.

Proof. We have

(5.4)
P(5, z) II,+{f,,(a,b, 5;z)}

--2F1 (76b;Z) 2Fl( l-a-k’-5-nl-5-b-l-n z) + O(z++*), Z --* 0.
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Replacing n by n- 1, 5 by 5 + 1, and dividing this equation by the original produces
the first part of the theorem.

Next, we have

znPn(, l/z) zn[II,n.t_l{fk,l,n(a, b, (; Z)}]]z._.l/z

+ zn[XI,nTl{fk,l,n(a b, ; z)}]lz_.l/z

O(zn_+ + C(1 + 5- a)n_}zn
+

X [H,n+l{znf_l,_k,n(1 b, 1 a, ; 1/z)}]]zl/z

(+b)+ F +l-a;z

x F a+k__;z zO.

or the last step we used properties (2.a), (2.4). Replacing z by 1/z and using
the same , argument as above, we get the second art of the theorem.

Put k 0 above to get Hendriksen’s result; gives the In-1, ] Pad
approximant given by Wimp. Letting z 1/z and redefining parameters will yield
results valid for -n N N k 0, hence, the In- 1, ] Pad approximant to the second
ratio in (.a) about z . It is interesting that the hypergeometric functions in the
numerator, respectively, the denominator, of the first line of the theorem are solutions
about of the same hypergeometric equation as the functions in the numerator,
respectively, the denominator, of line one, which are solutions about 0.

Theorem g.1 is a little unsatisfying becaUse it does not yield an [,
proximant about z 0 when . However, we may obtain such a result, in fact,
famil of one-point approximants by using a trick. The symmetry relation

(5.6) fk+l,l,n(a, b, 5; z) fn+,n+t-k,k(5, b + 5 a; a; z)

is easily verified. Define

(5.7)
Wk,l,n((,Z) II,n+l(fk,l,n(a, b, ;

-Hz {2F(?Sb;Z) 2Fl( 1-a-k’-5-n )}O,n+t 1-5-b-l-n;Z

We have

Wn-+-l,l,n-1 ((, z) IIg,nTl_ {fn+l,l,n-1 (a, b, 5; z)}
IIZ {fn,l-l,n(5, a b + 5 a; z)}O,n+/--1

--II {fn,t- (5, a b+5-a,z)}O,rt-- ,n

+ II,n+l_l{fn,-l,n(5, a,b+-a,z)},

and Theorem 3.1 tells us that this is a polynomial in z of degree n at most for
1 _< <: n + 1. Proceeding as in the proof of the previous theorem, we have the
following result.
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THEOREM 5.2.

a, 5+1

(5.9) Wn+l l,n-l(5 -- 1 z) 2F1 5 + b + 1
z

+ O(zn+l), 1 < < n + 1.

When n + 1, both numerator and denominator are of exact degree n, and the
result is the desired In, n] Pad approximant.

A number of interesting cases of Theorem 5.1 follow by taking limits. We give
several of these. First, let z -- z/a, a x. Put k (no generality is obtained by
doing otherwise) and define c b + 5. Next use the formulas in [Erd, vol. 1, 6.3, 6.5,
6.6] liberally. Theorems 5.1 and 5.2 may be combined in this case to give the following
corollary.

COROLLARY 5.1. Let

(5.10) Q(c,z) H,,+k{O(b,c;-z (1 -b- k, 1 -c- k-n;z)}.

Then for 0 <_ k <_ n + 1,

(5.11)
Q_(c + 1, z)

O(c + 1 b, c + 1; z)
b, +

-c(c + 1 b, c + 1; z) 1),(c b, c; z) + O(z-+k-

Z -’+ O

Remarks. (i) The (I) and functions are the usual confluent hypergeometric func-
tions. The ratio of functions must be interpreted as a umbral series whose coeffi-
cients are given formally by taking the ratio of the asymptotic series representing the

functions.
(ii) For k n + 1, the numerator on the left of (5.11) is of degree n, hence this

case yields the In, n] Pad approximant; k n yields the In- 1, n] Pad approximant.
(iii) One may instead let z -, zb in Theorems 5.1 and 5.2 and let b -, c. This

amounts to interchanging and 9, z and 1/2. One then gets the In, n] and In- 1, n]
Pad6 elements for as z -- x.In this result let b + 1/2, c 2+ 1, z --, 2z. Then apply the formulas in [Erd,
vol. 1, 6.9.1; vol. 2, p. 79, (19), (21)].

COROLLARY 5.2. Let

(5.12) Un(Z) H,n+k_{O(+ 1/2,2p+2;-2z) O(1/2-p-k,-2-k-n;2z)},

(5.13) Vn(z) H,n+k{@(v + 1/2, 2v + 1;-2z) x O(1/2 k,-2v k n; 2z)}.

Then for 0 <_ k <_ n+ 1,

(5.14)

I+(z)
U,(z) 1 + I(z) + O(z,+k),

K+(z) + O(z_n+k_l)Vn(z) 1-
K,(z)
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Finally, in Corollary 5.1 put z z/(1- b) and let b --, cx. Then use the formulas
in [Erd, vol. 1, p. 266, (18); p. 185, (2)]. The limit of the second member of (5.11) does
not exist in 7-/-, but the limit of the first exists in 7-/+. We obtain an explicit formula
for the diagonal and off-diagonal Pad6 approximants to a ratio of Bessel functions.
(We believe this result to be new.)

COROLLARY 5.3. Let

k)Hn(C,Z)-" E m!(c)m(1-c---k)m"--o

Then for k n, n + 1,

Ha-1 (c -[-- 1, z) CIc(2x/)
H(c,z) x/I_ (2x/) + z --, 0

Here [.] denotes the greatest integer function.
Acknowledgments. We thank the referees for their suggestions.
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ELLIPTIC-PARABOLIC EQUATIONS WITH
HYSTERESIS BOUNDARY CONDITIONS*

ULRICH HORNUNG AND R. E. SHOWALTER$

Abstract. A general porous-medium equation is uniquely solved subject to a pair of boundary
conditions for the trace of the solution and a second function on the boundary. The use of maximal
monotone graphs for the three nonlinearities permits not only the inclusion of the usual boundary
conditions of Dirichlet, Neumann, or Robin type, including variational inequality constraints of Sig-
norini type, but also dynamic boundary conditions and those that model hysteresis phenomena. It is
shown that the dynamic is determined by a contraction semigroup in a product of L1 spaces. Several
examples and numerical results are described.

Key words, existence, uniqueness, porous-media equation, hysteresis, nonlinear boundary con-
dition, semigroup

AMS subject classifications. 35K55, 35K65

1. Introduction. We shall consider a degenerate-parabolic initial boundary
value problem in the form

0
a(u) Au , x e(’) a

0 Ou
(1.1.b) O--b(v) + - g, and

(..c)
Ou
O- e c(v- u), s e r

for each t > 0 with initial values specified at t 0 for a(u) and b(v). At each t > 0,
u is a function on the bounded domain fl in Rn with smooth boundary F, and v is
a function on F. Each a(.), b(.), c(.) is a maximal monotone graph in R ] [7]. Our
interest in (1.1) arises primarily from the fact that (1.1.b) together with (1.1.c) can
represent hysteresis phenomena on the boundary. Specifically, consider the maximal
monotone graph given by sgn(y) (-1} for y < 0, sgn(0) [-1, 1], and sgn(y)
for y > 0. If we choose c sgn-1, the inverse graph obtained by reflection of the
coordinates, then (1.1.b) is an ordinary differential equation for b(v) subject to the
constraint (1.1.c),

u-l<v<u/l.

If g 0, then the selection w E b(v), which realizes the equation (1.1.b), is constant
except at the constraint; there the control ou forces the corresponding equality. Thus
the relationship between, u and w b(v) is an example of a generalized play [14].
Furthermore, if we let b sgn+ 1/2(1 + sgn), then (1.1.b) models a perfect relay
[14]. Thus the system (1.1) consists of a generalized porous-media equation in the
interior of 12 subject to a nonlinear dynamic Neumann constraint, which can contain

Received by the editors March 26, 1992; accepted for publication (in revised form) December
15, 1993.

Universitt der Bundeswehr, D-85577 Neubiberg, Germany (ulrh@+/-nformat+/-k.
un+/-bw-muenchen, de).

Department of Mathematics, University of Texas at Austin, Austin, Texas 78712-1082
(showath.uexas.edu). The research of this author was supported by a grant from the National
Science Foundation.

775



776 ULRICH HORNUNG AND R. E. SHOWALTER

hysteresis phenomena on the boundary. Here, w is the internal state of the hysteron,
v- u is the order parameter, and u is the external input. See [19] and [17] for further
discussion of these terms and general perspectives on hysteresis.

Although the hysteresis effects obtained from the pair of graphs b(.), c(.) were
our primary motivation, we were able to include the third graph a(.) with no essen-
tial additional difficulty. This is merely a reflection of the power of the method that
was developed in [22]; this method permits the addition of gradient nonlinearities of
p-Laplacian type in (1.1.a) as well as corresponding elliptic Laplace-Beltrami oper-
ators in (1.1.b) for the manifold F. See [18] for a treatment of the degenerate case
a(.) 0 corresponding to a Stefan problem on the boundary F. Adsorption in porous
media may be governed by conditions or the surfaces of the solid material that are
of hysteresis type. In that case, u is the concentration of a chemical species that is
dissolved in the fluid occupying the pores, and w is its concentration on the surfaces
once it has been adsorbed. If one assumes that the process is governed by certain
thresholds, the adsorption rate shows a hysteresis phenomenon of the kind discussed
in this paper. In [11] this idea is applied to homogenization of reactive transport
through porous media. Additional papers that deal with problems closely related to
those of the present paper are [2], [13], [24], [25], [26], [15], and [16], where parabolic
problems with a hysteresis source term are studied.

A rather remarkable variety of boundary conditions is obtained in (1.1). For
example, if b 0 we have an explicit Neumann boundary condition, and if c =_ 0 it
is homogeneous. (Clearly, any general solvability results cannot simultaneously allow
c b 0, because this forces g 0.) If b(0) (i.e., b-1 0), then v =_ 0 and we
have a nonlinear Neumann constraint, and if c(0) R, we get v u on F and this
satisfies a nonlinear dynamic boundary condition of Neumann type. If b(0) c(0) ,
we have the homogeneous Dirichlet boundary condition. For previous work on some
of these various classes, we refer to [3], [4], [5], [6], [8], [20], and [23].

Our objective is to .show that the dynamic of problem (1.1) is determined by a
nonlinear semigroup of contractions on the Banach space L (t) L (F). The (negative
of the) generator of this contraction semigroup is (the closure of) an operator C for
which the resolvent equation (I + C)([a, b]) If, g] with s > 0 takes the form

x e
Ou

(1.2.5) b(v) + s- D g, and

Ou
e e r

in the state space L(gt) LI(F). n order to motivate the essential estimates that
are needed, consider the (much simpler)case of functions a(.), b(.), c(.). Multiply the
respective equations by appropriate functions on gt and on F, and integrate to
obtain

This leads to the variational formulation of (1.2) and a priori estimates. For example,
if we choose sgn(u), sgn(v) and can simultaneously obtain sgn(a(u)),

sgn(b(v)), then we (formally) obtain the stability estimate

(1.4) Ila(u)llL(fl) + IIb(v)llL(r) <_ IlfllL(a) + IlgllL(r)



HYSTERESIS BOUNDARY CONDITIONS 777

For the special case a(u) u, b(v) v, we could choose u, v and obtain
corresponding L2-estimates. For this special case we shall show that the corresponding
evolution is parabolic in L2(gt) L2(F); the same holds for its additive perturbation
(see (5.1)). For the general case, estimate (1.4) suggests that the resolvent If, g] -[u, v] --. [a(u), b(v)] is a contraction. Of course we must obtain such estimates on

differences of solutions.
Our plan is the following: In 2 we formulate the boundary value problem (1.2)

as a variational problem in Sobolev space and give sufficient conditions for which it
is well posed. In 3 we show that (1.1) is governed by a contraction semigroup on
L(gt) L (F) by constructing the operator C, as suggested by our formal calculation
above. Section 4 consists of some numerical examples which illustrate the hysteresis
phenomena. Additional examples appear in [12]. Finally, we note in 5 that a corre-

sponding additive perturbation of independent interest corresponds to a subgradient
in Hilbert space from which one obtains parabolic regularizing effects.

2. The resolvent problem. Our objective is to make the boundary value
problem (1.2) precise and give sufficient conditions for it to be well posed. Let be
a bounded domain in ]Rn with smooth boundary F 0t. Denote by LP() the usual
space of Lebesgue pth-power integrable (equivalence classes of) functions on t when
1 <_ p < c, and denote by L(t) the essentially bounded measurable functions.
Let C(t) be the infinitely differe’ntiable functions with compact support in t, let
Hm() be the Hilbert space of functions in L2(gt) for which each partial derivative up
to order m belongs to L2(gt), and denote by Hn(gt) the closure in Hm(t) of
See [1] for information on these Sobolev spaces. Specifically, the trace map , which
assigns boundary values is well defined, continuous, and linear from H (t) into Le(F)
with dense range B H1/2(F).

We consider the Laplacian as an elliptic differential operator in divergence form
from H(gt) to its dual H-1 (t). Thus, assume we are given aj E L(t), 1 <_ i, j _< n,
which are uniformly positive definite; there is a co > 0 for which

n

(2.1) E aij(x)ij >_ c01l 2 e ]n,
i,j-’l

where ]l2 Eyn=l [j]2. Then A Hl(t) Hl(gt) is defined by

Au() fa aOO
i,

dx u, p e H ()

The formal part of A is its restriction to C(t), the distribution

n

(2.2) Au =_ Aulc(a)
i,j=l

The monotone graphs in system (1.1) will be given as subgradients of convex
functions [10]. Thus assume each Ca, Cb, c is a convex lower-semicontinuous function
from R into the nonnegative extended reals ]R+ [0, +c], Ca(0) Cb(0) c(0) 0.
Throughout most of the following we shall assume that is quadratically bounded:

(2.3.c) c(s) <_ C(Isl2 + 1) s e IR;
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hence c is continuous on all of I. By defining

(2.4.a) Za (u) .fo (u(x) dx

(2.4.b) Zb(V) =-- [ b(V(S)) ds
JF

u e L2(gt)

v e L(r),

we obtain a pair of proper, convex, lower-semicontinuous functions, Z L2() ---,

and Zb L2(F) --, +. (By "proper" we mean that a function has a finite value
somewhere.) Also, we define such a function Zc on the product space HI() L2(F)
by

(2.4.c) Zc([u, v]) ]r c(v(s)- "u(s)) ds u e HI() v E L2(F),

and Zc is convex and continuous on H (gt) L2(F). The subgradients of these functions
are easily computed by standard results [10]. Thus, we have a OZa(u) in L2(t) if
and only if

(2.5.a) a(x) e Oa(U(X)) a.e. x ,
and similarly we have b OZb(v) in L2(F) exactly when

(2.5.b) b(s) e Ob(V(S)) a.e. s e F.

Since imbedding Hl(gt) into L2(a) is continuous and dense and we identify L2(a)
with its dual, wo have L2(Ft) C Hl(t)’. Thus, a OZ,(u) in L2(f) implies that the
same holds in Hl(t)’, but a OZa(u) in HI() does not necessarily imply (2.5.a).
We shall call a subgradient in Hl(t) a weak subgradient and one in L2(gt) a strong
subgradient. Finally, since Z HI(Ft) L2(F) I is a composition of continuous
functions, we have from the chain rule [10] that its weak subgradient is characterized
by C e OZc[u, v] in HI(t) L(r) if and only if C [-’c, c] with

(e..c) c(s) e o(,(s)- ())
The dual map r of L2(F) into Hl(gt) is given by

a.e. sF.

’g() fr g" ds, .g e L(F), e H(gt)

The boundary value problem (1.2) can now be realized as a subgradient equation.
To this end, set

(.) z[, v] =_ zo() + z() + () + Z[u, ] u e Hl(t) v e L(F).

Clearly, there is no loss of generality in taking 1, so we shall do so for the remainder
of this section. Then, Z is the sum of convex and lower-semicontinuous functions, Z
is proper, the first two terms are independent, and the remaining two are continuous
and defined everywhere. Thus, we can compute the weak subgradient term by term.
From this it follows that

(2.7) OZ([u,v]) [f,g] in Hl(gt)’ x L(r),
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whenever we have u E Hl(fl), v E L2(F), and there exists a L2(12), b, and c- L2(F)
satisfying (2.5) and

(2.8.a) a

(2.8.5) b-bc-g in L(r).

That is, the weak subgradient (2.7) follows from (2.5) and (2.8). Moreover, (2.7) is
equivalent to (2.5) and (2.8) if the first two terms are both strong subgradients.. This
will always be the case (by the chain rule) when we assume bounds of the form

(2.3.a) Ca(s) _< C(]s]2 -b 1),
(2.3.b) b(S) <_ C(Isl 2 / 1) s e I.

In order to show that (2.8.a) is equivalent to a partial differential equation in
and a boundary condition on F, we develop an appropriate Green formula for the

operator fl, [21]. Use the formal part (2.2) to define the domain

D =_ {u e HI() Au e n2()}
Note that if F and the coefficients in A are smooth, then D H2(). Recall that we
denote the range of the trace by B and that B is dense and continuously imbedded
in L(F). Thus we obtain the identification L(F) c B’.

LEMMA 1. There is a unique linear operator OA D -- B’ such that 4u
Au q- /’OAU for u D. That is, we have for each u D,

(2.9) Au() (Au, )L2() :" OAU() e g(D)

Proof. Since 7 is a strict homomorphism of Hi(D) onto B, its dual ’ is an
isomorphism of B’ onto the annihilator H()
Thus, for each u D, the difference Au-Au belongs to H(),. so it equals ’(OAU)
for a unique

The identit (2.9) is a generalization of the clsical Green theorem. If F is
sufficiently smooth and u denotes the unit outward normal on F, and if u H2()
and aij CI(), 1 i, j n, then

ajOiuOy dx Audx + Vds, (),
i,j=l

where Au is given by (2.2) and the normal derivative is given by

O aOu eLf(r).
j=l

We can thus regard OA an extension of 0 toa (possibly) wider cls of functions
in D.

Consider (2.8.a) and sume f e n2(). Applying it to C() shows that

(2.10.a) a + Au f in n2(D)
Since from (2.10.a) it follows that u e D, we may use (2.8.a). and (2.9) to get

(2.10.c) OAU= c in L(r).
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Then (2.8.b) is equivalent to

(2.10.5) b+OAu=g in L2(F)
This shows that (2.8) is equivalent to (2.10), and we have shown that the strong
subgradient identity (2.7) is satisfied by a solution of the resolvent problem (1.2),
namely, (2.5) and (2.10).

The following result gives sufficient conditions for the resolvent problem to be
solvable and equivalent to (2.7) in L2() L2(F).

THEOREM 1. Let the domain with boundary F , the coeJcients {aij}
satisfying (2.1), and the convex lower-semicontinuous functions a, b, c from ] into

with (0) (0) (0) 0 Oe given. Assume (2.3.a)-(2.3.c) and that for some
c > 0, any two of the following hold:

(2.11.a) (s) cs" -C with 1< 2

(2.11.b) (b(S) c]s] 2 -C, s C

(2.11.c) (s) [s[2 -C, s ., fo o, o, o-ioio Z" () L(r)
given by (2.4) and (2.6), it follows that the subgradient OZ is surjective onto H()
n(r). Thus, for each triple f L2(), g,h n(r), there exists a solution pair
u e H(), v e n:(r) and corresponding selections a e L2(), b, c e n(r) satisfying
(2.5) and

(2.12.a) a + Au f in L2(),
(2.12.5) b + c g in L:(r),
(2.12.c) OAU c h in L(r).

Proof. om Green’s identity it follows that (2.12) is equivalent to

a+Au-c=f+h in HI(),
b + c g in L2 (F),

and this, in turn, is equivalent to

OZ([u,v]) If +7’h,g] in. H()’ z L(F).
These equivalences follow by the same calculations relating (2.7), (2.8), and (2.10).
Thus it suffices to show that Z is coercive on HI() x L2(F), i.e.,

(2.13) }]U}]HX() + Ilvll/’<)
We shall verify (2.13). If the fraction in (2.13) is bounded, then we obtain for

some constant K,

(2.14) (() + IV) dz + (b(v) + (v )) ds

LEMMA 2. There is a constant K1 such $hat

(2.15) Ilull/:<) K (llVullz:<) + Iluilz:<)), u Hi(a)
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Proof. Otherwise there is a sequence {Un } in H (t) for which IlUn IlL2 1, and the
right side of (2.15) converges to zero. Then, {un} is bounded in Hi(D), so (by passing
to a subsequence) we have un u in Hi(D) and un -- u in L2(Ft) by compactness.
But then un u in the weaker norm on the right of (2.15), so by uniqueness of weak
limits, we have u 0. Thus Un 0 in L2(), contradiction.

Suppose we have the ce of (2.11.a) and (2.11.b). Using Lemma 2, we replace
]UL2( by U]L( in (2.14), and then we have

a c0

om here it follows that IIUIIH,<a) + IIvllz<) is bounded, so we have (2.13).
Suppose we have the case of (2.11.a) and (2.11.c). As before, we obtain

c IlUllz,() + IIVuil<> + c111v

Since is continuous from H(fl) into L(F), the term 117UllL(r) can be absorbed in
the first two terms by adjusting K, and then we are done.

Now consider the remaining ce of (2.11.b) and (2.11.c); then, from (2.14) we
have

c0

(.1)

in which we have used either a Poinca% inequality or the argument of Lemma 2 to
replace IIIIL() by Ill’liLt(r). Using the inequality 2
[vlIL(r), fl 1[TulIL(r), and 1 < < 2, we obtain

(r)

hus, w en rpe I1- 11( with I111( in (2.16) by adjusting c, so we

obtain the coerclvigy condition (2.1a) as before.

g. he evolution problem. The goal in this section is to construct the gener-
ator of the nonlinear semigroup which corresponds to system (1.1). We shall assume
the domain in R wih boundary r 0, the coemcients {a} in L(), and the
function " N N are given as in 2.

Define a single-valued operator e on the Hilbert space L () x g(r) as follows:
C([, v]) If, 9] if and only if If, 9] e (a) x (r), and

(a.l.a) e H (a), f + 7’9 in g (a)’ and

his is just (2.g) and (2.12) with b 0 and h 0, and it can be written

c C Oc(v /u) in L(r).
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According to Lemma 1, its value is given explicitly by C2([u, v]) [An, OAU]. We
shall first show that C2 is m-accretive and also a subgradient in L2(f) x L2(F); this
implies that the special case of the system (1.1) with a b identity is well posed
and parabolic (see 5). Then we shall show that the closure of the operator C which
corresponds to system (1.2) with nonlinear a(.), b(.) is m-accretive in Ll(gt) x L(F).

PROPOSITION 1. The function Z2" L2(gt) x L(F) -, + 9iven by (2.4.c) and

_= +

is proper convex and lower-semicontinuous. The (srong) subgradient is given by OZ2

Proof. The function Z2 is clearly proper and convex. To see that it is lower-
semicontinuous, note that if Inn, v] --* In, v] in L2(gt) x L(F) and {Z2([un, Vn])} is
bounded, then {[Un, Vn]} is bounded in Hi(gt) x L(F), so for some subsequence,
"),u -),u (strongly) in L2(F) and Fatou’s lemma yields the desired result. To
compute the subgradient, use the termwise weak subdifferentiability to see that if
If, g] e OZ2([u, v]), then there exists a c e L(F) with (2.5.c) and

c(-v-’y(-u)) ds e H (f), e L(r)

this is easily seen to be equivalent to (3.1).
We develop additional estimates on C2 and begin with the following lemma.
LEMMA 3. If a I ] is monotone and Lipschitz, and a(O) O, then for each

pair

we have

j- 1,2,

(fl f2, a(ul u2))L() + (gl g2, a(vl V2))L.(r) >_ O.

Proof. We use (3.1.a) to compute the above two terms. The composite a(Ul -u2)
belongs to H (f) and by the chain rule we obtain

n

4(ul u2)(a(ul u2)) =/ E aijOi(u
i,j=l

u2)Oj(ul u2)a’(ul u2) dx,

and this is nonnegative in view of (2.1) and the monotonicity of a. Also, we have to
check the remaining term

C1 C2) (O’(Vl V2) O’(’)’tl "/U2)) ds,

but this is nonnegative because of (3.1.b) since 0c is a monotone graph and a is a
monotone function.

The special, case of a(s) s. is just the observation that C2 is monotone in
the Hilbert space L2(fl) L(F). Since C2 is single valued, we can permit a to be
multivalued.

PROPOSITION 2. Let the domain with boundary F, the coejficients {aj} in

L() satisfying (2.1), and the convex continuous function l -- with (0)
0 and (2.3.c) be given. Let j IR -- IR+ be convex and lower-semicontinuous, and let
j(O) O. Then we have

(3.2) (C2[ltl, vii C2[’/z2, v2], [0"1,0"2])L2(fl)xL.(l-,)
_

0
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for any selections ale Oj(ul u2) in L2() and a2 e Oj(vl v2) in L:(r).
Proof. Congider the lower-semicontinuous convex function J on L2(t) L2(F)

given by

The subgradient of J is given by

ff [al,a2] OJ([u, v]) in L2(n) x L2(F)
if and only if

with q(x) Oj(u(x)) a.e. x O, a(s) Oj(v(s)) a.e. s F. The Yoshida ap-
proximation J of J is given by the same formula but with j replaced by j. The
derivative j is Lipschitz and monotone so Lemma 3 yields (3.2) in this special case.
Thus, C2 is 0J-monotone by Proposition 4.7 of [7] and the general case follows since
the single-valued C2 is equal to its minimal section.

Remark. As a consequence of Proposition 2.17 of [7], we also obtain the following
corollary.

COROLLAaY 1. Let j be given as above. Then O(J T Z2) OJ + OZ2.
It follows that the special case of the boundary value problem (1.2) with a

b Oj is well posed in L2() x L2(F) when j satisfies an estimate of the form (2.11),
because g + Z2 then coercive ov L2(O) x L2(F).

Next we construct the generator of the general system (1.1). This operator will
be obtained by closing up the composition of C2 with the inverse of [Oa, Ob] in
LI(O) L(F). As before, we shall always sume that (2.1) holds, (a, (, (,"
are convex and lower-semicontinuous, and (2.3.c) holds.

DEFINITION. The operator C in L2(O) x L2(F) is defined as follows: C([a, b])
[f,g] g there is a pair In, v] as in (3.1) and a pair a L2(O), b L2(F) for which

c([u,v]) [Lg] and a Oa(U) in L2(O), b 05(v) in L2(F).
Note that Rg(I+eC) L2(O) xL2(F) for e > 0 in both the situation of Theorem 1

(i.e., (2.3.a) and (2.3.b)) and in the ce of Corollary 1 with (2.11) and a b.
LEMMA 4. The operator C is accretive on LI(O) x L(F).
Prog Let > 0 and (I + C)([a/, b/I) 9 [fj,gj] for j 1,2. Thus we have

above. We choose j(s) s so that Oj sgn; then we use (3.3) with

a sgn0(u u2 T a a2) sgn(ul u2) sgn(a a2),
a2 sgn0(v v2 T b b2) sgn(v v2) sgn(bl

to obtain

(3.4) ]a ae]i(O) + ][b b]/(r) S ]f 5]i’(n) + ]]g 92115 ( )
of course the same procedure with the function j(s) s+ and its subgradient

Oj sgn+ yields the compason estimate

(3.5) ll(al- a2)+llL(a)+ II(bl- b2)+llL,(p) I[(fl- A)+ll/’(a)+ II(g- g2)+ll/’(r)
This leads to the following L estimates.
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COROLLARY 2. If (I+eC)([a,b]) If, g] and llf+llL(n)+llg+llL(r) e Rg(Oa--
Ob), then

(3.6) Ila+llL(n) <--I}f+llL(a), ]b+L(r) g+n(r).

Proof. Set 62 ]]f+[i(), b2 g+]/(r), and choose k such that Oa(k) a2
and Ob(k) b2. With u(x) k, v(s) k in the definition of
C)([a2, b2]) [62, b2], so we can apply (3.5) to get ](a--a2)+]]i(n)+l[(b--b2)+i(r)
0.

The same result holds for the "negative parts," and by adding the corresponding
estimates, we obtain estimate (3.5) with the "positive part" deleted throughout.

LEMMA 5. Assume that any two pas of (2.11) hold. Then for any > 0 and
If, g] i() x/(F) with ][f]i() + g]]/(r) Rg(Oa + Ob), there exists a
unique [a, b] such that (I + eC)([a, b]) If, g] and

(3.7) aL(a) fL(a), bL(r) gL(r).

Pro@ Modify to replace 0 by its truncation

{min{r,m}:r 0(s)} if s 0,
0y()

{mx{,-m}: 0,()} i < 0,

where m max{fL(fl), gL(r)}. Thus 0g has bounded range, so F satisfies
(2.3.a). Likewise, modify to obtain satisfying (2.3.b). By Theorem 1, there is
a unique solution [a,b] Lu() LU(F) of (I + C)([a,b]) If, g] with the modi-
fied functions g, CF" This solution satisfies (3.7), so (2.5) holds since the modified
functions agree with the original ones for these values of a and b.

We summarize the above construction in the following.
THEOREM 2. Assume we are given the domain with boundary F as above,

t oeit (a} i L() tifia (.), d t th convex, o-i-
continuous functions ,, from into satisfying (0) (0) (0) 0
and any two of (2.11).

() ith (2..)-(2..c)hod o ad (2..c) od, th na( +)=
L() L(r).

(b) fn(0 + 0) , t n( + C) L() L(r).
In both of these cases, the closure of C in L(fl) L(F) is m-accretive.

Pro@ Part (a) is implicit in Theorem 1 and Corollary 1. For part (b), we apply
2Lemma 5 and note that we have that ]]OAUL(r) 7gL(r) from (3.7). Thus

or2m/e r2m/ewe may replace 0 by its truncation c and the corresponding convex
satisfies (2.3.c).

Since C is m-accretive, it follows from the Crandall-Liggett theorem [9] that the
abstract Catchy problem

’(t) + ((t)) ](t) 0 t T,

a(0) a0

has an integral solution h(t)= [a(t), b(t)] in C([O,T],L() L(F)) which is unique;
see also [3]. This solution can be obtained the uniform limit of step functions
obtained from the implicit difference scheme

[a, b] [a-, b-] + h ([a, b]) h[f, g], n N,
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with step h TIN and [a, b] 0 E dom( ). This provides a generalized solution
of the degenerate parabolic system

a
0- / Au- f aeOns(u) in LI(),
Ob Ou Ou
c9- + - g b C b V - e ) c V "U in L(F),

with initial data

a(x,O)=a(x) a.e. xe
b(s,O)=b(s) a.e. seF

as desired.

4. Examples. For the following numerical examples we have modified the initial
boundary value problem (1) in that we assume the boundary F of the domain t is
the union of two parts, namely, F FD (.J FH. We prescribe Dirichlet data u UD
h(t) on FD and use the hysteresis boundary conditions (1.1.b), (1.1.c) on FH. The
modification of the theorems, such that this case is also covered, is obvious.

We consider a multiple of the signum function

( 0) or a smooth approximation thereof, namely,

1 z
be(z)

and the inverse of the signum function

C(Z) sgn-l(z).

For the following examples we simplify by using a(u) u and f, g 0. We are going
to use the function

h(t) a2-tl sin(2rwt)

(with a,/,w > 0). The initial values are all zero in the examples. As a numerical
method, we have used the standard time-explicit difference scheme with constant step-
sizes in x and t. Additional details and examples can be found in [12].

Example 1. As a one-dimensional example, let Ft (0, 1), FH {0}, FD {1}.
We assume UD(t) h(t) with a 4, 10, w 1/5, and 0. Figure 1 shows
u and the selection w b(u) at x 1 as a function of time; the dotted line is the
function h and w is the solid line bounded by 1/2. Figure 2 shows w versus, u; the
oblique lines that cut the corners are a result of the discretization of time. This has
the typical form of a perfect relay.

Example 2. The following is an example in two dimensions. We take 12
{(xl,x2) 0 < x,x2 < 1} and assume FD {(x,x2) x 0}, FH 0t \ FD.
Again, we use up(t) h(t) for x FD with parameters a 4, 2, w 1, and
e 0.1. Figure 3 shows the profile of the solution u at time t 1.25 with 0.1.
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0.0 10.0 20.0

FIG. 1. u and w as functions of at x for Example 1 with e O.

5. A parabolic problem. We close with some remarks on a parabolic system
obtained as an additive perturbation of [0Ca, Ob] instead of the composition C that
was used in 3 to recover (1.1). The first is a corollary of Proposition 1.

COROLLARY 3. Assume that a and b are given in Proposition 1 and (2.3.a)-
(2.3.c) hold. For every uo E 52(12), v0 E 52(F) and f L2(O,T;L2()), g
L(0,T;/(r)), th i nq otion C([0,T]; i()), v C([0,T]; L(r))
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FIG. 2. Relay" w versus u at x for Example 1 with O.

(5.1.b)

(5.1.d)

u
+a + Au f, a E Oa(u) in Loc(O,T;L2(f)),0--

Ov
0-- + b + OAu g b E Ob(V) and

OAU e Oc(v 7u) in L2 (0, T; L(r)),
u(O) uo in L2(f) v(O) vo in L2(F)

Proof. Estimates (2.3.a)-(2.3.c) imply that OZa and OZb are defined everywhere,
hence, by Corollary 2.7 of [7] we have OZ OZa +OZb +OZ2 in L2(f) L(r). Then,
(3.2) is the evolution generated by OZ. ,
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FIG. 3. Profile at 1.25 for Example 2 with 0.1.

Such a subgradient induces a parabolic regularizing effect in the dynamics. Specif-
ically, the solution of (3.2) is strongly differentiable and satisfies

u(t) e D a.e. te(0,T).

Also, we note from Theorem 1 that the stationary problem associated with (3.2) is
well posed when two of the three parts of (2.11) hold.

The fact that 2 is 0J-monotone for any J of the form (3.3) has many con-
sequences for the special case of system (5.1) with Ca b 0. In particular, if
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(I+C2)([uj, vii) [fj,gy] for j 1,2 and > 0, then we have the resolvent estimate

(5.2) J([u u., v v]) _< J([l f, gl g2])

for any such J. Similar estimates hold for the evolution system, and any such J is a
Lyapunov function for this special case of system (5.1). These lead to LP-estimates
and comparison theorems for solutions by taking appropriate choices of j. Finally, we
note that O(J + Z2) OJ + C2, and this leads to another parabolic case of (5.1).

COROLLARY 4. Let j be given, as in Proposition 2 of 3 and set a b j.
Assume (2.3.c) ftoldso Then the result of Corollary 3 is valid.
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REGULARITY FOR THE INTERFACES OF EVOLUTIONARY
p-LAPLACIAN FUNCTIONS*

HI JUN CHOEt AND JONGSIK KIM
Abstract. The support of an evolutionary p-Laplacian function has a finite propagation speed.

Here we consider various questions involving the interface, which is the boundary of the open set
where the solution is positive. We especially study the initial behaviour and regularity of the interface.
We find a necessary and sufficient condition for the interface to move. For the regularity questions we
show that the interface is globally Hhlder continuous employing the Harnemk principle. Furthermore,
we prove that the interface is Lipschitz continuous after a large time and globally Lipschitz continuous
if the initial data satisfy certain nondegeneracy conditions.

Key words, interface, Hhlder continuity of interface, Lipschitz continuity of interface

AMS subject classification. 35J

1. Introduction. In this paper we consider the Cauchy problems for the evolu-
tionary p-Laplace equation

(1) us div (IVulp-2Vu) us Apu O, p > 2

in Rn (0, c), n >_ 1, with a nonnegative continuous initial datum

0)  0(x)

of compact support. The main object is to study the interface F, which is the boundary
of the open set where u > 0. These problems arise in geometry and non-Newtonian
fluid mechanics (see [18] and [21]). Indeed, the analysis of the interface provides useful
information for the propagation of the data.

Since p > 2, equation (1) is degenerate when Vu 0. Hence the concept of
classical solution is too restrictive. A weak solution of (1) is a function u(x, t) such
that for any T > 0,

T

U (X, + IWl dxdt < c

u- -IVulp-2Vu V dxdt + uo(x)(x, O) dx 0

for any continuously differentiable function with compact support in Rn [0, T).
The unique solvability of our Cauchy problem in Rn (0, T) follows from Theorems
1 and 4 in [12].

Received by the editors April 12, 1993; accepted for publication (in revised form) November 29,
1993.

Department of Mathematics, Pohang Institute of Science and Technology, Pohang, Kyungbuk,
Republic of Korea 790-600 (choe@posmath.postech.ac.kr). The research of this author was sup-
ported by Korea Science and Engineering Foundation, Global Analysis Research Center at Seoul
National University, and by the Non Directed Research Fund, Korea Research Foundation, 1993.

Department of Mathematics, Seoul National University, Seoul, Republic of Korea 151-742. The
research of this author was supported by the Global Analysis Research Center at Seoul National
University.

791



792 HI JUN CHOE AND JONGSIK KIM

For the porous medium equation

vt A (vm) O, re>l,

various results for the interface are known. Assuming the initial datum v0 has compact
support, the interface consists of two parts--a moving boundary and a nonmoving
boundary--and the support gt(t) {x e Rn: v(x, t) > 0} is monotonically increasing.
Furthermore, the regularity of interface has been investigated by many authors (see
[1], [51-[71, [171, etc.).

Here, following an argument similar to [5] and [7] we study the interface questions
for the evolutionary p-Laplace equation (1). We define

A ((x, t) e Rn [0, c): u(x, t) > 0},

(t) {X e ln U(x,t) > 0},

r(t) the boundary of

and

r u>_0r().

Hence F(0) is the boundary of {x e Rn: u0 > 0}.
In 2 we consider the initial behaviour of the interface. When the initial datum

u0 satisfies

(2) uo(x) >_ c [dist(x)] p-2

where dist(x) distance(x,F(0)), then gt(t) is initially strictly increasing. On the
other hand we show that (2) is sufficient for strict monotonicity of the set gt(t). In
fact we show that if there is a supporting hyperplane P at x0 E F(0) and

uo(x) <_ c [dist(x)] " >
then there is a positive time T > 0 such that

u(x0, t)=0 for all0<t<T,

and hence the interface does not move at x0 for a short period. There are corre-
sponding results for porous medium equations (see [17] for one dimension and [5]
for a higher dimension). Finally we find an integral expression which describes the
pointwise behaviour of the interface. In fact we use the Harnack-type inequality and
an integral estimate by DiBenedetto and Herrero [12] and obtain a necessary and
sufficient condition for moving point.

In 3, from the Harnack principle and the maximum principle we prove HSlder
regularity of the interface. First we show that the interface consists of two parts--a
moving part F1 and a nonmoving part I2. In particular, if the interface F contains
a vertical line segment a {(x,t) x xo, to < t < tl},0 < to < t, then the entire

segment {(x, t) :x x0, 0 < t < t } belongs to F. Following an iteration method, we
show that if (x0, to) E F does not lie on a vertical line segment belonging to F, then
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F N {t T} increases at a rate >_ (T- t0)z for T > to, T- tO small, Ix- x0[ small,
for some # > 1. Solutions of porous medium equations show the same behaviour (see
Theorem 3.2 in [5]). Therefore the HSlder continuity of the interface follows. Here,
the Harnack principle is a main tool in showing the above results.

In 4, following the idea of [7], we prove Lipschitz regularity of the interface after
a large time. In fact, Theorem 6 is observed in [15]. Here, the asymptotic behaviour
of the solution is crucial in estimating the Lipschitz norm of the solution after a large
time. On the other hand, from the reflection method we find a monotonicity property
of the solution. Indeed, the same property (see Proposition 1.5 in [7]) is used for
the porous medium equation. Hence the interface is representable as a function in
polar coordinates. Finally, by considering a directional derivative we show that the
interface is Lipschitz after a large time.

In 5, employing the method of [7], we show the interface is Lipschitz continuous
if the initial datum satisfies a nondegeneracy condition. A similar result for the
porous medium equation is proved by Caffarelli, Vazquez, and Wolanski [7]. We show
that a directional derivative of v u(p-2)/(p-I) is positive and hence the interface
is Lipschitz continuous. Here, the observation by Esteban and Vazquez [15] that v
satisfies

vt 2
vApv + -_ IVvlp

is rather crucial.

2. Initial behaviour of the interface. In this section we study the initial
growth rate of the interface. The local behaviour of the initial datum near F(0) is
crucial in showing that F(t) is increasing.

Suppose x0 is on F(0). Following an argument similar to Knerr [17], it is shown
that the HSlder exponent of Vu is critical in the study of the behaviour of the interface.
Indeed, constructing a sequence of subsolutions near interface, we prove that if

uo(x) >_ [dist(x)] ---for some /< p, then the interface is moving near x0. Otherwise, the interface does
not move for a short period.

LEMMA 1. Let F(0) be of C2. Suppose that BR(O) C "l(O) and BR(O) F(0)
{x0}. Furthermore, we assume that

(3) uo(x) >_ [dist(x)] ---for some / < p. Then we have

u(xo, t) > o

for all t > O.
Proof. Without loss of generality we may assume that

p-l<7<p.

Let g(r) (R- r)v, where p--_. Note that r/> 1; this is crucial for the following
argument. Since we are assuming

BR(0) 1 F(0) {x0),
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we see that

Ixol R.

Now we choose a sufficiently close to R such that

n- 1 + 1/2(r- 1)(p- 1)
n- i + (/- l)(p- i)

R<a<R.

We find s satisfying

() -(R- )’- I g(a)
2a-R

and set as

xo

Since g is a convex function and g’ (R) 0, it is always possible to choose such s. We
set S s. Define recursively

8k+l
sk+R

for k-- 1, 2, 3,... and

xox

We define a supporting cone Tk at (if:k, g(lff:kl)) as

T(x) g(sk) + l(R- s)V-l(sk

We see that

T(0) () + v(R- )’-.

Moreover; when

Ixl s + g(sk) I

_
+ (R- ) =_ ,

l(R l

we find that

T(x) O.

Since g(s) is convex near R, we conclude that

T(x) < (11)

for all x E BR(O). We also observe that Tk(O) decreases inonotonically as k goes to

Now we are ready to construct comparison functions that are subsolutions to (1).
Since the maximum principle holds for solutions of (1), we can assume

o() (, 0) [(R- I1)+] 0
p-2
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without loss of generality. From a result of Lieberman (see [20]), if Vu0 is HSlder
continuous, then Vu is HSlder continuous up to t 0. Hence it follows that

ut(x, 0) div ([Vu[p-2Vu)

0p-1 (R- [xl) (tg-1)(p-1)-I [(0- 1)(p- 1)

if

(0- 1)(p- 1)+ n- 1

Recall from the choice of a that

n-1

R < Ixl < R.

R<a<R.
(O-1)(p-1)+n-1

So we see that there exists T > 0 such that

ut(2, t)>O for all tE[O,T),

where
Now we consider a family of functions {fk(x, t)} given by

and

p-1fk(x,t)=aPkt+ak(--Ixl) if[xl<+a t

where ak r(R- Sk)v-1. Note that fk(x, O) Tk(x). We define

(x, t) [(, t)]

where q pa_. Then, after suitable calculation, we have that

((, t)), [t +( -I1)1-
div ([VuklP-2Vuk) qpOpk [OPkt -- Ok(k ]Xl)] q-1

_qp_lapk_ [apkt + (, iX)]
n- 1

Thus we have

(u(x, t)) div (Vup-2Vu)

Therefore, if

q, + -1 !
g-t + ( -I o,

I1 (R-Ixl) >0

fk(x, t) 0 otherwise,



796 HI JUN CHOE AND JONGSIK KIM

that is,

qP -t- qp-l(n 1) q

then uk is a subsolution to (1) and

(Uk(X, t))t div ([Vuk[p-2Vuk) <_ O.

We note that

Uk(Xo, t) O for all0<_t<_Tk

with

Moreover, we find that

since

R>}>_sk and p-r(p-1)>0.

Now, from a direct computation it is rather simple to see that

f}(2, Tk) ak(R --Icl) ak(R a),

and since ak < O1 for all k >_ 2, it follows from the choice of sl that

fk(2, Tk) < cI(R a) -g(a) g(12l).

Now, recall that

p-1
p_2

>1

and

ut(2,t)>O for all0<t<T.

Therefore we conclude that for R _< 1,

(, t) A(, t) < (ll) < (, t)

for all 0 <_ t < T, since

ut(2, t) > O for allO<t<r.
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Recall that uk is a subsolution to (1). Consequently, from the comparison principle,

1

’ (x0, t) h(0, t) _< (0, t)

for.all Tk < t < T, and since

lim Tk 0,
k-,0

we conclude that

u(xo, t) > o

for all 0 < t < T. [:]

Now we prove a lemma that is a converse of Lemma 1. The growth condition (2)
is almost sufficient for showing that the interface is moving at (x0, 0).

LEMMA 2. Suppose that xo E F(0) and there is a supporting hyperplane P in Rn

such that xo P and (0) lies completely in one side of P. If

(4) uo(x) <_ [dist(x, r(0))]-,

then there is a small positive constant T > 0 such that

(xo, t) o

for all 0 <_ t <_ T.

Proof. We find a supersolution bounding u. Since the partial differential equation
(1) is invariant under translation and rotation for the space variable x, we assume
that x0 is the origin, P =,{x R Xn 0}; and f(O) is contained in the upper half
space. We notate x (x ,Xn) and hence x (Xl,X2,... ,X-l). Since gt(O) lies in
the upper half space, we have for each x e t(O),

dist(x, F(0)) _< x

and from the assumption (4),

uo(x) < x-
We choose M so that

M >_ u(x, t)

for 0 _< t _< To, where To is a fixed positive time. We define d-- diam(t(0)); then
Uo(X’,Xn) 0 on OB’d(X’ (O,d) and uo(x’,O) 0, where B’d(X’ is the (n- 1)-

Xdimensional ball centered at with radius d. By direct computation we have that

is a solution to (1), where

P [2(p- 1)]p-2"
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Fix 5 > 0. Now we take T so small that

> 2M.

Hence we obtain

(, 0) > uo(z)

and

w(x, t) >_ M

for all (x,t) E Bd(X’ x {} x (0, T). Therefore, from the comparison principle we
conclude that

(x, t) > (x, t)

for all (x, t) e B’d(X’ (0, 5) (0, T) and, in particular,

(0, ) (0, ) 0

for all 0
Now we find an integral expression which describes the initial behaviour of the

interface. From the Harnack-type inequalities we prove the following theorem which
implies Lemmas 1 and 2.

THEOREM 1. Define

I(x) sup R-n--- f uo(y)dy.
1 JB

Given that x Rn, we have u(x, t) > 0 for all t > 0 if and only if I(x) oc, that is,

n>o() { .z()= }.

Moreover, there exists a constant c c(n, p) > 0 such that u(x, t) 0 for every (x, t)
such that

0 < t < cI2-p(x).

Proof. Suppose I(x) x). From the Harnack principle (see Corollary 1 in [9])
we have that

(5) R-n--- /B uo(x)dx <_. c (t- -- + tR-n--u(x,t)-)Hence, if u(x, t) 0 for some t > 0, then

I(x) <_ ct ,-.

this contradicts I(x) oo.
Now we assume I(x) < oo. From Theorem 1 in [1.2] we know tlm,t

supu(x,t) <_. c$ .p,,-’ (IR(x))
Bo
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for all p > R > 0 and 0 < t < T(R), where

In(x) sup p-n--_/Bp>R p(X)

and

T(R) c [I(x)] -(p-2)

uo(y)dy

Taking R - 0 we are set.

3. HSlder continuity of the interface. In this section we show that the in-
terface is a HSlder continuous graph as a function of x. A main tool is the Harnack
principle, which is proved by DiBenedetto [9].

THEOREM 2 (Harnack principle by DiBenedetto). Let u be a nonnegative weak
solution of (1). Let (xo, to) E Rn (O,T) and BR(xo) be the ball of radius R centered
at xo. We assume u(xo, to) > 0. Then there are constants co and cl depending only
on n and p such that

(6) u(xo, to) <_ Co inf u(x, to + 0),
xEBR(xo)

where

clRp

[u(xo, to)]-’
provided to >_ O.

For the proof of the Harnack principle, the fundamental solution (I)k,p to (1) plays
a central role (see [9])"

s(t) +

where

S(t) (o(n, p)kn-2pn(-2) (t- t-) + p), t >_ t

o(n,p) +/-

Considering the above fundamental solutions, we can show that if t(0) is compact,
then gt(t) is compact for all t > 0. Moreover, an integral estimate independent of
scaling follows from the Harnack principle and we omit the proof (compare with
Corollary 1 in [9]).

LEMMA 3. For all R, ( > 0 such that Q2R(O) c Rn x (0, oc), the following holds:- =B(o)
(7) fB uP(x, to)dx <_ B + inf u(xo, to + O)

for some positive constant B depending only on n and p, where the cylinder Q2R(O)
is defined by

Qn(O) B,n(zo) x (to o, to + 0),
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and

n=n(p- 2)+p.

For the Harnack principle, the condition that p > 2 is rather critical as the
2nfollowing example shows. Let - < m < 2 and u be the solution to a Dirichlet

problem

ut div (IVul’-2Vu) 0 in Bn(0) (0, x)

with initial boundary condition u(x, O) uo(x) >_ 0 for all x e Bn(0) and lateral
boundary condition u(x, t) 0 for all (x, t) e OBn(O) (0, x). Then there is a finite
time T depending on IlUollL2 such that

u(x, t)= 0 for all (x, t)

So we cannot expect the Harnack principle of the form (6).
.The monotonicity of the interface follows immediately from the Harnack principle.
THEOREM 3. (t) i8 monotonically increasing, that is,

f(tl) C t(t2) if 0 < tl _< t2.

Proof. Let Xo e gt(t); then

u(xo, > 0

and there exists a small ball BRo (Xo) C (tl). Define

cl Rop00

and assume Ro is sufficiently small so that

t >_0o.

Hence, from the Harnack principle we have

u(xo, t <_ co inf
zeBn(o)

for all R < Ro, where

Now, if

u(x, tl "- )

cRp

t2 < tl + 0o,

then taking R sufficiently small we have

(8) u(xo, tl

_
cou(x, t + h)

for all 0 < h < 0o. We observe that since p > 2, o goes to oc as u(xo, t) goes to 0.
By the maximum p.rinciple, u is bounded and 0o > e for some fixed positive number
e. Therefore, if

t2

_
tl + 80,
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we can iterate (8) and obtain

u(o,t) < ou(,t)
for some k. Therefore

u(xo, t.) > o

and x0 E ft(t2). [:]

Indeed following an argument of Benilan and Crandall [3] and [11], Theorem 3 can
be proved without referring to the Harnack principle. We can show that the unique
solution v with initial datum v(x, O) A--uo(x), A > 0 is given by

(, t) (z, t).

If A > 1, then v(x, O) >_ u(x, 0). Hence, from the comparison principle we have
h for a small positiveu(x, t) <_ v(x, t) for all (x, t) e Rn (0, cx). Choosing A 1 +

number h, we obtain

u(x, t + h) u(x, t) u(x, At) u(x, t) v(x, t) u(x, t)

>_ (A--- 1) u(x, t).

Dividing by h and sending h to O, we conclude that

1 U
ut p--2t

this implies Theorem 3.
Now, considering Theorem 1 we cannot expect that t(t) is strictly increasing.
Define a cylinder Q(x, t) by

h
X (t, t + h)Q( t) Ba(z)

Following a Moser-type iteration method we have a local maximum principle.
LEMMA 4. Suppose u(x, to) 0 for all x BRo (Xo). Then we have

sup u< c(-:.) up dz(9)
(o,o o(O,O

for some c depending only on n and p, where we defined

udz udz.

Proof. We omit the expression (x0, to) of the generic point in various terms if it
is clear. Let 0 < p < R < R0 and let r/be a cutoff function such that r 1 in Bp
and let 7 C(BR). Considering a suitable approximation, we can take ua+lTP as
a test function for all a > 0. Hence we have

OZ-[-21 / d_ (uc-t-2) ?P dxdtAr- Jl7tlp-2u. (uaq’lp) dxdt :0
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and from the assumption that u 0 on BR {to} we obtain

1 IB ua+2rlP (a 1 IQsup dx + + IVulPuarlp dxdt

< +lvvl dzdt

for some c. We assume n 2. The ease n 2 can be proved similarly. om Sobolev’s
imbedding theorem and the HSlder inequality we obtain

dto

S s p ua+2 dx U(+p) dx dt
p Jto

2

p J to

for some c depending only on a, n, and p. We also have

c lul+p-2lvul2v2 dz + (R- p)2

and from the HSlder inequality

u]+P-2]Vul22 dz c ]Vu]Pup dz ]ua+p dz

for some c depending only on , n, and p. Combining all these together we have

(10) u("+p)+(+a) dz
(R p)2+ lul"+p dz

for some c depending only on , n, nd p.
We iterate (10). Define

n

with o 0. Then. we note that

2(Z ),
2 Let p (R0/2)(1 + 2-), u 0,1,2,...,where 1 + . and
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We set

Cv /Qu ,oz,,.-t-p dz.

Then we can write (10) as

(11)

Set

Iterating (11) we obtain

<-- Cv+(v-- 1)+’""-v- "Y1-{-+’2+’"+v- 03v

[] < cT-0.

Sending v to oo, we find that

lim Cum" sup u2

and

Therefore we conclude that

u <_ c up dz
o(o,o

for some c depending only on n and p.
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Under the assumption of Lemma 4 that u(x, to) =- 0 in BRo (xo), it is shown that
if the input of the total mass is small, the speed of propagation of the mass is small.
Here the Harnack principle is a main tool.

LEMMA 5. Suppose that u(x, to) 0 in BR(xo) Let h < to There exists a large2
constant c such that if

then

u(x, t) =_ o

in B (xo) (to, to + h).
Proof. With the maximum principle (see Lemma 4) we have

sup u <_ c sup
(o,o (o,o

Let x E B_ (x0); then B_(x) C B_(xo). Set Rk ,k 1,2,3,...; then we have

h) 1/2 e
Mk+

_
c 2kP- M

where Mk supQ/2 (x,to) u. Since we are assuming 2 > 1, we obtain

Mk 0 if M1 <

for some c. In other words if

(12) sup
Q (xo,to)

u_<-

for some large c, then

(x, t) 0

for all to < t < to + h and all x B/4(xo).
Now we show that (12) is true if

for some large c. From the Harnack principle we get

(13) u(x, t) <_ cu(x, to + h)
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for all to < t < to + h and all x E Bn. Considering the maximum principle (9) and
the Harnack principle (13) we have

sup
Q (xo,to)

for some c. Hence, if

u <_ c up dz
(o,to)

<_ c dt uP(x, t) dx
Jto

c
(o)

uP(x’ to + h) dx

uP(x, to + h) dx <_ lc (R___if)iBR(o)
for some large c, we obtain

2(p--2) 1

C C

This implies that

t) 0

for all (x, t) BRI4 (to, to + h) and completes the proof. [3

As in the case of porous medium equations we prove that the interface consists
of a moving part and a nonmoving part. We prove this by contradiction. We refer to

[5] for the porous medium equations.
LEMMA 6. Define F1 {(x,t) e F" {(x, 8) s

_
0} F- {(x,t)}} and

F2 {(x,t) F" t > 0 and {(x,s)" s > 0}F {(x,s)" 0 _< s _< t}}. Then
F t2F2 F

Proof. Suppose the assertion is not true. Then, for some (Xo, to) F there exist

t and t2 with 0 < t < t2 < to such that

u(X, tl) 0 for x e B(xo)

for some R > 0 and

sup u(x, t2) > 0.
B! (xo)

Furthermore, without’loss of generality we may assume that

to t2
8--

t2 tl

is sufficiently large. Hence, from Lemma 5 we conclude that

IB uP(x’t2) dxl Rp

(zo) c t2 tl
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and

/B uP(x’ t2 dx > 1 (t t2 ) ( Rp

..(o -i t t to t

Now we recall Lemma 3 and obtain

c t2-ti to"t2
f

<_ - uP(x, t2) dx
(xo)

< c + u(xo to)
to t \ R

Thus if (to t2)/(t2 tl) is large enough, we have

/ n p-2|to t2 U(Xo to) > c
\ to t

and this contradicts the fact that (xo, to) E F and u(xo, to) O. D
LEMMA 7. F1 is relatively open in F and [’2 is relatively closed in F.
Proof. We need only to show that F2 is closed. Let (xo, to) be a limit point of F2;

then there is a sequence of points (xk, tk) F2 such that

(x, t) - (xo, to).

Since xk r(0), we note that xo r(0).
F1 (.J F2 F. Therefore we conclude that

Considering Lemma 6 we know that

(xo, to) F2. D

Now we prove that the rate of the growth of F1 is HSlder continuous.
THEOREM 4. Suppose that (Xo, to) F1, that is, the vertical segment does not

contain any point of F. Here we assume to is a certain positive time. Then there exist
constants c, h, and c such that

u(x,t) O for to h <_ t <_ to and IX Xol <_ c(to t)

and

u(x,t) > O for to < t <_ to + h and !x- xol <_ c(to t).
Proof. Let t < to be fixed and h to tl. From Lemma 6 we know that there

exists R such that BR(xo) gt(t) 0, that is,

u(x, tl) 0 for all x e BR(xo).

Let t tl + 5h, where 5 is fixed later. From Lemma 5 we see that if

dist(xo, [(t))< dR,

then for some x e gt(t) with dist(xl, xo) dR,

uP(x, t) dx >
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where d < 1/4 is a small number fixed later. Thus we obtain

i, 1
uP(x,t) dx >

(o) c

Again, as in the proof of Lemma 6 we have

<_ t uP(x,t) dx
JBR(o)

<_ B
to -- t + Rp u(xo, to)

[( RP )-- ((l-’)hlnu(xoto)]_< B
(1 5)h + RP

where B is the constant appearing in (7). Hence we obtain

<_ B ( (l :R)h)n u(xo, to).

On the other hand, if 5 is small and d is near 0, then

and this contradicts the fact that

u(xo, to) o.

Thus we have

dist (xo, r(t)) > dR.

We set d (1 -5)a. Hence we have

dist (zo, r(to (1 5)h)) _> (1 5)R.

Repeating the above process with tl t, we obtain

dist (x0, r(to ( 5)h)) >_ ( 5)R.
In a similar way, we can iterate the above process for all k _> 1 and conclude that

dist (xo, r(to (1 )h)) >_ (1

for all k. Varying h we conclude that

dist (xo, F(t))> (t-t)h
R,
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and this completes the proof for the first claim. The second claim can be proved in
the same way.

Considering Theorem 1, we find that if

uo(x) >_ [dist(x)] ,- < p

for all x ft(0), then F F. Moreover, Theorem 4 implies that the interface is given
by a function

t= S(x),

and if S(xo) >_ 7o for some fixed 70 > 0, then

for some c depending on 70. Hence 12(t + h) contains a (ch) neighborhood of (t)
for 0 < h < 1. Now we find a bound for the velocity of the interface.

THEOREM 5. For any 7o > 0 there exists a positive constant c depending only on
p, n, 7o such that for any t > o, 0 < h < 1,

r(t + h) is contained in the (ch) neighborhood of r(t).

Proof. Suppose that u(xo, to) 0 and dist (xo, r(to)) a. Let

(x, t)

where q and a and b are decided later. Observe that

(q- )(- )= q.

With a direct computation we obtain

vt div (IVv[p-2Vv)

Aqap ([aP(t- to) +

(l Ap_2qp_l Ap_2qp_2 (n-I)

Thus, if

1 p-2qp-1 p-2qp-1 (n- 1)
Iz xol [-l(t to) + (Ix xol- )]+ o,

that is,

(14) Ap-2qp-1 + Ap-2qp- (n 1) looP_l(t to) + (Ix x01- b)] +

then v is a supersolution.
Now we take a and b such that

M
aq(a b)q -,
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where

M sup u.

With this choice of a, A, and b we find that v(x, t) >_ u(x, t) for all x, Ix- xol a,
and to _< t _< tl, where tl is a certain fixed time. By the usual comparison principle
we see that

u(z.,) < (x.,)

for all x E Ba(xo) and to _< t _< tl. Note that the interface of v(x, to + h) is decided
by

Ix xo] b (P-l.h.

We take ( satisfying

and hence

Therefore, the interface of v(x, to + h) is

1 (___)Ix- xo] b- ap-lh a ap-lh

=a-2 h.

Taking so small that

(- ) [.,- (t- to) + (ix xol- )]+p-.qp-1 + p-2qp-1
x xol

we see that F(to + h) is contained in the ch- neighborhood of F(to).
4. Lipschitz continuity of the interface after a large time. Following the

argument in [7], Lipschitz regularity of the interface after a large time is proved. As
in the case of porous medium equations we have a monotonicity property after a large
time based on the Alexandrov reflection principle. In this section we assume that the
support of the initial datum uo is contained in BRo (0).

LEMMA 8. Let xo, Xl Rn, IXol, IXl] > Ro, and

cos(x x0, x0) _> R0

Then for every t > 0 we have

(. t) <_ u(xo. t).
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Since Lemma 8 follows from a comparison principle and the reflection principle
as in the case of porous medium equations, we refer to [7] for the proof.

Considering the asymptotic behaviour of u, there exists a large time to such that

Bno (0) C fi(t)

for all t > to. Hence (x, t) E F implies that Ix] > R0 for all t > to. Hence, by virtue
of Lemma 8 we obtain the following corollary. Indeed the same corollary for porous
medium equations appears in [7].

COROLLARY 1. There exists to such that the interface F(t) is representable in
polar coordinates as follows

r f(O, t), f(O, t) > Ro

for all t > to, and f is Lipschitz in O.
Proof. It follows from Lemma 8 that for every (2, t-) E F, 12] > R > Ro, > to, we

have u(x, t) 0 for every x in a cone

Ix-2I<and cos(x-2,2) >

and u(x, t) > 0 for every x in a cone

Ks= {x" ]x-21< and cos{x-2,2}<_-(l+)--Ri2[ }
for some small e. This implies that f is Lipschitz in 0.

Considering scaling and asymptotic behaviour of u we have an estimate of suplVu
in terms of u after a large time.

LEMMA 9. For every > 0 there exists T1 T1 (, Ro, Uo) such that

(15) IVu(x, t)l _< u(x, t)

for all Ixl <_ Ro and t >_ T.
Proof. We define a family of functions

uk(x, t) knu(kx, kt)

with parameter k, where n n(p- 2) + p. We note that uk are again solutions of
(1). We know that uk converge to a fundamental solution fi uniformly with respect
to t > T for every T (see Theorem 3 in [16]). Therefore there exists k0 such that

1 1
c > 2fi(x, t) >_ u(x, t) >_ -(x, t) > -c > 0

for Ixl < 2R0, 1/2 < t _< 2, k _> k0, and for some c depending only on u0, n, and p.
Since uk are uniformly bounded in Rn x (1/2,2), we obtain

for t 1, Ixl Ro, and some cl, and this implies

IVu(y, k)l <_ ck-(+)
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for all lYl < Ro. Note that u(x,k’) >_ ck-n for all Ixl _< R0. Settingt- k we
conclude that

IW(x, t)l < t-(x, t)

if Ixl _< Ro, t k, and k _> ko. This completes the proof. [3

Finally, we show that the interface is representable in a polar coordinate with a
Lipschitz function. In fact, from Corollary 1 we need only to show that f in Corollary
1 is Lipschitz in t.

THEOREM 6. There exists tl such that F(t), t > tl can be represented by

r f(O, t),

where f is locally Lipschitz continuous in and t.
Proof. Considering Corollary 1, we know that f is Lipschitz in and thus we

need only to prove that f is Lipschitz in t. We define a family of solutions to (1) in
/ (t, ):

u((1 + )x, (1 + )t + tl)

for e > O. Here t is a large time decided later. We want to show that for every
E (0, 1) and x Rn,

(z, 0) < (x, t).

To do this we write the difference us(x, O) -u(x, tl) as

1
u(z,o)-(,tl)

(+)
If Ixl > Ro, then from Lemma 8,

and

i] u((1 + e)x, tl) + u((1 + e)x, tl) u(x, tl).

u((1 + e)x, tl)- t(x, tl) __< 0

ue(x,O)-u(x, tl)-< [ 1 ]
(1 + ) --- 12 u((1 + e)x, tl) _< 0.

Now we consider the case Ixl <_ R0. From Lemma 9, for tl large enough we have

1 .
u((1 + e)x, tl) u(x,t) elxllVu(x, tl)l eRou(x,t) -u(x,t)

cno

with some large constant c, where (1, 1 + e). Hence we have

ue(x, O) u(x, tl) < 0

for all e (0, 1), and differentiating ue(x,t) with respect to e we have

p- lu(x,t + tl) + x. Vu(x,t + tl) + tut(x,t + tl) < 0.
p-2
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Replacing t by t + t we obtain

(16) (t tl)ut(x,t) <_ p" 1

p 2
u(x, t) + x. Vu(x, t).

Hence ut is bounded. Setting t t h for some fixed h, (16) can be written in the
form

--dt e- (-u(roe O, t < 0

for t- h < t2 < t and/9 fixed. Therefore, if u(ro, 0, t2) 0, then

u(roe:-: O, t) 0 for t > t.

This gives

f(O, t) <_ f(O, t2)e*-:
and we get for t- h < t2 < t,

f(O, t) f(O, tg.) < caf(O, tg.)(t t2),

where c3 c3 (). [:]

5. Global Lipschitz regularity. Employing the method of [7], we show that
the interface is Lipschitz if the initial datum satisfies nondegeneracy conditions. Define
v u(p-2)/(P-); then one can formally prove that v satisfies

(17) vt clvdiv (IVvlp-2vv) + c2 IVvlp

with initial data v(x,O) U(op-2)/(p-), where cl ((p-1)/(p-2))p-2 and c2

((p- )/(- 2))-.
Set f2 f2(0). Let vo (ZtO) (p-2)/(p-1) We assume the following:
(i) vo is integrable and positive in a C domain gt C BR(O).
(ii) Vo E WI’i(S) in a certain strip S c fl along the boundary OFt and there exist

constants K1 and K2 such that

K <_ IVvo[ <_ K2

in S.
(iii) There exists a > 0 such that

vo>a in ft\S.

(iv) There exists a constant Ko such that

V2vo >_ -KoI

in the sense of distributions.
LEMMA 10. There exist constants A, B > 0 such that

(18)
A Pv(x, t) + x. Vv(x t) + (At + B)vt > O.
p-1
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Proof. We consider a family of solutions

(19) ve(x,t (1 + Ae)-=n- v((1 + e)x, (1 + Ae)t + Be))(1+)
We show that

(x, t) > (, t)

for small , and then differentiating ve with respect to we have

A Pv(x, t) + x. Vv + (At + B)vt > O.
p-1

We approximate v0 by

o o * p(x) + ,
where p(x) is a convolution kernel and a is decided later. Suppose that v(x, t)
(u(x, t))(p-2)/(p-1) is the solution to

v ClVdiv (]Vv]p-2Vv) + c21Vvlp

with vh(x,O) Vho(X). We note that v5 >_ > 0 and v5 E C. If there is no
confusion, we omit in various expressions.

If is sufficiently small, then

a
v(x, 0) >_ in a \

gl
IVv(x, 0)] > in S.

4

In fact, this inequality is also true in a neighborhood Uc5 of OFt of the form

Uc5 {x e Rn; dist (x, 0t2) < c5}

for a constant c e (0, 1/2).
Now we consider several different regions.
(i) First we consider the region where IVv01 > K1/4 (in particular, S tJ U5).
We have

1
(v(z, o) v(x, o))

> 1 -t v((1 + e)z, Be) v(z, O)-e 2p-1

if is small. So from the mean value theorem,

1 A Pv((1 + )x B)Ie>- 2p_ 1

+ Bvt((1 + )z, 0) + z. Vv(, 0),
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where E (0, B) and lies in the segment x, (1 + e)x. If e is small enough, then

v((1 + )x, B) v(x,O),
vt((1 + )x, 9) - vt(x, 0),
w(, o) w(, o).

Therefore, there exists C > 0 depending only on n, p, and v0 such that

1 A Pv(x, O) + Bvt(x, O)Ie >- - p_ l

+ x. Vv(x, 0) ce

for some c. Using the equation

we get

vt cvA,v + clVvl,

I >_ (1Ap l
+ BClApV(X’ O)) v(x, O)

+ Bc. IVv(, o)1 + x. Vv(x, o) .
Since Ixl <_ R + 5 and Av0 >_ -nKo, we have

Ie >_ ( A
l BclnKo) v(x, O)

+ Ivv(x, 0)1 Iwl

If we choose A and B such that

4R
B > and

c2K-1

1A-p
2p-1

BclnKo >_ O,

then

for small e and 5.
(ii) Next, we consider the region t t \ S.
We only need to consider those points where

gl
{Wo(z){ <

4

So in this case we see that

i > ( 1A-p2p-1 BclnKo) a2 RK
4

A-p_ BcnKo > RK1/a, thenand if p-1
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for small e.
(iii) Next, we consider the region fa {x E Rn" dist(x, ) _> }.
In f3, v(x, 0) . Since v >_ from the maximum principle, we have

I>_0.

(iv) Finally, we consider the region f14 {x E Rn;c5 <_ dist(x,f/) <_ 5} with
0<c<l.

In this case we select a particular cutoff function {pe} satisfying

p,(x) 0 if Ixl >_ ,
pe(x)=pe(O) if Ix1<_6-61+ for certain0<-<l,
o < p(z) < p(O), p e c.

Now suppose dist(x, f) (t- 1+-),, {); then

Iw()l <-/s IVv(y)lpe( y)dy

<_ cK2 /B pe(x y)dy.

Now we observe that

pe(x- y)dy <_ c6"--

and hence

Iw0 (x)l <_

Thus

Is > (1A-p
\2p-1 BclnKo) ’ (R + 2)K2 -=d- ce.

In particular, if 0 < < - < 1 and e is small, then

I>_0.

Finally, we consider those points x such that

c6 <_ dist (x, fl) _< 6 6 +

Recall from assumption (iv) that

V2v0 >_ -KoI

in the sense of distributions. We know that

Is>_ [1 A-p+2p- 1
Bc IVVlp-2 aij(Vv) (v)xx] ve(x, O)

+B IW(x, o)1" Ixl IWe(, o)1 ,
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where

aij(Vv) 5ij + (p- 2)
IVv(x, 0)l

Since vo E WI’I(S), we have that

]Vv(x, 0)1 /B Vvo(y)p(x y)dy

>_ gl/B tOS(X y)dy

> cK15" ---.
Also, we get from assumption (iv) that

AV /s Avo(y)p,(x- y)dy- ],n (B,ng)
(Vvo" t) ps(x y)day

and

IAvI. >- K1/B P(x y)do’y nKO /B
k KI-+’(- nKo,(V

p,(x y)dy

Observe that at x

TVo

Hence we obtain

for some c. Therefore, combining all these together, we obtain

Hence, for sufficiently small 5 we have

gl
Ie > BclcK-ls-l+a+((,+l(v-) +__) + (R + 25) - c.
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Therefore, if we choose 0 < c < 1 and so that

2 1
< "/ < (n,T1)pl+n _n_

2 2

then for sufficiently small e compared to 5 we get

LEMMA 11. Under the assumptions above, the function v(x(s),t(s))e is non-
decreasing along the cues

1
x(s) xoes, t(s) [(Ato + S)eAs-B], s O.

Proof. Along these curves,

x’ (s) x(s) and t’ (s) At(s) + B.

Hence, by (18) we have

d 2 i v + x Vv + (At + B)v e 0. B

COROLLARY 2.1. If r f(O, t) is the equation of the free boundary for tl > to,
then

f(O,t) f(O, to) + S

Proo The curves (x(s), t(s)) above can be written

(20) x(s) xoe xo Ato + B
So, if 0 xo/lxol and ro lxol, we have that v(ro, 0, to) > 0 implies

Atl +Bv ro Ato+B ,O, to >0.

Therefore we obtain

f(O,t) >_ ro Ato + B
>_ f(O, to) Ato + B

The following theorem implies that the free boundary is Lipschitz.
THEOREM 7. For every point (, t-) there exist positive constants A, B, C > 0

depending only on Vo, n, p, and R sup(dist(, y); y such that

(21) t) >_

for every (x, t) satisfying < t < + e for some e (A, B) and

It-l - A+B"
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Proof. Let us take A,B, and C A-p as inLemma 10 with R- 3R1 Thep-1

inequality will be true if every (x, t) in this conical region around (2, t-) can be decided
in the form (x(t), t) given by (20) with a particular origin of coordinates such that

is contained in the ball with center at that origin and radius R. The origin x0
corresponding to (x, t) will be given by

x-x0=(2-x0) A+B
Therefore

12-x01 A-+B <- Ix- 21 + 12-
t-t<_ RIA+ B + 12 xol.

So we have

-1 <_R1A+B.

Writing AtB)I/AA+ as a power of t- and using the fact that is small, we get

1..
x01 <

2 A{+ B .A{+ B
that is, 12- x01 _< 2R1. This gives

Ix0- Yl -< 3R R

for every y E . Therefore inequality (21) holds.
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ENERGY ESTIMATES RELATING DIFFERENT LINEAR ELASTIC
MODELS OF A THIN CYLINDRICAL SHELL II: THE CASE OF

FREE BOUNDARY*

JYRKI PIILA AND JUHANI PITKRANTAT

Abstract. Four different linear models describing the elastic deformation of a thin cylindrical
shell are analyzed under a given smooth normal pressure distribution. Either a bending-dominated
deformation state or a "soft" membrane-dominated deformation state is assumed, and the models to
be considered are (1) the standard three-dimensional model, (2) a shell model of Reissner-Mindlin
type, (3) the classical shell model of Koiter, Sanders, and Novozhilov, and (4) the asymptotic shell
model. Energy estimates relating the models are derived.

Key words, linear elasticity, energy estimates

AMS subject classifications. 73C02, 73C20

1. Introduction. In [PP] we derived energy estimates relating different linear
elastic models of a cylindrical shell occupying the region

{ Jfl= (Xl,X2, Xa) e Ra ll < Xl <12, 1-< x22+x<l+
where 12 11 1 and t << 1. Here we study the same shell geometry with ll -1
and 12 1, but now we do not assume any kinematical constraints on the boundary
of the shell. This makes the deformation state of the shell very different compared to
the case studied in [PP], where at least one end of the cylinder was set clamped. The
difference arises because in a cylinder with both ends free, inextensional deformations
are kinematically possible. For this reason, the deformation state is either bending
dominated or, as we name it, soft membrane dominated (in distinction to the "hard"
membrane-dominated case studied in [PP]), depending on .the shape of the load. The
present paper is a composition of [P1] and [P2], where the two cases were treated
separately. As in [PP], we assume that the shell is loaded by a smoothly varying
normal pressure distribution acting on the outer surface

{r+= (Zl,X2,X3) e’] --I<xl <1, X2+X=I+
Furthermore, to prevent rigid displacements, we assume certain orthogonality con-
straints on the load.

We consider five different linear elastic models of the shell problem as described
above. These are as follows:

(1) the standard three-dimensional elastic model (with isotropic material),
(2) a dimensionally reduced shell model of Reissner-Mindlin type,
(3) a shell model of Kirchhoff type,
(4) the asymptotic inextensional shell theory in the bending-dominated case, and

*Received by the editors April 17, 1991; accepted for publication (in revised form) December 3,
1993.

IHelsinki University of Technology, Institute of Mathematics, Otakaari 1, SF-02150 Espoo,
Finland.

820



MODELS OF A CYLINDRICAL SHELL II 821

(5) the asymptotic membrane theory in the soft membrane case.
Model (3) is the classical model of Koiter, Sanders, and Novozhilov (see [K],

IS], IN]), and model (2) is a variation of the classical model, where the Kirchhoff-
Love constraints of vanishing transverse shear, strains are not imposed. Model (2) is
often used (explicitly or implicitly) in finite element computations. The inextensional
theory may be viewed as the analog of.the Kirchhoff theory of plate bending. This is
very different from the asymptotic membrane theory which is relevant in membrane-
dominated situations.

The inextensional theory is obtained by assuming that the load is proportional
to t3 and then taking the limit of shell theories as t -+ 0. Whether or not a nonzero
limit deformation state is obtained in such a way is actually a test for whether or not
the defomation state is bending dominated. Under certain special shapes of the load,
such as the constant pressure shape, the structure is solid in spite of missing support,
and the test fails. In that case, referred to as the soft membrane-dominated case,
the right scaling of the load to achieve a nontrivial asymptotic state lets the load be
proportional to t, i.e., the same loading as in the hard membrane case. For a more
general classification of shell asymptotics, the reader is referred to the introductory
part of [P].

We denote the displaceinent fields corresponding to the above five models as V3D,
UR, _Ug __U, and _UM respectively. The main results of the paper are the estimates

(1.1a)
(1.1b)
(1.1c)
(1.1d)

where Ill 1113D is the relative energy norm corresponding to the three-dimensional
model, scaled so that [ll__uaDl[laD is uniformly bounded away from zero and infinity as
t -+0, and

1 in the bending-dominated case,(1.2) a
t in the soft membrane ease.

We also show that (1.1c) and (1.1d) are the best possible estimates in the general case.
The plan of the paper is as follows: Starting from the basic formulation of the

shell models in 2, we proceed to analyze the behavior of U, UM, and Ug in more
detail in 3 and 4. The main results (1.1.) are then proved in 5, 6, and 7. In the
Appendix we expand Vg -V0 in more detail in case of two special load distributions
of bending-dominated type. Here it turns out that the interior convergence rate is
somewhat faster than the global one.

Standard Sobolev space notation (see [PP]) is used throughout the paper. We
denote by C or c various constants taking different values on different usage. The
constants are independent of parameter t except when indicated explicitly.

2. The shell models. We will retain the notation of [PP] whenever possible.
However, to make this paper readable without references, we repeat the main notation
to be used in what follows.

We work in the cylindrical coordinate system (c, c2, c3), where the shell occupies
the region

a e Ra e < <
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Here w stands for the midsurface of the shell with

CO-- {(0/1,O/2) E R2 1 < 0/1 < 1, --71" < 0/2 <: 7r}.
According to the three-dimensional elastic model, the displacement field V3D

(U3D, UD, UiD) minimizes, in the given energy space/A3D, the total energy

(2.1) F3D(U) IA[3D(u, U) Q3D(U)
2--

where jt3D (U, V) is a bilinear form defined as

A3D (U, V) D- /f/ ) tr=e(U)tr_e(V) + # E eij (U)eij (V) X- d_a,
i,j--1

and, furthermore, _-e(Y) {eij}i,j=13 is the strain tensor corresponding to a displace-
ment field V such that

ell Yl,1,
1 (xVI,2 + V2,1)612

1
e (v, + v,),

e x(v, + v),

e23 1 (V2,3 "- x(V3,2 V2))
633 V3,3.

Here V,j stands for OV/00/j, X 1/(1 + a3), and d_a is the abbreviation for d0/ d0/2
d0/3. Furthermore, A and # re material parameters depending on the Young modulus
E > 0 and the Poisson ratio v, 0 <_ v < 1/2, and D is a scaling factor. These are
defined as follows:

Eu E Ecr-2t3
D=A

(1 + u)(1 2u)’ # 1 + u’ 12(1 v2)’

where a is now and in what follows the same as in (1.2). In (2.1) the quadratic part
ft3D (U, U) represents the deformation energy and the linear part

Q3D(V) f(al, 0/2)V3 0/1,0/2, 1 + d0/ d0/2

is the potential energy due to the external load F(al, a2) D. f(al,a2). As men-
tioned in 1, we assume that the actual load F is proportional to t3 or t depending on
the deformation state, so the scaled load f is independent of t.

The dimensionally reduced models are, in general, derived from the assumption
that the displacement field is a low-order polynomial of a3 for each (a, 0/2). Here we
assume that

Vl (0/1,0/2, 0/3) ?A(0/1,0/2) 0/30.1 (0/1,0/2),
U2(0/1,0/2, 0/3) v(0/1,0/2) 0/302(0/1,
V3(-,-, 3) (,2) +3(,2) +(,)/2.

In the Reissner-Mindlin-type model, uR (uR, vR, wR, 0, 02) is obtained by mini-
mizing the energy

r2
F(u) - {t(_,_) + t-u(_, _) + t-Cn(u,) } ()
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in a certain energy space/4R (see below), where the bilinear forms 4R(_u, v), B (_u, v_),
and CR(_u, v) represent the scaled bending, membrane, and transverse shear energy,
respectively. These are defined as

where, furthermore a {aij 2}i,j=l and

_
{ij}i,=2 are the dimensionally reduced

bending and membrane strains

11 U,1

1
(u,2 +v, ),

22 V2 --W,

nil 1,1,

1(1 +2,1 v,1)12 ,2

22 02,2,

and pi are the transverse shear strains

Pl -1 + w,1, P2 --2 - W,2--V.

The auxiliary functions

_
and 2 in (2.2) are related to the membrane and bending

strains as

try, 2 tr_a.(2.5) 1= 1-u 1-u
These expressions, derived from the energy principle [PP], are assumed in all dimension
reduction models considered whenever expansion (2.2) is used in the three-dimensional
interpretation of the displacement fields. Finally, the dimensionally reduced potential
energy in (2.3) has the form

(2.6) q(u) Z f .w d.

The Kirchhoff-type model is achieved by eliminating rotations (1, 2). This is
done by imposing the so called Kirchhoff-Love constraints pl p2 0, i.e.,

(2.7) w,, ? w,2-v.

Hence, K (uK, vK, wK) minimizes, in the given displacement space/g, the energy

(2.s)
r2FK(u_) - {,4K(_u,_u) + t-2BK (u_, u_) } q(u_),

where 4K, BK, and q are defined as in (2.4a), (2.4b), and (2.6), respectively. The
membrane strains are here defined as above and the bending strains are now written

;11 It/,ll 12 W,12 --Vii 22 /),22 --V,2
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The auxiliary functions ()1, )2) ()1K )2K) are again defined by (2.5).
The asymptotic inextensional shell model is obtained by taking a formal limit of

/,g as t 0 with a 1. This means that u (u, v, w) minimizes the reduced
energy

lagF(u_) - (u_, u_) q(u_.)

in/A {U_ E K] BK(u, U) 0}, and (01,02, )1, )2) (010, 0g,,2)1 are defined.by
(2.7) and (2.5).

Finally, the asymptotic membrane theory is obtained by taking a formal limit of
g as t 0, but this time we assume that a t in (2.8). The limit solution M then
minimizes the reduced energy

1BKFM (u_) - (u_, u_) q(u_)

in a certain energy space bM defined below.
The (scaled) energy norms in the nonasymptotic models are defined in the usual

way, namely,

II [__UIII3 V/An(U, U),

and in the asymptotic models as

I-lll0 V/4K (-,-) (inextensional theory),

I-IIIM V/K(U, _) (membrane theory).

The aim of the remaining part of this section is to define the energy spaces/3D,
/, /K, /A0, /AM and give some coersivity results (without proofs). These results
guarantee the existence and uniqueness of the displacement fields presented above.

We begin with the three-dimensional case. Let

and qD, i 1,..., 6 be functionals defined on 14)3D suchthat

l’(K) ./o U d_,

q32D (__U) .fo (U2 al sin a2 U3.a cos a2) da__,

q]D(u) f_(u.a cos + U. si,a) d_,

4"(K) ./o(U. cos a + U. sin) d_,

q]" (U) .fo(U. sin. U- cos :) d_,

q]D(K) f U: d_.
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Then, defining the energy space 3D aS

we have the following coersivity result (see [NH])"

(2.o) t (U, u) >_ c(t) IIuIl,, U 6 3D.

We point out that the space

= {U6 ]3D[ .A3D(u,u)__ O}
consists precisely of the rigid displacements of the shell (cf. [NH]), namely,

(2.11)
U1 Cl 4- c2 (1 4- a3) cos a2 c3 (1 4- 3) sin 2,

U2 -c4 (1 4- a3) 4- (c5 4- C3al) cos a2 (c6 c2al) sin a2,

U3 (c6 C2al) cos a2 4- (c5 4- c3al) sin 2,

c 6 R, i- 1,...,6 }.

Now consider the variational problem of finding U 6 3D such that

,430(U3D, V) Q3D (V), for any V b/3D.

By (2.10) and by the Riesz representation theorem, this problem is uniquely solvable.
Moreover, since 3D 3D 4- "1, V3D minimizes F3D in ,3D provided that the
load is such that Q3D (V_.) 0 for any V e "P, or, equivalently,

(2.12)
O f(v,a2) cos2 da_ ff(al,a2) sinc2 da_

fwf(c,c2) c cosa2 da_= f(l,a2) Cl sina2 da_.

We aSsume below that this equilibrium condition holds. It is also convenient to sum-
marize in this context all the other constraints that f should satisfy. Hence, in the
bending-dominated caSe we assume that

(a) f e C(.),
(b) (OJ f/Oo32)(OZl, -Tr) (OJf/OoJ2)(Ol, Tr), j O, 1,2,...,
(c) f is independent of t,
(d) Gl(a2):- f/f,2 (hi, 02) da 0 or G2(a2):-- L hi f,22 (hi, a2) dal O,
(e) f satisfies (2.12),

where (here and in what follows) I (-1, 1): Note that (a) and (b) hold if and only if

f is a restriction to w of a smooth function f defined on R2, and is 2r-periodic in a2.
The set of such functions is denoted by Cr(). Furthermore, it turns out (see the
next section) that in the bending-dominated case u 0; if and only if G (72 0,
i.e., assumption (d) is equivalent to the assumption that the deformation state of the
shell is bending dominated. Hence, the soft membrane case is obtained if f satisfies
(a), (b), (c), and

(dr) c() =c() =o.
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Note that (d’) implies (e).
The dimensionally reduced cases are handled almost similarly. Let

and let qf, q/K, i 1,..., 6, be functionals defined in V and VVK, which are
otherwise of the form (2.9), but where (U1, U2, U3) is now replaced by (u, v, w) and fl
is replaced by w. We further define the following energy spaces:

UR {u E YPl q(_u) 0, 1,...,6},
/gK {_u e vvKI qK(_u)= 0, i= 1,... ,6},
u {_ e u’ :(_,_1 o}.

Finally, to define the limit energy space M in the soft membrane case, we denote
by (U)+/- the orthogonal complement of/4o in/4K with respect to the inner product- BK(u,u)/2 is a norm in (U) +/-(_u, v_) .Ag (_u, v) -k- Bg (u, v_y_) Then u I[ [u[[[M
We then define M as the closure of (b/) +/- with respect to this norm.

After these definitions, the dimensionally reduced shell models may be given
variational formulations as follows: find uR /jR, _Ug ,K, U0 ( 0, and _M (M
such that

(2.13)
(.4)
(2.15)
(2.16)

THEOREM 2.1. Problems (2.13)-(2.16) are uniquely solvable. Moreover,

Proof. Proceeding as in the proof of (2.10) (see [NH]), we find that

(2.17)
(2.18) tK(u, u) + g(u,) c{ Ilu1121, + Ilvll, + Iiwl12, }, u e g,
so the unique solvability of problems (2.13) and (2.14) follows from the Riesz represen-
tation theorem. Note also that since U is a closed subspace of/gg, (2.15) is uniquely
solvable whenever (2.14) is solvable.

The unique solvability of (2.16) follows from the Riesz representation theorem as
well, Once it is shown that q defines a bounded linear functional in UM. Integrating
by parts and applying the constraint (d’) above this follows"

(2.19)
< CIIfll2,lllulllM, (u, v, w) e UK,
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where and in what follows,

g(xn, c2) dxndxn-1. dxl.

Since b/g is dense in M, this part of the assertion follows.
The remaining assertions are just basic stability estimates obtained by applying

(2.13), (2.14), (2.17), (2.18), and, in the soft membrane case, (2.19). D
Remark 2.1. Exactly as in the three-dimensional case, we have

where 7R and Tg are defined otherwise as in (2.11), but where ,,3D is now replaced
by V or VP, respectively, and or3 is replaced by 0. By (2.12), both sides in (2.13)
vanish if v E T and, accordingly, (2.13) holds for all v E 14z"a. Furthermore, by the
same argument, (2.14) holds for all v e 14g.

3. The asymptotic displacement fields. In this section we solve u and _M
explicitly and show that

u_0, e 3.

We further show that UK actually converges toward the asymptotic field in the scaled
energy norm II1" IIg,t.

First, we note that b/ may be redefined as

(3.2)

Let us begin with the bending-dominated case. Seeking for a solution to (2.15) in the
above form, we obtain by standard calculus of variations that u u(, ) H is the
desired solution if it satisfies the Euler equations

(3.3a) G 20(6) + 40(4) + 2v",

(3.3b)
4 2

G2 -(8) /4(1 v) ) (6) /8(1 v) ) (4) 4(1 t)1,

where G1 and G2 are definied as in 2. Then, expanding the load in the Fourier series

(see [PP])

(3.4) f (fck(cl.) cos ka2 + fs(al) sin kc2),
k=0

we find that equilibrium condition (2.12) may be rewritten as
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and, consequently, G1 and G2 have expansions

G1 Z k f d cos ka2 fck d sin k2
k--2

G2 Z k2 fck dc cos k2 + f d sin k2

Also expanding and into ourier series, we eily find that (3.3) holds if

(o + ),
(a.sa)

( cosk + sin

where

Ok [2k(k. 1)2]- ] fk da,

[:(- 1).]-1./ f2 d.,(3.55)

=- k2+4(1-v) (k2-1)2 alf$ dal, a=c,s.

By (3.5b) there exists a constant c independent of k such that

and since f e Cr(), we conclude that (, ) defined by (3.5) is a smooth, 2-periodic
function. rthermore, it is obvious that (,0) , and thus by uniqueness,
(, 0) 0 Cp()3. We also note that 0 # if and only if either G1 # 0 or

G20.
Our next step is to solve M explicitly in the soft membrane case, where G1

G2 0 and (2.19) holds. To this end, we first note that by (2.19), C Ker(q), so

(3.63) BK(M,) q(E) for any g.
Then, set + , where

(2( ,))-{(/,) ,(f) + },
(( ))-{(f,: + ( + )(I, + ., +
(( ))-{z(f,:: + 2:(f,: + f + .,, + o,},

where is to be defined and (see (3.4))
1

(214(f) (4 + v)I2(f)) dal cosa2=-
+1 (214(f) (4 + )I2(fJ)) dal sina2,
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It is easy to check that _u satisfies the Euler equations

(3.6b)
h, + u/3, + (1 u)h, O,
/211,2 "{-/22,2 + (1 u)/32, O,

12u/3 + 12/322 f,

and the natural boundary conditions

(3.6c)

Consequently, u_u_ satisfies (3.63). Moreover, by the above definition of (, 0), 5__ e
b/g N Cpr()3. Our aim is to choose z so that

(3.7) ,4K (u, v) 0 for all v_ E/A

Taking into account that any z E/A is of the form (3.2), we conclude, integrating by
parts, that (3.7) holds if _z z(, 0), where and 0 satisfy (3.3) with Gi replaced by
Fi, i-- 1, 2, as defined by

Obviously, Fourier expansions of F1 and F2 contain components with k >_ 2 only, so
proceeding as above we conclude that z(, ) L/ N Cpr()3.

Summing up, we have constructed u_ L/K Cpr()3 such that (3.63) holds and,
moreover, u_ (0)+/-. By the density of/AK /AM in/AM, (3.63) holds with _uu and
/K replaced by u_ and/M, and thus, by uniqueness, u_ u_M. Accordingly, (3.1) also
holds in the soft membrane case.

THEOREM 3.1. As t O, [[lUK --lt0[l[K,t --4 0 (bending-dominated case), or
t-ll]]UK --uM]IIK,t --+ 0 (8oft membrane case).

Proof. We first consider the bending-dominated case.
Let (v_v_) q(v_v_)- AK (_u, v) and s u__K -u_. We note that

and by (2.15),

(3.9) o(v) 0 for any v e/A.
Furthermore, it follows from Theorem 2.1 that

(3.o) AK(s st)+BK(s s <_ C for all te(0, to).

By (3.10), any subset of {st, 0 < t _< to} contains a subsequence {_st } converging
weakly to _s 6 b/g in the sense that

(3.113)
(3.115)

t (s, v) - tK(s, v), AK(et, v) --, .4K (s, v).
(_) --, (_) a t --. o

and
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for any v_v_ E UK. Then, by Theorem 2.1,

s) <

so s e U by (3.11a) and, accordingly, o(_s) 0 by (3.9). Then, by (3.8) and (3.11b),

It follows that III  IIIK, - 0 t --+ 0; otherwise we could find a subsequence satisfying
(3.11) but violating (3.13).

Next, let us prove the assertion in the soft membrane case. Using the same
notation as above, it follows from (2.14), (2.16), and (3.1) that

so that (3.10) also holds this time. Accordingly, we can again extract a weakly conver-
gent subsequence {st } in the sense that (a.lla) holds for some _s b/. Furthermore,
by (3.14), (3.12) also holds and thus, by (3.11a), s_ /A. Then, since JtK (_st,v) 0
for any v U, it follows from (3.a) that fl.K (_s,_s) 0. Hence, _s 0, and by (3.14),

The last estimate, however, must hold also with tr replaced by t by the same arguments
as above.

Remark 3.1. Assume the soft menbrane case. If we only know that f H2(w),
then _u_M g in general. In this case one can still show (see [PP, Whm. 3.1]) that

IlluK u MIIl + t2fltK(uK, u_K) --* 0 as t --* O,

so, in particular, the membrane energy still dominates asymptotically.

4. Regularity of _K: The bending-dominated case. In this section we
study the nature of the solutiong when the deformation state is bending dominated.
We begin with some regularity results, which are consequences of the a priori estimates
presented in Theorem 2.1. We point out that (4.1a)-(4.1c) are in fact not sharp; they
will be improved in 5.1.

Here and in the subsequent sections we use the abbreviation O((t)) for a quantity
bounded in absolute value by c(p). (t). Ilfllp, or by c(p, k). (t). Ilfkllp,i in cases
where one Fourier component of f is considered. Here p is some finite integer and the
dependence o11 parameter k is assumed to be algebraic, i.e., there exists m m(p) N
such that c(p, k) <_ c(p)km.

TItEOREM 4.1. _UK Cpr()3, and for any multi-index

(4.1b)
0.1c)

where 7 1 if I1" [t II" ilL,@) and rI t-I4 if tl II ll Furthermore,

(4.2) Drw((:kl, c2) 0(1) if - .<2 3.



MODELS OF A CYLINDRICAL SHELL II 831

Remark 4.1. Without loss of generality we may consider below only one Fourier
component, so assume that f(al,a2) fk(al)coska2, k > 0 (see [PP] and (3.4)).
In that case the solution is of the form

(4.3)
(u(a cos ka2, v(a sin ka2, w(a cos ka2)
(u(a),w(a)) if k O,

if k>l,

where u u(al) e/AkF is such that

(4.4)

and ,4kf (u,_) and B(u,_) are otherwise of the form (2.4) and (2.5). Now, however,
w and da_ are replaced by I and dal, and

fill
1

f (-k +
fl. kv + w,

B;ll W/t

t12 -kw vt

E22 -k2w- kv

if k >_ 1, and

if k 0. The energy space ZJkF is naturally of the form

/kF { (U, V, W) e H (I)2 x H2(I)
qg (u(cl)COS kcz2, v(al)sin ka2, w(al)cos ka2) 0, i 1,..., 6}

if k > 1 and

L/0F {(u,w) e HI(I) x H2(I) IqK(u,O,w)= 0, i= 1,...,6}.

By the same arguments as in Remark 2.1, (4.4) actually holds for all v_ E HI(I)2 x
H2(I) in the case k _> 1 and for all v E HI(I) x H2(I) in the case k 0. Finally, for
later use we denote by II1" IIIk the energy norm that corresponds to (4.4).

Proof of Theorem 4.1. It obviously suffices to prove that the solution _u to (4.4)
satisfies (4.1) and (4.2) with Dr replaced by 0

We begin with the case where ]]. ]1 I]" IIL2()" Below we simply replace v by 0
in the case k 0. By Theorem 2.1,

and by (4.4), _u satisfies the Euler equations

1 {k2 (1 r,)u k(1 + r,)v’ 2r,w’},(a.) ,-=

(4.a,) ,," {(( + ),’ + (,, + )) t-(( ),," , ,,)},
(4-1 ,() -:t-’ (,’ + ,, + ,) + ,o,, 4, +( ,1, + I
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with the natural boundary conditions

(4.6a)
(4.6b)
(4.6c)
(4.6d)

u’ + (kv + w) O,
3ks- (3 + t2)v kt2w 0,
w" (kw + kv) O,

(2 + kv’) 0

at both ends, where c k/((6 + 2t2)(1 )). Noting that (4.5b) can be rewritten in
the form

v" c{6(1 + )11 + 1222 t2((2 u)w"- k2w kv) },
we have Ivl2,I O(t). Also, (4.5c) can be rewritten as

w(4) -12vt-211 12t-222 + 2k2w" k4w + k(2 v)v" k3v + fk,

and thus [W[4,I O(t--1). We also note that [w[3,i O(t-1), for we have from
boundary condition (4.6d) that

w(3)(al) (2- )(k2w + kv’)(-1)+ w(a)(s) ds,

and we already know that v’(-1) O(1), w’(-1) O(1). Hence, we obtain (4.1c)
with T1 <_ 4 by interpolation. Finally, differentiating in (4.5), the proof is completed
by induction and interpolation.

Next, let I1" I1" IIL(I). The first estimates in (4.1) hold because of the Sobolev
imbedding theorem. To prove the second part, we assume that c1 >_ 0 (the case where
c1 < 0 is handled similarly). For g u, v, or w we have

1/2

for any 0 < e < 1. The remaining estimates in (4.1) now follow from this inequality by
choosing e tl2 and recalling the Sobolev-norm estimates already obtained. Then,
(4.2) follows from (4.6c) and (4.6d).

If w is solved from (4.5) with k _> 1, we get a differential equation of the form

(4.8) w(s) Cw() + C4w(4) C:w(2) + Cow f,

where Ci are nonnegative constants such that

Co ka(k2 1)2(1 + O(t2)),
C4 12(1 2)t-2 q- O(k4),

C2 4k2(k2 1)2 (1 + O(t2)),
(56 4k2(1 + O(t2)),

and, furthermore, ] (1 + O(tg))(fk)(4) (2ke + O(tg))(fk)’’ + (k4 -- O(te))f.
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The characteristic polynomial for (4.8) consists of even terms only and, therefore,
the roots are of the form

?1, 71, --?1, --?1, ?2, ?2, --?2, --?2,

where (7, ) is a conjugate pair. Writing Aj + iBj, we find that in the ce k 2,

A1 =C/4cos(arctan2)c + o(/) o(-/),

/a ( 2) + O(t/2) O(t_/2)B=a sin arctan
C6

If k 1, we have A B 0, since Co C 0 in (4.a) for k 1. Otherwise (4.9)
remains valid. It is ey to check that

(4.10) 1 N1 O(tl/2), 2 B (k- 1). O(ta/).
If k 0, (4.g) implies that

(4.11) w( + 12t-(1 u)w’= I’.
Here, the roots of ghe corresponding characteristic polynomial are 0, , , -, and

-, where, furthermore, A(1 + i), A (a(1 u))/t-1/.
LMM 4.1. There eists solution wo to (4.a) or (4.11) sch that

Proof. The fundamental sets of (4.8) (k 1) or (4.11) (k 0) are

{em e,, i 1, 2} if k 2,

{1, 1,,,ewa,,e,a, } if k 1,

{ 1, ew,,e, } if k 0.

By variation of constants, we get the particular solutions

{ f2’- )}wo Re O(tT/2) en, a, e-n,zf(x) dx e-n,a. en, Zf(x) dx

(k ),

3 3

=o j=0

o =ae O(t) :", -,(fo),(x) dx + -,, :(fo),(x) dx

+ O(t)(fo(.) fo(0)) ( 0),
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where Cij are constants of order (9(1) at most. The assertion now follows easily by
differentiation.

In what follows we choose the fundamental sets of (4.8) and (4.11) in a more
practical way. If k >_ 2, let us set

(4.12)
0 cos B2al cosh A2al,
1 (2B2) -1 sin B2al cosh A2al + (2A2) -1 cos B2al sinh A2c1,
2 (A2B2)-1 sin B2al sinh A2al,

3 3(A23B2 + A2B)-I(A2 sinB2al, cosh A2al- B2 cos B2al. sinh A2al),
4 2e-A COS B o/1 cosh A a1,

5 2e-At sinBlal coshAlal,
6 2e-A sinBlal sinhAlal,

7 2e-A COS B a sinh A a1.

Expanding the first four basis functions into a Taylor series, we have that

(4.13) I1 [1,i C()O(t2), > 0, 0,1, 2, 3.

In the case k 1 the fundamental set is otherwise similar, but now

(4.14) i a, O, 1, 2, 3.

Finally, if k 0, we set

(4.15)

o 1,
2e-A cos Aal cosh Aal,

I’5 2e-A sin Aal cosh Aal,
6 2e-A sin Aal sinh Aal,

7 2e-A cos Aal sinh Act1.

Let us assume for a while that k >_ 1. Obviously the solution w we are looking
for can be written in the form

7

(4.16) w E Wi" i + w0, W E R,
i=0

where wo is as in Lemma 4.1. By (4.2) and Lemma 4.1

(4.17) X := w(i)(:l) w(oi)(:t:l) 0(1), i O, 1,2,3.

The coefficients W can then be solved from the linear system

7

E Wi" J)(:t:1) X, j 0, 1, 2, 3.
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Setting YP X+ +X-,

(4.18)

ym X+_X-, by straightforward computations we have

where the residual estimates follow from Theorem 4.1, (4.9), (4.10), and (4.17).
If k 0, we have uK (U, W), where w is of the form

7

(4.19) w W. 90 +EW" @ 4-w0.
i--4

By arguments similar to those above, we conclude that

(4.20) W (.9(1), W O(t), 4, 5, 6, 7.

THEOREM 4.2. Let T (T1,T2). Then

(4.21) DrwK(+l, a2) O(t--1), T1 4,

(4.22) DrwK(+I, a2) 0(t-3/2), T1 5,

(4.23) Drfl (+l, o2) O(t), T1 0, 1, 2,

(4.24) Dfl(+l, a2) 0(tl/2), T1 1, i =’1, 2.

Proof. We may assume again that f(Ol, O2) fk(al)coska2, which implies that
tg is of the form (4.3), and apply the analysis above. First, (4.21) and (4.22) follow
immediately from (4.16), (4.18), (4.9), (4.19), (4.20), and Lemma 4.1. To prove (4.26)
and (4.27), note that (4.5a) and (4.5c) can be rewritten as

(4.25)

(4.26)

fll 4- Pfl2 -(1
t2

/]fill 4- fl22 --’i(w(4) 2k2w(2) 4- knw- k(2- I])V(2) 4- k3V- fk),

so that by (4.6a) and (4.26)

+ o,
t2

-flll(-f’l) 4- f122(:kl) --l-WC4)(:kl) 4- O(t2),

where the residual estimate is based on Theorem 4.1. Then (4.23) follows from (4.21)
and, furthermore, since by (4.25), (4.6b), (4.26), and Theorem 4.1

1 4-__kt212(:1:1) O(t2),+
t2

+ +
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the estimate (4.24) follows as well.

5. Proofs of (1.1c) and (1.1d).
5.1. Proof of (1.1c): The bending-dominated case. Having established

the above preliminaries, we are able to sharpen the result of Theorem 3.1 in the
bending-dominated case. We begin with the following theorem.

THEOREM 5.1. [[[_UK _U0[[[K,t O(t/4).
Proof. We are going to use the following notation in what follows:

(,) a_, ((, )) (1, c)(, c) ac.

Purthermore, for v (, v, w) , we denote by r any finite sum of inner products
of the form ((v_), 9), where 9 is a smooth function independent of t.

Thus, let _v _g -0 (, v, w) L/g. Integrating by parts, we conclude first
that

q(v) ((a, )) ((ai, )) + ((a, )) + ,
where q, G1, and G2 are defined as in 2. Furthermore, recalling from (3.2) that

we have

AK(uO, v) -t- t-2BK (u0 v_) AK(u0 v_)
("1 ((4) _[_ (,t)

_
0(3) -t- 0’, W,22 )--(O/1((4) -t- (u) ._ 0(3)

__
9’, V,2 )

+ ( )(() + ’.. ) ( .)(() + ,.. )

+ + +/- + v + v.
All the following results are obtained by integrating by parts. First,

((() + ()) + () + (),, ) +
((() + ()) + () + ),) + .

Thus by (3.3b),
I + II (1 ((7) + 2(5) + (3)) + (6) + 2(4) + Oft, v) + r

((7)+2(5)+ (a))v da20 (a2 21)

(() + e() + ().( + 1)) + ((a, )) +

=-((s)+2(a)+(a))uda201 (a6 a2 31)
2
g((( +( +(, )) ((al, )) + ((al, v)) + r.
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Furthermore,

III -2(1 u)((4) + ", w,1 ) -2(1 u)o((4) + ")w nl ds

-2(1 u) 9fO ((5) + (3))v nl ds 2(1 u) fo ((4) ._ (2))22 nl ds

-2(1 u) Jfo ((5) + (a))v nl ds R,

and thus,

Finally,
v (((4) + ,,) + () + ,,, )

((() + ,,) + () + ,,, ,)
/2(0/1 ((4) --I-

where the residual estimate follows from (3.2) and Theorem 4.1. Furthermore, by
(4.1b), (4.23), and (4.24),

.(.(() + ,,) + () + ,, Z,)
--/2 fow { (/1((4) - ,,) -- )(3)

__
1)22,1 ((4) ._ ")22} nl ds

Combining these results and recalling (3.3) we have

at (uo, _) + t-e(uO, _)
2

q(v) 2(1 -/2) o ((4) ._ ")22(V) nl ds + ((ai, iy()) + uO(tl/2).
w i,j=l

Hence, by Theorem 2.1 and (4.23),

from which the assertion follows. El
coo,..,,..,,- 5.1. Tho,. 4. hod ,h V /’ .f I1" I1" I1,,,,, ad V 1

I1" I1" I1,,,,.
Proof. Theorem 4.1 was proved by taking into account IIZII.() o(t) and

llllL.() o(1). However, IIZllL() (-0(t5/4) and IIllL() (-O(tl/4) The
improved estimates now follow by using same argument as in the proof of Theorem
4.1.
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Proof of (1.1c). Let U UK U0 and _u uK _U0. Then

(5.1)

eij (U) X1/2 (ij (u) a3a(u) + Riy }, i, j 1, 2,
u

trf(u) W O3 + R33e33(U) x/ -i- 1

ei3(U) XI/2 Ri3, i 1, 2,

where, by Theorem 5.1 and Corollary 5.1,

if (i,j)- (1,3) or (3, 1),
otherwise.

Applying Theorem 5.1 together with this estimate, we have

A"(u, u) A(u, u) + -(_u, u) + o(/).

The first part of the assertion now follows from (5.2) and Theorem 5.1. Furthermore,
in the Appendix we prove that the result of Theorem 5.1 cannot be improved in
general. This, together with (5.2), implies the optimality of the given convergence
rate. [:]

5.2. Proof of (1.1d): The soft membrane case. We are not only going to
prove (1.1d), but we will also show that the given result is optimal in the general case.
Let us begin with a basic theorem that comes out of analysis very similar to that in

4. Estimate (1.1d) will be an easy consequence of this result.
THEOREM 5.2. Ills_K u__M[]IK,, O(th/4).
Proof. Without loss of generality we may consider a single Fourier component, so

assume again that f(a,a2)= fk(al)coska2, k e {0,1,2,...}. it will be enough to
handle separately cases where k 0 and k _> 1.

We begin with the axially symmetric case k 0. By (4.3), s g tM is of
the form (ut(oll),Wt(Ol)) and

(5.3)

where/xg is the abbreviation for g(1) -g(-1). Observe that the last equality above
is the resul of partial integration and the fact that wt f22(_st). Moreover,

where the first two estimates follow from energy arguments and the last follows from
from interpolation. The boundary values can be estimated by applying (4.7), with g
and e replaced by wt and tl/2, respectively. Accordingly, the right-hand side of (5.3)
has an upper bound O(th/4)llltlll,t, and so the first case is proved.

Then assume that k _>_ 1. By (4.3),

_8 (tt(l) COS :02, Vt(Ol) sin ]got2, wt(ol) COS 2).
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Furthermore, _u (ut, vt, wt) E bl satisfies the variational equation

(5.4) t2A(ut, v) + B(u_*, v) --t2A(u_M, v), v_ Hi(I)2 x H2(I).

Integrating by parts, we see that the right-hand side of (5.4) is equal to ql (v) + q2(v),
where

(v_) t2 Zf a’J/3’i(v) dcl,ql

/ + + +

and where aij and ai are smooth functions depending only on u_M, thus independent
on t. Accordingly, we can split _u as _u q-_u2, where _u L/ is the unique solution of

t2AkF(_ui,V) + BkF(_ui, V) qi(v), V Hi(I)2 x S2(I), 1,2.

Then, obviously, lil_llll o(t2), so it suffices to consider _u2 (u2, v2, w2). First, by
the energy argument

(5.5) I1111, /

Furthermore, u__2 satisfies the Euler equations (4.5) with f 0 and the natural bound-
ary conditions (4.6) with the right side replaced by O(2) in (4.6a) and (4.6b) and by
(D(1) in (4.6c)arid (4.6d). Hence, proceeding as in 4, we conclude that (4.16)arid
(4.18) hold with w and w0 replaced by w2 and 0, respectively. Then, observin that
2 and 2 have the same fundamental set as w2 (see (4.12) and (4.14)), it follows that
2 is of the form

(5.6) u U, V, W
i-0 i-0 i=0

By (4.18), W O(t) for i 4, 5, 6, 7, and by (5.5), all the remaining coefficients are
of order O(1) at most. Upon substituting (5.6) into the Euler equations (4.5) (with
fk 0), we can solve U and V in terms of W, W, W2, and W3, when i 0, 1, 2, 3,
and in terms of W4, W5, W6, and W7, when i 4, 5, 6, 7. Applying (4.13) and (4.14),
we get

(5.7a)

6(2 / buo -w w +k4
2
W2 d0(t2)U k-

3 wa O(t)U2
k-5 /

V3--

(5.7b)

2/./
VO 1WO + W2 O(t2- -# + ),

6v
V= 1W+ W3+O(t2

V2 __1W2 + (.9(t2),
k

-w + (),Va
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(5.7c)

V4

U5

U6

U7

(5.7d)

Va_ k(2+U)W6 O(t3 O(t2),2A2 +

Vh_ k(2+U)W7 O(t3 O(t2),2A21 +

V0 k(2+U)Wa O(t3 O(t2),2A2 +

VT= k(2+U) W5 O(t3 O(t22A’-"- + )= )"

Here the residual estimates are based on the above-mentioned upper bounds for the
coefficients, and A1 O(t-1/2) is defined as in (4.9). Consequently,

(.8) Illu2ll[k <_ C(k){t(k 1)(IWOl-I-]Wll) q-IW21-t-IW31-I- t5/4}.
Applying (5.6), (5.7), (4.12), (4.13), (4.14), and the natural boundary conditions
(4.6a) and (4.6b) (with the right side replaced by O(t2)), we have, by straightfor-
ward computation, that W O(t2), i 2,3. Hence, it remains to show that
W O(tl/4), i 0, 1 (if k _> 2). In fact, we obtain a better estimate. First recalling
that 4g(st, v) 0 for all v b/, we conclude that

S(ut) := (kal(Ul(ut) + :(ut))+ 2(1 -/])Nl2(Ut)) da 0,

S(u) := f(l(U) + .(u)) el o,

and so by the Cauchy-Schwarz inequality, ISi(u2)l ISi(u)l O(t), 1,2. But
recalling the already-known estimates, we have

(2 ( 1))Wl O(t ptl/2),S1 (u2) 5(k3 k)l] -I- 4(1

S(u) -2(k 1)Wo + O(ta/ + ut/).

So W O(t + utl/2), 0, 1, and the proof of Theorem 5.2 is thus complete. []

Remarkh.1. Letwh={_aEw I-1+6<a <1-6}, 0<6<l, and let AhK (u, u)
B(_u,_u), and II1" IlK,t,5 be the corresponding interior bending and membrane strain
energies and the interior energy norm, respectively. Then it follows from the above
analysis (also carried further in the case k 0) that

IlluK -u_MIIIK,t,e O(t2 + ta/2), 5 >_ t/2 In(t-a/4),

so the interior accuracy of the asymptotic model is better than the global one.
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Proof of (1.1d). Let U-- UK- VM and u- ug -itM (u,v,w). Recalling
Theorem 5.2 and proceeding as in the proof of Theorem 4.1, we have

(5.9)
IIDu IIL.() O(t/a /

IIDv IIL.() O(t/a / t(-U)/a),
]lDrWllL2(w) O(tl/4 +

for every multi-index T (T1, T2). Applying (5.9), we have, as in the proof of (1.1c),
that

I1[111 I1-III i,t + o(t),

from which (1. ld) follows.
To prove the optimality of (1.1d), let f a2. By a straightforward computation,

t(OZl) --/2’W4 4- w6) tI/5(Ol) /](W4 w6)
2A 2A

(.) wv(.)+ wv(.),

where A (3(1 u2))1/4t-1/2,
cos A sin A cos A + sin A

W4
12A2(1 u2) + O(A-2e-2A)’ W6

12A2(1 2) 4- (.9(A-2e-2A),

and 4 through 7 are defined as in (4.15). It is easy to check that Illulllg,
and thus by (5.10), the asserted convergence rate is optimal.

6. Convergence rate estimate (1.1b). In the previous section we had to
analyze the edge behaviour of Ug in quite a bit of detail before we could prove the
basic Theorems 5.1 and 5.2. The corresponding estimates for uR -uK in case of
both deformation states, which easily imply (1.1b), can be obtained without any such
special information about uR. However, this time we cannot guarantee the optimality
of the convergence rate.

We begin with the following lemma.
LEMMA 6.1. fO P2

R nl ds <_ C(f)a-lt1/2 Illulll,t, where a is defined
(.).
Proof. Assume that f fk(al)cos kc2, k >_ 1. (If k 0, the left side vanishes.)

In that case

_un (u. cos ka2, v. sin ka2, w. cos ka2, 01" cos ka2, 02" sin ka2),

where

"tt= (’tt, V,W, 01,02) {H1(I)5 f/(v-w)= f/ Ol(V W) 0 if k= 1}
is such that

(6.1) a2{4f(u,_) 4- t-2B(u,v_-) 4- t-2C(u,v_-)} I fk,. + dal, e Hi(I)5
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Here, Jt(u, v_-), B(u, v_-), and C(u, v_-) are otherwise of the form (2.4), (2.5), and (2.6),
respectively, but now co and dc are replaced by I and dcl, is as in (4.4), and, finally,

0,
1(6.2) 12 (-kO1 + Or2 v’), pl -01 "k- w’,

kO, p. -(0. + kw + v).

Then, n(ax, a2)- 2(al)sinka2, p2(al,a2)- p2(a)sinka2, and thus

p2 n ds

_
r. (l12(1)p2(1)l + 12(-1)p2 (-1)1)

By the energy argument and by (6.2) and (4.7), with g and e replaced by p2 and t,.
respectively,

Furthermore, by Theorem 4.1 and (5.9), ]n.(+l)[ O(1). Combining these estimates,
the assertion follows. [3,

In the remaining part of this section we use the exceptional notation

uK--(UK VK WK W,1K w,2K--vK).

THEOREM 6.1. IlluR -uKll]R,t O(atl/2), where a is defined by (1.2).
Proof. We note first that (uK, vK, wK) satisfies.the Euler equations

(6.)
(6.3b)
(6.c)

, + ( )Z, + Z, o,
12t-2u/3,2 + 12t-2(1 u)/31K2, + 12-2/32K2,2 Kz 0,

12t-Z + 2-Z + g. -I,

where
K1 u;,2 + 2(1 u),l + 2K2,2,

KK2 , + u;2K2,l + 2(1 u);,12 + u,22 + 22,22,

and the natural boundary conditions

(6.4a)
(6.4b)
(6Ac)
(6.4d)

Z +Z o,
6t-2/3 0,

+ =o,, +, + 2( )5, o.

Let _
(u, o, o, o, o), v (o, , o, o, o), v (o, o, , o, o),

v_4 (o, o, o, 0, o), v (o, o, o, o, 02),

where v (u, v, w, O 02 u_u_R --u__K; let us use the abbreviation aR(u_,v) for the
Reissner-Mindlin inner product on the left side of (2.13) and the abbreviation (9, h)
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for the boundary integral fou g" h nl ds. Then it follows from (6.3a), (6.4a) and (6.4b)
that

(6.5)
(6.6)

a-a’(u_, u) 0,
a-2a’(u_K,v2) (v,2 + a2K2,2 + (1 -/])g1K2,1, V) + (1 ){a, V}.

Furthermore, we have

(6.7) a-2a2(u_K,v__3) (12t-2vfillK + 12t-22K2, W),
and by (6.3c) and (6.4d),

(6.8)
O’--2aR(_K, V4)- (--B;1Kl,1 I/B;2K2,1 --(1 b’)glK2,2, 01)

(., +-, + (- ).,,) + (-, + ., + (- ).,, f)
(a, + va, + (1 )a,, w)
(a, +a, + (1 )a,u, w) + (a, + a, + (1 v)a,u, pf)

(i )<,, >.
Finally,

(6.9)
a-2aR(u_K,VL) (a,2 + a2K2,2 + (1 )a,l, 92) + (1

K (1 M),12’(U,22 + g22,22 + W) + (Ua,2 + ,2 + (1 u)g, v)
+ (, + (i )5,, + ) + (- )(.

Combining (6.5)-(6.9) and applying (6.3c), we have

The assertion now follows from Lemma 6.1, Corollary 5.1, and (5.9). v1

COROLLARY 6.1. Both in bending and soft membrane cases, u_R E [Cr()]5 and

Proof. Assume again that f f(al)cos ka2. In that case, the argument proceeds
as in the proof of Lemma 6.1, and thus the first two estimates and also the remaining
estimates with m 1 follow immediately from Theorems 5.1 and 5.2, (5.9), and
Theorem 6.1. Then, proceeding from the Euler equations corresponding to (6.1),
applying the already-obtaired estimates, and continuing as in the proof of Theorem
4.1, the smoothness result as well as the remaining estimates follow. []

Proof of (1.1b). Applying Corollary 6.1 and proceeding as in the proof of Theorem
(1.1c), the assertion follows easily. 0
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7. Proof of (1.1a).
7.1. Proof of (1.1a): The bending-dominated case. We obtained results

(1.1b), (1.1c), and (1.1d) by using straightforward energy arguments. In the proof of
(1.1a), the complementary energy principle is used instead. This is necessary mainly
because we do not know the t-dependence of constant c(t) in (2.10). The complemen-
tary energy principle was first applied in the plate theory by D. Morgenstern in 1959
[M], and by many authors fterwards (see, e.g., [K]). The statically admissible stress
tensor given below is constructed in the spirit of [K]. However, we avoid Kichhoff-type
hypotheses and instead directly use the Euler equations that _uR satisfies. These are

(7.1a)
(7.1b)
(.c)
(7.1d)
(7.1e)

with the following natural boundary conditions at both ends:

(7.) +Z =o, Zfi o, f o,
(7.b) -1" + .-f =o, .f o.

Let 7-I stand for the space of stress tensor defined as

and let S" 7"t -- 7-/stand for the isomorphism defined by

D-1 (Atr_TSij + #Tij),
D

(--I__T)ij (-tr_rSiy + (1 + )Wiy),

where D, E, #, A, and are defined as in 2 and 5iy is the Kronecker symbol. Then S
and S-1 are obviously self-adjoint if 7-/is supplied with the weighted L2 inner product

3

(_’ T)n E Jfa rliij.(1 + 3) d_a.
i,j--1

Using this. notation we have jt3D (U, V) (S__e(U), __e(V))7./.
Next, let ___8aD Se_.(gaD) and define the set

nQ { e n (-, -(Y))n QD(y), y w3D }.
This is usually referred to as the set of statically admissible stresses. We note that
_saD E TtQ. Let us further define in 7-/ 7/the bilinear form B3D and define in T/the
"complementary" energy G3D as

The key argument in the proof of (1.1a) is the following lemma, which may be viewed
as a version of the well-known complementary energy principle. Sometimes this is also
referred to as the "hypercircle theorem" [M].
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LEMMA 7.1. For any U E 3D and s_ TIQ,
1 B3D (_83D 83D 8_) F3D G3D- (v3 u. v3 u) + . (v) + (_).

Proof. Rewrite the left side of the asserted identity as

,_ Q-(Uand note that B3D(s3D s_) (_s,_e(u3D))t for any _s T/Q.
Hence, our goal is to find _s 7"/Q such that

F3D (UR) + GaD (s_) O(t).
The assertion then follows from Lemma 7.1. Now, s e 7-tQ if _s e HI(Ft)33 satisfies
the Euler equations

(7.3)
X--1811,1 -- 812,2 - (X--1813),3 0,

X-s, + s:, + X(X-:sa),a 0,

X-s, + s, + (X-s),-s. O,

and the natural boundary conditions

(7.4)
(811,812,813) (4-1, 02, 03) 0,

833 (O1,O/2,)--f(o/1,O2),
((813,823) O1, 2, 4- 0,

(Ol,
We choose

where C 12(1 + t/2)t-3 and, furthermore,

R32 _(c2
R33 _(a3
R2i R3i,3,

t2
(1 u) ]lR2,1 (O1, X) dx

8

t: :. .t) (-fl +-)8+3 6

zat2 ) oa2

12
(1-) a (1 x) dx12,1

i 1,2,3.
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It may be checked from (7.1) and (7.2) that _s satisfies (7.3) and (7.4), and thus _s 6
We can write s in the more convenient form

12
(fi +g-(+g)) + 1,

12( +g (+g)) +,
813 r13, 823 r23, 833 r33,

where, by Corollary 6.1, the residual terms are such that

G3D (_s) 1 {AR(uR uR + t_2BR(uR uR + t_2CR(uR _uR) } + O(t).

Furthermore, again recalling Corollary 6.1 we have

F3D(UR) 1 {jtR(uR, uR + t_2BR(uR, u_R) + t-2CR(uR,uR)}_ q(uR) + O(t).

The assertion now follows recalling Lemma 7.1. D

7.2. Proof of (1.1a): The soft membrane case, We begin with the following

definition. Let ,73D U36 be such that

By linearity, U3D (1 + t/2)3D, and it follows from the triangle inequality, together
with (1.1b), (1.1c), and (1.1d), that

,I,u u,,, _< (1+ ),,1_0 u,,, + o().

Hence, it suffices to prove that ]] [3D uM[[ ]3D O(t).
We first note that

e11(gM) 11 - Rll,

el2(VM) (1 + O3)-112 -+" R12,

el3(UM) R13,

where the remainder terms are of order

e22(UM) 22 + R22,

ea(VM) Ra,
u

trf + R33eaa (UM) 1_--2

(7.5) IIRII.(a) o(ta/).

Next, let V 14)3D. Integrating by parts and applying (3.6b) and (3.6c), we have

,A3D(uM,v)-- - ./o(/,’11 + 22)V3 d + RI

(’)1 (u + :)Va dldOa a + + Rt
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where by (7.5), R(V) RI / RII is such that IR(V)I <_ CtlIIVIII3D. The assertion

then follows noting that II fJ3D uMII ID -R(fJ3D uM)" V1

Remark 7.1. Note that since we have dropped out the factor 1 + t/2 from the
potential energy in our shell model, there is no reason to expect faster convergence
than that predicted by the above theorem.

Appendix. Here we analyze the behavior of _g in more detail in two special
cases where the deformation state is bending dominated. The load is chosen to be
either (1) f K0 cos2oz2 or (2) f Kick1 cos2o2, and we set - 1/3 in both cases.

(1) Let f K0 cos 2a2. In this case ug is of the form (4.3), where (u, v, w)(al)
satisfies (4.5) and (4.6). It is easy to check that

3 + t2 12 -t- t2
(A.1) =0, -- 5K’ - 10g’
is a particular solution of (4.5). Furthermore, u and v have same fundamental set as
w (see (4.12)), and so by symmetry we have

(A.2)
U UltI/1 -- U3I/3 -- VhI/5 -- U71/7 -- ,v-- VOtI/o -- V21I/2 -- V44 + V6I/6 --,
w WOI/o -- W21I/2 - W41/4 -- W6I/6 - .Applying the Euler equations (4.5a) and (4.5b), we.can solve U, U3, V, and V2 as

a function of W and W2 and, similarly, U5, U7, Va, and V6 as a function of W4 and
W6. Finally W, W2, Wa, and W6 can be solved by claiming that (u, v, w) satisfies
the boundary conditions (4.6a)-(4.6d). By symbolic calculus we obtain the expansions

(A.3)

Kovq +

Vo 1WO + O(t2)
2

W4
1

_
1- K0 (cosB sin B)t + 0(t3/2),

W6
1

_
Ko(cosB + sinB1)t + 0(t3/2),

18

144
Ko cosB t/ + O(t),

UT: 1 () 1/4

144
K0 sinB t/ + O(t),

and the remaining coefficients are of order O(t2).
Let u _ug -_0. By (.2) and (3.5), the a2-independent part u of u is

( )(A.4) u2= 0,- K0, 6Ko
so by (A.1) through (A.4),

(A.5) u) + v7 o(,: + v7
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where Jt: and Bg are defined in Remark 5.1 and the nonboundary layer term O(t)
arises via n2K2(_u) because of the component (u, v, w) (0, Vo, Wo). Moreover,
(A.5) implies that

(A.6) IllulllK,, co(v + tll4e-5/vq).

Finally, the leading term in the global relative error is

t1/4 + O(V) 0.295 tl/4.

This is a result of the leading boundary layer

(U, V, W) (U51I/5 -1
t- U71II7, 0, W41I/4 -t- W61II6).

(2) Let f---- Klal cos 2a2. Then, by (3.2) and (3.5),

u= 72’ 36’ 18

whereas a particular solution of (4.5) is

12 + 7t3 3 + t2 12 + t2
-K1, -Klal, @ Klal.

432 54 108

The complete solution of (4.5) and (4.6) is then of the form

U U01I/0 -I- U21I/2 -- U41II4 -- U61II6 -- ,?3 VIII/1 -- V31I3 _3 V5II/5 -I- V71I/7 -- ,w-- WIlI/1 -]- W31I/3 -- W511/5 -- W71I/7 -.
Proceeding as above, we get

18 108 g

V IW1 -t- O(t2)
2

Uo _Iv1 +O(t2),
2

W5

W7

U6

V) K1 + O(t),

K1 (cos B1 + sin B1)t + 0(t3/2),
96

Kl(cos B1 sin B1)t + O(ta/2)
96

1 () 1/4

288
K1 sinB1 t3/2 + O(t2),

1 () 1/4

288
K1 cos B1 tal + O(t),
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and the remaining coefficients are again of order O(t2). Also, this time it is easy to
check that (A.5), and thus (A.6), hold, and now

where the leading term comes from the leading boundary layer

(U, V, W) (U41/4 - U6I/6, 0, W51/5 -- W71/7).
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A GLOBAL EXISTENCE AND UNIQUENESS THEOREM FOR A
MODEL PROBLEM IN DYNAMIC ELASTO-PLASTICITY WITH

ISOTROPIC STRAIN-HARDENING *

A. NOURI AND M. RASCLE

Abstract. We prove the global existence and uniqueness of the weak solution to the initial
boundary value problem for an elastic-plastic solid with isotropic strain-hardening on a bounded
domain in three space dimensions.

Key words, elastoplasticity, isotropic strain-hardening, evolution problem

AMS subject classification. 73E50

1. Introduction. In this paper, we consider a three-dimensional elastoplastic
material, submitted to small strains motions. For such a material, we prove the
existence and the uniqueness of a globally defined weak solution. In the case of an
elastic perfectly plastic material, the quasistatic and dynamic evolution problems have
been studied by several authors, see, e.g., [3], [11], [12]. For a material with isotropic
hardening, we mention the paper of Laborde and Nguyen [9], in which they determine
the evolution of the stress tensor, assuming the strain evolution is known. Here,
we consider the full evolution problem. Roughly speaking, the associated operator
has some monotone features, which of course correspond to its strongly dissipative
properties, but is not monotone, at least not in a trivial way. This is due to the
nonlinear function g, which appears in (2.4) below. Nevertheless, we take advantage
of those monotone features. The paper is organized as follows. In 2, we provide
some basic facts from the theory of plasticity and formulate the mathematical model
to be studied. In 3, we give a precise statement of the problem, which naturally
involves a convex set K that defines the plastic regime. In 4, we solve the regularized
problem, essentially by studying the Yosida approximation of the subdifferential OIK.
The crucial point is to obtain the a priori estimate (4.20). In 5, we pass to the limit
and solve the full problem. The key difficulty here is the estimate (5.38). We complete
this paper in 6 with a short appendix on convex analysis.

2. Basic facts from the theory of plasticity. We start with Fig. 1, which
describes a sequence of successive one-dimensional traction and compression tests for
an elastoplastic material with isotropic strain-hardening. In this setting, as in the
general case considered below, the body we consider is described in the reference
configuration by a bounded domain of n (here, n 1 or 3) and is assumed to
undergo small deformations; (resp., ) denotes the linearized strain (resp., strain
tensor) and a (resp., r) the stress (resp., stress tensor).

In Fig. 1, the material is initially in the elastic regime, until the stress a reaches at
point A the constant yield stress ay. Then the regime becomes plastic until point B,
where we start unloading elastically until point C. At point C, we start compressing
elastically he body, until point D, where we reach the plastic compression regime.

* Received by the editors May 28, 1991; accepted for. publication in revised form November 22,
1993.

Dpartement de Mathmatiques, Universit de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice
Cedex 2, France.
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M

FIG. 1. Isotropic hardening.

B

FIG. 2. Kinematic hardening.

Then we repeat the process, with a new elastic regime EFG, a new plastic traction
regime GH, and so on. More precisely, we decompose the total strain into its elastic
part ee and its plastic part r:

(2.1) --e+r (resp.,e-ee+r)

The stress a and the elastic strain ee are assumed to satisfy Hooke’s law:

1
(.) - ,

( 1+ (Tr)l)(2.3) resp.,e -r=
E er-

Here, E and denote, respectively, the Young modulus and the Poisson coefficient;
(Tr er) =aii, the trace of the symmetric tensor er; and 1, the 3 3 identity tensor. In
the elastic regime, the plastic strain r is locally constant. In the plastic regime,
and r are given functions of the stress a and of a hardening parameter f that describes
the history of the material and specifies the yield curve (AB, DE, GH, and so on) that
is actually involved. The first curve of importance in Fig. 1 is the phenomenological
yield curve ABM, which we approximate by a given function g:

def(A) o o ( 1.
A typical example of function g is

(2.5) --g(y ) ky(-(y ))m, m E (0, 1).

The extreme cases m 0 and m 1 classically correspond, respectively, to a
perfectly plastic material, where

(2.6) lal _< ay,

and to the elastoplastic case, with kinematic strain-hardening. In the latter case (see
Fig. 2), the family of successive yield curves reduces to a pair of straight lines ABM
and DEN, which are symmetric with respect to the origin.
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FIC,. 3. The convex set

For such a material, the size of the convex set of plasticity introduced below is
constant, but its center evolves with respect to time. By contrast, for an elastoplastic
material with isotropic strain-hardening, all these curves can be deduced from the
"initial" curve ABM by a sequence of symmetries with respect to successive points,
like points C, F, and so on. Thus, in Fig. 1, IBCI ICDI, IEFI IFGI, and so
on. Therefore, for such a material, the size of the convex set of plasticity increases
with respect to time, while its center remains on the horizontal axis cr 0. One can
combine these two types of models, see, e.g., [5]. We also remark that such models are
rate-independent materials: the curves like ABCDEFGHI do not depend on the actual
loading and unloading speeds. In contrast, the Yosida approximation, defined in 3,
provides a family of mathematical rate-dependent approximations of those materials.

From now on, we consider an elastoplastic materiM with isotropic strain-
hardening. We define the hardening parameter

(x, t) IOtr[(x, s) ds de=f --(x, t),

where denotes the absolute value. Observe that, by construction, -y is a decreasing
nonpositive function of time.

In the one-dimensional case, we introduce the closed convex set

(e.s) K {(or, C) e ]R x /11 / c _< y},

(see Fig. 3) and we define the convex set of plasticity K by

(2.9)

where fl --y is the hardening parameter defined in (2.7) and the function g defined
in (2.4) describes the initial yield curve ABM.

Now, the elastic regime corresponds to

(a, ) e Int(K)" la + g(’y) < cry

or

and

(2.12) Ola <_ 0
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and

(2.13) Ota EOt(e )

and

(2.14) O. OZ o,

while the plastic regime corresponds to

(2.15) (, ) e OK lal + g(/) ry

and

(2.16) o11 (sgn a)Ota >_ 0

and there exists 0 > 0 such that

(2.17) Otg/ -Ot -A

(2.18) Otr sgn (a).

Moreover, in either case,

(2.19) 7(x, t) -/3(x, t) IOtrl(x s) ds <_ O.

Clearly, formulas (2.14), (2.15), (2.16), and (2.17) are contained in the general formula

(2.20) 0(,-) e 0((o, ()),

where IR is the indicator function of the closed convex set K and OIR its subdifferen-
tiM, see, e.g., [4]. These classical notions are briefly recalled in 6. We just note here
that

(2.21)
{o}

o((,()))
{A(sgna, 1); A >_ O}

if (a, 7) e Int(K),
if (a, 7) K,
if (a,7) E OK and g(3) < o.

We have defined K as the convex set of plasticity. Indeed, K is convex if the function
g is convex, i.e., by (2.4), if the curve ABM in Fig. 1 is convex downward, which we
assume from now on.

3. Statement of the problem.
3.1. The one-dimensional version. We first consider a more tractable one-

dimensional version, in the spirit of 2. The yield function g appearing in (2.4) is
assumed to satisfy the following assumptions:

(H1) g is a convex, increasing, smooth function from ]- cx), 0] into ]-oc, 0], such
that g(0) 0., Then g is extended in a C fashion to [0, +oc[ by a linear relation.

(H2) 2a > 0, 3fl > 0/V7 E R, 0 < a _< g’(7) _< fl < E.
Remark 3.1. Assumption (H2), which implies a linear growth of the function g

at infinity, is in fact quite natural, since g is convex. As we already said, the set of
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plasticity is indeed convex if (and only if) g is convex. Moreover, it is worthwhile to
note that our results are no longer true if g is concave, since in this case there are so-
lutions that definitely contain shock waves in the plastic regime, see e.g., Antman [1],
Trangenstein and Pember [15]. However, the solutions constructed in the abovemen-
tioned papers are essentially solutions to the Riemann problem and therefore already
contain discontinuities at time t 0; it is likely, but not entirely clear, that shock
waves would develop in finite time, even starting with smooth initial data. In con-
trast, with a convex yield function g as here, the solution of the Riemann problem
only involves contact discontinuities (in the elastic regime) and rarefaction waves (in
the plastic regime). Therefore, under assumptions (H1) and (H2), on one hand the
propagation of plastic shock waves is impossible, and on the other hand, as we are
going to show in the next sections, solutions in Sobolev spaces are globally defined,
which implies that no plastic shock wave can develop if we start with Smooth initial
data.

Our material is now a" one-dimensional elastoplastic bar, with isotropic strain-
hardening, defined in the reference configuration by a bounded interval gt ]0, L[,
undergoing small deformations. We denote by v the velocity, the density p is supposed
to be constant, and we assume that there is no external load (see a comment on this
assumption in Remark 3.2 below). For simplicity, we also assume that p 1 and
E=I.

We now write the equations. First, the fundamental law of mechanics gives

(3.1) Otv Oxa O.

The compatibility of second order derivatives of the displacement implies

(3.2) Ore Ov O.

It is more convenient to introduce the vector-valued functions

(3.3) U (V, (7, y) E ]13,

de:f G(U) (v, (7, C) de___f (V, (7, g(’y)) e ]13

to slightly modify the convex set of plasticity

K {U (v, a, /) e IR3/la[ + g(7) <- 0}

and to introduce the sets

(3.6) K_ {U K/ <_ 0},

(3.7) K {U (v, a, C) e 3/11 + c o} C(K),

[(_ {] e k/C <_ 0} C(K_).

Since those definitions do not involve the velocity v, the corresponding sets are cylin-
ders, parallel to the v-axis. Therefore the corresponding OIi:c have no v-component.
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We can now eliminate a + 7r (here, E 1) and rewrite the system in the form

(3.9) o (Ov o,o Ov, o) + oa(v, , g()),

0 e OtAU + BU + OIR(G(U)),

where

(3.11) AU d U; BU = (-0, -Ov, 0).

The inequality -y < 0 will be satisfied a posteriori.
We add classical boundary conditions, e.g.,

(3.12) or(O, t) =- O, v(L, t) O.

Of course, (3.12) implies

(3.13) (v cr)(O, t)=_ (v a)(L, t)--O.

Finally, we add the initial data

(3.14) (v, or, 7)(x, O) (vo(x), cro(x), O) e K a.e. in Ft ]0, L[.

Therefore, in one space dimension, our initial boundary value problem (IBVP1) is
precisely stated in formulas (3.10) and (3.12)-(3.14) above.

3.2. The full three-dimensional problem. The function g still satisfies as-
sumptions (H1) and (H2). The modifications are the following:

cr E Ms, the set of symmetric 3 3 tensors, equipped with its classical scalar
product er:" and the associated norm Icrl.

er and e e- r are related by Hooke’s law (2.2).
Ot$ $(V) (l(OiVj -{- OjVi))l<i;j<3 where 0i de____f O/OXi.
we classically decompose the total stress er into the (trace-free) stress deviator

aD and the hydrostatic pressure tensor

(3.15) er ffD pl.

The convex set of plasticity is now

(3.16) K {U (v, er, "f) e R3 Ms x /[D a + g(w) <_ 0},

and we define [7 and/,

(3.17) / {7 (v, , c) e x M x /11- + C _< 0},

so that

K {U (v, cr,’f) e R3 x Ms x /(] G(U) e k},
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with

(3.:19)
1
(Tra) 1,V(U) (,,a(V)) ,

The system of equations is now

(3.20) 0 (Ov diver, E 0ter N Tr(0ta)l (),0) + 0a(, a, a()).

Let N denote the fourth-order tensor of the linear elasticity system, such that
Net, (see (2.3)). Let us define

V def AU def (V, ee 7) (v Net,
BU dej (-diver,-e(v), 0),
cu ao__f O(a(U)).

We can rewrite (3.20) in the form

0 e OtAU + BU + CU, U (v, er, 7)

and look for a solution in the Hilbert space,

H L2(gt)3 Ms(L2(fl)) L2(fl),

where Ms(L2(t)) is the space of symmetric 3 3 tensor-valued functions. We equip
H with the scalar-product

(3.23) (U, U*) e__ ((v, r,-y), (v*, r*, 7")),--/(v. v* + er "er* + "7*)(x)dx.

We add natural boundary conditions and initial data. Finally, the problem we consider
is

find U e L(0, T; H) such that
(3.24) 0 60AU + BU + CU, V (v,
(3.25) (7)) r.n--0 on0gt, v=_0 on0gt2, /t>0,
(3.26) (v,
where A, B, C are defined in (3.21) and (0gt, 0t2) is a partition of the (piecewise)
smooth boundary

Remark 3.2. (i) We could naturally consider inhomogeneous boundary conditions,
at least if they remain "elastic." The plastic case would require a more careful analysis
and the regularity assumptions that are specified below could be violated.

(ii) Similarly, it would be more realistic to consider a general (given) nonzero
external load f(x,t), e.g., such that f and Of/Or lie in the space L(0,T; L2(gt)3).
In this case, the right-hand side of relations (4.5a) and (4.8a) below would be re-
placed, respectively, by f and -, which would modify the energy estimate (4.12) (see
also (5.4)) in an obvious way and would still provide the same type of estimates by
Gronwall’s lemma (observe that only the first equation--the easiest one--would be
modified in a system like (4.8)). So in principle our results should also apply to this
case.

(iii) Again the inequality -y _< 0 will be satisfied a posteriori.
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(iv) It would be equivalent to invert the relationship

to define
U def A_IV (v, N-lee /) (v, er, 7)

and to rewrite the problem under the form

(3.27)

(3.29)

Find V 6 L(0, T; H) such that

(p,) 0 e OY / B(A-iV) / C(A-iV); V (v, ee,-),
N-lee n 0 on 69"1; V 0 on 0122%/t > O,
(,,)(, 0) (0(), (), 0) on .

But then we would have to change the scalar product in H:

(3.30)

iv, v*] [(,,), (,., *, *)]

./(v. v* + (N-lee) (N-lee*) + "’*)(x)dx

=/o(v. v* / a" er* + /7*)(x) dx

-(A-iV, A-iV*).

From now on, we consider either the problem (7) or the equivalent problem (7)’).
4. Regularization of the three-dimensional problem. As we have seen, A

or A-1 can be easily inverted in a positive definite way from H into H. As we will see
below, B is a maximal monotone operator on the Hilbert space H. However, due to
the nonlinearity of function g, the operator

u -CU=O(G(U))

is not monotone, even if we ry to change the scalar product. Therefore, in a first step
we are going to replace OIR by its Yosida approximation, see, e.g., [4],

(- Pn)(O).(on).(u)

Therefore, we replace CU by

(4.2)
1
(I- PR)(G(U))c.u -where tt decreases to 0+, I is the identity, and PR is defined pointwise as the orthogonal

projection on the convex set

K {U (v, ’, C) 6 IR3 x Ms x /11- / c <_ 0}.

Using general results on convex sets defined pointwise, see, e.g., [7], it is easy to check
the following lemma.
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LEMMA 4.1. (i) For all U (v, er, 7) in R3 x Ms x ,

(4.3) {0 ( )CU 1 aD

2-- (laDl-aY+7(7))+ 0,1aD],l

I -I- + < 0,

iI I -I- + > 0,

(ii) The same formula defines CU for any U (v, r, 7) in H. Here, + de__f max(, 0)
is the positive part of any real number .

4.1. Use of the Yosida approximation of OIg. For each fixed positive #, C
is a Lipschitz operator, and the full operator is a Lipschitz perturbation of a maximal
monotone operator.

THEOREM 4.1. (i) Assume (vo, cro, O) e D(B),the domain of B, with IcroDI <_ ay
almost everywhere in . Then, for each # > 0, the regularized problem

1
(4.4) OAU + BU + (I- PR)(U) O,

(4.5a) Ov diver 0,
1

(4.55) (p)
1

0t7 2#
(]o’D[- O’y + g(7))+ <-- 0,

together with the boundary conditions (3.25) and initial data (3.26), has a unique

solution (v, er, 7) de__f (v, er, 7) in the space W1, (0, T; H).
(ii) Moreover, 7 <_ 0 and U (v,r, 7) is bounded in this space, uniformly

with respect to #. Similarly, e(v) and diva are uniformly bounded in Lc(0,T;
Ms(L2()) and L(0, T; L2()), respectively. Finally, the right-hand side in (4.5b),
(4i5c) is also bounded in the same spaces, respectively.

Proof of Theorem 4.1. (i) We first note that B is a skew symmetric operator on
H, with domain

D(B) {U (v, r, 7) e Hie(v) e Ms(L2()),
v/on. 0, div(r) e (L2())3, er. n/on, 0}.

Using the Korn inequality,

D(B) {U (v, er, 7) e (HI())3 x Ms(L2()) x L2()/v/on2 -O,
div(r) e (L2(12))3, er. n/on, 0).

Therefore B -B* is monotone, and its domain is dense in H. Since

VU e D(B), IUI <_ I(I / B)*UI,

we deduce that I+B is surjective. Therefore, the operator B is maximal monotone on
H. Of course, the same result is true for the operator {BA- V --, B(A-V) BU},
if we replace the scalar product in H by [., .], as defined in (3.30). Therefore, .for each
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(4.8a)

(4.8b)

(4.8c)

where

# > 0, (P) is the Cauchy problem for a Lipschitz perturbation of a maximal monotone
operator BA-1, with initial data in the domain D(BA-I).

By a classical result, see, e.g., [4], there exists a unique solution to (7), such
that

Vu (vu, eu, u) (vu, Nero, /u) e W,(0, T; H).
Naturally, when # decreases to 0+, the norm of Vu (or Uu) in the space W,(0, T; H)
could blow up eLT/u, where L is the Lipschitz constant of (I- PR) (here, L 1).

(ii) This is not the ce. Let us show part (ii) of Theorem 4.1. For each fixed

# > 0, let us derive (4.5) with respect to t:

O(Otv) div(0t) 0,

def

(4.9) h deal
2#

(l D,I- +

Since U E W,(0,T; H), (4.8) is a linear system, where the unknown functions
Otv,Otr,Ot/, and the right-hand side are in Lc (O, T; H). Note that (4.8a) and
(4.8b) are the system of linear elasticity. Moreover, the boundary conditions and
initial data satisfy

(4.10) Oter n =_ 0 on 0’1, 6tV# =-- 0 on 02, Vt > 0,

0) ------ div(r)(x, 0) e (L2(fl))3,
(4.11) NOter(x, O) =-(v)(x, O) e Ms(L2()),

O(x, O) e L2().

Let us consider (4.8a) and (4.85). We know from the theory of linear elticity that
the following energy estimate is satisfied:

Otv,. Otv,(x, s) dx + Ota"" (NOra,) dx
s=O s=O

" Ot"(, s) d &.

Here, we have respectively multiplied (4.8a) and (4.8b) by Otv" and Ot" and used
the boundary conditions, which imply

(4.13)

io’io So’L(div(0ter"). Otv" + Oter" (Otv))(x, s) dx ds (a, n) v dS ds O.

On the other hand, the right-hand side of (4.8) is the time derivative of a Lipschitz
function of U, where U W1,(0, T; H). Therefore, dropping the index # and using
the chain-rule formula in (4.9), we have

(4.14)
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where

Oth --(2#)-lsgn+(lerD + g(’y) av) iDi OtrD + g’(/)O/

and
sgn+() dz--f (sgn)+.

Now, let us take the scalar product of (4.14) with 0er, multiply (4.15) by g’(/)O9/,
and add. Since, for instance,

(4.16)

Gto’D {T-- OttTD (TD’} Tr(a)l)
l’I’r(er) (Oter-D 1)Oral. + -5

)to,D o.D
we have

(4.17)

By the Cauchy-Schwarz inequality, the second term in (4.17) is nonpositive. On
the other hand, using (4.15),

(4.18)
TD /

2

R <_ --(2#)-sgn+(IrrD + g(’,/) au) [o.D[’ Ot"D -[-" g’(’)/)Otq/

_
O.

Now, let us multiply (4.8c) by g’(/)Otg/, integrate on t x [0, t], and add to (4.12). We
obtain

(4.19)

On the other hand, since g" >_ 0 and Ot7 <_ 0,
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where a appears in assumption (H2).
Clearly, the convexity of the yield function g is essential to obtain this estimate

(4.20), which was indeed the crucial point. Combining (4.20) with the other important
estimate (4.19), we obtain

Therefore, the sequence (U) is uniformly bounded in WI,(0, T; H).
Finally, since

and
div(r) 2tv,

the uniform boundedness of OtU in L(0,T; H) implies that e(v) and div(er) are
also uniformly bounded in Lc(0,T; Ms(L2(Ft)) (resp., L(0,T; (L2(gt))3)). For the
same reason, the right-hand side in (4.55) (resp., (4.5c)) is also uniformly bounded in
the same space (resp., in L(0, T; L2(f))). Therefore, when # --, 0,

(4.22) I1(I- PR)(U)IIL,,,,(O,T;H 0(#).

5. The main result.
THEOREM 5.1. The sequence (vt*,at*,-),) defined in Theorem 4.1 satisfies
(i)

v -. v in Lp(O, T; (L2(gt))3) strongly, Vp

er -- er in LP(O, T; Ms(L2(f))) strongly,. Vp

/ --, " in Lp(O, T; L2(f)) strongly, Vp

(ii) the limit U (v, er, /), globally defined, is the unique weak solution to the
problem (7), in the following sense:

(5.1)
VV e LI(O,T;H)/V(x,t) e K a.e. in gtx(O,T),

((Ot(AU) + BU)(t), (G(U) V)(t))H dt <_ O.

In particular, U(x,t) lies almost everywhere in K and " <_ 0 almost everywhere.
Moreover,

v e L(0, T; (HI(Ft))3) g W,(O,T;L2(f)),

diver e L(0,T; (L2())3),

Oto" e L(O, T; Ms(L2(t))),

Ot’ e L(O, T; L2(fl)).
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Remark 5.1. In (5.1), the upper bound T in the integral can be easily replaced by
almost all t in (0, T). It would be equivalent to ask that, almost everywhere, in (0, T),
for any V V(x) E K,

((&(AU) + BU)(), (G(U) V)()). <_ O.

Proof. The proof consists of four steps. In the first step, we define the weak-
star limits of the various subsequences. In the second step, we derive the convexity
inequalities between these limits and define the boundary conditions and initial data
satisfied by the limit. In Step 3, we prove that the weak-star limit is a solution.
Finally, in Step 4, we prove that the convergence is strong and the solution is unique.
Therefore, the full sequence converges strongly to the unique solution.

Step 1. By definition of the orthogonal projection on a convex set, for each
# > 0, U G(U) satisfies almost everywhere

v? e R, (0, P:O,, P:O’, ?) > o.

From (4.4), this implies

(5.2a) V? E/, (OtAU, +BU, PR]# ?) _#-1(0 PR]#, PR]# if) <_ O.

On the other hand, (4.4) also implies

(5.2b) (OtAU# + BU#, G(U#) PR(G(U))) -#-’110, Pn’ll < o.

Adding (5.2a) and (5.2b)yields

(&AU# + BU,, G(U#) ?) <_ -#-lllO# PRO#il2H <_ O.

Choosing V (0, 0, 0) K and integrating from 0 to t, we obtain almost everywhere
in (0, T) the classical energy estimate

(5.4)

where g(/) de=f f g(c)dc. Here, we have again used the boundary conditions and the
antisymmetric nature of B.

From (5.4), even if we ignore Theorem 4.1, we can extract a subsequence--still
denoted by U#---such that

Ut’ U in L(0, T; H) weak-star,

(5.6)
v,---v in L(0, T; (L2(ft))2) weak-star,
err, a in L(0, T; Ms(L2()))weak-star,
/ ’ in n(0, T; L2(ft)) weak-star,

9(7) g* in n(0, T; L2(ft)) weak-star.
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We note that, in view of assumptions (H1) and (H2), g is a convex nonnegative
function such that

ce’Y2 < g(3’) < and (g(./))2 </2.y2 < 2/2g(.y).(5.7) vTe , 7 a

On the other hand, from Theorem 4.1, we can extract a new subsequence such that

/z-l(pRr rr) --, X in L(0, T; L2(f)) weak-star,
Otvu divert Otv diva in L(0, T; (L2()3) weak-star,

0 Y-(e(v)+ IX]2) in L(0,T; Ms(L2())) weak-star,

0, -I[pRu, U"]3 IX]3 inn(0, T; n2()) weak-star,

e(v,) e(v) in L(0, T; M(L2())) weak-star.

Here, for any U (v, er, ) in H, we have defined

[U]I v, [U]2 0-, IV]3 .
Clearly X satisfies

We also note that the natural energy estimate (5.4) would only imply

(5.9)

in contrast with the much better estimate (4.22).
Step 2. Since g is convex,

(5.10) g* _> g(’) a.e. in Q ax(0, T).

For the same reason

(5.11)
w* limit (lerDrl) _> ierD a.e. in Q,
w* limit (Ivrl2) _> Ivl 2 a.e. in Q,
w* limit ((err;No’r)) >_ (er’Ner) a.e. in Q,

and

PRO’, PR(G(Ur)) --, e in L(0,T; H) weak-star.

But, from (4.22) or (5.9),

Ur PicUr 0 in L(0, T; H) strongly.

Therefore,

G(U’) U -. U* (v, erD, g*) e K in L(0, T; H) weak-star

and by using (5.10) this implies

iie., U E K a.e. in Q.
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Combining (5.4), (5.6), (5.10), and (5.11), we obtain, since 7(., 0) _-- 0,

(5.15) Ivl 2 + er Net + g(9/) (x, t)dx <_ Iv0] 2 + -ero Nero (x) dx.

On the other hand, from (5.8), U (v, er, /) satisfies

Otv- div(er)= [X]I ----0,
(5.16) OtNer e(v) IX]2,

o [x],

with IX]2 e L(0, T; Ms(L2()) and [X]3 e L(0, T; L2()), and the boundary con-
ditions

(5.17) er. n 0 on 0tl,

(5.18) v 0 on 0t2.

Here, we have first noted that, due to the Korn inequality,

(5.19) vt‘ --. v in L(0, T; (HI(Ft))3) weak-star

and

Otvt‘ Otv in L(0, T; (L2())3) weak-star.

Since the trace of a function in Hl(t) is well defined, and lies in the Sobolev space
H1/2(Ot), (5.19) allows us to define v/oa, and therefore to justify (5.18).

Since diver e L(0, T; (L2())3), we can define (er’n)/oa, with a similar argument
and thus justify (5.17). The same arguments also give a sense to the initial data

(5.21) (, , )(, 0) (o, o, 0) ().

Step 3. Now, let us show that U (v, er, 7) is a globally defined weak solution to
(7)), i.e., satisfies (5.1). Since, by (5.8)

OtAUt‘ OtAU in L(0, T; H) weak-star

and

(5.23) BUt‘ BU in L(0, T; H) weak-star,

we clearly have, for all V E L(0, T; H),

(5.24) (OtAUt" + BUt’, ?)H dt (OtAU + BU, ?)H dt.

On the other hand, multiplying (5.16) by G(U), integrating, and using formulas (5.17),
(5.18), we obtain the classical energy estimate

(OtAU + BU, G(U))H dt -lv + -er Ner + g(/) (x, t) dx
t=o

(.) (, a(v)lI at < +.



GLOBAL EXISTENCE IN DYNAMIC ELASTO-PLASTICITY 865

Now, we come back to (5.3), where V e LI(0, T; H) takes arbitrary values in K, and
we integrate with respect to t

(5.26) (OAU 4- BU, G(U) V)H dt <_ O.

We now return to (5.4) and (5.15). First, if we replace (0, t) by any time interval
(t, t), ff < t, we see that for every # the total energy

E(U,)(t) dej E(UD)(x, t) dx de IV’] 2 + -er, Net, + g(7") (x, t) dx

is a nonincreasing function of time. Therefore, E(U) (or E(U)) is defined for all
t in [0,T], except perhaps on a countable set of points of discontinuity. Moreover,
the sequence (E(U)) is bounded in L(O,T). On the other hand, E(U) is a convex
function of U. Therefore, the weak-star limits, defined by U U,E(U) E*,
satisfy

E* >_ E(U).

Multiplying E(U)(t) by an arbitrary nonnegative test function (t) and applying
Fatou’s lemma, we obtain

(5.27)

((t)E(U)(t) dt <_ E*(x, t) dx dt limo ((t)E(U,)(t) dt

<_ (t)lim,._,oE(U,)(t) dr.

Therefore, we have almost everywhere in (0, T)

E(x, t) dx

_
lim-.0 E(x, t) dx

0 0

In this formula we can choose t T (or at worst t T- 0; see also Remark 5.1).
Combining with (5.3), (5.24), (5.25), and (5.26), we obtain

which is exactly the desired result.
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Step 4. First, let us prove the strong convergence of v and r to v and er in
Lp(O,T; (L2())3) and Lp(O,T; (Ms(t))), respectively, for every p < +cx). By defini-
tion of the projection on a convex set, and of the subdifferential OIK, taking V U
in (5.2a) and V- PRUt in (5.29), we have

T(OtAUt + BU, PR(] -)H dt <_ 0

and

(5.31) T(-otAU BU, PRO Y])H dt <_ O.

Hence

(5.32) T(OtA(U U) + B(U U), PRt" (])H dt <_ O.

Since

and

OtA(U U) + B(Ut’ U) 0 in L(0, T; (L2(gt))3) weak-star

(] PR(ft" --, 0 in LI(0, T; (L2())3) strong,

(5.33) (OtA(U U) + B(U U), U, PTcU)H dt O.

The same result is true for almost all t in (0, T); see Remark 5.1.

(5.34) lim--.o (OtA(U U) + B(U U), Ut, U)H dT <_ O,

(5.35)

1

+ (g(9/") g(/))(Ot/t’ Otg/) dx dt <_ O.

Define
A, (g(’,) g(’))(O’, 0’)

and use the Taylor formula.to compute

(5.36)
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Now Ot.’y and Or’)’ are nonpositive, and g is convex. Therefore,

A, dx dT >_ g’(’Y + h(n" "Y))(n" "7) dh -(/, "y)(x, T) dx
o

0

which implies for almost all t in (0, T):

[ ( I(-)’N(-)limo v -v2 +

+ 0.
0

Consequently, using the sumption (H2) on 9,

(.ag) IIg,(t) U(t)ll 0 a.e. in (0, T).

Therefore, by he Lebesgue theorem, the subsequence (U,) converges strongly to U
in the space (0, T; H), Vp < +.

inally, we can use ghe same method to compare two solutions U and U associ-
ated o the same initial data and boundary conditions. We obtain

(s.401 .
0

which guarantees the uniqueness of the solution U and therefore the convergence-of
the whole sequence (U,). Theorem (g.1) is thus entirely proved.

Remark .2. As we said in the introduction, the problem is not associated with
a monotone operator. Nevertheless, it satisfies property (g.40), which is very close to
monotonicity but which is only true for solutions to the evolution problem or more

generally for functions U such that OtTi 0, i 1, 2.

6. Appendx 8ome be faes from convex analysis. We first recall that
the indicator function of a se K is defined by

Ig(z)= {0 ifzeK,
+ if K.

If K is a closed convex set, then I is a lower semicontinuous convex function. If K
is a closed convex set in a Hilber space H, whose sonar product is denoted by (,),
the subdifferential of I, denoted by OI is defined by

OIg(x) {z e H s.t. (z, y- x) _<_ (} for any y in K}.

OIg(x) is a closed convex set, centered in 0, geometrically, given by

0
the exterior normal cone of Kat x

if x E K,
if x e Int(K),
if x OK,
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where Int(K) and OK, respectively, denote the interior and the boundary of K. In
the particular case where K is a smooth convex set, the exterior normal cone of K
reduces to the exterior normal to K at x.

Remark. After completion of this work, we have learned that a similar problem--
with a more general class of (vector-valued) hardening parameters--is considered in
Lami Dozo and Muler [10]. In this paper, the solution satisfies a weak version of the
constitutive relation, which would be the classical one if there were enough regularity
to satisfy our formula (5.25). Here, we have obtained precisely such a regularity result,
which in addition guarantees the uniqueness of the solution.
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ON COUPLED INTEGRAL H-LIKE
EQUATIONS OF CHANDRASEKHAR*

JONQ JUANG

Abstract. A recently proposed "simple transport model" equation with an "angular shift"
(0 _< _< 1) leads to a coupled integral H-like equation of Chandrasekhar. Such coupled H-like

equations can be treated in terms of a one-parameter (kl, 0 < kl < 1) family. From there an a

priori bound can be obtained, which is independent of kl, c, and c (0 _< c <_ 1). Here c denotes the
average total number of particles emerging from a collision. Consequently, we conclude that positive
solutions of such coupled integral H-like equations exist. Moreover, we show that such equations have
a unique positive solution pair for c 0 or c and c 0 or c 1, and that the equations have
exactly two positive solution pairs for 0 c 1 and 0 <_ < 1 or c- 1 and c sufficiently close to 1.

Key words, integral equation, H-like functions of Chandrasekhar, a priori bound, existence
and multiplicity

AMS subject classifications. 45G10, 82C70, 85A25

1. Introduction. In this work we study the coupled integral H-like equations
of the form

c jfl H2(#") d#"(la) HI (#) 1 + H(#)(# + c)
# + #,,

-c < # < i,

and

(lb)
c /_ H(#") d#" #’+ . +

< <

Here c denotes the average total number of particles emerging from a collision, which
.is assumed to be conservative, i.e., c <_ 1, and a denotes an "angular shift" with
0 <_ a _< 1. Equation (1) first appeared in [8], where it was derived from a "simple
transport model" (see, e.g., [5], [8]) using Chandrasekhar’s method of solution. For
c 0, equation (1) reduces to Chandrasekhar’s well-known integral equation. Various
methods (see, e.g., [1]-[4], [6], [7], [10], [11]) have been applied to such equations. In
summary, they have shown that Chandrasekhar’s integral equation has one solution
if c 1 and at most two solutions if c < 1.

In this article, we first show that an a priori bound, which is independent of c and
a, can be obtained by introducing a one-parameter (k, 0 < k < 1) family. Therefore,
the degree theory is applied to show the existence of positive solutions. Second, the
techniques used in [6], [10l are generalized to show that equation (1) has a unique
positive solution pair for c 0 or c 1 and a 0 or a 1, and that equation (1)
has exactly two positive solution pairs for 0 < c < 1 and 0 <_ a < 1 or c 1 and a

sufficiently close to 1. The above results are contained in 2.
We conclude this introductory section by noting that using the solutions obtained

by equation (1), the simple transport model can then be treated as a "pure" initial

* Received by the editors June 15, 1993; accepted for publication (in revised form) December
15, 1993. This research was partially supported by the National Science Council of the Republic of
China.

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, Re-
public of China.
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value problem. More precisely, consider the following simple transport model:

(# + a) O(x, #) c/_ (x, #’) d#’, 0 < x < oc, [it[ < 1,+

(0, #) =f(#), 1 _> # > -a.

Then, for -1 _< It _< -a, we have (see equations (3) and (12) of [8]) that

c f It’ +______a_aaHl(It,)H2(_It)f(It,) dIt’.

Such an approach provides an interesting and effective alternative for solving the
simple transport model theorectically as well as numerically.

2. Main results.
Notation. Set

x H1 (It) dit, y H2 (it’) dit’,

a - ,
H, (it)H2

It q_ It,, d#,

and

b - g(It)H2(It")
It + It dIt.

Note that a + b xy. We begin by deriving some integral properties which a solution
of (1) must satisfy.

LEMMA 1. If H1 and H2 are solutions of (1), then the following holds:

(2) (1 x)(1 y) 1 c.

Proof. Multiplying equation (1) by and integrating equations (la)and (Xb)
over the ranges of It and It, respectively, we obtain

(3a) x -(l + a) + xy a

and

c(1-a)+xy-b.(3b) y

Adding up (3a) and (3b) would yield the assertion of Lemma 1.
Remark. For a 0, (2) reduces to some well-known expressions concerning the

properties of H equations (see, e.g., [3, pp. 106-107]).
For a : 1, we see immediately that if H and H2 are positive solutions of (1),

then there must exist two positive numbers kl and k2, where 0 < k, k2 <: 1 and
k q-k2 1, so that

.(4a) a kxy

and

(4b) b k2xy.
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It then follows from (2), (3), and (4) that the following holds:

1 (1 a) + klc-1- v/J1 (1 a) + kl]2 2k1(1 + a)c
(ha) x

2kl
:--hi +bl,

1 (1 + a) + k2c :1:v/J1 (1 + a) + k2cl2 2k(1 a)c
a2 -t- b2.(5b) y=

2k2

Since kl and k2 are to be treated as real parameters, necessary conditions for (5) to
be meaningful are that both [1 (1 a) + klc]2 2klc(1 + a) and [1 (1 + a) +
k2c]2 -2k2c(1- a) are nonnegative. However, these are so if 0 _< a _< 1 and 0 _< c _< 1.
To see this, we note that, for c 0, fl(kl) := [1 (1 a) + klC]2 2klC(1 + a)
has a minimim (1 + a)(1- a)(1- c), which is nonnegative whenever..0 <_ a <_ 1 and
0<c<l.

We denote by S the feasible region {(k,c,a) 0 < k < 1, 0 _< c < 1 and 0 _<
a < 1} for the solution of (1). The cross-section {(k,c,a) 0 < k < 1,0 <_ c <_
1 and a is fixed} of S will be denoted by S. The properties and signs of 1 x and
1-y will be examined in the next lemmas.

LEMMA 2. (i) 1- al + 51 >_ 0 and 1- al 51 <_ 0 for all (kl, e, a) E S.
(ii) 1-a2+b2>_0 and l a2 b2 <_ O for all (k2,c,a) E S.
(iii) For each fixed a, where 0 <_ a < 1, we have that 1- a + bl and 1- a2 + b2,

considered as functions from Sa --. R, can be continuously extended to .
(iv) Let c be sufficiently small, say 0 <_ c <_ . Then 1-a1+51 >_ 1/2 and

1- a2 + b2 >_ for all kl and k2, 0 < kl,k2 < l, and all a, O <_ a <_ l.

Proof. Since the computation leading to (i) and (ii) is similar, we shall only
illustrate (i). To see (i), it suffices to show that b2 >_ (1 hi)2, or equivalently

[1-- (1-- a) + klC] 2 c _ca >_0.2klc(l+a) [(2kl 1)(1 )_]2
Since the left-hand side of the inequality is equal to 4(1 kl)(kl)(1 -c), the assertion
of Lemma 2(i) thus follows. To prove (iii), we note that

al bl
(1 + a)c

.-’-
1 ( ) +1+ v/j1 (1 ) +1 (1 + )

(1
gl(kl,C,a)

and

(1
a2 b2 :--

( + ) + + v/J1 (1 + ) + .1 e( )
(1 a)c

g(k.,c,a)"

Since gl (kl, c, c) _>. 1/2 for all (kl, c, a) oO, we conclude that al bl, and hence
1 al -[- bl, can be continuously extended to S. Now, if a is fixed as assumed, then
g2(k,c,a) >_ 1/2(1 -a) > 0 for all (k2, c). Therefore, for each fixed a, 1 -a2 +b2 can
be continuously extended to S.

(1--t.-)aTo prove (iv), we see that if 0 <_ c , then al -bl 91(kx,c,a) <- 2c(1 + a) _< 3,

for all kl and. a. Thus, 1 -al + bl _> 1/2 as asserted. Similarly, we have

a2 b2
(1 a)c < c < c <1

g2(k2, c,a) -,1-(1+) 1-c- 7"

Therefore, 1 a2 + b2 >_ as asserted.
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Remarks. The function 1- a / bl, as indicated in the proof, can be continuously
extended to S. However, the same assertion fails for 1 a2 + b2. To see this, we note
that if a 1, then a2 -b2 0 for all k2 and c. However, if c 1 then a2 -b2 1 for
any a( 1) and k2 _< 1/2(1- a).

In view of (2), the case c-- 1 shall be further studied.
LEMMA 3. (i) 1 al + b 0 if and only if 1/2(1 + a) > k and c 1. Moreover,

1-a-b -O if and only if 1/2(l +a) < kl andc-1.
(ii) 1-a2+b2 0 if and only if kl > 1/2(l+a) and c 1. Furthermore,

l : a2 b2 O if and only if k < 1/2(l + a) and c l.
2kl-l-a Moreover, ifa) kl and 1, then 1 + b 2(iii) If (1 + < c a

1(1 + a) > kx and c 1 then 1- a- bl 2kl-1-a
2 2k

1+-21 Furthermore, if(iv) Ilk1 < 1/2(l+a) andc- 1, then 1-a2+b2- 2(-k)
l+cz-2kl.k > 1/2(l + a) and c -1, then l a2 b2 2(’)

Proof. The necessary parts of Lemma 3(i) follow from (2) and some simple alge-
bra. The remainder of the proof is trivial and thus omitted.

Some simple algebra would yield the following equivalent formulation of (1).
LEMMA 4. The functions H and H2 satisfy, respectively,

(6a)

and

C L #[HI (#)]-! (1 y) +
tt + tt" H2(#") d#"

(6b) [H2(#’)]- (1 x)+ #,,HI(#")
if and only ifH and H2 satisfy (la) and (lb), respectively.

In view of (2), we see that if H and H2 are solutions of (1), then either

(7a) 1- x _> 0 and 1-y _> 0

or

(Tb) 1- x < 0 and 1 -y < 0.

Let C[-a, 1] x C[a, 1] be the Banach space of pairs of bounded real-valued con-
tinuous functions with sup norm. That is, if (h, h2) E C[-a, 1] C[a, 1], then

{ max ,h2(/’),:=lIh2 ]l}-(h h2)II: max max h,()I’=II h, II,<<
In preparation for the use of a bomotopy invariance argument define, for (K, K2) 6

oil,

(S) ,((,)) ( -) + 5 ] + ,, (,,, d,",

cJ_ #’+a 1
d#’,(8b) 2,c(Kl(tt’)) (1 x) +

#’ + #" KI(#")

(8c) bc(K1 (#), K2(#’)) (bl,c(K2(#))), b2,c(K (#’)).
An a priori bound, which is independent of k and c, is obtained in the following

lemma.
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LEMMA 5. Let K1 and K2 be any positive continuous solutions of (K1, K2)
c(K1,K2) satisfying (Ta). Then there is an m > 0 (independent of c and c) such
that K(#) >_ m and K2(#’) >_ m for all (#, #’) E [-c, 1] [c, 1], all 0

_
a

_
1, and

allO<c<l.
Proof. Clearly, H and H2 are positive solutions of (1). Consequently,

1

_
K1 (#) and 1 _> K2(#’) for all [#, #’) E I-a, 1] [c, 1]. Therefore,

and

C jfaKI(#) >_ 1-y+ #"+ 1 d#" 1 y + gl (c, a)

rz #,,,.+ a d#" "= 1- x + g.(c, a).K.(#’)>_I-x+
-a #,,+1

Since 1-y _> 0 and 1-x >_ 0, there must exist positive constants k and k, kl+k 1,
such that 1-x 1-a+b and 1-y 1-a:+b, whereal-b anda-b

for0 < c < Since forare defined as in (5). Now, via Lemma 2(iv), 1- x _> .
fixed c, g:(c, a) is an increasing function (in a) we have that fl, ,,+ d#" > 1-n2"+1
Consequently,

K2 >_ min , (1 n2) (1 n2)"= m2

for all (#, #’) [-a, 1] x In, 1], all 0 _< c _< 1, and all 0 <_ a _< 1. On the other hand,

c f 1 c(1 a)
u J. <

and so 1 y > 1 c(1 -,a) Hence, if 0 < c < m2 or a > 1 m2 then 1 y > .2m2
However, if 1 >_ c >_ m2 and 0 _< a _< 1 m2 then

m f F’-(1- m2) d#" := rh > 0.gl(C,O) > Y Jl-m. #" + I

Consequently, K(#) >_ min{, rh} := m as asserted. The assertion of the lemma
now follows by choosing rn rain{ml, m2 }.

Remark. The lower bound for K2 is not sharp. A better bound can be obtained.
s Thus,To see this, let c be such that 0 < c < 2 then a bl < 2c(1 + a) <9--n2

1 a + b > 1--tn2 for 0 < c < 2 Hence,9--n2 9--n2"

c {1-n2 i-gn2} 1-n2
K2(#’)kl-x+(1-gn2)>_min 9-tn2’ 9-gn2 9-tn2"

THEOREM 1. For each a and c, where 0 <_ a < 1 and 0 <_ c <_ 1, c has a fixed
point satisfying (Ta).

Proof. Note, via Lemma 2(iii), that there exists a positive constant rh such that

max{ max (1-a +bl), max (1 a2 + b2)}
_

rh.
k ,, e 2, k ,c, e

Choose a min(1/2 m) and b + h + 1, where m is chosen as in Lemma 5.
Set D {(K, K2) C[-a, 1] C[a,] a < K(), K(p’) < b for all (, ’)
[-, 1] In, 1]}. Clearly, D is a nonempty bounded open subset of C[-a, 11 x C[a, 1l,
and c D --, C[-a, 1] x C[c, 1] is compact. Next, we show that if (K1, K.)
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c(K1, K2) for (K1, K2) E D, then (K, K2) E D. To prove this note first that from
the a priori bound for (g, K2), we see that g(#), K2(#’) > m > a for all #, #’.
Second,

c(1II (K1, K2) II  -II c(K1, K2) <_ rh +
2m

< b.

Thus u D as asserted. The preparations for the use of degree are now complete.
Consider the homotopy I- c. By homotopy invariance (see, e.g., Theorem 13.6 of
[9]), since (1,1) e D,

d(I c, (0, 0), D) d(I o, (0, 0), D) d(I, (1, 1), D) 1.

Therefore, the existence of equation (1) now follows from the Leray-Schauder fixed
point theorem.

To show the uniqueness of equation (1) satisfying (7a), we need the following
lemma.

LEMMA 6. Equation (1) has minimal positive solutions Hl,min(#) and H2,min (#’)
in the following sense if HI (it) and H2(tt’) are positive solutions of (1), then
Hl,min() <_ HI(#) and H2,min(#t) <_ H2(#t) for all #, #’.

Proof. Consider the two iterates {Hp) } and {Hp) } defined as follows:

(9a) H)(#) 1,

(9b) H2(1) (#’) 1 for all #,

(9c)

and

(9d)

H(2p)Hp) o) (") d#",Hp+) (#) 1 + -c (#)(# +
#+ #,,

c H(p // Hp)

H2(+1) (#’) 1 + (#’)(#’ a)
a -7 _-7 d#".

Clearly, for each # and #’, {H}P)(#)} and {H2(P)(#’)} are both increasing sequences.
It follows from Theorem 1 that equation (1) has positive solutions, say H(#) and
H2(#’). Since H(#) >_ 1 and H2(#’) >_ 1 for all #, #’, an easy induction would yield
H}p) (#) _< H(#) and H(2p) (#’) _< H (#’) for all #, #’ and all p. Hence, the sequences

{H})(#)} and {HP)(#’)}, respectively, converge upward to two limits, say/1(#) and
/2(#’). It then follows from the monotone convergence theorem that/1 and/2 solve
equation (1), and that H(#) _< H (#) and H2(#’) _< H2(#’) for all #, #’. The proof
of the lemma is thus complete.

THEOREM 2. For c 0 or a 1, equation (1) has unique solutions. Further-
more, for 0 < c < 1, equation (1) his unique solutions HI and H2 satisfying (7a).

Proof. The uniqueness for c 0 or a 1 is trivial. For 0 < c < 1, and 1 x > 0
and 1-y > 0, we have that

fl Hl,min(#)d# > 1 x > 0,
c

1--Xmin :-- 1--
a-a

1- Ymin :’-- 1-- S2,min(#’)d#’ >_ 1-y > O,
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and

[H(#,)]_
1 c c/ #" + c

d#"+
#,,
H (#")

1--C

1 Ymin c/_ #" + a
d#"__

[H2,min(’)] -1

Therefore, H2 H2,min, and hence HI Hl,min, and the lemma is proved.
Our final result is concerned with the number of positive solutions for equation

(1). The techniques for proving this result are motivated by those of Leggett [10]. To
this end, we first prove the following lemma.

LEMMA 7. Let 0 < c < 1 and 0 <_ < 1, and let (HI, H2) and (HI, H2) be
positive solutions pairs of equation (1) satisfying (7a) and (7b), respectively. Then the
following holds:

(i) There exist, respectively, two positive constants kl and k2, where 0 < kl < 1+
and 0 < k2 < -a such that

c f H1 (#")(10a) _, 1- kl(#"+ ) d#" 1

and

c/1 H2(#")(10b)
,a 1 k2(#" a) d#" 1.

Furthermore, such choices of k and k2 are unique.
(ii) There exist, respectively, two positive constants kl and 2, where 0 < 1 < l+a

and 0 < fc2 < Y-5, such that

c l( 0c) + + d#" 1

and

L1 /2 (/") d#"(10d)
c 1 -- 1 (’! o)

1

Moreover, such choices of [Cl and 2 are unique.
Proof. Since the analysis leading to (10a), (10b), (10c), and (10d) is similar, we

illustrate only (10b) and (10c). Define the function T’(0, 1_) ---+ R by

c fl H2 (#")T(k) - 1 k(#" a) d#".

Then

lim T(k)
c ji (I- a)H2(#") d#",(11)

k-.( _---z, 1-#"

since (1 k(#"- a))-I increases monotonically with k, 0 < k < l_-a. Note that the

improper integral in (11) diverges to +c. Since T(0) f H2(#")d#" < 1, and
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since T(k) is strictly increasing with T() +oc, there exists a unique k2 6 (0,)
for which (10b) holds. Now suppose that /l and /2 satisfy (1) and (7b). Then

f_/l (/’) d#" > 1, and

d#"
c // 1- a

(#" d#"l +

1- [/2(1)1-1 < 1.

Therefore, there exists a unique 2, 0 < 2 < _-, such that (10c) holds.
THEOREM 3. Equation (1) has exactly two positive solutions if 0 < c < 1 and

0<a<l.
Proof. Let H and H2 be positive solutions of (1) satisfying (Ta). Define

(12a) /1 (#)
1 + k2# + k2a

Hi (#)
1 kl#-

(12b) /2(#") 1 + kl#" klO H2(#").
1 k2#’r + k2o

Here kl and k2 are chosen as in Lemma 7. Now, using (10b), we find

2 # + #"
2(#")d#"

c j21 (# + a)(1 + kl#" kick) d#"(# + #")(1 k2/’ + k2a)H2(#")

1 + k2# + k2a # + #,,H2

1 + k2# + k2a 1 k2#" + k2a

1 1 (kl + k2)(# + a)
Hi(#) + l+k#+ko

=1

A similar computation would yield that

c// #’ a
d#"

1

’ +/,
(") i

(/).

That is,/l and/2 satisfy equation (1). Hence, /1 and/2 must satisfy either (7a)
or (75). Since H1 and H2 are the unique positive solutions of (1) satisfying (7a), and
since/1 (#) > H1 (#),/2(#’) > H2(#’) for almost all #, #’,./l and/2 must satisfy
(7b). Thus, we have shown that equation (1) has at least two positive solutions when
c and a are as assumed. It remains to show that such an equation has at most two
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solutions. To this end, we suppose that H1 and H2 are positive solutions satisfying
(1) and (75). Define

(13a) Hi(#)- l-k1#_ -kl_1
1 + k2# +

and

(13b) H2(#")
1 k2#"_ + k2c= 2(#").
1 + kla" klC

Here kl and k2 are chosen as in Lemma 7. Now, using (10c), we obtain

Hi(#n d#"= c/_a (#’(#’--77ii-la)(1 -7t_1#"--g_T/.7I_IO)-G)/1 (#n) d#"
1+ 1#’- 1 ()_ #’-O (#" d#"1 2#’ +2 -a #, + #,,1

1+ ;1’- 10 I1 1]_1 2#’ + =oe /2 (#’) 1 k2#’ + k2o

1

H2(#’)"
Similarly, we obtain that

c fl # + c
d#"

1

# + #,, H2 (#") 1
Hi(#)"

Therefore, H1 and H2 satisfy equation (1). It follows from (13) and (10c), (10d)
that fl H1 (#)d# < 1 and fl H2(#’)d#’ < 1; i.e., H1 and H2 satisfy (7a). Since
the solutions of (1) satisfying (Ta) are unique, we conclude that the solutions of (1)
satisfying (7b) are also unique, and the theorem is proved.

THEOREM 4. Let c 1 and let c be sufficiently close to 1. Then equation (1)
has exactly two positive solutions.

Proof. Let H1 and H2 be solutions of equation (1) satisfying (7a). It follows from
Lemma 5 that y must approach zero as c approaches 1 from the left. Hence if c 1
and is chosen to be sufficiently close to 1, then x 1 and y < 1. Define H1 and H2
as follows:

1(#) (1 + k2# + k2c)Hl(#)
and

H=(#")2(#")
1 k2#" + k2’

where k2 is uniquely satisfied by (10b). Using a procedure similar to the proof of
Theorem 3, it follows that H1 and H2 are positive solutions of (1) satisfying (Tb).
Since H1 : H1 and H2 : H2, it remains to show that such an equation has at most
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two positive solutions.
(Tb). Then either

(1) :=

Suppose rl and /2 are positive solutions of (1) satisfying

/1 (#)d# > 1 and :-- [
or

(14b) 1 and > 1,

or

/2 (#’)d#’ 1,

(14c) 1 and 1.

If (14c) held, then H1 and H2 would also satisfy (Ta), and hence 9 0 as a --, 1, a
contradication. Thus, (14c) should be ruled out. If (14b) were the case, then H and
H2, defined as in (13a) and (13b), respectively, with kl 0 and k2 satisfying (10c),
were positive solutions of (1) satisfying (7a). Since H1 <_ H and H = H, we see
immediately tha x < 1 and y- 1. "This is not possible. Therefore, (14a) must hold.

Define H and H2 as in (13a) and (13b), respectively, with k2 0 and k satisfying
(10d). Then such H and H2 are the positive solutions of (1) satisfying (Ta). Now, if
we can show that the positive solutions of equation (1) satisfying (Ta) are unique, then
the proof of the theorem will be complete. To this end, we note, as observed in the
first paragraph of the proof, that Xmin must be equal to 1. Therefore, fla(H (#)
Hl,min()) d# 0, and so H1 Hl,min and H2 ---- H2,min. Thus, the theorem is
proved.

We conclude this paper with the following remarks.
Remarks. 1. We may conclude, via the proofs of Theorems 3 and 4, that for

c 1, if x and y are not both equal to 1, then equation (1) admits exactly two
positive solutions.

2. On the other hand, if x y 1, then equation (1) has unique positive
solutions. To see this, we note that either Xmin := c Ul,min()d# or Ymin "--

f_a H2,min (#P)d# is equal to 1. We assume, without loss of generality, that Ymin 1.
Thus,

0 H2,min (#’) H2 (#’) d#’.

Since H2,min- H2 is a continuous nonpositive function, we find that H2,min =-- H2, and
hence H,min --- H. Note that for a 0 and c 1, we have x y 1.

3. The case where c is not a constant can be easily generalized.

Acknowledgments. The author would like to thank the referees for their helpful
comments.
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ANALYSE SPECTRALE D'UNE BANDE ACOUSTIQUE
MULTISTRATIFIÉE I: PRINCIPE D'ABSORPTION LIMITE POUR

UNE STRATIFICATION SIMPLE*

ELISABETH CROCt ET YVES DERMENJIANt

Abstract . One considers the operator A = --V .c2 V governing the wave propagation in an
acoustic strie SZ = {(x, z) E 1R 2 / 0 < z < H} with Neumann condition at z = 0 and Dirichlet
condition at z = H. The celerity c describes the stratification of the medium: it is a measurable,
piecewise constant function, with a finite number of strictly positive values . In this first paper, the
spectral analysis is developed for the so-called free operators associated with a simple stratification :
the celerity depends in a first case only on the variable x and in a second case on the variable z .
A complete set of generalized eigenfunctions for the operator A is explicited . A limiting absorption
principle is then deduced for each point of the spectrum, even at the bottom of the essentiel spectrum .

Key words. stratified medium, acoustic waves, self-adjoint operator, spectral analysis, threshold,
limiting absorption principle

AMS sub ject classifications . 35L05, 35P, 47A70

Résumé. On s'intéresse à l'opérateur A = -V .c2 V régissant la propagation des ondes acous-
tiques dans une bande SZ = {(x, z) E IR2 / 0 < z < H}, avec conditions limites de Neumann en
z = 0 et de Dirichlet en z = H . La vitesse c rend compte de la stratification du milieu : c'est une
fonction mesurable, constante par pavés, prenant un nombre fini de valeurs strictement positives .
Dans ce premier article, on fait l'analyse spectrale des opérateurs "libres" correspondant à un milieu
stratifié dans une seule direction : la vitesse ne dépend donc que d'une variable, x dans un premier
cas et z dans un deuxième cas. On construit explicitement un système complet de fonctions pro-
pres généralisées pour l'opérateur A . On en déduit un principe d'absorption limite en tout point du
spectre, sans exclure la borne inférieure du spectre essentiel .

Mots clés , milieu stratifié, ondes acoustiques, opérateur auto-adjoint, analyse spectrale, seuil,
principe d'absorption limite

1. Introduction . Le principe d'absorption limite est largement utilisé dans les
méthodes stationnaires . Ces dernières ont montré leur efficacité dans l'étude de la
matrice de diffusion S de nombreux opérateurs auto-adjoints si on les considère comme
des opérateurs perturbés d'opérateurs plus simples dits libres . La littérature et les
exemples sont nombreux lorsque l'on combine un principe d'absorption limite soit
avec des conditions de radiation (Lyford [L], Wilcox [Wi75], Eidus [E69], etc .), soit
avec un théorème de division, que ce soit pour des perturbations à courte portée
(Agmon [A], Dermenjian et Guillot {DG86], H~rmander [H5], Weder [We], etc.) ou à
longue portée .

Lorsque l'opérateur libre est suffisamment simple, une première étape dans l'ob-
tention d'un théorème d'absorption limite est la description des propriétés d'un systè-
me complet de fonctions propres généralisées si on ne connaît pas de fonction de Green .
Cette approche spectrale conditionne la suite et l'on comprend que, arrivés à ce point,
de nombreux auteurs (Guillot [G], Guillot et Wilcox [GW], etc.) considèrent avoir fait
l'essentiel. Remarquons que la notion d'opérateur simple est essentiellement subjective
puisque des principes d'absorption limite et d'amplitude limite ont été obtenus dans
des situations très diverses : Ben Artzi et Devinatz [BD], Ben Artzi, Dermenjian et

* Received by the editors May 5, 1993 ; accepted for publication (in revised form) December 8,
1993. Ce travail a été subventionné partiellement par Elf Aquitaine Production .

t UFR MIM de l' Université de Provence, Centre de Mathématiques et d'Informatique,
Technopôle de Château-Gombert, 39 rue Joliot-Curie, F 13453 Marseille Cedex 13, France
(ecroc@gyptis . unie-mrs . fr et dermenj i@gyptis . unie-mrs . fr) .
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Guillot [BDG], DeBièvre et Pravica [DP], Dermenjian et Guillot [DG88], Eidus [E86],
Hacheur [Ha], Kikuchi et Tamura [KT], Tamura [T], etc .

Ce premier article traite deux situations simples mais qui semblent avoir été
peu étudiées en mathématiques, si on met à part Morgenrôther et Werner ([W87],
[MW87], etc.) et quelques autres. Ces situations faciliteront la compréhension de la
démarche suivie qui ressemble à celle utilisée par Wilcox [Wi84] lorsqu'il construit
un système complet de fonctions propres généralisées . Nous nous en sommes écartés
ensuite pour établir le principe d'absorption limite . Ces deux études permettront
l'examen ultérieur d'un modèle plus réaliste, avec deux stratifications accolées . Ce
dernier modèle, multistratifié, sera l'objet d'un prochain article .

Un des objectifs visés par cet article est aussi de mettre en place les outils per-
mettant d'obtenir, à- l'aide d'un principe d'absorption limite, une fonction de Green
qui soit utilisable pour les applications numériques . On peut se rapporter au rapport
[CD] pour cette question qui sera développée plus tard avec des résultats numériques .

La modélisation d'un problème particulier de sismique conduit à étudier l'équation
d'ondes scalaire

1
(

1 )

dans la bande infinie

(1 .2)

	

SZ = {(x,z) E E2 / z e (0, H)} .

L'opérateur V désigne l'opérateur gradient (a~, az )' . La fonction v représente le dépla-
cement. La source S est donnée. La fonction c, mesurable, est un profil de vitesse qui
rend compte de la stratification du milieu, et elle admet un minorant c m strictement
positif et un majorant CM. Les conditions limites (CL) sont fixées en z = 0 et z -= H,
conditions de Dirichlet ou de Neumann .

L'approche stationnaire associe aux équations (1 .1) et (CL) l'opérateur

(1.3a)

	

D(A) _ {u E H l (S2) / - V.(c20u) E LZ (S2) et u vérifie (CL)},

(1 .3b)

	

Au = -V.(c20u) si u e D(A) .

L'étude des solutions d'énergie finie de (1 .1) passe par l'étude spectrale de l'opérateur
(D(A), A), auto-adjoint dans l'espace de Hilbert L2 ([l) .

Pour mener les calculs, nous avons choisi les conditions

(1.4)

	

c2 (x, 0) azv(x, 0, t) = 0 et v (x, H, t) = 0 .

L'étude serait similaire avec des conditions limites de Dirichlet (respectivement Neu-
mann), ce qui est le cas considéré dans [W87] . Les géophysiciens de la Société Elf
Aquitaine qui nous ont posé ce problème, avaient déjà écrit un code de calcul pour
une bande élastique, avec la condition de surface libre en z = 0, et la condition de
fonds rigide en z = H, dont l'analogue en acoustique est (1 .4) . Ceci explique notre
choix, qui permettra de comparer plus tard nos résultats théoriques avec la solution
numérique obtenue par une autre approche .

Dans cet article, nous considérons des milieux simplement stratifiés ou encore
stratifiés dans une seule direction . Les interfaces correspondant aux discontinuités du
profil c sont donc parallèles aux axes Ox ou Oz .

atv - v.(c2(x, z)vv) = s
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Stratification verticale

FIG. 1 .1 .

Dans §2, l'interface est située en x = O et la fonction c prend deux valeurs strictement
positives et distinctes :

Ci Si X < O,(1.5)

	

c(x,z) = c(x) =

	

2

	

.

Dans §3, l'interface est située en z = h (O < h < H) et la fonction c prend deux
valeurs strictement positives qui peuvent être éventuellement égales :

(1 .6)

	

c(x,z) = c(z) = { Ci si z e (0, h),
C2 si z e (h,H) .

La généralisation à des fonctions constantes par intervalles, qui prennent un nom-
bre fini de valeurs strictement positives (cf. Fig . 1 .1), ne présente pas de difficultés
théoriques supplémentaires. Nous travaillons de fait dans le cadre plus général d'une
fonction c(z) satisfaisant

(H)

	

cL°°((O,H)) et Min c(z) > cm >O .
Un développement en fonctions propres généralisées, déterminé par séparation des

variables, est utilisé pour démontrer un principe d'absorption limite pour A, et pour
résoudre les problèmes aux limites associés à l'opérateur différentiel (A - I) lorsque

t décrit le plan complexe . On obtient ainsi les théorèmes 2 .8 et 3 .4. Remarquons que
les théorèmes généraux (cf. [DL]) nous garantissent l'existence des fonctions propres
généralisées, mais leur construction nécessite la connaissance de la mesure spectrale .
Ici, nous pouvons déduire la mesure spectrale de la connaissance des fonctions propres
généralisées .

A la lecture des deux principales conclusions de ce travail, données par les théo-
rèmes 1 .1 et 1 .2, on notera un résultat qui n'est pas usuel chez les auteurs étudiant le
Laplacien et ses . perturbations : le principe d'absorption limite est obtenu en tout point
de l'axe réel alors que le minimum du spectre essentiel est en général exclu . Ceci pose
de manière naturelle la question du prolongement méromorphe à C de l'application
a F-4 (A À21)' (cf. le théorème 1 .1 de [SZ]) .

Dans les démonstrations utilisées, comme beaucoup d'auteurs, nous avons in-
troduit (cf. §2.2.2 et 3.2), d'une part pour s réel, l'espace Ll) des fonctions f
mesurables sur telles que (1 + x2 )' 2 f(X, z) soit de carré intégrable sur , d'autre

Stratification horizontale
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part pour n entier positif et a réel dans un intervalle In de la forme [an , +oo), des
opérateurs de trace Tn (a) .

Pour la stratification verticale, c'est-à-dire pour le profil (1 .5) avec c1 c2, la nul-
lité de ces opérateurs de trace aux seuils Àn permet d'y établir un principe d'absorption
limite avec des résolvantes R± (À) définies sur l'espace L~ (SZ), s > 1, ce qui est
habituel . Le principe obtenu (cf. le théorème 2.8) s'énonce comme suit .

THÉORÈME 1.1 (Stratification verticale) . Soit p réel, appartenant au spectre de
l'opérateur A défini par (1 .3) avec le profil (1.5) . Soit s réel vérifiant s > 1 si µ est un
seuil Àn de A et s > 1/2 sinon. On considère la résolvante (H RA(Ç') _ (A -- (1)_1
comme une fonction définie sur (C\o (A) à valeurs dans B(Ls(f ), L? 3 (SZ)) .

Alors les limites suivantes existent dans B(L 2 (f ), L2 3 (SZ)) pour la topologie de la
norme :

R(µ)= lim R,y(~) .
fImç>0

Il est à noter que la preuve du théorème 1 .1 n'est pas valable lorsque c1 = c2 .
En effet, l'absence du mode propre (2.42), qui est un mode réfléchi sur l'interface
x = 0, fait "exploser" la résolvante au voisinage des seuils an (cf. la remarque 2 .5 et
le théorème 3.3) .

Par contre pour la stratification horizontale, c'est-à-dire pour le profil (1 .6), et
plus généralement pour un profil satisfaisant l'hypothèse (H), les opérateurs T(À) ne
s'annulent plus aux seuils Les résolvantes R±() n) ne peuvent y être définies que
pour s > 1, sur un sous-espace fermé de L3(e), qui est toutefois dense dans L2 (e) . Ce
sous-espace de L4 (SZ) est un hyperplan, noté NLs(n), qui est introduit à la proposition
3.3 . Le résultat est optimal (cf . le théorème 3.3 et la limite (3.55)) . Nous l'utiliserons
dans des applications à venir . Le principe d'absorption limite (cf . le théorème 3 .4) est
démontré pour des conditions limites (CL) de Dirichlet ou de Neumann en z = 0 ou
z = H, et pour tout profil qui satisfait (H) . Il s'énonce comme suit .

THÉORÈME 1.2 (Stratification horizontale) . Soit p réel, appartenant au spectre
de l'opérateur A défini par (1 .3) avec un profil c(z) satisfaisant l'hypothèse (H) . Soit
s réel, vérifiant s > 1 si p est un seuil an de A, et s > 1/2 sinon . Soit E s(p) l'espace
de fonctions, égal à NL3 (n) si p est un seuil Àn de A, et égal à L3([) sinon . Soit
E 3 (µ)' son dual topologique . On considère la résolvante ( H RA (() _ (A - ~I ) _ 1

comme une fonction définie sur C\a(A) à valeurs dans B(E 3 (µ), E3 (p)') .
Alors les limites suivantes existent dans B(E 3 (p), E3 (µ)') pour la topologie de la

norme :

R(p) =

	

lim

	

RA(~).
±Im(>O

En particulier, le profil (1 .6) avec c1 = c2 relève du théorème 1 .2 . On retrouve
ainsi un résultat de Werner dans [W87} . Celui-ci considère le Laplacien dans un tube
SZ = 1H x Ç', avec des conditions limites de Dirichlet ou de Neumann sur aSZ . Il montre
que le principe d'absorption limite est en défaut (cf. (2.32) dans [W87}) au voisinage
des valeurs propres Àn de la section transversale SZ' du tube . Dans notre cas, ces
valeurs propres sont celles de l'opérateur (D(B 0 ), B0) considéré à la proposition 3.1 .
Elles sont simples et associées aux fonctions propres V (O, n, .) . La formule (1 .7) de
[W871, qui explicite la réponse v(x, z, t) à une source S(x, z, t) = f (x, z) exp(-i on t),
présente un terme résonant proportionnel à

exp(-i ~n t) V (O, n, z)
J f

(x, z') V (O, n, z') dxdz' .
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Celui-ci est nul si et seulement si

(1.9)

	

f (x, z) V (O, n, z) dxdz = 0,

c'est-à-dire, selon (3.34), si et seulement si f est dans l'hyperplan NL3 (n) = Es(an)
Une autre méthode pour traiter (1.1) et (1 .4) consiste à travailler à fréquence fixée .

C'est l'approche utilisée par les géophysiciens avec qui nous travaillons, en particulier
Boelle dans [B] . Nous l'avons exposée pour le cas d'une stratification horizontale dans
[CD] . Elle est par ailleurs bien adaptée à l'étude numérique des fonctions de Green,
qui sont présentées dans ce rapport [CD] .

2. Profil de vitesse c (x,z)=c (x) prenant deux valeurs distinctes. Le pro-
fil de vitesse, dans cette section, est le profil (1 .5), c'est-à-dire indépendant de la vari-
able z et prenant deux valeurs, distinctes et strictement positives, c1 ou c2 selon que
la variable x est négative ou positive . On peut toujours supposer, quitte à changer
l'orientation de l'axe x' Ox, que c1 est supérieur à c2 .

Nous développons ci-après la théorie spectrale de l'opérateur associé au problème,
puis nous établissons un principe d'absorption limite .

2.1. Théorie spectrale de l'opérateur A = -V . (c2 (x)V). Aux conditions
limites (1.4) et à l'équation des ondes (1 .1) sur l'ouvert SZ, nous associons la forme
sesquilinéaire

a (u, v) = f c2 (x) (aaY~u~+ azuazv) dx dz .

Soit V = {v E H 1 (r) / vI z=H = 0}, muni de la norme induite par celle de H 1 (SZ),
pour laquelle V est un espace de Hilbert .

La forme a est définie et continue sur V x V, et V-coercive par rapport à L2 (Q) .
Lorsque le profil c est, par exemple, continu par morceaux, la théorie variationnelle
lui associe l'opérateur non borné

(2.1)

	

A = -ax (c2(x)ax ) - c2 (x)az

de domaine

(2 .2)

	

D(A) _ {u E H 1 (Z) / Au E L2 (f1) et (c2&u)z 1=oz = uI Z_H = 0}

qui est auto-adjoint positif dans L2 ([) .

2 .1 .1 . Séparation des variables . Les notations ( ./ .) et ( . désignent respecti-
vement le produit scalaire et la norme dans l'espace de Hilbert approprié . Rappelons le
théorème de diagonalisation d'un opérateur A auto-adjoint sur un espace de Hilbert N
séparable qui permet d'expliciter les résolvantes et la famille spectrale de l'opérateur .
Nous renvoyons à Reed et Simon [RS] ou Dautray et Lions [DL] pour plus de détails .

THÉORÈME 2 .1. Etant donné un opérateur A auto-adjoint sur un espace de Hilbert
N séparable, il existe un espace de Hilbert N, intégrale hilbertienne sur IR d'espaces
de Hilbert H(À) pour une mesure d,µ sur 1H, soit

(2.3a)

avec

(2.3b)

u= ())ÀEu~a

	

gz E fl <> J iiu~a>iIH ( a ) d~(a) < +00
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et une transformation unitaire ,'F de ?l sur ? -1 qui réduit l'opérateur A, soit

(2.4a)

	

u E D(A) <
> J

ÀZ fIiu(À) II 2dµ(À) <+00

avec

(2.4b)

	

~(Au)(À) = )Ju(À) .

f
La famille spectrale (HA (À)) ÀE JR de l'opérateur A est alors déterminée par

a
(2.5)

	

d f E fl , (HA (a)f /f )n _

	

IIif(t)II 2dp(t) .

En particulier on peut décrire le spectre a (A) et préciser sa nature grâce à la connais-
sance de ,F. ,F est appelée une représentation spectrale de A sur l'espace 7-1 .

COROLLAIRE 2 .1 . Pour ( cr(A) et f E 7-1, on a

(2 .6)

	

RA(()f = (A - (I)-1 f = i-1 if(À)1,
a

La séparation des variables x et z, dans l'ouvert SZ = IR x (0, H) et dans l'espace
?-1 = L 2 ( ; dxdz) permet de ramener l'analyse spectrale de l'opérateur A défini par
(2.1) et (2 .2), à coefficients indépendants de z, à celle d'une suite d'opérateurs Bn auto-
adjoints dans L2 (JR; dx) . Plus précisément, l'espace de Hilbert L 2 ( ; dxdz) s'identifie
au produit tensoriel hilbertien L 2 (IR; dx) ® L 2 ((0, H) ; dz) . Cette identification peut
être explicitée avec une base de L 2 ((0, H) ; dz) .

PROPOSITION 2 .1 . Soit (Vn)n>i une base orthonormée de L2((0, H)) . Une fonc-
tion u appartient à l'espace L2(Z) si et seulement si elle peut s'écrire

(2.7a) u(x, z) _

	

un(x)Vn (z), série convergente dans l'espace L 2 (Z; dxdz),
n>1

avec

(2.7b) un(x) - (u(x,')/Vn)L2((O,H) ;dz) et IIuII L 2(ç ; dxdz )

	

tII

	

II2(1R;dx)L '
n, 1

Choisissons pour base de L 2 ((0, H) ), une base orthonormée de fonctions propres
pour l'opérateur (D(A2), A2) défini par

(2 .8a) D(A2 ) _ {v E H'((0, H)) / v" E L2 ((0, H)) et v'(0) = v(H) = 0},

(2.8b)

	

A2u = -u" si u E D(A2) .

Cet opérateur, auto-adjoint dans L 2((0, H)), étant à inverse compact, une telle base
existe. Le calcul donne

(2.9a)

	

n E IN* et - V,' = gnVn ,
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(2.9b)

par

(2.12a)

	

j

(2.12b)

	

2 u = ( nUn )n>i

	

~et un(x) _ (u(x, .)/Vn)L2((O,H)) .

Nous explicitons au théorème 4 .4 de l'annexe une représentation spectrale .Fn
pour l'opérateur Bn dans le cas c1 > c2 .

COROLLAIRE 2 .2 . Le spectre o (A) est donné par

(2.13)

	

a(A) = U Q(Bn) .
n>1

Pour toutes fonctions f et g de L 2 (), et pour tout nombre complexe ( ¢ cT(A), la
résolvante RA (() _ (A -- CI)-1 vérifie

(2.14)

	

(RA(C).f /9)r,z(st) _ ~ J f~~	
,n)(À,n)
À -

	

dbLn(À)
n>i

avec JÀ,(n) _ ( .fin (f(x, •) /Vn)Lz((o,x)) )(

1 ~r
que, = H [2 +(n - 1)~] et Un (z)

= U
H sin [qn(H - z)] .

PROPOSITION 2 .2 . Avec les notations précédentes, si on choisit la base (2.9) de
L2 ((0, H)) dans la décomposition (2.7) de L2 (Z), l'opérateur défini par (2 .1) et (2 .2)
est la somme directe des opérateurs suivants, auto-adjoints dans L 2 (1R),

(2.10a)

	

n E 1lV* et D(Bn) _ {u E H 1 (JR) / Bu E L2(IR)},

(2.lOb)

	

Bu = - (c2til)' + c2q~,u si u E D(Bn),

soit encore pour toute fonction u de D(A),

(2.11)

	

u(x, z) _ ~ un(x)Vn (z) et Au(x, z) _

	

(Bnun)(x)Vn (z) .
n>1

	

n>1

THÉORÈME 2 .2 . Avec les notations précédentes, soit n entier positif et

une représentation spectrale de l'opérateur Bn . Alors on définit une représentation
spectrale de l'opérateur A sur la somme directe hilbertienne

i L2 (1R; dx) -> Fn
n v E---> ,~n 2J

n>1



(2.16b)

(2.16c)
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2.1 .2. Description explicite d'une représentation spectrale . On rappelle
l'hypothèse et > e2 , et la définition des fonctions propres généralisées de A : ce sont
des fonctions . _ (x, z) vérifiant

A = a/' dans D'(SZ), avec a convenable dans IR+,
(2.15)

	

est localement dans D(A),
b est bornée dans ft

On déduit du théorème 2 .2 et des formules (4.2), (4 .4) et (4.12) établies dans
l'annexe, l'analyse qui suit pour l'opérateur A .

THÉORÉME 2 .3 (Fonctions propres généralisées pour A) . Ayant défini en (2.9) la
suite des éléments propres qn et Vn(z), n > 1, on note

(2.16a)

	

t

	

tS1 = Sl(À, n) = Cl (À - CiQn)" 2 32 i1 > CiQ'm~

2 2S2 = 52~~, n~
_ C2

~~ - c2Q'n ) l/2 S8 ÀJ CZQn,

`_ (À,n) `

	

= -(c
2
1q

2 -%) 1/2 si %<C2 2
c

	

n

	

1 qn ~
1

~P° (À, n, x) _

(2.17)

	

In = (C2gn, C qn) et J72 = (c~qn, +oo) .

Les fonctions z = i(À, n, x, z), i = 0,1 ou 2, n > 1, définies sur SZ par

(2.18a)

	

° ( À, n, x, z) _ ço ° ( À, n, x)Vn (z) si a E I,z ,

(2.18b)

	

b 1 (À, n, x, z) _ ço 1 (À, n, x)Vn (z) si a E J,z ,

(2.18c)

	

'2(À, n, x, z)

avec

(2.19a)

= cp2(À, n, x)V~ (z) si a E Jn.

2

	

1/2

	

e ~~ six<0,
	 c2 2		C2 ,

~- c2 ' 2 + c2

	

2

	

cos(2x)	 1 1, sln(2x )~( 1 1)

	

( 2S2 )

	

+ c 22 ç2

t

	

i/2

	

sin(~ lx) si x < 0,
(2.19b) cp l ( À, n, x) =

	

2

	

2252

	

l~ci~l(ci~l +c2~2)/

	

c2~2 sin(~Zx) si x > 0,
z

(2.19c)

	

2 a n x

	

1

	

1~2

	

cos(~1 ) si x< 0,
~P (

	

) - (~(ci~1±c	2~z) ~

	

{ cos(eZx) si x > 0,

sont des fonctions propres généralisées de A . Elles sont réelles et vérifient l'équation
différentielle A _ Ài' dans D`(SZ) . Elles forment une famille complète au sens où
elles permettent de construire une représentation spectrale . de A .

si x >0,
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THÉORÉME 2 .4 (Représentation spectrale ,~ de A) . Soit f une fonction de L 2 ([) .
Pour n entier strictement positif, pour i = 0 et presque tout a E In , ainsi que pour
i = 1 ou 2 et presque tout À E Jn , on peut définir les coefficients de Fourier généralisés
de f par

(2.20) f2 (À, n) = L2(da) - lim

	

f (x, z) 2 (a, n, x, z)dxdz .
x-*+°° ~~{(x,z)/ICI <x

Ils vérifient f( .,n)

	

2 E L2(In ) si i = 0, /( .,n)

	

2 E L2(Jn ) si i = 1 ou 2, et

f = (f°,
fi,

f 2) E _

	

%ln avec ~n = L2(In ) ® L2 (Jn) ® L 2 (Jn ) .
n>1

La transformation [f E L 2 (f) H f E 7 ] est unitaire . L'égalité de Bessel-Parseval
pour f et g fonctions de L 2 () s'écrit

_

	

2

(f/g)L 2 ()sif ° ( À, n)g ° (À, n)dÀ +

	

f 2 (À, n)gi (À, n)dÀ
n l

	

In

	

i=1 Jn

Le développement en fonctions propres généralisées de f fonction de LZ(S2) s'écrit

(2.23)

f(x,z) _

	

f0(À,n)O(À,n,x,z)dÀ +
n>1 In

(2.21)
la convergence pour chaque intégrale en a ayant lieu dans l'espace L 2 (IR; dx) et la
sommation de la série se faisant au sens de la norme hilbertienne dans L 2 (SZ ; dxdz) .
Si f appartient à D(A) , on a, la formule de diagonalisation

(2 .22)

	

A fZ(À, n) _ Àf i ( À, n) .

COROLLAIRE 2.3. Le spectre cr(A) est absolument continu . Il est donné par

a(A) _

Pour toutes fonctions f et g de L 2 ([Z), et pour tout nombre complexe ¢ o(A), la
résolvante RA (C) _ (A - CI) _ 1 vérifie

(RA(()f/g)L2(ç)t

(2 .24)

U [ c q ,2n+oo) -
n>1

2=

C2 7f 22
4H

Jn
f Z (À, n)' 2 (À, n, x, z)dÀ ,

fo(À , n)° (À, n)

	

2	 da

	

f	2	 (À,n)g2(À, n),
+ ~	 dÀ

In

	

À- '

	

Z^ 1 Jn

	

-~

Remarque 2.1 . La normalisation choisie nous permet de prendre la mesure de
Lebesgue da pour les mesures duc ou dµn .

2.1 .3. Une deuxième transformation unitaire . Des changements de vari-
ables, mieux adaptés à la preuve d'un principe d'absorption limite pour A comme
nous le verrons dans X2 .2 ci-après, permettent de paramétriser la famille des fonctions



propres généralisées i(À, n, x, z), décrite au théorème 2 .3, à l'aide d'une nouvelle
variable strictement positive.

Pour cela, nous posons

(2.25)

	

a = 1 C2 _ C
)

2 1/2
c ( 1

	

2

	

,
2

(2.26) iI` 1 (~, n, x, z) _ q5'(, n> x)Vn(z)
= et 2 1 (ci ( 2 + qn), n, x, z) pour > 0,

(2.27)

	

2 (, n, x, z) _ ~2 (, n, x)Vn(z)
/.'°(c 2( 2 + qn), n, x, z) pour e (0, aqn],

2(c2( 2 + qn), n, x, z) pour> aqn .

Pour = aqn , (2 .27) définit correctement 2 ou ~2 . En effet les formules (2.19a)
et (2 .19c), écrites avec À = c2(a 2gn + qn) = cign, valeur de À pour laquelle 1 (a, n) _
Ç(À, n) = 0 et 2 (À, n) = aqn , définissent une seule fonction

1/2

c1q2 2>nx) = ço° (c1q2 2 >nx) = ça2 (cq,n,x)12 2=

	

1

	

1 six<0,
~P( nnn CZagn

	

COS(agnx) Sl. x > 0 .

Cette fonction cp engendre l'espace propre généralisé associé à À = ci qn de l'opérateur
Bn (cf. le théorème 4.1 de l'annexe et la formule (4.8)) . Les formules (2.18), écrites
avec a = c~ qn, définissent donc une seule fonction propre généralisée de l'opérateur
A, égale à

2~(cl qn, n, x, z) = ° (cl qn , n, x, z) = 2/,'2 (cl qn , n, x, z) _ ço(c lqn , n, x)Vn (z) .

La définition (2 .27) de 2 ou ~2 est ainsi validée pour = aqn et on a
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= c2 2~

(2.28)

	

2 (aqn, n, x, z) _ ~2(aqn, n, x)Vn

Pour n > 1, i = 1 ou 2 et > 0, nous avons

(2.29)

	

AWz (, n, ., .) _

	

n)'1' .(e, n, ., .) avec a2 ( , n) = c2 ( 2 + qn)

et nous pouvons énoncer des résultats parallèles à ceux du théorème 2 .4 .
THÉORÈME 2 .5 (Deuxième représentation spectrale de A) . Soit f une fonction

de L2 () .SZPour n entier strictement positif, pour i = 1 ou 2 et pour presque tout réel
> 0, on définit les coefficients

(2.30) fZ(, n) = L2((0, +oo); d) - lim

	

f (x, z) 2 (, n, x, z)dxdz .
x-~+o ~n{(x,z)/IxI<x}

Ces coefficients sont associés aux fonctions propres généralisées z (, n, ., .), définies
en (2.26) et (2.27) à partir des fonctions z (a, n, ., .), et réelles. Ils vérifient f i ( ., n) E
L2((0, +oo)) et

(2.31)

	

(f', f 2 ) E

	

avec xn = L2 ((0, -zoo)) ~ L2((0, +oo)) .
n>i

1 si x < 0,
-V~,(z) cos(aqnx) si x > 0 .
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La transformation [f E L2(Z) ~--~ (fi, f 2 ) E ~ 1-l~,] est unitaire et on a
n>1

2
(2.32a)

	

f (x, z) _
n>1 i=1

(2.32b)

	

(f/g)7. =
>i

Si f appartient à D(A), on a

(2.33)

	

(Af)(e,n)

	

i _ Ài(~, n) f i (~, n), avec À(, n) défini en (2.31) .

Pour toutes fonctions f et g de L2(2), et pour tout nombre complue ~ ¢ v(A), la
résolvante RA(() _ (A- CI) -1 vérifie

(2.34)

2

	

+00

>21

	

fi(~,n)g2(~,n)d~ pour f,g E LZ (SZ) .
-1

9	
(RA)f/g)L2()~~S2- >2 >12

J

	

c

~~2 + q2> _ ~ ~ •
n>1 i=1

Remarque 2 .2 . Cette paramétrisation en des fonctions propres généralisées

_ ç (, n, x)Vn(z),

	

i = 1 ou 2,

met clairement en évidence la dissymétrie du milieu de propagation: le mode 1 se
propage aussi bien dans la demi-bande f 1 _ {(x, z) E Sl/x <0} que dans la demi-
bande SZ+ _ {(x, z) E f /x > 0}, alors que le mode 2 n'a ce comportement que
si > .aqn . Pour < aq z , c'est un mode qui s'amortit rapidement dans Ç selon
la direction normale à l'interface x = 0 (on pourra aussi se reporter aux expressions
(2.49) pour ~' (, n, x), (2.42) et (2.43) pour

Remarque 2.3 . La représentation spectrale pour une bande homogène, où c1 =
c2 = c, est aussi obtenue par ces calculs . L'analyse du théorème 2 .3 se fait à l'aide
de deux familles de fonctions, indexées par n > 1 et a > cqn, données pour x réel et

1
pour _ -- (a -- c2qn ) 1 2 , parc

1/2
(2.35)

	

`p 1 (À,n,x ) = 2~c2~ )

	

sin(~x),

1

	

1/2
(2.36)

	

o2 (a, n, x) =
2
7rc2

	

cos(x) .
~

La transformation du théorème 2 .5 est alors associée aux fonctions propres généralisées,
indexées par > 0 et n % 1, et définies pour (x, z) E ~, par

(2.37)

	

W 1(>n>x>z) = q51 1n1x) V(z) =
1

sin(~x) V zrL ( ) ,

(2.38)

	

W 2 (~, n, x, z) _ çb2 (~, n, x) V(z) _ ~ cos(x) Vn (z) .

Elle est naturellement attachée à la transformation de Pourier usuelle sur I , et nous
la retrouverons au théorème 3 .1 du §3 .



2.2. Principe d'absorption limite . Pour tout nombre complexe ( qui n'est
pas dans le spectre o(A), la résolvante RA(() _ (A - (I)-1 est un opérateur borné de
L2 () dans L2 (). L'application ( -+ RA (() est analytique sur (C\o(A), à valeurs
dans l'espace B(L2(Q), L2(fZ)), mais elle n'a pas de prolongement à cr(A) : la norme
de RA(() est en Imç' -1 lorsque (tend vers µ E o' (A) . En se plaçant dans un sous-
espace de L2(e), où la décroissance à l'infini est plus forte, on peut "absorber" la
modification du comportement de la résolvante au voisinage de p E o(A) : c'est le
principe d'absorption limite développé par Eidus [E69} ou Agmon [A], qui permet
de donner un sens à la résolvante en des points p du spectre . Il consiste à estimer
la résolvante RA (ç') de manière uniforme au voisinage de p E cr(A) et à montrer
l'existence d'un opérateur limite quand (tend vers p .

2.2.1 . Changements de variables. Pour f, g E L2(), (¢ a(A) _ {cq,2l +oo),
la formule (2.24) qui donne (RA(f/g)L2(~)~)

	

est la somme des termes

fr;((,f,g)
_

	

f	2	 (À,n)92(À,n)-	dÀ, n E IN ,

	

i = 0,1, ou 2,
(2.39)

	

rz (n)

I°(n) = In = (cq,cq)2ntnet I 1 (n) = I2 (n) _ J,2 = (cq, in+oo)

(2 .40)

avec

a = CZ(ci - c2) 1 I 2 = C2 (1 - Ci ) 1 / 2 = C2 b' .
l

L'intégrale (2 .39) pour i = 0 ou 2 s'écrit

~°i (ç' ' f, g') = f

	

f2(c22(~2 + qn),n)gz(c2(~2+qn),n)
~n

Ji (n)

	

c2 (2 + qn) -

Nous posons alors pour i = U et ~ E 3° (n) ou pour i = 2 et ~ E 32 (n)

(2.41)

	

Î2 (~,n) =C2/2~ f2~c 2 +9'n),n)

2 2~~PZ(c 22~S+gn),n,x)U~(z)dxdz .

Cette formule issue de (2 .20) et (2.18) définit, pour

	

0 et - aq, la fonction
2 ( , n, x) = C2\/ ço (c ( 2 + q 2n), n, x) . C'est une fonction propre généralisée de
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où les coefficients de Fourier généralisés (j(À,i n)) sont définis par (2.20) . Les pro-
priétés en ç, qu'il nous faut établir pour ces termes, en vue d'obtenir le principe
d'absorption limite, vont découler de théorèmes de régularité et de majorations h6l-
dériennes sur les numérateurs fi(À, n)gi (À, n) .Nous proposons un changement de
variables _ (À) adapté à l'étude des termes Bn ((, f, g), i = 0, 1, ou 2, et qui est à
la base de la transformation unitaire présentée dans §2 .1 .3 .

(i) Changement de variables pour ï = 0 ou 2 . Il s'écrit

À t

	

= 2(%,n) = (
1 À- c2q2 2)1/2
C

	

n
2

I0(n) _ (cq,cq)2nln_+ 3 0 (n) _ (0, aqn)

IZ(n) _ (cl~In, +~) - 3z (n) (aqn, --oo),

21dt .
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l'opérateur Bn défini par (2.10), assôciée à la valeur propre généralisée À(, n) _
c2 ( 2 + qn) . Nous retrouvons ainsi la fonction propre généralisée W2(, n, x, z) _
(~ 2 ( , n, x)Vn(z) de l'opérateur A définie par (2.27) . Nous avons remarqué alors qu'elle
était aussi définie pour = aqn et donnée par (2 .28) . Compte tenu des relations

~i = cl(À,n) = 1 -(c2,42 - À)" 2 = 1 [(ci - c2)4,2z
- c2~2 ]1/2

C,

	

et

- ~l (a2gn - ~2)1/2 _ ~ (a 2 4' n _ ~2)1/2
,

q 2 (c,n,x) =

i =,(À,n)=

(2.45) f 2 (~, n) = J f (x .

sont tels que

(2.46)

'(À - cign) - ci

	

~(~ 2 - a2gn) 1 ~2 = (~2 - a 2gn) 1 ~2 ,i

(c) 2 + (c 2 ) 22~ = cic2(a2 4'n - ~ 2 ) + c2~2 >

ci~ i + c2~2 = clc2(~ 2 - a2gn)"2 + c2~,

c(c 2) 1 = Çl (a2qn- ~2)1/2
C2

nous pouvons calculer les termes (2 .39) pour i = 0 ou i = 2 .
PROPOSITION 2.3 . Soit n un entier strictement positif. Pour E (0, aqn],

posons

si x>0 .
(2 .42)
Pour ~ E [aq,n +oo), nous posons

2

	

c2~

	

1/2

	

cos-2 -a2gn)1/2x] six <0,
q 2 (~' n' x)

	

[clc2(~2 - a 2gn) 1 / 2 -I- c2~] cos(x) si x > 0
.

(2.43)
Alors la fonction

	

n, .) vérifie

(2.44) 8q Z (~ e 12, .) _ -ax CC2
(x)

d~2 I -i-
c2(x)q2 = C

2 -}- gn~1~12(~,7t, .) .

Pour f fonction de L 2 (52), les coefficients f2 (, n), déjà considérés au théorème 2.5
et définis par des intégrales convergeant au sens de L 2 ((0, +oo); de),

n, x)Un (z)dxdz C=
J

f(x, z)W 2 (~, n, x, z)dxdz I
si

	

/

f	2	 (~ ,n)g2 (~,n)Bn (~' J g) J
i(n)

C 2 2
g2) -

â ,=
. 7

	

2(~

	

n

a (a2qn - 2)1/2

b

b 2 2ex

	

- 2)1~2x six < 0.p~ a (aqn ~

a (a 2qn - 2) 1 / 2cos(ex) +
b

	 sm(x)

i=0 out .

nous
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Nous posons

2

	

~o

	

~2

	

+00
f2(, n)g 2 (,n)(2.47)

	

-Bn(~, f, g) = Bn(C f, g) + Bn(~' f, g) =

	

c2 2

	

2
0

	

2 (~ + qn)
(ii) Changement de variables pour i = 1 . Il s'écrit

i ~~ - 19n)
1/2

(2.48)
I l (n) _ (cq,+oo)ln -+ J'(n) _ (0, +oo) .

L'intégrale (2 .39) pour i = 1 s'écrit
~1(

	

_

	

j1(c 21(
	 + qn), n)g 1 (C1( 2+qn),n) 22

$n ~ ~ f ~ g)
,7i(n)

	

c2 2 +q2 )
_

1(

	

n

formule qui définit pour > 0 la fonction

~ 1 = q51 (, n, x) = c1
2, ço 1

(Ci ( 2 + qn), n, x) .

Nous retrouvons ainsi la fonction propre généralisée 1 (, n, x, z) _ q 1 (, x V(z)
de l'opérateur A définie en (2.26) . Compte tenu des relations

_ 2 P,n) - 2 (\ - C2gn) 1/2 = 2 [
C1

2 + (C1 - C2)gn] 1/2

--
çl

( 2 + b2gn)
l/2 =

a
( 2 + b2 gn) l /2 ,

c2

	

b
C1 1 + c2 2 = C1 1 + clc2(2 + b2gn) 1/2,

c 2 c2

	

1 - Cll~1(2)2~ C2 (2 + b2q2)1/2 '
n

nous pouvons calculer les termes (2 .39) pour i = 1 .
PROPOSITION 2 .4 . Soit n un entier strictement positif. Pour > 0, nous posons

1/2

	

sin(x) si x < 0,
1

	

2	 c2(e 2 + b2 gn) 1 /2 	a

	

a 2

	

2 2 1/2
(n,x) ,

	

_ - [ 1+C	2

	

2q2)1/2

	

b (~2 +b2q2 1/2
sln[- ( ± b qn ) x]

2 (~ - f- b n

	

n )

	

b
si x >0 .

(2.49)
Alors la fonction q51 (, n, .) vérifie

(2.50)

	

-dx (c2(x) d~l ) + c2(x)q& = c 2 +
q»1(, n, .~ .

9	 '(,n
-
J
,1 1 (n) C1(~2 + 4n) -

893

Pour f fonction de L 2 ([), les coefficients f'(, n), déjà considérés au théorème 2 .5
et définis par des intégrales convergeant au sens de L 2((0, +oo); de),

(2.51) f1 (, n) =
si
f(x, z)~ 1(, n, x)Vn (z)dxdz =

si f
(x, z) l (, n, x, z)dxdz ,

sont tels que

(2.52)

	

Bn(c, f,9) avec ,71(n) _ (0,+00) .
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2.2.2. Définition et régularité des opérateurs de trace . Pour s réel, on
note L (SZ) l'espace des fonctions mesurables à valeurs complexes définies sur telles
que (1 + X2 ) 8/2f(x, z) E L2 () . C'est un espace de Hilbert pour la norme

II .fIIL() = II(1 +x2 )8/2fIIL2(),

qui admet C00° (S~) comme sous-espace dense .
L'espace B(L(), C) des formes linéaires continues sur L() est en bijection

isométrique avec L 3(). Le crochet de dualité entre L() et L 8(fz) s'écrit pour
f EL) et g E L9(),

(f, g)L),L 2 () = f f(x,z)g(x,z)dxdz .

PROPOSITION 2 .5 . Soit s> 1/2 . Pour n > 1, j = 1 ou 2 et > O, on peut définir
un opérateur de trace r,() continu sur L

	

à valeurs dans C tel que

(2.55)

(2 .56)

(2.53)

	

Vf E C000 (),

	

r)f = f(,n)

= f f(x,z)çb(,n,x)V(z)dxdz

= (f ,
i( ,n, ., .))L2(ç)L2(ç),

(2.54)

	

Vf E L(f),

	

IT'n(~) .fI

	

CI

	

If IIL2()

avec 6 réel tel que 6 E [0,1] et 6 < s - 1/2, et avec une constante C = C(s, 6)
indépendante de f et 1 . En particulier

rn (O) = r, (O) = 0 .

La fonction F----> -r définie sur [O, +oo, à valeurs dans B(L(z), (C), est h6ldéri-
enne en la variable . Il existe M(, ') = M,(s, 6 ; , ') fonction continue en (, ')
telle que

Vf E Ls~~~, Ir()f - r(')fI <M(,')l - 'I 5 If II L )

avec 6 réel tel que
(a) 6 E [0,1] et 6 < s - 1/2 , lorsque j = 1 et lorsque et ' sont dans l'intervalle

[0, +oo) ;
(b) 6 E [0,1] et 6 <z s - 1/2, lorsque j = 2 et lorsque et t' sont dans l'intervalle

[O, aq) ou et ' dans l'intervalle (aqn, +oe) ;
(c) 6 E [0,1/2] et 6 < s - 1/2, lorsque j = 2 et lorsque et e sont dans un

voisinage de aqfl .
Preuve. Il suffit de montrer les estimations (2 .54) et (2 .56) pour f E G(Z),

sous-espace dense de L (e) .
On établit (2.54) grâce à l'inégalité de Cauchy-Schwarz et en faisant apparaître
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le poids (1 + x 2 ) 9 :
/'H /'+oo2

- ~ J

	

J

	

.f(x,z)çba(~,n,x)Un(z) dxdzl 2
0

	

00

H<
J
H Un (z)2 dz

J

r11! p+00
+~ (f(x, z)~2 (~, n, x)Idx~ 2 dz

0

	

0

	

00
H p+oo

	

r-Foo
< f J

	

~f(x,z)1 2 ( 1 +x 2 ) s dxdzJ

	

~~2(~,n,x)12(1+x2)-3 dx
o

	

-00

	

-00
+00

~ 11f llafn, x)1 a (l+x2 ) -3
00

00

dx .

A partir des expressions (2.42) et (2 .43) pour ~2, (2.49) pour

	

on obtient (2.54) .
En effet, si s > 1/2, si S E [0,1] et b < s - 1/2, on a

+00
f-00 X2(1-1- x 2 ) -sdx < C~ 2 et I sin(~x)I < Min (lxl,~l) < lxl,~a

J

+00
I sin(~x)~2(1 + x2)-sdx <26 %

+00

(1 -F- x 2 )6-sdx < C~Zb .

La régularité hôldérienne s'obtient en estimant
+00

l(,n,x)
~Z-

~Z(',n,x)l2(1 + x
2 ) -3dx,

ce qui conduit à l'étude de différents termes t(, x) qui sont bornés sur JR, analytiques
sur 1R+ si i = 1 et sur IR+ \ {aqn } si i = 2, h6ldériens d'exposant 1/2 au voisinage de
= aq,z si i = 2 car intervient alors la fonction racine carrée au voisinage de 0 .

	

D
Remarque 2 .4. Les opérateurs 'rn (i) sont associés à la transformation unitaire du

théorème 2.5 . On peut aussi définir des opérateurs rn(À) associés à la représentation
spectrale du théorème 2 .4. Définis si s > 1/2, pour z = 4, 1 ou 2, n > 1 et À E Ii (n)
et pour f e C'°() par

(2.57) *„(À)f=f''(T , n)

= f f (x, z) ~(À, n, x, z)dxdz = (,f, 2 (A, n, ., .))L2(~),L,e(~)

ils s'identifient par dualité à la fonction i (À, n, . , .) _ '/(À, n, . , .) qui est dans .L?s(Tl) .
Les changements de variables (2 .40) et (2 .48) donnent les relations suivantes :

si À E I °(n) _ (cq,

	

2c q),

(2.58)

	

À _ c2(~2 + q) et r() = C2\/

	

À) ;
si a E 11 (n) = 12(n) = (cq, i~+oa),

(2.59) .\ = ci ~~ 2 + q~,) et T~ (~) = et 2F, ~-n (À),

(2.60) À = C 2 + q) et r,) = C2 \/ (À);

(2 .61)

	

gin( 2qn) - Tn (cq) i~= 0 .
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ǝ.ǝ.ǝ. Estimations uniformes de la résolvante . Pour f et g fonctions de
Ls (SZ), pour nombre complexe n'appartenant pas au spectre a(A), on a

ǝ

(RA()f/g)Lǝ()

	

~Sǝ -
n>1 i=0

Les termes
~ i

	

fǝ
_

	

(~ n)gǝ (~
À

n)
dÀ

IZ(n)

	

?

(cf. (ǝ.ǝ9)) ont été recalculés dans §ǝ .ǝ.1 à l'aide d'une intégrale en la variable e
(0, +oo) .

Les constantes dans les estimations qui suivent seront notées C, leur dépendance
par rapport à certains paramètres n'étant spécifiée qu'en cas de besoin .

PROPOSITION ǝ.6 . On se donne un réel A > 0, i = 1 ou ǝ, et on définit les entiers

(ǝ.6ǝ)

	

Ni (A) = Min {n E IN*/A < cg}, (N1(A) < Nǝ(A)) .

Alors pour s réel positif, il existe une constante C = C(A, s) telle que, pour toutes
fonctions f et g dans Ls(Sz), on a

(ǝ.6ǝa)

(ǝ.65)

ǝ

~j
j ( c, f,g)I

	

B~ CIt.flILe(Sǝ)I19IILâ(r),
n>Nl(A) i=1

ǝ
(ǝ.6ǝb)

	

~

	

~ IBn(C, .f,g)I ~ CIIfIILec~~II9IILAc~>>
>Nǝ(n) i=o

lorsque le nombre complexe ( satisfait

(ǝ .64)

	

~ ¢ v(A) et ICI <A.

Preuve . Le dénominateur (a - () de la fonction à intégrer dans (ǝ .ǝ9) est alors
minoré: par exemple si n > N1(A), I < A et À E I i (n), i = 1 ou ǝ, on a I - AI >
c1 qn - A > ci qNl (~)+1 -- A = C` 1 > 0, d'où l'on déduit (ǝ .6ǝa) grâce à

I(À,n)(À,n)IdÀfǝ

	

gǝ

	

<- 11fIILǝ()IfgIILǝ()

	

~s~ < C II f II Lǝ (~) II g II Ls (~) .

	

D
n>1 i=0 I'(n )

Il reste à contrôler un nombre fini de termes dans la résolvante . Ce sont les
Bn (~, f , g) avec n < N1(A) et i = 1 ou ǝ, ou avec n < Nǝ (A) et i = 0 . Leur
cardinal N(A) étant fini, il suffit de faire une estimation à n et i fixés .

PROPOSITION ǝ.7 . On se donne un réel A > 1, auquel on associe les deux entiers
Ni (A) et Nǝ (A) définis en (ǝ .6ǝ) . On se donne les entiers i = 0,1 ou ǝ et n
strictement positif tels que si i = 0 on a cǝgn < A , c'est-à-dire n < Nǝ (A), ou
tels que si i = 1 ou ǝ on a c1 qn < A , c'est-à-dire n < N 1 (A) . Alors il existe une
constante C = C(A, s) telle que pour toutes fonctions f et g dans Lǝ (SZ), on a

I(Ç,f,g)I Bn~ cIIfIIté(st)IfgIILé(ç)
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(2.67)
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lorsque le nombre réel s et le nombre complexe ( satisfont
(a) s > , la condition ( .64) et

(-cq~A 1 si i=0,

(b) s > et la seule condition ( .64) .
Preuve . Soient i et n fixés comme indiqués . L'estimation ( .65) pour Bn (~, f, g)

est claire pour ( dans un compact de C, disjoint de (n) ;i

	

elle doit donc être établie
pour (variant dans un voisinage compact K de Ii (n), ( ¢ I i (n), et éventuellement
sous la condition ( .66) qui exclut, pour i = ou , un voisinage des points c gn ou
C qn .

Les changements de variables ( .4 ) et ( .48) de Ii (n) sur 3i (n) peuvent être
prolongés au plan complexe en posant

Z=Z((,n)= (( ._ cq)? ,

	

i= , ou , c°c .

	

Zn
Z

ReZ= '> , ouImZ> siReZ=O .

Lorsque ( décrit le voisinage compact K de I i (n), Z décrit un voisinage compact de
Ji(n), et les hypothèses ( .64) et ( .66) se traduisent respectivement par

( .68)

	

Z ¢ JR+, IImZI borné et ~A' = A'(A) tel que ' = ReZ E [ , A'],

et

( .69)

	

RA" = A"(A) > O tel que '=ReZ>A" si i=Oou .

Remarquons que cette condition ( .69) est aussi satisfaite si i = et si Z est dans un
voisinage assez petit de 3 (n) _ [aqn ,+oo) .

Lorsque e J°(n) _ ( , aqn ), introduisons la double notation f°(, n) = f (, n)
pour le coefficient de Fourier généralisé associé à n, ., .) (cf. la proposition .3) .
Les formules ( .46) et ( .5 ) s'écrivent

f2(~, n)92(~,n)
~,7=(n) (Z)(+Z)~ - ~ ~~

Isolons le zéro ~' de Re(~-Z) en définissant pour a > 0 deux intervalles complémentaires
dans ,7i (n), à savoir

I« _ {~ E .7Z(n) ~ ~~ - ~'~ < a} et Jâ = {~ E ,% Z (n) / I~ - e'I> a}.

Lorsque ~ E J~, on a ~ (~ - Z) (~ + Z) I > a 2 et

(2 .70)

	

C?Bn ((, f , g) _

% fa(~,n)9 (~,n) d~
J~a (-Z)(+Z)~

	

~

La proposition sera donc établie si nous montrons une estimation du type ( .65)
pour

CZa ((, f , g) _

IC - C19n~ ~ A-1 32

' .f (~,n)9 (~,n) d~ .
J~~ ( - Z)(+Z)~

	

~

i = 0,1, 2 .

C2

< C(a, s)~~f ~~Le(sz) IIgII L(ç)szPour s > .
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Ce sont les propriétés des traces Tn (C) f = fi (C, n) établies â la proposition 2 .5 qui
vont la donner . Pour cela, nous décomposons le numérateur en posant

1 f	 dC

2Z Jiâ C+Z

dâ (C ') _

Sl C3%2 (7t ),

f (C,2(C,

	

~)92 (, n) si E 3Z (n)

h 2 (C', f, g) + (f 2 ( , n) - f2 (C', (C', g2(,

Nous estimons d'abord

(~~'.f' 9)

Pour C' ~ ,7 (n), (C') Pour ~ E ,7 (n) (C (0, -I-oo)), on a

d«(C') = (C', f, g) lâ (C-Z)(C+Z)

avec (h2(C!,f,g) < (LL9( (lg(lLs(» [0,1], 6 < s - 1/2, grâce à .54)
L'intégrale de

(C-Z)(C+Z) 2Z -Z C+Z

doit être évaluée avec précision . Pour E ,7 et Z = -f- i Im Z vérifiant .68),
on a

MaxI
log{(C +

C')2
i arctan

Minlâ

C(') avec 'y réel strictement positif arbitraire . Introduisant les conditions
.68) et .69), on obtient

(i) ld(C')l C (l f l) (ç) IlgllL2(ç) pour s > 1/2, si E [A", A'], soit encore, lorsque
(satisfait (2.64) si i = 2, et lorsque ( satisfait (2 .64) et (2 .66) si = 0 ou 1,

(ii) (C') < C1l IIII pour s > 1 si C' E [0, A'], soit encore lorsque
satisfait simplement (2.64) si i = 0 ou 1, puisqu'il faut alors choisir 6 et y tels que

- 1 - y > 0 (on utilise (2 .54) avec 6 > 1/2)
Estimons enfin

~~(~'~ccx((, f, g) da(C') -- f, g)
) (C + )

La décomposition (2 .71) de (h(C, g)-hi(C', f, g)) et les estimations (2 .54) et (2 .56)
des opérateurs de trace donnent

lh(C, f, g) - h (C', f, g)l ~ MIC - C'l + C' )ilf ilLl(&) llgllL(»,

avec 6>0 et E > 0 fixés tels que

J S -I- e < Min(1, s - 1/2) si (i = 1) ou bien si ((j = 0 ou 2) et IC' - aq J > A"),
1 S -} e < Min(1/2, s - 1/2) si i = 0 ou 2,
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avec la constante M = M(s, (5, 6, A') ou M(s, (5, ~, A', A") qui est indépendante d'une
part de et ' dans [0, A'] ou [A", A'], et d'autre part de f et g dans L3 (SZ) .

Les minorations - ZI > IRe( - Z)I = - ' I et I + ZI > + ' entraînent
alors

leâ(~')I < MIIf IIL?(~) ~IgIIL)e(~~« c( ~ d~ .

Des majorations uniformes, quand E Ia, ' E [A", A'] ou ' E [0, A'], de la fonction
à intégrer

c(~' ~') - I~ _ ~
'
Is

(	
~a + ~

I
a

)

terminent la preuve de la proposition 2.7 .

	

D
Ces propositions 2 .6 et 2.7 permettent de majorer uniformément la norme de la

résolvante dans l'espace B(Ls (e), L? 3(e)) .
THÉORÈME 2 .6 . On se donne un réel A > 1 .
(a) Soit s > 1 . Alors il existe une constante C = C(A, s) telle que pour toute

fonction f dans Ls (S2) et pour tout nombre complexe ( satisfaisant

(2.72)

	

( ¢ o (A) et ICI < A,

on a IIRA()fIIL3(»

	

~? s<_ cilf IIL3(~)

(b) Soit s > 1/2 . Alors il existe une constante C = C(A, s) telle que pour toute
fonction f dans L3 (SZ) et pour tout nombre complexe ( satisfaisant (2 .72) et

(2 .73) i~ - C1gn) ! A-1 et I (- c qj >_ A-1 pourra E IN * ,

on a IIRA(C)fIIL8( -»? s~ c~~f .~ •
Remarque 2 .5 . Dans le cas et = c2, la preuve du théorème 2 .6 est inopérante . En

effet, pour = 0, les fonctions (2.38) ne sont pas identiquement nulles, égales à

(2.74)

	

W2(0>n>x>z) = 2(0>n>x)V(z) = 1 V(.z) .

Il s'ensuit que le noyau de l'opérateur 'r, (O) (cf . la proposition 2.5) est un hyperplan
fermé de L3 (SZ) défini par

(2 .75)

	

NLs(n) = f E L~ (SZ) / f~ f (x, z) V~ (z) dxdz = o} .

Nous montrerons au théorème 3.3, que l'estimation fondamentale (2 .65) sous les
conditions (2 .64), n'a pas lieu . Précisément, nous construirons
n8>0 L~(SZ), telle que

(2.76) 'C-À(0, ' c(A) I £~n(~, fer, fn) I = +00 .

COROLLAIRE 2 .4 . Sous les conditions du théorème 2 .6, on a

(2.77) CiIlVRA(~)fII (L2 3(n))2 < iiRA(c')fii L 2 3(» + IiARA()f IIL2 3(n) < C2IIf IILg(~)

Remarque 2 .6. Le domaine D(A) de l'opérateur A = -c (c 2 (x)8) -- c2 (x)8 ,
défini par (2.1) et (2 .2), n'est pas inclus dans H 2 () . La norme du graphe sur D(A)
ne peut donc être comparée à la norme naturelle de H 2 (e), comme cela est le cas pour
l'opérateur -_ -c2 (x) (â 2 +O ), de domaine {u E H2() / ~ uI ~ Q = ulz-_, 0},
qui est auto-adjoint positif dans L2 ( ; c~ 2 (x)dxdz) .

fn, fonction dans
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2.2.4. Résultats de convergence . A partir des propositions 2 .5, 2.6, et 2 .7,
on établit les convergences et estimations suivantes au voisinage de µ E o (A) .

PROPOSITION 2 .8 . Soient s > 0, f et g E L3(SZ) . Soient µ E o(A) et 11v(µ) _
{(i, n) / i = 0,1 ou 2 , n E IN* , a I(n)} .i

	

Alors la limite quand tend vers 4u de
(2.78)

	

S v(µ) (c, f , g) _
(i,n)E1N(µ)

existe et est égale â

(2.79)

	

SJv(µ) (/2, f, 9) _

avec

(in Et(µ)

(2.80)

	

Bn (l~, f, g) = fIi(n)(À,n)g(À, n) da,

De plus, pour tout compact K C C, il existe une constante C = C(s, K) telle que si

IN(K) _ {(i, n) / K n Ii (n) _ o} et SN(K) ((, f, g) =

	

Bn((, .f, g)
(i,n E1N(K)

alors

(2.81)

	

d.f,g E Ls(~), d~ E K, I SJr..r(K)((, .f,9)I
_< cII .fIILac~>II911Lsc~>~

Preuve. On procède comme dans la preuve de la proposition 2 .6 et on applique le
théorème de la convergence dominée .

	

D
PROPOSITION 2 .9 . Soient s > 1/2, f et g E L3 (SZ) . Soient i = 0,1 ou 2 et n

entier strictement positif ,fixés . Alors les limites suivantes existent et vérifient
(a) Si /2 E Ii(n),

f, g) =

	

lim

	

Bn((, f,g)
~-~,µ,~Im~>0

Bn (lui .f ~ g) ~

(i, n) E 1!V (µ) .

(2.82)
=v f	

Z	 (Àn)(Àn)dÀ) ~g2~ 	2
.p .

	

± izr f (/2, n)g (/2, n) .
I Ii(n)

De plus, pour tout compact K de C _ {( E C/ ± 1m~ > 0} qui ne contient pas les
extrémités de l i (n), on a l'existence d' une constante C = C(s, K) telle que

(2.83)

	

Vf, g E Ls(SZ),

	

d~ E K,

	

I Bi± ( ç, f, g) ~ < <% ~~ .f ~~ Ls (SZ) ~~g ~~ Ls (~)

où on a posé Bn ((, f, g) = Bn (~, f, g) si ( Ii (n) .

(b) S2 /2 = C122qn

Bn'~ (C1 qn, f , g) =

	

2 lim

	

Bn (~, f , g)Ç--+c 1 g n,±Im(>0
(2.84)

	

+«,

	

n 2 n
= v.p

	

C2
f2 (,~)9 (~' ) d

	

± Zf~r o(clq2 2, n)g~o (cq, 12 2 n) .2

	

2

	

2 2

	

nn
0

	

(~2 + qn) a ~1q n
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On rappelle que Bn (C, f, g) a été défini en (2.47) . De plus, pour tout compact K de
~~ qui ne contient pas l'extrémité c2gn de I°(n), on a l'existence d'une constante
C = C(s, K) telle que

(2.85)

	

`df, g E L3 ([Z), de E K, ~Bn'~((, f, g)~ < C~~f ~~Ls(s~) ~~g~ILs(~)

où on a posé

	

f , g) = B,((, f , g) si ( ¢ [cq,2n+oo)
Preuve . On utilise les propriétés hêldériennes des opérateurs de trace énoncées à

la proposition 2 .5, l'égalité

1
(À_±i0)'=v.P .( À )~L

	

- 2?fbµ

au sens des distributions, la formule (2.41) exprimant f2 en en fonction de f ° ou
f 2 en À = c2 ( 2 + qn) ou encore les formules (2.58) et (2.59) reliant les opérateurs de
trace correspondants, et enfin l'estimation (2 .65) de la proposition 2 .7 .

	

D
PROPOSITION 2 .10 . Soient s > 1, f, g E Ls (SZ), et n entier strictement positif.

Alors les limites suivantes existent et vérifient

(2 .86)

(2.s7)

B°(c2gn, f, g) _

Bn (C1qn , f, g)

lim

	

B°((, f, g)
~--~c2gn,~~~(A)

f ° (À,n)g ° (À,n)

	

aqn f2(
	 ~ n)g2 (,n)

0(n)

	

À - c2 2

	

d~ ~	 d~,
I (n)

	

2qn

	

0

	

C222

=

	

lim
(->cg,C cr(A)

Bn(~~ f, g)

iï(À,n)1(À,n)
		

g+oo
f1(,n)g1(,n)-	

clq2
2

	

da
= 0

	

c2 2

	

d .
I 1 (n)

	

n

	

1~

De plus, pour tout compact K C (C~ _ {~ E (C/ ± Im( > 0}, on a l'existence d' une
constante C = C(s, K) telle que, pour i = 0 ou 1,

(2.88)

	

bf,g E Ls(~), b( E K, f((,f, g)Bn~

	

~

	

CIIfIILg(ç) ~~gIlL2(ç)

où on a posé Bn (~, f, g) = Bn ((, f, g) si ( I(n), ou bien si i = 0 et ( = c2gn, ou
bien si i = 1 et (= ci qn .

Preuve. On utilise les propositions 2 .5 et 2 .7, la formule (2 .46) si i = 0, la formule
(2.52) si i = 1 .

	

D

On peut maintenant énoncer le principe d'absorption limite pour A . Pour le détail
de la preuve, on prend la même démarche que dans [A] et [DG86] .

THÉORÉME 2 .7 (Principe d'absorption limite faible) . On considère la résolvante
( RA(() comme une fonction définie sur (C\a(A) à valeurs dans B(Ls(SZ), L)s(SZ))
avec s réel positif. Soient f, g fonctions dans L (Z), et ,a, s réels tels que

/1Ea'(A) et s> 1,
(2.89)

	

ou
µ E a(A) \ {cq,cq2ni/ n E ]N*} et s > 1/2 .

(i) Les deux limites suivantes existent pour la topologie de la convergence faible
dans l'espace L? 8 (SZ) :

(2.90)

	

RÂ (p) f =

	

lim

	

RA(~) f.~-->µ, ±ImC>0
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(ii) Les fonctions u~ = RÂ (µ) f vérifient au sens des distributions

(A -- µI)u~ = f.

(iii) Avec les notations des propositions 2 .9 et 2.10, on a
(iiia) Si µ ¢ {cq/ninE 1N*},

(2.91)

	

(R(p)f,g)L2()

	

â 3 st, Lg(s~) _ ;

	

Bn~(,a, f,) .
n>1 i=0,1,2

(iiib) S2 ji =

(2.92)

	

(R(ciq)f,

	

Amg)L2s(Ç2) , Ls(~)

n>1,n m

Remarque 2 .7 . On a

c1qm et donc s > 1,

Bn ~ (c gm ~ f, g) + B(clqm, f, g) + B(c~qm, f, g) •
i--0,1,2

Bn+ (µ, f, g) =

	

f, g) si µ Iz (n) ou bien si /(ji,2 n)g (µ, n) = 0,

B [ (clgn, f, g) = Bn'~ (clqn , f, g) si f0 (clgn~ n)g(Cign, n) = 0 .

THÉORÈME 2 .8 (Principe d'absorption limite), On considère la résolvante ( F--->
RA(') comme une fonction définie sur C\a(A) à valeurs dans B(Ls(SZ), L? 3 ([ )) .
Alors, sous la condition (2.89), les deux limites suivantes existent pour la topologie de
la norme dans B(L3 (SZ), L? 3 (SZ)) :

(2.93)

	

RÂ(µ) =

	

lim

	

RA (~) .

Remarque 2 .8 . On peut vérifier que la fonction ( H RÂ () ainsi prolongée est
localement hildérienne sur C± _ {( E C / ± Im~ > 0} . En particulier sa norme est
bornée lorsque le module ( ( reste borné et s > 1 . On retrouve ainsi un résultat connu
pour le Laplacien dans tout l'espace (cf . [E69] et [W86] pour des résultats voisins),
ainsi que pour certains guides d'ondes (cf . [MW88]) .

Remarque 2 .9 . Dans le cas de la bande homogène c1 = c2 = c, et pour des
conditions limites de Dirichlet ou de Neumann, la violation du principe d'absorption
limite au voisinage des seuils a été établie par Werner dans [W87] . Nous considérons
ce cas dans la section 3 qui suit . Nous verrons que les théorèmes 2 .7 et 2.8 sont alors
non valides au voisinage des seuils, et qu'il est nécessaire de se placer sur un hyperplan
fermé de L() pour obtenir un principe d'absorption limite .

3 . Profil de vitesse c(x,z) . = c(z) minoré par cm > 0. Nous travaillons,
dans cette section, avec un profil de vitesse indépendant de la variable x et satisfaisant
l'hypothèse

(31f.)

	

c E L°°((0, H)) et Min c(z) > cm > 0 .

Le profil (1 .6) en est un cas particulier .
Si l'étude menée est similaire , celle du §2, les résultats sont différents et nous

développons particulièrement les points spécifiques à ce profil c(x, z) c(z) : il s'agit
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de l'étude des opérateurs de trace et des estimations de la résolvante au voisinage des
seuils Àn , n > 1, qui sont ici les valeurs propres d'un opérateur réduit B o , associé à
l'opérateur A par transformation de Fourier en la variable x.

On montre au théorème 3 .3 que la résolvante "explose" au voisinage de ces
seuils au sens où, pour tout s > 0, il existe f z dans Ls (SZ) telle que :

h m
IIRA(fnIL 9 ()~)I? SZ _ +00,

si bien que le principe d'absorption limite ne peut être établi en ) n que sur un sous-
espace strict NL(n) de L() .

3.1. Théorie spectrale de l'opérateur A = -v .(c2 (z) V) . On trouve certains
des résultats qui suivent dans le chapitre II §10 de [Wi2} .

L'opérateur auto-adjoint positif dans L 2 (Q) est maintenant

(3.1)

	

A = -c2 (z) a~ - az ( c2 (z)az ),

de domaine

(3.2) D(A) _ {u e H1(Z) / Au e L 2 ([) et (c28u)I=oz z= u)z=H = 0} .

Comme il a été dit dans l'introduction, ces conditions limites sont celles du problème
physique posé, et nous pourrions choisir d'autres conditions (CL), Dirichlet ou Neu-
mann en z = 0 ou z . = H (cf. aussi la remarque 4.2) .

La séparation des variables x et z dans l'espace L 2 ( ; dxdz) = L 2 (Ifs ; dx)
L 2 ((0, H); dz) permet de ramener l'analyse spectrale de A, opérateur à coefficients
indépendants de x, à celle d'une famille d'opérateurs B~, réel, auto-adjoints à in-
verse compact sur L 2 ((0, H); dz) .

Plus précisément, nous utilisons l'isomorphisme de Fourier défini sur L 2 (1H; dx)
par

(3.3)

	

v e L2(JR;dx) , v(~) _ (2ir)' 2-1 v(x)e -i£xdx .

Remarquons que cela revient à choisir les fonctions

x f---+ (2ir)_"2e), Z~x

	

e 1H,

comme famille complète de fonctions propres généralisées pour l'opérateur A1 =
d2
dx 2 , de domaine D(A1) _ {v E H 1 (E) / A1v E L2 (E)} = H 2 (E), auto-adjoint

dans L2(1R) .
PROPOSITION 3 .1 . L'espace de Hilbert L2(fZ; dxdz) et l'opérateur A sont respec-

tivement unitairement équivalents à

(3.5)

	

= L2 (f ; d dz) =

	

H d intégrale directe des espaces
~

H = L 2 ((0, H); dz), e 1H,

et

A =

	

B d , intégrale directe des opérateurs non bornés
(3 .6)

	

d

	

d
B _ --

	

(c2(z)_-

	

+ c2(z) 2 , e E,
dz

	

dz
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de domaines D(Bg), indépendants du réel ~, donnés par

(3.7) D(B) _ {u E H 1 ((0, H)) / c2û E H'((0, H)) et (c 2u')(O) = u(H) = 0} .

Avec la définition (3.4) de cp(~, .) on a, pour toute fonction u dans D(A),

(3.8)

	

u(x, z) = J v,(~, z)cp(C, x)dC et Au(x, z)
= J

Bgû(C, z)cp(C, x)dC,

la convergence de ces intégrales ayant lieu dans L 2 (SZ ; dxdz) .
Pour C réel fixé, B, est un opérateur auto-adjoint dans L2((0, H)), positif à in-

verse compact . Son• spectre o-(Bt) est minoré par C2 Min c 2 (z), purement ponctuel et
dénombrable, soit

(3.9) °(B~) _ {À(C,n) / n E 1N * },

Il est montré au théorème 4.5 de l'annexe que les valeurs propres a(C, n) sont simples,
et on convient que la suite (À(C, n))>1 est (strictement) croissante .

L'espace L 2 ((0, H)) admet donc une base orthonormée (V(C, n,
.))n>

de fonctions
propres de B~ . Ces fonctions feuvent être choisies rielles et satisfont

(3.10a)

	

V(C, n, .) E D(B) et B£ (V(C, n, .)) _

H

	

1/2
(3.lOb)

	

IIV(C,n, •) (1L2((O,H)) = (j JV(Cnz)I 2dz), ,

	

= 1 .
o

Remarquons que lorsque c1 = e2 = c, on a Bt = c2A 2 + c2C 2 , où A2 est l'opérateur
(2.8) . Selon les formules (2.9) ou (4 .36), on a alors a(C, n) = c2q~ -+- c2C2 et on peut
choisir V(C, n, z) = Vn (z) .

La transformation unitaire

(3.13)

	

.'F

L 2 ((0, H)) -+ ?-l g = ~ CV(, na •)
n>1

v ~~ ~,~C~~Lz((O,C~

~n>1

~,--' ~~(v~V~/V( , •) ) L2((oH))V H))V~( ~ n, .)

n>

définit une représentation spectrale de B~ .
THÉORÉME 3.1 (Famille complète de fonctions propres généralisés pour A et

transformation unitaire associée) . Les fonctions I _ (, n, x, z), C E la, n E llV,
définies sur S l à partir de (3 .4) et (3 .10) par

(3.12)

	

'(C, n, x, z) = cp(C, x)V (C, n, z) _ (2ir)'12eV(C,

	

-i ~ n, z),

sont des fonctions propres généralisées de A . Elles satisfont l'équation différentielle
A (C, n, ., .) _ À(C, n)W (C, n, ., .) . Elles forment une famille complète au sens où elles
permettent de définir la transformation unitaire

J L2 (St) --i 7-l = J ?-lgdC
'1

	

- 1R
f F--+ Ff avec .Ff (C) _ .F~ (f (C, .)), C E Ils.
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Les coefficients associés à f fonction de L 2([Z), pour presque tout réel et pour n
entier strictement positif, s'écrivent

H
(3.14) f(e~ n) _ (if(e,

	

~ •)/V (C, n, •))L2((o,H)) - f f(C, z)V (C, n, z)dz
0

= L 2 (IR; dC) - lim

	

f (x, z) (C, n, x, z) dxdz .X-~+°° {(x,z)E~/IxI<X}

Si f appartient au domaine D(A), on a la formule de diagonalisation

(3.15)

	

A f (C, n) _ À (C, n) f (C, n) .

L'égalité de Bessel-Parseval pour toutes fonctions f et g de L 2 () s'écrit

(3.16)

	

(f I g)L Z (~) -

	

f f (, n)g(, n) de .
n i JR

La reconstruction d'une fonction f de L2(Z) à partir de ses coefficients de Fourier
généralisés s'écrit

(3.17)

	

f (x, z) =

	

J J(C,n)W(C,n,x,z) dC,

les convergences étant toujours à entendre au sens L2 .
COROLLAIRE 3 .1 . Le spectre cr(A) et la résolvante RA(C) _ (A - CI) -1 vérifient

(3.18) Q(A) = U a(B) _ {À(C, n) / ~ E IR et n E IN*} _ [a(0,1), +oo),
~E7ft

(3.19) d C ¢ Q(A), b.f, 9 E L Z (~), (RA(C)f/g)L2()S2 f f(C'n)9(C,n)

n 1 ~ À(S' n) -

	

d~.

Dans le théorème 3.1, les fonctions et valeurs propres généralisées de A sont
paramétrées par n E IN* et C E 1H . On montre, au théorème 4 .5 de l'annexe, que les
fonctions C a(C, n) sont paires, strictement croissantes sur 1H+ de a(0, n) à +oo,
et analytiques . On peut revenir à la variable spectrale À de A par le changement de
variables

(3.20)

n 1

(À _ À ( •, n) _ (À(0,n),-i-oo))

qui est un difféomorphisme analytique de (0, +oo) ou (-oo, 0) sur In , d'inverses ( +
À E In H C(a, n) E (0, +oo)) et

	

_ -- +.
THÉORÈME 3 .2 (Représentation spectrale de A) . Les fonctions

	

n, x, z), j
1 ou 2, a E In = (À(0, n), +oo), n E IN*, définies sur SZ par

(3.21)

	

ej _ (-1)i et

	

(À, n, x, z) _ ( t9ÀC(À, n))"2 'I'(e~C(À, n), n, x, z)

_ (aÀC(À, n))1/2 (2~r)-1/2ei~j~(~'n)x V(E jC(a, n),
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sont des fonctions propres généralisées de A . Elles satisfont l'équation différentielle
A j (a, n, ., .) = a j (a, n, ., .) . Si f est une fonction de L2 (e), les coefficients

(3.22) fj (a, n) = L2 (In ;da) - lim

	

f (x, z) j (À, n, x, z)dxdz
x-++°° sen{x/Ixl<x}

vérifient

(3.23)

La transformation i [f E L2() ~---; (f 1 , f 2 ) E ®I-Cn )J est unitaire et on a

(3.24a)

	

f (x, z) _ ~ ~ J f ~ (À, n)~~ (À, n, x, z)dÀ,
n~l j=1,2 In

(3.24b)

	

(f/g)L2(ç) -
n>1

Si f appartient

(f 1 ,f 2 ) E
n>1

Bn(~~ f, g)

s2 f E C°(),~Tn()f = J(,n) _

avec ?fi n = L 2 (I,2 ) ® L 2 (I, L ) .

I
f~ (À, n)gj (À, n)dÀ .

j=1 , 2 n

au domaine D(A), on a, pour j = 1 ou 2, a E In et n E IN* ,

(3.25)

	

(Af)(À,n) ~

	

_ À f~ (a, n) .

Pour O cr(A) = I _ [À(0,1), +oo), pour f et g E L2 (f ), la résolvante vérifie

(3.26)

	

(RA(f/g)L2 (ç)~~2_~ ~ J
f a(À'n)9i (À

+ n) d~ .
n>1 j=1,2 I^

Notons que lorsque l'intégrale f~ f (x, z) J,3 (À, n, x, z)dxdz converge au sens ordi-
naire, les formules (3.22), (3.21) et (3.14) donnent

(3.27)

	

f~ (a, n) = (8À (a, n)) 1/2 J(e(À,n),n),j

	

a E In .

3.2. Principe d'absorption limite . Il s'agit d'étudier la limite de (3 .19) ou
(3.26) quand ( tend vers µ E o(A) . Pour n E 1lV, ¢ or(A), f et g E L2 (S2), nous
posons

(3.28)

f f (~,n)9(~,n) d~
JJR ~(,n) - (~ n (', f ' g)

javec B((,f,g) _

	

f'(a,n)g'(À,n)
In

Nous introduisons, comme dans §2 .2.2, les espaces à poids Ls (SZ), s réel, et
nous pouvons définir des opérateurs de trace associés à la transformation unitaire
du théorème 3.1 .

PROPOSITION 3.2 . Soit s > 1/2 . Pour n entier strictement positif et réel, on
peut définir Tn ( ) forme linéaire continue sur L 2 (f) telle que

f (x, z) ~ (~, n, x, z) dxdz,f~
32 f E Lsl~), Tn~S~,l = (f(, .)

	

S/V(,n,

	

S •) )Lz((O,H)) •



La fonction Tn ( ) définie sur E à valeurs dans B(Ls (SZ), C) est localement
hôldérienne d'exposant S E [0,1], S < s - 1/2. Il existe M(, ') = Mn (s, S, , ')
fonction continue en (, ') telle que

(3.30)

	

`df E L3(S2), ft(e)f

	

n - Tn(e'),fI <_ M(~+~')f ~ - ~'I a 11,fIILe(S~) •

Preuve. Si s > 1/2 et si f E Ls (SZ), pour presque tout z E (0, H), on a f( ., z) E

L3 (E) et la trace en E E de la transformée de Fourier f( ., z) est définie . De plus

+00

	

1/2

	

+00

	

\ 1 /
I .f (S, z)I ~ (2 h/2 (f~)- ( 1 + x2 ) -9dx)

	

C f

	

~f (x, z)~2 (1 + x2)sdx I
ao

	

00

	

l

On en déduit que Î(e .) , appartient à L2 ((0, H)), ainsi que l'estimation de continuité

~ (Î( .)~~

	

/ V (~+n> •) )z.2((o,x)) I < C(S)IIf IILé(ç) •(3.31)

(3.33)

ABSORPTION LIMITE POUR UNE STRATIFICATION SIMPLE

	

907

Il suffit d'établir (3 .30) pour f E C000 (l) . On a

(21r) 1 /2 I J(,n)

	

~- J(',n)

	

~I

= J f (x, z)e(v(e, n, z) - V(', n, z) dxdz

+ J f (x,z)

(er+00 ` fx

	

1 1/

-0 LJo
~f(x,z)l 2 dzI

	

I1V(~,n, .)-V(~',n, .)IILZ((o,x)) dx

-{-oo

	

H

	

1 1 /2
+

	

lf(x,z)12 dz

	

Ie-Z x- e-~ x` dx.
-00

	

o0

Le théorème 4.5 de l'annexe donne, avec Cn(, ') continue en (, e'),

(IV(, n, .) - V (', n, .)<<L2((o,H)) <_ Cn ( , ')~ -

La fonction exponentielle satisfait, avec S E [0,1],

Ie-Z
x -- e- Z 'xl <2I -- 'I 6 IxI 6 •

On obtient alors (3 .30) sous les conditions s > 1/2 et S < s - 1/2 .

	

D
L'estimation (3 .31) de continuité sur L(Z) pour les formes Tn( ), réel, s'écrit

encore

(3.32)

	

Vf E Ls(SZ), I()f

	

Tn I < CI) f 1I L2(ç) avec C = C(s) .

Remarquons que la forme Tn (0) est non nulle. Par suite, l'estimation de type
(2.54) avec S > 0 n'est vraie que sur le noyau de Tn (0) . A partir de (3.30), elle s'écrit

`df E kerTn (0), I()fIT,,~ <_ M(~,O) I~I b II .fIILâ(si) •

Donnons quelques propriétés de ce noyau .

- e-Z 'x)V(', n, z) dxdz
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PROPOSITION 3.3 . Pour n > 1 et s > 1/2, on pose

(3.34a) NL3(n) = ker(0) _ {f E Ls([)/(.f (0, •)/V(0,n, •))z,2((o,x)) - 0},

(3.34b)

	

NL3 = fl NL3 (n) _ {f E L3 (SZ) / Î(° .) , = 0} .
n>1

(

(

L'intersection de ces espaces avec Cô (SZ) est indépendante de s, et décrite par

3.35a)Wn = NL3 (n) n Co (SZ) = f E Co (SZ) / f f (x, z)V (0, n, z)dxdz = 0 ,

3 .35b)

	

W = NL3 n Co (SZ) = f E Co (SZ) / f f (x, z)dx = o} .

Chacun des espaces Wn ou W est dense dans L3 (SZ) si s < 1/2 . L'espace Wn (respec-
tivement W) est dense dans NL3 (n) (respectivement NL3) si s > 1/2 .

Preuve . Lorsque f E L([), on a

Tn(0) f = J(0,n) = (Î(0, .) / V(0, .))L2((o,H)),

et la description de NL3, Wn ou W en résulte (on rappelle que les fonctions V(0, n, .),
n > 1, forment une base orthonormale de L2 ((0, H))) .

La densité dans L3(SZ) de W, et donc celle de Wn, découle, pour s < 1/2, de la
densité de Cô (1R) ® Co ((0, H)) dans L3(SZ), et de la densité de l'espace

(

	

f+~

	

l
{ f E Cô (Ift) / J

	

f (x)dx = 0
J
} dans L(1R) (résultat en défaut si s > 1/2) .

l

	

~

Justifions enfin .le dernier résultat de densité . Soient s > 1/2, f E NL3 (n) (respec-
tivement NL3) et e > 0 . Il existe f E C000 () telle que 11f- f II L g (~) <6 . Considérons

FE (x, z) = f (x, z) (Tn(0)f~)~P(x) n(z)

(respectivement FE(x, z) = fE(x, z) - cp(x)f6 (0, z)), où cp et ~n sont choisies telles que

f
+00

cp E Cô (lR),

	

cp(x)dx = 1,

pH
~~ E Cô ((0, H)), J ~n(z)V(0,n,z)dz = 1 .

0

Cette fonction appartient à Wn (respectivement W) et satisfait, grâce à l'appartenance
de f à NL2 (n) (respectivement NL3), limE+o IIf - FE II L ( f )s

	

_- 0.

	

D

On définit aussi des opérateurs de trace pour la représentation spectrale du
théorème 3.2 ; ils seront utiles pour étudier le comportement de Bn ((, f, g) au voisi-
nage des seuils a(0, n) . On montre au théorème 4 .5 de l'annexe que ces seuils sont des
zéros d'ordre exactement 2 pour les fonctions

	

+ ~( , n) - À(0, n) .



PROPOSITION 3 .4 . On se donne le réel s > 1/2 et les entiers n > 1, j = 1 ou 2 .
Pour tout réel a > a(0, n), on peut définir r (À), forme linéaire continue sur Ls ([ )
par

(3.36a) ej _ (-1)i et Tn(À)f = (aa~(À,n))2(e(À,n))f1~Tn~~si À> À(0, n),

(3.36b)

La limite quand a tend vers a(0, n)+ de T~ (a) f , avec f fonction quelconque de l'espace
Ls ([ ), peut être infinie . On a l'existence de C(À) = Cn (s, À), fonction continue par
rapport à À, telle que pour À > a(0, n) et pour f E Ls (SZ),

(3.37)

	

Tn(À)f = C(a, f)(À -- À(0, n))
_"4 et

	

C(a, f)( <_ C(À)II f t IL2(ç)

L'application À H r (À) est localement hôldérienne d'exposant ê . Précisément
(a) Sur In = ( À(0, n), +oo), elle est à valeurs dans B(Ls(SZ), C) . Si ê E [0,1] et

ê < s - 1/2, il existe M (À, À') = Mn (s, S, a, À') continue en (a, a') telle que pour

(3.38)

	

f e Ls (SZ), À et À' > À(0, n)

on a

(3.39)

	

Ir (%) f - 'rn(À ' )f Î < M(À, a')ja -- À'` s `) f IIL3(ç)

(b) Sur In = [a(0, n), +oo), elle est à valeurs dans B(NL3 (n), (C) (rappelions que
NLS (n) est le noyau de la forme . Tn (0), étudié à la proposition 3.3) . Sous la condition

(3.40)

	

s > 1,5e [0,1/4] et S < (s -- 1) /2,

l'estimation hiildérienne (3.39) est valide pour

(3.41)

	

f E NL3(n), a et À' > À(0, n),

Preuve. Pour s > 1/2, À et À' E In, l'estimation (3.39) sur Ls (SZ) découle
directement de la définition (3.36) de 'rn(a), de la proposition 3 .2 et de l'analyticité
de la fonction (+ : a E In

	

(À, n) E (0, +oo)) .
L'étude au voisinage de a = À(0, n) s'appuie sur le développement de la fonction

H a(, n) au voisinage de 0 . Selon le théorème 4 .5, on a

À(, n) - À(0, n) _ 2a() et 0À(, n) =

d'où l'on tire

_ (À(e,n) - a(0, n)) 1 / 2 Gn (),

8a (a, n) _ ( a(, n) - a(0, n)) -"2 Hn(),

r (À)f _ (À(, n) -- a(0, n)) -1 / 4
H,L() 1 / 2 Tn(e,j )f.

Dans ces égalités, les fonctions an , bn , Gn et Hn sont analytiques et ne s'annulent pas
sur 1R .

L'estimation (3 .32) donne alors (3.37) .
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Tn(À(0, n)) f = 0 .
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L'estimation (3 .33) donne, si À E In , si f E NL3 (n), si 6' E [0,1] et 6' < s - 1/2,
la majoration :

~Tn (À)f ~ (À - À(0, n))(_1+26')/4 M(a) tif iiL) .s (sZ

L'estimation hôldérienne (3.39) au voisinage de À(0, n) est donc obtenue si 6'> 1/2,
ce qui nécessite s > 1 . L'exposant S est alors majoré par 1/4 puisque 6' < 1, et par
(s - 1)/2 puisque 6' < s - 1/2 .

	

D
On peut établir maintenant des estimations, uniformes par rapport à (, pour les

termes (3.28) intervenant dans la résolvante, comme il a été fait dans §2 .2.3 .
PROPOSITION 3.5 . On se donne les deux réels s > 0 et A > 0, et on définit

l'entier

(3.42)

	

N(A) = Min{n E nv* / n < À(0, n)} .

Alors il existe une constante C = C(A, s) telle que

(3 .43)

	

`df,g E Ls(S2 ),

	

~Bn(~, .f,9) ~ < <%~~ .f~~L9(~) iigiiL()s
~n>N(A)

lorsque le nombre complexe ( satisfait

(3.44)

	

ç 'o(A) et Ki< t1 .

PROPOSITION 3 .6 . On se donne l'entier n > 1 et le réel A > 1 tels que a(0, n) <
A. Alors il existe une constante C = C(A, s) telle que

(3.45)

	

~-Bn (~, f, g) ( <_ Caf f Ii Ls (ç~) ~tgitL(r)s

lorsque le réel s, les fonctions f et g, et le nombre complexe ( satisfont
(a) s > 1/2 , f et g E L3(SZ), K - À(0, n), > A~ 1 et (3.44) ;
(b) s > 1, f et g E NL3(n), (3.44) .
Preuve. Elle est à rapprocher de celle de la proposition 2 .7 .
Pour satisfaisant (3.44), on note À' = ReÇ et on considère les zéros de

a(, n) - À' qui sont simples et égaux à ± _ ±(À', n) si À'

	

a(0, n), et qui se
réduisent à = 0, zéro d'ordre 2, si À' _ À(0, n) .

Lorsque f ~ - À(0, n) t est minoré, l'estimation (3.30) pour les opérateurs Tn( )
conduit à (3.45) si on s'impose de plus la condition (3.44) pour ( et si on choisit
s > 1/2 .

Lorsque ( peut s'approcher du seuil À(0, n), on ramène l'estimation de Bn (c, f, g)
à celle de

+« fi (Àn)gi (À~n)
f, g) =

	

a - 'À' - iIm da,

où c > 0 est fixé . L'estimation (3.39) pour l'opérateur 'r, (À), sous les conditions (3.40)
et (3.41), conduit à (3.45) avec s > 1, f et g dans ker Tn (0) = NL3 (n) et satisfaisant
(3.44) .

On remarquera que l'estimation de c est un peu plus simple que celle faite dans
la proposition 2 .7 car le dénominateur de la fonction à intégrer est de degré 1 en À et
on utilise (3.39) avec S > 0.

	

D



On ne peut pas reprendre telle quelle la démarche d'Agmon pour obtenir le
principe d'absorption limite fort au voisinage des seuils a(0, n), comme nous l'avons
fait dans le cas d'une stratification verticale au §2 . En effet, dans un tel voisinage
de a(0, n), on obtient facilement, à partir des propositions 3 .5 et 3 .6, un principe
d'absorption limite faible dans le dual E' de l'espace E = NL3 (n), c'est-à-dire
l'existence de la limite faible dans E', pour f appartenant à E et quand ±Im( tend
vers 0+ , de RA (~) f. A ce point-là, on ne peut plus agir de même pour transformer cette
limite faible en limite forte. De plus, la démarche d'Agmon ne donne pas directement
les propriétés hêldériennes de la résolvante .

Nous allons donc commencer par établir des propriétés h~ldériennes pour les fonc-
tions Bn ( ., f, g) sur C\or(A), à partir desquelles nous obtiendrons immédiatement le
principe d'absorption limite fort .

PROPOSITION 3.7 . On se donne l' entier no > 1, et les réels A1 et A2 tels que

(3.46)

	

a(0, no - 1) < A1 < a(0, no) < A 2 < a(0, no + 1) .

Alors, pour n entier strictement positif, il existe une constante C n = Cn (A1, A2, s)
telle que

(3.47)

	

`Bn((, f, g) - L(('~ .f, g)~ < CT ( -- (' f IÎLs(o) Ilg1lL(o)3

d'une part lorsque les nombres complexes ( et (' satisfont

(3.48)

	

( et (' ¢ o(A),

	

et ~(' ~ E (Al, A2) +

et d'autre part sous les conditions suivantes pour l'entier n et pour les parties imagi-
naires de ( et (' , pour les réels s et 6, pour les fonctions f et g,

(a) Si n est différent de no,

s> 1/2 et f, g E Ls (SZ),

(3.49)

	

si n > no + 1, alors b E [0,1]

	

et

	

Cn <+00 '
n>no+1

si n < no - 1 et Im ( . Im (' >0, alors S E [0, Min(1, s - 1/2)) .

(b) Si n est égal à no et Im ( . Im Ç' > 0,

s> 1 et f, g E NLs (no),
(3.50)

S E [0, Min(1/4, (s- 1)/2)) .

Preuve. On a pour n > 1, (et Ç' o(A), f et g E L3 (SZ) :

	 ~ ~~~ n)9'~~~ n) da .Bn(~~ f, 9) -
B~(Ç',f,g)

- ~(( -
Ç')

J
.f

n (
~ _ ~)

(À
_
Ç

,)
j=1

On décompose l'intervalle d'intégration In = ( a(0, n), +œ), lorsque l'indice n est
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inférieur ou égal à no, de la manière suivante :
In = ( À(0, n), A l ] U (Al, A2) U [A2, +oo) si n < no - 1,
I, to - (À(0,no),A2) U [A2 ,+oo) .
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Sur chaque intervalle, on mène une estimation de l'intégrale, qui peut être rap-
prochée de celle des propositions 3 .5 ou 3 .6, bien qu'elle soit plus délicate, en utilisant
la propriété hildérienne (3 .39) des traces •rn(a) f = f (À, n) .

	

D
On peut maintenant donner des propriétés h6ldériennes de la résolvante sur

(C\a(A) .
THÉORÉME 3.3. On se donne le réel A > 1 et l'entier N = N(A) associé par

(3.42) et caractérisé par À(0, N - 1) < A < a(0, N) . On choisit le réel A strictement
positif tel que A < A' = A' (A) = Min{À (0, n + 1) -- À (O, n) / 1 < n < N} . On
se donne des réels s et 6, une fonction f et des nombres complexes et ~' dans
C~={CEC/ ±ImC>0} .

Alors sous les conditions suivantes portant sur s, sur f, sur Z égal à ( ou ~', et
sur 6,

s > 1/2 et f e E3 = L3 (S2) (donc Es = L? 3(SZ)),

Z E C~, Z cr(A), (Z' < A, et (Z - À

S E [0, Min(1, s - 1/2)),

(0, n), > A pour tout entier n < N,

(3.51)
ou sous les conditions suivantes portant sur s, sur n entier fixé, sur f, sur Z égal à Ç
ou Ç', et sur 6,

s > 1, n < N, et f E E S = NL3(n),

(3.52)

	

Z E (C~, Z a(A), et ~Z - a(0, n)I < A,

b E [0, Min(1/4, (s - 1)/2),

il existe une constante C = C(A, s, ô) telle que

(3.53)

	

d.f E Es, IIRA)f (S - RA(Ç')f ~~Es < C~Ç - ('In If IIL(~),

(3.54)

	

d f e Es , IIRA(C)fllEs < cilf IILs(~) .

L'estimation au voisinage de À(0, n) est optimale au sens où il existe fn dans
Ls (f ), fn n'appartenant pas à l'hyperplan fermé NL3 (n), telle que

(3.55)

	

~ o lim

	

A IIRA(OfflhIL2()3 st= +00.
~~(,)

Preuve. Sous les conditions (3.51) ou (3.52), la proposition 3 .7 donne 3.53), les
propositions 3.5 et 3.6 donnent (3 .54) .

Pour réaliser (3.55), on choisit

+00

(x, z) _ (2)_ h / 2 f

	

~P(~)eV(~ n+z)de,
m

avec p fonction fixée dans C000 (IR) telle que p(~) = 1 si < 1 .
(a) On a

f~ E fl L8 ([) _ fl Lk(f ) .
s>0

	

kE1N
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En effet, fn est la transformée de Fourier de pV( ., n, z) et on a l'estimation

k

IIf(x,xk n

	

z) IIL ;dxdz)2(stÇ C(k) II

	

p(k')
(C) k_kF)a ( v(e, n, z) 11L2(ftdedz) <_ C(k, p, n),

k' =0

car p est à support compact et la fonction H V(, n, .) est de classe C°° sur 1H à
valeurs dans L2 ((0, H)) (cf. le théorème 4 .5 de l'annexe) .

(b) On a

(RA(À(0, n) -I- ZE),fn, ,fn) = f +~	(P(~)IZ	dC- I1(E)+ I2(E)
j

	

?(~,n) - À(O,n) - ie

avec

	 Ip(C)12	dCL ~
(À(1

,n)-a(o,n)) -1 11nIIL2c~>>1I i (e
l~gi>i À(C,n) - À(0, n) - ie

et

avec

m1 = Min an (C) > 0 et M1 = Max an (C) >0.

	

0
0<~<1

	

0<~<1

COROLLAIRE 3 .2. Sous les conditions (3.51), on a

(3.56) CiIIORA('),l II(L2,(Ç))2 ~ ~~RA«) .f~~z,?,~s~~+IIAR~~C) .fllr,?s(~) ~ cf~~Le(s~) •

Sous les conditions (3.52), on peut aussi évaluer V RA (~) f . Nous y reviendrons
dans l'article suivant (partie II) .

La complétude de l'espace B(E, E'), avec E espace de Banach, pour la topologie
de la norme des opérateurs bornés, donne alors directement le principe d'absorption
limite .

THÉORÈME 3.4 (Principe d'absorption limite) . On se donne les réels p, s et
l'espace Es (µ) tels que

p e a(A) \ {a(0, n)/n e 1N*}, s > 1/2 et E3 (p) = L(2),
(3.57)

	

ou
p _ )(0,n) avec n E IN*, s > 1 et E3 (µ) _ .NL2s (n) .

(i) Les deux limites suivantes existent pour la topologie de la norme dans B(E8 (p),

(3.58)

	

R(p) =

	

lim

	

RA(~),~--~µ

112(e)l = I

qui tend vers +00 lorsque e tend vers 0. En effet, l'encadrement C 2 c,2n < a(, n)
\(0, n) _ E 2 an (C) < C 2 II CIIio ((o,x)) établi au théorème 4 .5, permet l'estimation

~I2(s) ~ > 1

	

S 2 an(C) d~ > 2m1 f 1 3J,- i C
4
a) +

	

Mi o ~ -f- E Mi

i

J-1 À(C, n) -

	

- je dC )

dC> 3Mi ~ Log e2Mi1 ~,
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Alors on a

(3.62)

(ii) Pour f fonction donnée dans E3(µ), u~ = RÂ(µ) f vérifie par dualité :

(3.59)

	

(A --- pI )u~ = f .

Remarque 3 .1 . Les fonctions ( H R(() ainsi définies sur (C~ _ {( E (C / ± Im( >
0 } sont localement h 31dériennes,

(a) d'exposant S E [0, Min(1, s - 1/2)) dans l'ouvert C~\S, où S est l'ensemble
des seuils À(0, n), n > 1, et à valeurs dans B(Ls([ ), L?8(SZ)),

(b) d'exposant S E [0, Min(1 /4, (s --1)/2)) dans un voisinage V, de )(0, n) tel que
Vn n S = {a(0, n)}, et à valeurs dans B(NL3(n), NL3(n)') .

Remarque 3.2. L'espace NL3 (n)' n'est pas un espace de distributions bien que tout
élément de NL3 (n)' admette des prolongements distributions qui sont dans l'espace
L?S (e) . Dans l'article suivant, nous préciserons les propriétés de la résolvante aux
seuils .

Exprimons maintenant les valeurs limites de la résolvante, à l'aide de crochets de
dualité .

PROPOSITION 3 .8 . Soit p E a(A) . On se donne s réel et f, g fonctions dans
l'espace E3 tels que

(3.60)

	

s > 1/2 et E3 = Ls (S2) si µ E (À(0, m - 1), )(0, m)),

(3.61)

	

s > 1

	

E NL9 (m) si µ =

< RA (u) f, g > Es , E8

f f (C,n)9(C,n) d~
n>m Jet

v . p.
J

f (~' n)g(~'n) dC	 À(C,n)-p

f (µ, n)g~ (µ, n) .

Remarque 3.3 . Le cas particulier et = c2 = c relève de ce théorème . L'hypothèse
(H) est satisfaite . . Les fonctions propres de l'opérateur Bt peuvent être choisies
indépendantes de C . Une base de telles fonctions est donnée par la suite des fonctions
(2.9) : V (C, n, z) = Vn (z), n E ]N*. Les estimations fondamentales pour Bn (~, f, g) au
voisinage des seuils (cf. les propositions 3.6 et 3.7) sont valides avec le réel s > 1, et
avec les fonctions f et g dans l'espace

NL3(n) = f L3(SZ) / si f (x, z) Vn (z)dxdz = o} .

Ces résultats sont à rapprocher de ceux de [W87] . Le choix f (x, z) = g(x, z) _
75(x)V(z),n avec p choisie comme dans la preuve du théorème 3.3, permet de mon-
trer l'optimalité de l'espace NL3 (n) .

4. Annexe sur les opérateurs de Sturm--Liouville .
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4.1. L'opérateur Bn sur L 2 (JR) . On considère un profil c(x) égal à e1 si x <0,
et à e2 si x > 0 : cf. (1 .5) et la figure 4 .1 .

Nous choisissons c1 > c2, quitte à changer l'orientation de l'axe Ox.
L'opérateur

B=-
d (c2x )~~ dx +cZ(x)gn

et son domaine D(B) _ {u E H1(R) / c 2u' E H1(1H) } ont été introduits en (2.10) .
Suivant la théorie de Weyl-Kodaira, développée dans les livres de Dunford et

Schwartz [DS] et de Wilcox [Wi84], nous déterminons une représentation spectrale
de l'opérateur Bn , selon les étapes E1-E4 qui suivent . Les calculs correspondants sont
développés dans le rapport [CD] .

Etape E1 . Les fonctions propres généralisées de Bn. Ce sont les solutions
du problème

trouver (a, (J') E IR+ x ( D ( Bn) ) ~ o ~ ,
(4.1)

	

Bn4 = a J) sur 1H,
bornée et non identiquement nulle .

THÉORÉME 4.1 . Les solutions de (4.1) existent si et seulement si À E (cq, 2n+oo) .
(a) Lorsque a E (cq,2ncg], elles sont données par

(4.2)

	

J)(À, n, x) = a°(À,n)'J)°(À, n, x)

où le coefficient scient a ° (À, n) est la coordonnée scalaire de F sur la fonction

e~~x six < 0,
(4.3)

	

° (À, n, x) =

	

ci icos(e2x) -I- c2
2

sm(~2x) si x > 0,

avec

~i = ~Ç(À,n) = i(c19n - À)112 et ~ 2 = ~a(À,n) --(À - C2gn) 1 ~ 2

c2
s

(b) Lorsque À E (cq, 1n+oo), elles sont données par

(4.4)

	

'J) (a, n, x) = a1 (À, n)4 (a, n, x) + a2(À, n)'J) 2 (À, n, x),

où les coefficients a z (À, n), i = 1 ou 2, sont les coordonnées scalaires de ( sur les
deux fonctions indépendantes

(4.5)

	

'J)1(À,n,x) _
sin(~1x) si x <0,
ci l2 sm(2x) six > 0,
c2 2

_ cos(ix) si x < 0,cos( 2x) si x > 0,

1
avec z = 2 (À, n) _ - (À - c?gn)"2 pour i = 1 ou 2 .

ci
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En particulier, le spectre ponctuel de Bn est vide et

(4.7)

	

Q(B ) _ ~(Bn~ _ { cq, 2~ +oo) •

Remarque 4.1. La fonction propre généralisée 2(À, n, x) est encore définie pour
À = ci qn et on a

(4.$)

	

~2(ci qn, n, x) _ I' ° (ciqn, n, x) _ J' 1 si x<O,
cos [2 (ci qn, n)x ] six > 0 .

Etape E2 . La résolvante RBn (o} pour ( non réel. Soit (un nombre complexe
non réel . On définit

i

	

2(( -
Cl(jn )1/2+

	

(2 =

	

~~ - c2gn) 1 ~ 2

la détermination choisie pour la racine carrée étant celle â partie imaginaire positive
ou nulle .

PROPOSITION 4.1 . L'équation Bn _ (4 admet pour base de solutions

In

~ 1 ((, n, x) _

~2(C,n,x)=

Ces solutions sont continues en ((,x) sur

sin((1x) si x < 0,
ci(1
2,	 sln((2x) si x > O,

c22

J COS((ix) SZ x < 0 .
cos((2x) si x > 0 .

_ {( E C/Re( E In et ± Im( E IR+} avec In = (cq,2ncg),

Jn = {( E (C/Re( E Jn et ± Im( E IR+} avec Jn = ( cq, in +oo) .

THÉORÉME 4.2. La résolvante RB n (()f = (Bn -- (I) -1 f, pour tout nombre com-
plexe ( n'appartenant pas au spectre o(B) et pour toute fonction f de Co (1R), est
donnée par

1(Bn(()f) e
lx -		

f(x')
sin[(1(x - x')]dx' si x < O,

-

	

C1~1 --
RB

	

°°
n (`~
r
)f

	

1

	

+~
(Cn(f) ~)e2<2x -I- 2 	f (x') sin[(2 (x - x')]dx' si x > 0,

c2 (2 x
avec

ço r	
Jc(ii

(cirl + CZr2)S

	

S

	

p

J0

sin(( lx ) + i cos((lx')] f (x')dx'

[- sin((Zx') + i cos((Zx')] f (x')dx',



Etape E3. La formule de Stône. Elle met en relation la famille des projecteurs
spectraux 1TE (a), a réel, avec les résolvantes RB n (o, (nombre complexe n'appartenant
pas au spectre or (Bn ) . Dans notre cas où a (B) _ a~ (Bn) , elle s'écrit

(4.10)

	

Va, b E IfZ, b'f,g E L2 (IR), (Hfl(b)f/g)L2(Jj) - (Hfl(a)f/g)L 2(JJj )

1

	

b
=

2'
lim

J [(RB(À
n + 2s)f/9)L2(~) (RB(Àn - iE)f/g)L2(jR)] dÀ .

271 ~ 4O

	

a

A partir de l'expression de la résolvante donnée au théorème 4 .2 , on peut calculer
la limite de l'intégrale figurant au second membre de (4.10) . Ce calcul fait apparaître
les fonctions propres généralisées '(À, n, x), i = 0,1 ou 2, définies en (4.3), (4 .5) et
(4.6) .

THÉORùM 4.3 . On se donne les fonctions f et g dans C0 (JR), et l' intervalle
[a, b] C IR avec a < c2gn <b. Alors

1

	

b

227r
hm

J [(RB(À
n + ie)f /g)L2(M) -

(RB(À
n - iE)f /g)L2 (M)] da€ 90+ a

1

	

b

J

	

[(RB(À
n + 20)f /g) L2 (J) (RB(Àn - iO)f/9) L2 (1R) ] da,

227r c2 q2

avec

(4.11)
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1
C~(of - (c(i + c2)

	

-f-
l(2

1
2i ir

[(RB(À "+i0)
.f/9)LZ(~)-(RB„(À -i0)f/9)LZ(~)]

~ (c) 2 + (c 2) 22~

c2~z	
11f/cl~l(ci~l + c ~z))~9/ )

~2(f/`)(9/~z)ciel ~- c2~2

0f {sin((ix') + i cos(~lx')]f(x')dx
,+oo

[
c
2~1 sin((Zx') + i cos((2 x')]f (x')dx' .

Jo

	

cZ(a

2 2 2 2s2 À E I = (cq,cqj,2nn

si À E Jn = (cq, in+oo),

formule dans laquelle la notation (f/) ~désigne l'intégrale de f sur 1H .
Etape E4. Normalisation des fonctions propres généralisées et repré-

sentation spectrale de Bn . La formule de Stone et les formules du théorème 4 .3
conduisent à choisir les coefficients a2(a, n) introduits au théorème 4.1 tels que

(4.12a)

	

a°(a,n)
2

	

1/2
2C2z~	

C~[(ci~i) 2 + (c 2 ) 2])2~
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2

	

1 / 2
(4.12b)

	

a l (À, n -	
~(
C1 (C1
l~i~+ c2~2)

	

'

(4.12c)

	

a 2 (À,n) _

(4.14)

	

j { L2(IR)
f

C1r(CZSl + 42)~

et on obtient ainsi les fonctions propres
~o = (po (À, n, x), ~1 = ço 1 (a, n, x)

des formules (2.19a), (2.19b), et (2.19c) du théorème 2 .3 du ~2 .
On peut alors énoncer les propositions qui suivent .
PROPOSITION 4 .2 . Pour toute fonction f de L 2 (IR), la limite suivante

_

	

N

N
(4 .13)

	

f ° (À, n) = L2(In ; da) - lim / f (x)cp° (a, n, x)dx
--~+oo -N

existe et définit un coefficient de Fourrer généralisé pour f, c'est-à-dire que

= L2 (In )
---+ .f° ( •, n)

et cp2 = cp 2 (À, n, x)

est un opérateur partiellement isométrique de sous-espace initial II n(In)L2 (IR)

et de sous-espace final ?-C° . L'application réciproque est donnée par
2 2

~0

	

et gn-8 ~0
(j)

*
(f) (x) = L

2 (JR) - lim

	

f (À, n)ço0(À, n, x)da .
8-+o+ C2

gn+b

(4.15)

L'application î est une représentation spectrale de la restriction de Bn à ? -(°,n , sur
l'espace 7-1° , qui transforme cette restriction en opérateur de multiplication par a dans
7-(° , c'est-à-dire

(4.16)

	

° (Bf)(À)n

	

_ Àf 0
(À, n) .

Cet opérateur, Bn)~o
n

est absolument continu de spectre In = {cq,2nclgn} •

PROPOSITION 4.3 . Pour toute fonction f de L2 (JR), pour i = 1 ou 2, la limite
suivante

N

N
(4.17)

	

f2 (À, n) = L2 (Jn ;da) - lim

	

f (x)ço (À, n, x)dx- +oo -N

existe et permet de définir un opérateur ,fin partiellement isométrique de sous-espace
initial H(J)L2 (1R)n -__ li l, n et de sous-espace final L 2 (J) ® L2 (J) _ ~ln ® fn, tel
que

4.18

	

~1 fin ~n ~n
(

	

)

	

À,n

	

2 i1 nf

	

(f (

	

),f ( ~ )),

_

	

2 N _
(4.19) (in)* (f 1 , f

2)
(x) = L2 (1R) - lim

	

f2 (~,
Nom °00 2=1 Clan+~

n, x)da,



i(Bf)(À)nn_ (À 1 (À, n), Àf 2 (À, n)) .

définit une représentation spectrale de la restriction de Bn à 7(1 ,n , qui est un
opérateur absolument continu de spectre Jn = [cq, i n+oo)

PROPOSITION 4 .4 (Projecteurs spectraux de l'opérateur Bu ) . Soient b un nombre
réel et f une fonction de L 2 (JR) . Alors ou b < c2gn et H (b) (f) = 0, ou

b
b e In = {cq, 2net qn] et Rn (b) (f) = J

	

J° ( À, n)ço° (À, n, .)dÀ,
c2 qn

ou

b e Jn = {cq, in +oo) et H (b)(f) =
I

f°(À, n)~P°(À, n, .)dÀ+

	

fZ (À, n)cp 2 (a, n, .)da .
~

	

z= Jn

On peut maintenant expliciter une représentation spectrale de l'opérateur Bn qui
est utilisée au théorème 2 .4 .

THÉORÈME 4.4 (Représentation spectrale de l'opérateur Bu) . Soit

(4.21)

	

~n = ?-~~ ® ?fin ® ?-fin L2 (In) ® L 2 (J) ® L2 (Jn)

la somme directe hilbertienne des espaces introduits aux propositions 4.2 et 4.3 . La
transformation unitaire

L2 (JR) -f ~n(4.22)

	

~n
f

	

(jO(À,n),P(À,n)J2(À,n))

où les J(À,z

	

n), i = 0,1, 2, sont définis en (4.13) et (4.17), réduit l'opérateur Bn . Pour
toute fonction f de L2 (JR), l'égalité de Bessel-Parseval s'écrit

(4.23)

	

11f ll2 (R)

	

%- lIJ° ( .~ n) ll2(Ii „) + IIP( .,n) II2(JL

	

..) + ll/( .,2n)~~i2(~~)

et la transformation fin 1 permet d'écrire le développement

2
(4.24)

	

f(x) = f~ .f°(À,n)cp°(À,n,x)dÀ +~ fn f 2 (À,n)~PZ (À,n,x)d~
r

	

i-1 J

dans lequel les intégrales en À convergent au sens de la norme de L2(JR; dx) .

4.2 . L'opérateur B sur L2 ((0, H)) . On considère un profil c(z) qui satisfait
l'hypothèse

(H)

	

c E L°°((0, H)) et Min c(z) > c„-t>0.

Pour réel, l'opérateur réduit B a été introduit en (3 .6) . Son domaine D(B) est
indépendant de . Nous les rappelons

(4.20)

(4.25)
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Bg =- z Cc2 (z)
l

~z I +c2 (z)~ 2 ,

D(B) _ {u e H 1 ((0, H)) / c2û E H'((0, H)) et (c 2u')(O) = u(H) = 0} .
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C'est un opérateur auto-adjoint dans L 2 ((0, H)), minoré et à inverse compact .
Soit (À(, n))>.1 la suite des valeurs propres de Bt , rangées par ordre croissant et

répétées éventuellement avec leur ordre de multiplicité . Soit (V(, n, .) )n> 1 une base
orthonormée de L2((0, H)), formée de fonctions propres associées . On a donc

(4.26)

	

V(~, n, .) E D(B) et B£(V (~, n, .)) _ À(~, n)V(~, n, .) .

Donnons quelques propriétés de ces fonctions propres et valeurs propres .
THÉORÈME 4 .5. Avec un profil c(z) vérifiant (H) et avec les notations ci-dessus,

on a les propriétés suivantes .
(a) Chaque valeur propre a(, n) est simple .
(b) Chaque fonction a( ., n), définie sur E, est analytique, paire, strictement crois-

sante sur l'intérvalle [0, +oo) et à valeurs dans l'intervalle In = [a(0, n), +oo) . Sa
dérivée première est donnée par

(4.27) n)
pH= 2~
J

c2 (z) ~V (~, n, z) I2dz .
0

On a en particulier 13À(0, n) 0, et

(4.28)

	

a(,n) = a(0, n) + 2 a() avec c2n < an(e) Ç ~IcIIO((O,H)) '

(c) On peut choisir la fonction propre V(, n, .) telle que la fonction F- + V(, n, . )
définie sur JR à valeurs dans L 2 ((0, H)) soit réelle analytique et paire .

Preuve . Soient V1 (, n, .) et V2(, n, .) deux fonctions propres associées à À(, n) .
La fonction c2& V1 V2 - Vi c2 ô V2 est dans H'((0, H)), à dérivée nulle, et nulle en z = 0
ou z = H. Elle est donc nulle sur (0, H) . On en déduit la colinéarité locale de V1 et
V2. Un argument de connexité donne la colinéarité globale sur (0, H) .

On a

À(~, n) _ (BV(,£~n, •) / V(~+n, •) )L 2 ((o , H))

H(4.29)

	

= J c2 (z) IDzV(,n,z)I 2dz+ 2

	

~~J H c2 (z) ~V (~, n, z) ~ Zdz .

0

	

0

On en déduit

(4.30)

	

a(, n) > 2 Min c2(z) et lim a(, n) _ +c'o .

La famille (Bt)t € jjj d'opérateurs à résolvante compacte, est une famille analytique
auto-adjointe de type (A) au sens de Kato (cf . [Ka, chapitre VII, 2}) . Le théorème 3 .9
de ce même chapitre de [Ka] donne l' analyticité et la parité des fonctions - + a(, n)
et - + V(, n, .) .

La formule du Min-Max (cf . [DS]) pour la nième valeur propre a(, n) de l'opérateur
B, réel, permet d'établir la croissance de la fonction À( ., n) sur [0, +oo) . L'analyticité
et (4.30) entraînent la stricte croissance sur ce même intervalle .

La fonction ât V (, n, .) est dans le domaine D (B) de l'opérateur B0 . En effet

Wt'(~, n, •)

	

V(',n, • ) -- V(, n, .) E D(B~

	

)
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BoV(', n, .) - BoV (, n, .)
BoW ~ (, n, .)

\(',n)V(',n, .) - a(e,n)V(,n, .) - c2( ' 2 V(', n, .) - 2 V(,n, .) )

Quand ' tend vers , on a la convergence dans L 2 ((0, H)) de la famille (

	

(, n, .) ) ~
vers EkV (, n, .) et de la famille (BoW ~ (, n, .) ) ' vers

Z(, n, .) _O À(,n)V(,n, .)+À(,n)â3V(,n, .)-c2(2 V(,n, .)+ 2â V(,n, .) ) .

Le point (EJV(,J

	

n, .), Z(, n, .)) est donc adhérent au graphe de l'opérateur Bo et

B â V( , n, .) = 8À(, n)V (, n, .) + a(, n)â V(, n, .) - 2 c2V (, n, .) .

Par ailleurs, le produit scalaire avec V(, n, .) s'écrit

( B 9 V(, n, .) / V (c, n, .) )L 2((o,H)) _ ( 9V(, n, .) / B~V(, n, .) )L 2( (0 ,H ) )
= )(,n)( a V (, n, .) / V (, n, .) )L2((0H)) .

On en déduit la dérivée (4.27) et la forme (4.28) pour À( ., n) .

	

D
La figure 4.2 donne l'allure des courbes de dispersion --~ a(, n), qui peuvent

éventuellement présenter des points d'inflexion, puisque la dérivée seconde de a( ., n)
s'écrit

(4.31)

	

8£ a(~, n) = 2 ~ c ( ) IV(,n,z)I 2dz~
.~o

pH
+ 4 ~

J
c2 (z) Re ( â£V (~, n, z)V (~, n, z) )dz .

0

Remarque 4 .2 . Toutes ces propriétés restent vraies pour l'opérateur B, avec des
conditions limites de Dirichlet, respectivement Neumann, en z = 0 et z = H . Le
domaine D(B) _ {u E H 1 ((0, H)) / c2u' E H 1 ((0, H)), u(0) = u(H) = 0}, respec-
tivement D(B) _ {u E H 1 ((0, H)) / c2u' E H 1 ((0, H)), (c2u')(O) _ (c2u')(H) = 0},
reste indépendant de .

Considérons maintenant le cas particulier d'une bande présentant deux strates
horizontales. Le profil c est alors (1 .6) et représenté à la figure 4.2: h est un réel de
[0, H], c1 et c2 sont deux réels strictement positifs, c(z) est égal à c 1 si z E (0, h) et à
c2 si z E (h, H) .

Les valeurs propres sont solutions de la relation de dispersion, qui traduit les
conditions de raccord en z = h des solutions V1 et V2 du système

-ciVi' + ci 2 V1 _ ÀV1 sur (0, h),
-c2V2' + c2 2V2 = ÀV2 sur (h, H),
V~ (0) = V2(H) = 0,
V1(h) = V2 (h) et c1 V1 (h) = c2 V2 (h) .

Cette relation s'écrit

(' h

	

2 2 1 21

	

(H - h)

	

z

	

c2(À-cz~2) 1 /z
(4.32) tan ~~1 (~ - clé )

~ J
tan ~	Cz (~ - c2)"2a~

	

J

	

~1 ~~ _ ~i~2)1~2
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Les solutions réelles de (4.32), rangées par ordre croissant, déterminent la suite (a(, n))fEw* .
L'équation donnant la suite des seuils a(0, n) s'écrit

(4.33)

	

tan ( s'1 À 1 / 2) tan [(H_
h) À 1 / 2 =

ç2
.

c

	

c

	

c1

	

2

	

1

La direction propre associée à a = a(, n) est donnée par

A(, n) cos[ 1(À)z] si z E (0, h),
(4.34) V(, n, z) =

	

cos[ 1(À)h]
A(n)i[	

(À) (H - h)]
sin[ 2 (À) (H - z)] si z E (h, H),

sm2
avec

(4.36)

Cz 7f z
v(A) _ [ 4H2 ,

n > 1, qn

i(À _
c2)1/2 et e2(À) _ 2 (i~ - c 2)"2 ,2~

Im ~(À)>OsiÀ<c~ 2,

	

j=1ou2
La condition de normalisation détermine les coefficients A = A(, n) . En posant s _

on a
A2

	

sin(2, h)

	

cos2 (, h)

	

c11sin(2, h)
(4.35)

	

2 h +	2	 -I- (H - h) ,
Sln

2	
[2(H

	

~- h)]

	

2c2 2~1

	

2~2
Examinons enfin le cas particulier c1 = c2 = c. Une résolution directe de (4 .26)

donne

1

	

+(n-1)]~r et À (~ , n) = c2g
2 + c2 2 ,

.H [ 2

	

n

V(~>n z) = 2 sin[g(H - z)] (= (-1)n 2 cos zn

	

H

	

(gn ) )H
et on retrouve les fonctions (2.9) . Les valeurs propres et fonctions propres peu-
vent aussi être obténues comme cas limite de (4 .32) et (4.34), puisque (4 .32) s'écrit

tan(h) tan[(H - h)~] = 1, avec = 1(a) = 2(À) = (1 À - c22)"2 . On obtient

H L 2 + ~n - 1)~] = Qn ,

	

n > 1 .

Les courbes de dispersion -* À(, n) = c2qn + c22 sont des paraboles passant pour
= 0 par les seuils À(0, n) = c 2gn .

4.3. Figures. Le profil (1.5) avec c1 > c2, donne le spectre (2 .23), soit

= 1 .

+oo I = U ~(B)n= U [cq,+oo),2navec qn = H [ 2 +(n- 1)~r] .
n>1

	

n>1

Nous le visualisons à l'aide des spectres (4.7) des opérateurs réduits Bue, (Fig . 4 .1) .
Le profil (1.6) donne le spectre (3 .18), soit

a(A) _ [À(O,1), +oo) = U a(B) _ {À(,~n) / ~ E IR et n E IN*}.

eelR

Selon (4.28), chaque courbe de dispersion --* a(, n) est située dans une bande
limitée par les deux paraboles d'équations

--~ À(0, n) + c2 et --* À(O, n) + c~,1 2 ,

où cm = Min c(z) et CM = Max c(z) ; voir Fig . 4 .2 .
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PYRAMIDAL ALGORITHMS FOR LITTLEWOOD-PALEY
DECOMPOSITIONS*

M. A. MUSCHIETTI* AND B. TORRtSANI*

Abstract. It is well known that a pyramidal algorithm is associated with any usual multireso-
lution analysis of L2(/R) for the computation of the corresponding wavelet coefficients. It is shown
that an approximate pyramidal algorithm may be associated with more general Littlewood-Paley
decompositions. Accuracy estimates are provided for such approximate algorithms. Finally, some
explicit examples are studied.

Key words, wavelets, subband coding
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1. Introduction. Wavelet analysis has emerged in the past ten years as a com-
pletely generic methodology for solving problems in many different areas such as
mathematical analysis and operator theory, numerical analysis, signal and image pro-
cessing, computer vision, computer music, turbulence, and astrophysics. Among the
advantages of wavelet decompositions, their relative simplicity and the existence of
associated fast algorithms are two of the most important [1], [6].

Essentially there exist two different approaches to wavelets, namely, the discrete
and the continuous approaches. Roughly speaking, discrete wavelet decompositions
are most often adapted to problems in which it is important to reduce the volume of
data, for instance, in signal or image compression or numerical analysis. On the other
hand, for physical signal analysis problems, one is interested in keeping redundancy
on the wavelet transform to get a finer analysis.

The main drawback of continuous wavelet decompositions is that there is a priori
no associated fast algorithm for the computation of the corresponding wavelet trans-
form. Some attempts have been made to cure such a drawback, mainly by matching a
multiresolution framework to the continuous setting (see, for instance, [4], [7]). They
are, in general, associated with limited classes of wavelets.

Here we describe a method for associating fast algorithms to continuous wavelet
decomposition, based on the same philosophy. In particular, it is shown that, starting
from a usual mother wavelet, the scale discretization yields a new wavelet (called the
integrated wavelet) which is associated with a pair of low- and high-pass filters. These
filters are, in general, not discrete, but may in some situations be well approximated
by discrete filters, the localization of which can be directly related to the regularity
of the scaling function.

The paper is organized as follows: Section 2 is devoted to a description of the
version of continuous wavelet decompositions that we will use in what follows. In
3 we present the algorithmic aspects we are interested in and, in particular, our
main result, Theorem 3.2. We present some examples in 4, and 5 is devoted to the
conclusion.
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Throughout this paper we shall use the following notation. We shall denote by
I[" lip the LP(1R), LP([-r, r]), and P(2) norms. The LP([-Tr, r]) norm is normalized

Our conventions for the Hermitian product and Fourier transform in L2(/R) are the
following ones

(f, g) f(x)g(x)* dx,

where the star denotes complex conjugation, and

]() =/ :(x)e-’xdx"

2. Continuous wavelet decompositions. Let us start from standard notions
of continuous wavelet analysis. We will focus on the analysis of L2(/R), and sometimes
we will describe in a few words the corresponding results in the H2(/R) context (here
we will denote the complex Hardy space by H2(/R) {f e L2(/R), ]() 0 V. _< 0}).
Here we shall be interested in two "decomposition-reconstruction" schemes corre-
sponding to different "reconstruction wavelets."

2.1. The bilinear scheme. Generically, an infinitesimal wavelet (or mother
wavelet) is a function E LI(/R) such that the following admissibility condition
holds:

o 2 du b(-u)
2 du

1(i)

(in such a case, b is generally taken to be a real-valued function). If is, say,
differentiable, equation (1) basically neans that (0) 0, which can be otherwise
stated as follows:

(2) (x) dx O.

Such a mother wavelet provides the following analysis of L2(/R): for any (b,a) E
IR x/R+, one introduces the wavelet

and one has the following representation theorem, the proof of which, is well known
and can be found in

THOPM 2.1 (Calderdn). Let be mother" wvele. Then n f L(1R)
decomposes as ]bllows:

(4) f Tf(b,a) P(b,)dbda
x ]R... a

Tf (b, a)
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strongly in L2(/R).
T L (1R 1R*+) is called the wavelet transform of f with respect to the

analyzing wavelet . If is sufficiently well localized in time and frequency (i.e.,
both and have sufficient decay at infinity), TI gives information on the time-
frequency localization of f. Conversely, equation (4) states that the wavelet transform
is invertible on its range, Mlowing the reconstruction of the analyzed function from
its wavelet transform.

If one restricts oneself to the case qf the Hardy space H2(), a weaker admissibil-
ity condition (concerning only the positive frequency part of ) is sufficient. Simply
assuming that

(5) c (u)
2 d 1,

u

Theorem 2.1 holds for any f H2().
Let (x) be an infinitesimal wavelet and let (x) be such that

(6) I( (usgn())l du
u

In other words, I(u)l2 -u0l(u)]2 for all e , and lim ]()2 0.
is cMled a scaling function, and one sociates the corresponding family of functions

with it:

a

Given f L() consider its smoohing (with respect to ) at scale :

(8)

that is,

8a(X) /.lR(f ((b,a))(b,a)(X) db;

(9) sa (x) du (x) d--u-u,
u

where da(x) stands for the details of f(x) at scale a:

(10) de(x) JlR(f, (b,a))(b,a)(x)db.
Then, sa E L2(/R) and one has the following decomposition, whose proofs are

immediate from that of Theorem 2.1.
COROLLARY 2.2. Let be an infinitesimal wavelet, and be an associated scaling

function. Then any f L2(/R) can be expressed as follows:
a da

(11) f lim sa s + daa--.o a

(for any aoe IR*+) ,strongly in L2(/R).
The corollary also holds in the H2(/R) context. Let us now set

2-J
da(x)

da
(12) Dj(x)

-.-.1 --
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Then, Dj E L2(/R) represents the details of f(x) visible at scale 2j+l, not at scale 2Y,
and

(13) Dj() ]()
-5-,

b(a)
a

Introducing the function @(x) such that

2 12 da

one has

(15)
2

D.() ]() 1(2-J)
We will refer to the @(x) function as the (global or integrated) wavelet. Note that
equation (14) does not completely define the wavelet @. Once again, one can restrict
oneself to wavelets vith positive-valued Fourier transform, but this is not necessary.
By construction, the integrated wavelets lead to a partition of unity in the Fourier
space as follows:

2 jo 2

for all E/R. We also have

Defining the, dilates and translates of (I)J and @Y as

V (x)

we then have the following theorem.
THEOREM 2.3. Let be an infinitesimal wavelet and and be associated

integrated wavelet and scaling functions as in equations (14) and (6). Then, any
f L2(/R) can be decomposed as

(19) f :/<S, (b (b db +

strongly in L2 (1R).
We shall use the following notation:

(20) Tj f(b)
Sjf(b)

<f, >,
<f,
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2.2. The linear scheme. It is well known that the reconstructing and analyzing
wavelets can be decoupled, i.e., one can use different infinitesimal wavelets for the
computation of the coefficients and the reconstruction of the analyzed function from
the coefficients. In such a case, the admissibility condition (1) has to be modified
accordingly.

A particular example of such a decoupling which has been known for a long
time consists of formally taking a Dirac distribution for the reconstructing wavelet.
Assuming that

oo

1(el)

instead of equation (1), one has the following decomposition of any f E L2(/R):

(22) f(x) JR If, (z,a)/da
: a

strongly in L2(/R). This is the so-called Morlet reconstruction formula of f from
its wavelet coefficients. Such a linear analysis (linear in the function) generates a
continuous multiresolution analysis as follows: Introduce the linear scaling function
q E LI(/R) defined by

(23) @() (u sgn())
du
u

is also such that (u) -uOucp(u) for all e/R.
Associate with the following family of functions:

(24) qO(b,a)(X)
a

qo
a

Finally, introduce

(25) 6a(x) T:(x, a) (f

(26) aa (x) (f, a(x,a))

One then has the linear analogue of Theorem 2.1 and the corresponding corollary.
THEOREM 2.4. Let LI(1R) be a mother wavelet such that equation (21)

holds, and let qa be the associated linear scaling function. Then any f L2(/R) can
be decomposed as

(27)

lim aa
a--+0

a da
1R*O’ao -- a ao

a
da

strongly in L2(/R).
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The integrated wavelets are then defined as

1 da
(28) )() (a)-a-
and yield a partition of unity in the Fourier space

(29) E (2J) (2J) + E (2J) 1.
:i=-o j <_jo

The linear wavelets still appear as differences of smoothings at two consecutive scales
as follows:

(30) O()

and every f E L2(/R) decomposes as

(31)
j----oo j <_jo

where O(x) Od (x b).
3. Associated approximate filters.

3.1. Pyramidal algorithms. Let us recall the usual algorithmic structure asso-
ciated with a multiresolution analysis. Let and be, respectively, a scaling function
and a wavelet assoaiated with the mul.tiresolution analysis, and set Vf E L2(/R),

(f,jn) 2-j f f(x)(2-J(x n))*dx,f
(32) J/R

Sjf(n) <f jn) 2-J JlR f(x))(2-J(x n))*dx.

Note that for any value of the scale parameter a 2j, we sample the corresponding
wavelet and scaling function transform at unit sampling frequency.

Then, if and are related by

(33) (2) m0()(),
(2) ml()((),

where m0 and m are the 27r-periodic low-pass and high-pass filters

(34)
TtZl (. E 9keik"

then the coefficients nay be computed using the following pyramidal algorithm

(35)
Tjf(n) gSj_..f(n- k2-J-1)

sir(n) E h*SJ-’.f(n- k2-J-1).
k
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]=0

]=1

]=2

]=3

FIG. 1. QMF algorithm associated with the wavelet transform on a fine grid.

The algorithm is called pyramidal since scaled copies of the same filters are used
throughout the calculation and the coefficients are obtained by successive convolutions
with such filters. It is easy to see that the total number of multiplications necessary
to process N samples of, say, SoS is proportional to N log(N). It is schematically
described in Fig. 1 (in the particular situation where the m0() filter has only three
nonvanishing coefficients).

3.2. Approximate filters. Now we address the problem of discretization of the
previous wavelet decompositions. Up to now we have only obtained decompositions
that are discrete with respect to the scale and continuous with respect to the position.
The problem is that no discrete filters are ’% priori" available.

We shll work with both the linear and the bilinear anMysis=reconstruction schemes
at the beginning and specify our choice later on. From now on we shall assume that
a pair of functions

(36) m0() (I)(2)

(2)(37) m()

can be defined almost everywhere in/R. This is clearly the case in the bilinear scheme,
where I(I)l is monotonic for both _> 0 and _< 0. The problem is that, in general, such
an m0-function is not 2r-periodic and thus cannot be used in a pyramidal algorithm.

Nevertheless, a modification is possible. Indeed, if (I)() is "concentrated" around
the origin in, say, the interval [-r, r], then one may expect that ) "does not see too
much" the nonperiodicity of m0(), and that m0()(I)() can be well approximated by
m()/() for some 2r-periodic function m().2

Here let us introduce for convenience the following subspace of L2(/R):

(38)

This assumption is motivated by the fact that we will sample the wavelet transform and the
scaling function transform at unit sampling, frequency.

2 A natural candidate for m() is the periodization . m0( + 2rk) of ’m0(), but as we shall

see, there are many other choices.
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We will assume that the collection {(I)(x- k), k e 2} is a Riesz basis of/go or,
equivalently, that there exist two finite and nonzero constants A and B such that

(39) A _< I( + 2rk)l 2 _< B a.e.
k

Then, it follows from general results that there exists a function X E L2(/R) such that
the sequence {X(x- k), k e z} is the basis of
X is given by its Fourier transform

()(40) ()
-k I( + 27rk)l2

Now consider the discretization of the functions Tj f(x) and Sjf(x) that we denote
by T]f(n) and sir(n), respectively as follows:

S]f(n) sir(n) Vn e
(41) Tjdf(n) Tj f(n) Vn e Z.

Let m]() e L2([-r, r]) and m() e L2([-r, rr]) be two (27r-periodic) candidates
for approximate filters and denote by {h,k e 22’} and {g, k 2} their respective
Fourier coefficients. Then, we will set

(42) (Tf(n)Sf(n) - g*Sdof(n k),
k h*Sdof(n k),

and for j > 1,

vk j-lf(n- lk),
h*Sja-lf(n 2Y-lk).

Our purpose is to compare such "algorithmic expressions" 3 with the exact expressions

S]f and T]f, and find "best approximants" for the m and m filters.
The first remark is the following proposition.
PROPOSITION 3.1.

1. Ker(S0d) b/.
2. S; bl T; blo 0 for any j 1,

Proof. The first part is a direct consequence of the definition of/go and implies
the second part by definition (43). rl

Our main result is the following theorem.
THEOREM 3.2. Let O(x) and (x) be the scaling function and the integrated

wavelet, respectively, associated with the infinitesimal wavelet (x), and let rno()
and m() be the associated low-pass and high-pass filters. For O, 1 set

(44) tt(m, m) [(rn() m())()12d

Then the following properties are satisfied:

3 We do this because this is precisely what is numerically computed in practice.



PYRAMIDAL ALGORITHMS 933

1. There exists a unique pair of 2r-periodic filters m() hi() minimizing
#(mi, m) given by

(45) rh0() Ekez( + 2rk)*(2( + 2rk))
+ 2 k)l

(46) rhl() Y’kEZ i( + 2rk)*(2( + 2rk))

Ekz I( + 2rk)l 2

2. For the above choice of filters, and setting

(47) Ci ess sup Irhi()l, i 0, 1,

the following inequalities hold:

(48) IISf Sfll <_ (?0, too)2(1-j)/2
1 1--(Cx/-)iCox,/ Ilfll:,

(49)

,,Tf T]f,l < 2(1-J)/2 (#((nl, ml) + Cl#(5o, mo)x1- (Cv)j-1 )1 Co/ Ilflle.

3. For any f E lgo,

(50) Sf S1df,
Tf Tldf

Before giving the proof of the theorem, let us give the following immediate corol-
lary.

COROLLARY 3.3. Assume that the infinitesimal wavelet (x) is associated with
a linear analysis-reconstruction scheme. Then the associated approximate quadrature
mirror filters (QMFs) rhi() given by equations (45) and (46) satisfy

(51) rh0() -- #tl () 1,

so that we have the reconstruction algorithm

(52) Sof(n) E T;(n).

This reconstruction formula is the discrete counterpart of Morlet’s reconstruction
formula (22). It was also obtained in a slightly different context by Saito and Beylkin

Proof of the theorem. Using the inequality Ilfll <- 117111/2r, we shall work
directly in the Fourier space. First of all, we clearly have
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(the last inequality comes from the Cauchy-Schwartz inequality). This explains the
occurence of such a term in our formulation. The minimization of this term is a

classical problem and leads to

(54) ( z -4- k E hr( x -4- l) -( - dx 0 Vk e z

or, otherwise stated,

(55) eik m’()E I?( + 27r/)12 E )( + 27r/)*)(2( + 27r/)) d 0
l

Vk z.

The unique solution is precisely that given in equation (45). The estimation of I[Tf-
Tdfll is completely similar and leads to the approximate filter given in equation (45).
The details are left to the reader.

Let us now consider larger scales. Before going into the details, let us introduce
for convenience the following "intermediate" sequences:

(56) { Tf(n) a, d 2Y-
-]k h*S lf(n 2-k).3--

Then, clearly,

(57)

Again we focus on the approximations Sf, the proof for the details Taf being com-
pletely similar.

(58)

The second term is estimated as follows:

(59)
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Summarizing, for m()= rho() we have

(60)

_< 2r2(1-)/(ro, mo)(X + Co,/ + (CoVe) +... +

< 2r2(1-j)/2#(rho, mo)
1 (Cox/)j

1 Cox/

The same kind of estimate yields the error estimate for the Tf coefficients. This
achieves the proof of the two first items of the theorem.

Let us turn to the third part of the theorem. Then, let us assume that f E 5/o.
This means that in.the Fourier space, f is of the form

(61) () F()()

for some 2r-periodic function F E L2([-, r]). Then, an explicit computation of

S-?- sd’ yields

(62)
+ +

=0 ifm]=rh0.

This concludes the proof of the theorem. [:]

Remark (asymptotic behaviour). It is interesting to analyze the asymptotic be-
haviour of the estimates when j -- oc. Consider, for instance, the estimate of

IISf- S]fll; the coefficient of I[fl[2 is

(63)

(for C0/ :/: 1) in the limit. The limit is finite for Co 1 and zero for Co < 1, while
it diverges for Co > 1. In the two first cases, this means that the accumulation of
errors resulting from the approximate algorithm is compensated by the fact that Sj f,
lying at larger and larger scales, is sampled at the same frequency all the time. This
shows that "redundancy implies stability".

3.3. Decay of approximate filter coefficients. The localization properties of
the {hk} (and thus {gk}) approximate filters can be directly related to the regularity
properties of the scaling function as follows.

THEOREM 3.4. Let LI(1R) be a p-times differentiable scaling function and
Cno() k hkeik be the low-pass filter defined according to equation (45). Then, if
for any ra O, 1,..., p,

(64)

for some positive constants Kin, e, then

(65)
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Proof. Assume that () is p-times differentiable. Then, after p differentiations,
equation (45) yields

(66) dPrho() ’k a( + 2rk)
[E I$( + )1]’

where G() is a finite linear combination of terms of the form

a$() a-$()
d’ d-

and

d d-
and their complex conjugates. Then, estimate (64) gives

(67) dPh() e L([0,2r])
dP

and

(6s) d0() e C(R).
dp

Moreover,

(69)

leads to

i-pfo
2 dPho()e-ikdkPhk - dp

1 / dPrho()
d< II d’rh(70) ]k]P]hk] - - dp d o’

which proves the theorem.
Thus, under some weak assumptions on the scaling function, it is possible to get

well-localized filters. However, this problem is completely independent of the accuracy
problem addressed in the previous section.

Note also that Theorem 3.4 should be compared with similar results in the case
of classical multiresolution analysis, which leads to the notion of r-regular multireso-
lution analysis (see [6]).

3.4. The bilinear scheme. We have seen in the corollary of the previous section
that the approximate filters rh0 and rhl given in (45) and (46) are ideally adapted to
the linear analysis-reconstruction scheme. However, in the bilinear case, rh0 and
cannot be directly used to reconstruct the analyzed function from the approximate
coefficients, since they do not fulfill the QMF condition

(71) Irh0()[ 2 --I?’tl()[ 2 1 in general.

Then, a possibility is to use different filters for the reconstruction, for instance, use

rh0 as the low-pass filter and - Io()1(72) rh[ () ()
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as the high-pass filter. In such a case one must be careful with the zeros of the rhl ()
filter.

As an alternative, the same kind of analysis as before can be performed in the
bilinear analysis-reconstruction scheme. The previous arguments must be applied to
the details and approximations instead of the wavelet coefficients themselves:

(73)

Again using approximate filters to evaluate the coefficients, one is naturally led to the
quantity

(74)

At the first step, for instance, one has to evaluate

The minimization of such a quantity naturally leads to

(76)

and, similarly,

(77) [m() 12 + 2 k)12] (2 + 4xk)l 2

+ e-k)l

It is worth noting that in such a case, the bilinear scheme is well suited for this pair
of filters and ensures the validity of the usual QMF relation

(78) [m()l2 + Im()l2 1.

Moreover, it is easy to derive the "bilinear counterpart" of Theorem 3.4, relating the
length of the approximate filters to the regularity of the scaling function.

3.5. Some complementary remarks. 1. The algorithm described above is
actually adapted to the problem of finding approximate discretization of Littlewood-
Paley decompositions and is a priori independent of the linear or bilinear schemes
derived from continuous wavelet decompositions. In other words, there is no connec-
tion between the b discretization problem and the scale discretization (which is not
a true discretization in the method reported in 2). Corollary 3.3 simply states that
if one considers the filters rh0 and rhl, the choice of the linear scheme yields simpler
reconstruction formulas.

2. Throughout this paper, we have implicitly fixed a reference scale by the choice
of a sampling frequency equal to one for all the voices of the wavelet transform. A
change of this sampling frequency is equivalent to a global scaling of L2(/R).

3. Assume that we are in the case of a scaling function with exponential decay
in the Fourier space (i.e., )() _< Gee-11 for some positive a). Then, it is not very
difficult to show tht (in the case of a init sampling frequency) the approximation of
the filters obtained by sampling the inverse Fourier transform of m0 leads to an error
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on the scaling function coefficients of the order e-. In the same way, defining the
approximate 2r-periodic high-pass filter by the QMF relation leads to the same kind
of error estimate for the wavelet coefficients.

4. Obviously, it follows from the expressions of the approximate filters (both in the
linear and bilinear schemes) that if (I) and are associated with a usual multiresolution
analysis, with 2-periodic filters, one recovers m] m0 and m

5. It was shown in [2] how to use Calderhn’s formula to get descriptions of the
Fourier space different from the Littlewood-Paley one by replacing the powers of 2 by
an arbitrary monotonic sequence of scale parameters. It sounds reasonable to think
of corresponding approximate algorithms similar to the one described above, at least
for rational scale parameters. However, this has not been done at the present time.

4. Examples. There are many examples of continuous wavelets for which an
efficient algorithm is needed. Here we describe some very simple examples (the filter
coefficients have been computed using the Mathematica package).

4.1. The LOG and DOG wavelets. The LOG wavelets are widely used in
the context of computer vision. LOG stands for Laplacian of Gaussians. As stressed
in [2], in the linear decomposition-reconstruction scheme, if

(79)
1 )e_/.(x) (1 x2

the associated scaling function and integrated wavelet are given by

1 _x2/2(80)

and

(81) O(x)
1 (e_./2 2e_2.).

The integrated wavelet is then a DOG (Difference of Gaussians) wavelet and it is no
problem to derive t.he detail coefficients Tf from the approximations S]f. But one
clearly needs an efficient algorithm to compute the approximations. In general, the
scaling function and wavelet have to be scaled properly for the corresponding trans-
forms to be accurately sampled at unit sampling frequency. We shall then consider
more general scaling functions

(82) () -/

with the corresponding integrated wavelets. In Figs. 2 and 3, we give as examples
the plots of the approximate low-pass filters rh0() (the high-pass filter rhl () is easy
to deduce), and the coefficients of rh0() and rh() for a 4 and a 6, respectively.
It is worth noting that in both cases (and, in fact, for any positive a) the {hk} and
{gk} sequences are rapidly decreasing as a consequence of Theorem 3.4.

4.1.1. a 4. The hk coefficients are

{0.3256327400276189, 0.23348983204217, 0.085798244731082,
0.01625749135447543, 0.0015489926732795, 0.0000922406284932685,

(83) --6.3294 10-6 5.04664 10-6 --3.0372 10-6

1.84053 10-6, --1.11595 10-6 6.76772 10-7,
--4.10463 10-7 2.48954 10-7, --1.50997 10-7, 9.15844 10-8},
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-I0 -5 0 i0

FIG. 2. Approximate low-pass filter for the DOG wavelet with 4.

-i0 -5

6

4

2

o

FIG. 3. Approximate low-pass filter for the DOG wavelet with 6.

and the gk coefficients are

(84)

{0.6743672599723812, -0.2334898320421699, -0.085798244731082,
-0.01625749135447542, -0.00154899267327945, -0.000092240628493343,
6.3294 10-6 -5.04664 10-6 3.0372 10-6

-1.84053 10-6 1 11595 10-6 -6.76772 10-7

4.10463 10-7 -2.48954 10-7 1.5099710-7 -9 15844 10-s}

4.1.2. a 6. The corresponding hk coefficients are

(s5)

{0.3972771041574456, 0.2433136948393599, 0.05323383400865474,
0.004788125238023543, -0.00002934485917262438
0.00007751303939803943, -0.00003576989742401233,
0..00001688424764446744,-7.97394 10-6

3.76645 10-6 -1.77913 10-6 8.40398 10-7

-3.96976 10-7, 1.87518 10-7, -8.85773 10-s 4.18409 10-s},
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FIG. 4. Logarithm of #(mo,rho) as a function of .
and the gk coefficients are

(86)

{0.6027228958425545,-0.2433136948393598,-0.05323383400865478,
-0.004788125238023527,0.00002934485917263695,
-0.00007751303939808579,0.00003576989742395847,
-0.00001688424764445047,7.9739410-6

-3.76645 10-6 1.77913 10-6 -8.4039810-7

3.96976 10-7, -1.87518 10-7, 8.85773 10-8 -4.18409 10-S}.

4.1.3. Precision of the algorithm. As we have seen, the estimate of the ac-

curacy of the approximate algorithm is governed by the functional #(m0, rho). Here
we present numerical estimation of this quantity for the DOG wavelets for various
values of the p/rameter. For instance, #(mo,o) 1.03632 10-17 for c 1,
#(too, rho) 1.63909 10-6 for a 3, .and #(m0, rho) 0.0012859 for c 6. Figure
4 represents the logarithm of #(m0, rho) as a function of a.

4.2. Exponential-type wavelets. These wavelets are real-valued wavelets char-
acterized by their exponential decay in the Fourier space. Let

1 I1n il/c(s) () (_ )! -
n 1,..., oo control the number of vanishing moments, and n() have exponential
decay for all n. A direct computation yields the corresponding scaling function

(s8)

Note that n() "~o 1 + O(11). Then, (n e cn-I(/R) and Id’$/d’l has expo-
nential decay Vm 0 n 1, which implies that hk O(kl-n).

The integrated wavelets are easy to deduce and the associated low-pass filter is
represented in Fig. 5 in the case n 1 (with a .3).

The case n 1 is not very interesting numerically because @ is nondifferentiable
at 0 and the m0 filter has slow decay. Then we shall show the case n 5, a .3
for which the low-pass filter is shown in Fig. 6.
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-i0 -5 0 5 i0

FIG. 5. Approximate low-pass filter for exponential-type wavelet with 1 vanishing moment.

-10

1

-5 0

FIG. 6. Approximate low-pass filter for exponential-type wavelet with 5 vanishing moments.

The 16 top low-pass and high-pass filter coefficients are given by hk coefficients

{0.2608909, 0.21193501, 0.11802165, 0.047464751,

(89) 0.012065044,--0.001261182,-.0.004691885,--0.004500855,
--0.0034217616, --0.0023426834, --0.0015318216, --0.00096772754,
-0.00060530854, --0.00037287531, --0.00023103465, --0.00014240093}

and g coefficients

{0.7391091, -0.21193501, -0.11802165, -0.047464751,
-0.012065044, 0.001261182, 0.004691885, 0.004500855,(90) 0.0034217616, 0.0023426834, 0.0015318216, 0.00096772754,
0.00060530854, 0.00037287531, 0.00023103465, 0.00014240093}.

It is worth noting that all such coefficients are easy to obtain numerically.

4.3. The Cauchy wavelets. The same filters as before can be used to work
with the wavelets that were used by Paul in a quantum mechanical context (they are
canonically associated with the radial Schrodinger equation for the hydrogen atom,
for instance). They are of the form

e- for positive values of ,(n-l)!(91) n()
0 otherwise.
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Then n 1,..., cx controls the number of vanishing moments and n() has expo-
nential decay for all n. A direct computation yields the corresponding scaling function

n--1 pe-( }-’p=0 N for positive values of ’,(92) n()
0 otherwise.

The first one is particularly interesting since it is canonically related to the Cauchy
kernel. Indeed, the scaling function coefficients of a function f(x) E H2(/R) form an
analytic function of z b + ia, that is, the analytic continuation f(z) of f(x) to the
upper half-plane. The corresponding wavelet transform is then (up to a factor a) the
derivative of f(z) with respect to its imaginary part Tf(b, a) -aOaf(b + ia).

The previous filters can then be used to get a fast approximate algorithm for
wavelet transform with such wavelets. Of course, adapted filters can also be obtained
by directly using the formula yielding the rhi filters. However, since ( is discontinuous
at the origin for any n, such filters are not suitable for numerical use since they have
slow decay.

5. Conclusions. In this paper we have described a method that associates a pair
of (2r-periodic) filters with a Littlewood-Paley (or dyadic wavelet) decomposition
yielding a pyramidal algorithm for the computation of a corresponding approximate
transform.

In particular we have shown that in the case where the Littlewood-Paley decom-
position comes from a linear scheme of infinitesimal wavelet analysis (as described
in [2]), such filters fulfill a kind of linear QMF relation leading to simple reconstruc-
tion formulas from the approximate coefficients. Our main result was an estimate
of the accuracy of the approximate algorithm. The problem of finding approximate
filters was transformed into a minimization problem having a unique solution. Of
course, when there already exists a pair of 2-periodic filters naturally associated
with the wavelet, this solution coincides with it.

In the case of the linear scheme of infinitesimal wavelet analysis, we also obtained
explicit expressions for approximate filters. It must be noted that in some cases, the
error estimates go to zero as the scale becomes larger and larger. This is a result of the
fact that the wavelet transform is sampled at a fixed sampling frequency independent
of the scale. In such cases, the redundancy of the wavelet transform implies the
stability of the algorithm.

As in the case of usual multiresolution analysis, the localization (i.e., decay prop-
erties) of the approximate filters is directly related to the regularity of the scaling
function.

We also discussed some simple examples, in particular, those of the LOG and DOG
wavelets in the linear scheme familiar to computer vision specialists, and wavelets of
exponential type. If the corresponding scaling functions are sufficiently well localized
in the Fourier space, good error estimates are obtained.

Let us note that n-dimensional generalizations of our method with the tensor-
product construction of filters are straightforward.

Acknowledgments. We thank A. Grossmann and Ph. Tchamitchian for stim-
ulating discussions.
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SEMICLASSICAL ASYMPTOTICS BEYOND ALL ORDERS FOR
SIMPLE SCATTERING SYSTEMS *

ALAIN JOYE AND CHARLES-EDOUARD PFISTER:

Abstract. The semiclassical limit 0 of the scattering matrix S associated with the equation

i--d(t) A(t)o(t) is considered. If A(x) is an analytic n n matrix whose eigenvalues are real and

nondegenerate for all x E R, the matrix S is computed asymptotically up to errors O(e-e-1 ),
0. Moreover, for the case n 2 and under further assumptions on the behavior of the analytic
continuations of the eigenvalues of A(x), the exponentially small off-diagonal elements of S are given

by an asymptotic expression accurate up to relative errors O(e-e-1). The adiabatic transition
probability for the time-dependent Schrbdinger equation, the semiclassical above barrier reflection
coefficient for the stationary Schrbdinger equation, and the total variation of the adiabatic invariant
of a time-dependent classical oscillator are computed asymptotically to illustrate results.

Key words, singular perturbations, turning point theory, semiclassical, and adiabatic approx-
imation, asymptotics of S-matrix

AMS subject classifications. 34E20, 34L25, 81Q20

1. Introduction. Let us consider the following well-known equations The first
one is the time-dependent Schrbdinger equation for a two-level system

(1 1) ih
de(t)
dt

t e R, (t) e 7{ C2 and H(et) is a 2 2 self-adjoint linear operator with two distinct
real eigenvalues. The parameter e is positive and small. The second equation is the
stationary one-dimensional Schrbdinger equation

(1.2) -h2 d2(x)
dx2 + V(x)(x) E(x)

x E R, (x) E C and V(x) is a bounded real-valued function. The real parameter E
is chosen in such a way that

(1.3) E > sup V(x).

The third equation is the equation of motion of a classical oscillator whose frequency
varies with time

(1.4) /)(t) -w2(et)v(t), v(O) uo, i(O) u.

This equation is of the same type as (1.2) since we assume that the real-valued function
w(t) is bounded and such that

(1.5) inf w2(t) > 0.
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1994.
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For the first two equations we are interested in the behavior of the solution for
t -- +cx or x -t-c, when the behavior for t -- -oc or x --, -oc is fixed. Moreover
we want to analyze this scattering situation when e tends to zero and h 1 for
equation (1.1), the so-called adiabatic limit, or h tends to zero for equation (1.2),
the so-called semiclassical limit. For the initial value problem (1.4), we consider the
adiabatic invariant J defined as twice the ratio of the energy to the frequency

(1.6) J(t,e)

in the limit e --, 0. More precisely, we are interested in its total variation during the
whole evolution

AJ(e) J(+c, e)- J(-c, ).

In this respect, we consider (1.4) more as a scattering problem than as an initial value
problem. All three problems are very closely related. Let x et be a rescaled time
for equations (1.1) and (1.4"). Then equation (’1.1) becomes with (x) (t(x)) and
h=l

(1.7) is
d’xj H(x)(x).
dx

On the other hand, defining u(x) v(t(x)) and

(1.s) du(x)
iv dx

equation (1.4) is equivalent to

(1.9) id(x) (0dx w2(x) 0 (x),

Similarly, with

(1.10) (x)= ied(x)
dx

and setting h e, equation.(1.2) becomes

(1.11) id(x)
dx E- V(x) 0 (x).

Thus the three equations (1.7), (1.9), and (1.11) are particular cases of

(1 12) ie
d’xj

A(x)(x)
dx

where A(x) is a linear operator on 7-/ C2 with two distinct real eigenvalues. Our
purpose is to study a scattering problem for (1.12) in the "semiclassical" limit tends
to zero under the hypothesis that A(x) is analytic, has two distinct real eigenvalues
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for all x E R, and has well-defined limits when x -t-cx. It is natural to express the
solutions of (1.12) as linear combinations of eigenvectors of A(x)"

2

(.) (x) ,(x)-/I:’’(x),
i--1

where A(x)(pj(x) ej(x)99j(x). Our conditions on the behavior of A(x) for large
imply that

(1.14) lim cj(x) cj(-)-c)

exist, so that the following scattering problem is well defined:
Given cj(-oc),j 1,2 find cj(+cx),j- 1,2, i.e., find the matrix S defined by

There is a "canonical" choice of eigenvectors of A(x) specified (up to a global factor)
by the condition

(1.16) P(x)
&p(x)

O,
dx

where Pj(x) is the eigenprojection corresponding to ej(x). Condition (1.16) has a

geometrical interpretation in terms of parallel transport which we give below. In
particular, it is immediate to verify that for A(x) given by (1.9) or by (1.11) with the
identification (M2(x) E- V(x), the eigenvectors associated with ej(x) (-1)iw(x),

(1)() v/(i
-,/(x) ( 1 )(x) /()

satisfy (1.16), so that (1.13) gives the solutions of (1.9) and (1.11) as superpositions
of the two well-known Wentzel-Kramers-Brillouin (WKB) functions

-i/sf e(x’) dx’(1.18) e

When this choice of eigenvectors is made, a solution qa(x) of (1.12) characterized by
cj(-oc) 1 and ck(--oc) 0, k :/- j, satisfies

(1.19) sup Io(x) e-’/e fo (z’) d’

xl:t
v(x)l o().

Consequently,

(1.20) S 1 + O(e).

The approximations (1.19) and (1.20) are true without assuming analyticity of A(z).
On the other hand, if analyticity holds, we can approximate the solutions of (1.12) and
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thus determine the matrix S up to error terms O(exp(-ae-1)), a > 0 (see Corollary
2.5),

(1.21) Ski Sj(e)bkj + O(exp(--a-l)),

where Isj()l O(1). These results are corollaries of the iterative scheme presented in
2, which will be used in 3. Actually they are derived for A(x) a n x n matrix whose
eigenvalues are assumed to be real and nondegenerate for any x E R.

The asymptotic formulae (1.21) imply in particular that the nondiagonal terms
of S are O(exp(-ae-1)). These terms are important in applications because they are
related, for equation (1.1), to the probability of a quantum transition between the two
levels of the system or, in the case of equation (1.2), to the above barrier reflection
coefficient and, in the case of equation (1.4) to the quantity AJ(e). Under further
hypotheses on the analytic behavior of the eigenvalues of A(x) we show that it is
possible to find an asymptotic expression for $21 or $12 accurate up to exponentially
small relative corrections. The asymptotic formula is expressed by means of the com-
plex degeneracy points of the analytic continuations of eigenvalues ei(x). If there are

p contributing degeneracy points, the asymptotic expression reads (see Theorem 3.7
and (2.43), (2.45))

p

(1.22) $21 E e-iO*(k’e)e-i’*(k’e)-i + e--lO(e-’-’)’ g’ > 0,
k--0

where/*(k, ) is O(1) and Im’V(k,) --T + O(S2), k 1,... ,p. It should be noted
that the error term is smaller by an exponentially decreasing factor than the least
significant term in the sum (1.22). This asymptotic formula is proven in 3, which is
the main part of the paper. It is obtained by combining our iterative scheme with a
method due to Frbman and Frbman [1]. We give in 4 explicit formulae in terms of
A(x) for the expressions O*(k,) and "V(k,) appearing in (1.22). The consequences
of our asymptotic analysis of the matrix S for the applications mentioned above are
formulated in 4 as well. Finally, we give in the appendix an explicit example which
is shown numerically to fit in the framework developed in this paper.

Let us come back to the choice of eigenvectors satisfying (1.16). Let M be some
manifold, which we suppose to be embedded in Rq, and let P be a smooth projection-
valued map, m - P(m), defined on M,P(m) being a projection (not necessarily
orthogonal) of some given Hilbert space. The map P defines a bundle F with base M,
whose fiber over m’ E M is the set of elements (m’, ) with P(m’)?-l. The bundle
F is embedded in the trivial bundle Rq x 7-/and has a natural connection defined by
P. Indeed, let f (m, ) F; any tangent vector vI at f can be viewed as a velocity
vector of a curve c(t) (cl(t),c2(t)) with c2(t) P(cl(t))c2(t) and c(0) f, i.e.,

vf (51 (0), 52(0))f. The vertical vectors at f are velocity vectors of curves c(t) with
cl(t) =- m; since in this case c2(t) e P(m)7-l for all t, they are of the form (0, 2(0))I
with 2(0) e P(m)7-l. Conversely, since c2(t) P(cl(t))c2(t), any vector of the form
(0, 2(0))f is vertical. Therefore, we have a decomposition of vi into a vertical vector
(0, P(m)d2(0))f and a horizontal vector (1 (0), (1 P(m)).d2(0))l, hence a connection.
Let t - -),(t) be a path in M and (t) e P(’(t))7-I be a vector field along -),. This
vector field is parallel if and only if the Velocity vector (-(t), (t))(t) is horizontal for

all t, i.e., if and only if P(/(t))(t) 0, which is precisely (1.16).
Before ending this introduction let us make some very brief comments on the vast

amount of literature devoted to the exponential decay of nondiagonal elements of the
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matrix S. We do not attempt at M1 to give an exhaustive account of it, but we want to
set our work in context relative to the main results. We quote these results according
to their content and not chronologically. The reader may find further references in the
books [2] and [3]. The intermediate result (1.21) is not new, see [2], [3] and references
therein, but we nevertheless obtain a new derivation of it in 2. For recent related
results see also [4]. The asymptotic expression (1.22) generalizes several rigorous
results which were obtained either in the case of equations (1.7) and (1.11) or in the
study of AJ(s). When one complex eigenvalue degeneracy only contributes, it has
been known since publication of the works [1], [5], [6] that

(1.23) $2 e-iee-i’e- + O()eIm’re-’, Im < 0

with 0 r/2 for equation (1.11) and, providing A(x) is a real symmetric matrix,
for equation (1.7) as well. It was shown recently that when A(x) is a hermitian
matrix in (1.7), 0 can take any complex value [7], see also [8]. A corresponding
asymptotic expression for AJ() in this situation can be found in [9]-[11]. See also
[12] for more recent related results. The expression (1.23) was then generalized in
two ways for equations (1.7) and (1.11). First, when several eigenvalue degeneracy
points contribute to the asymptotics of $21, it. was proven using standard stretching
and matching techniques that [5], [13]

P

(1.24) $21 -’-io(k)e-’-iq(k)e-1 Jr- O(a)(Im’e-l’
k--0

where 0 < a < 1 and Im/(k) Imp/< 0Vk. The leading term of (1.24) gives rise to
the so cMled "Stiickelberg oscillations" as --, 0, a phenomenon which is illustrated
numerically in [13]. Note also that the error term is O() instead of O(), which
is a common drawback of the method employed to get (1.24). Then, higher-order
corrections to formula (1.23) were studied systematically in [14], [15] for equation
(1.11) and in [16] for equation (1.7):

$21 e-iq(e)e-iq(e)-I + O(gq+l)e-’re- q E N,T > O,

where ImTq() --T + O(2) and Oq() O(1). The iterative scheme of 2 was intro-

duced in [16] to derive this expression in the adiabatic context. Thus the asymptotic
expression (1.22) captures all the features of these previous results and it holds for
more general situations than those described by the particular matrices in (1.7) and

(1.11). Moreover, it yields an expression accurate up to exponentially small corrections
for the logarithm of $2 since we can write for p 1

-i7 +

2. Approximate solution. The results of this section will be used in 3. We
consider a slightly more general problem than in the introduction. Let 7-/-- Cn, with
the usual scalar product, and A(x),x E R, be a linear operator on 7-/. We study the
equation (’- )

iU’(x, xo) A(x)U(x, xo),
U(xo, xo) 1,
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under the condition that A.(x) is analytic in x and for each x the spectrum of A(x)
consists of n distinct real eigenvalues el (x) < < en(x), with corresponding eigen-
projections Pl(x),..., Pn(X). Note that the evolution U is not unitary in general.

In order to find an approximate solution of (2.1) we first consider another problem.
Let (x) be a solution of

ie!k’(x) A(x)(x).

If Q(xo) is a projection such that Q(xo)(xo) (x0), then for any x we have
a projection Q(x) such that Q(x)(x) (x). Indeed, if U(x, xo) is the solution of
(2.1) such that U(xo, xo)= 1, we take

(2.3)

The projection Q(x) is a solution of

(2.4) ieQ,(x) [A(x), Q(x)]

with the notation [A, B] AB BA. Let us suppose that at x0 we have a complete
set of projections Qj(xo), i.e., Qj(xo)Qc(xo) Qk(xo)hjk, "j Qj(xo) 1. Then the
Qj(x) form a complete set of projections as well and using the fact that for any
projection P(x) we have P(x)P’(x)P(x) 0, it follows that

Therefore we have for all j

(2.6) A(x) ie Q’m(x)Q,(x), Qj(x)] o.
m

We look for approximate solutions of this equation. Since [A(x), Pj(x)] 0, the
eigenprojections Pj(x) are approximate solutions of (2.6) up to an error term O(e).
Let

(2.7) A1 (x) := A(x) ieKo(x)

with

(2.8) Ko(x) := Z Pm(x)Pm(x).
m

By perturbation theory, if is small enough, A1 (x) has n distinct eigenvalues el,j(x)
with corresponding eigenprojections Pl,j(x), j 1,..., n, such that el,y(x) ey(x) +
0(2), and Pl,(x) Pj(x) + O(). Indeed, el,y(x) ey(x) i tr (P(x)Ko(x)) +
O(2) and Pj(x)Ko(x)Pj(x) 0. The projections Pl,j(x) are approximate solutions
of (2.6) up to an error term O(2) since [Al(x),P15(x)] 0. Let

(2.9) Kl(x) :-- Z P"l,, (x)P1,m (x)
m
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and

(2.10) A2(x) := A(x) ieKl (x).

Again, for e small enough, A2(x) has n distinct eigenvalues e2,j(x) with corresponding
eigenprojections P2,j(x). Since A2(x) Al(x)+ i(Ko(x)- Kl(x)) and Ko(x)-
gl(x) O(e), P25(x) is an approximate solution of (2.6) up to an error term O(3).
We can iterate this procedure. At the qth iteration we have approximate solutions
Pqh(x), up to order term O(q+l), which are eigenprojections of

Aq(x) := A(x) ieKq-1 (x)

with

(2.12) Kq-l(x) P_l,m(x)Pq-l,.(x).
m

We now construct approximate solutions for (2.1). Let Qm(x) be a complete
smooth family of projections of 7-/, Qm(x)Q,(x) 5mnQm(x) and m Qm(X) 1.
We say that an evolution V(x, x’), (Y(x’, x’) 1, Y(x2, xl)Y(xl, xo) Y(x2, xo)),
follows the decomposition of 7-/,

m

if for all x, x

(2.13) Q,(x)V(x,x’) V(x,x’)Q,(x’).

It is known (see [17] or [181) that a smooth evolution with property (2.13)is the
solution of an equation of the type

(2.14) V(x’x)=(B(x)+ZQ(x)Qm(x))V(x’x)’m V(zo,xo)=l,

where B(x) is such that

(2.15) [B(x), Q,(x)] O

Reciprocally, any smooth evolution satisfying (2.14) and (2.15) possesses the inter-

twining property (2.13). The idea is to construct approximate solutions of (2.1) by
choosing evolutions which follow the decomposition of T/into

n
m

Therefore we define Uq(x, xo) as the solution of

(2.17) ieU(x, xo) (Aq(x) + ieKq(x))Uq(x, xo), Uq(xo, xo) 1

The next lemma, which is actually Proposition 2.1 of [19], gives the main estimate
which We need to control the error term for the approximate solution Uq(x, xo). This
lemma is also used in 3.
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For any z e C and r > 0 let D(z; r) {z’ e C: Iz’-zl < r} and OD(z; r) {z’ e
C :lz’- zl r}. Given z0 E C and ro > 0 let A(z) be analytic in D(zo; r0) with a
spectrum consisting of n distinct eigenvalues ej(z) with corresponding eigenprojection
Pj(z) for all z e D(zo; ro). We define Aq(z),Kq(z), Pq,j(z), and eqj(Z) as above by
the iteration method based on (2.11) and (2.12). We set R(z, A) (A(z)- A1) -1.

LEMMA 2.1. Let zo C, ro > 0 and A(z) be defined on D(zo; r0) with the above
properties. Let rl > 0 and Dj :- D(ej(zo);2rl) be n disjoint discs in C,j 1,... ,n,
such that for all z D(zo; ro)

ey(z) e D(ej(zo);

Let

and

a a(zo) := sup sup sup liP(z, A)I < oc
j XEDDj zED(zo;ro)

b b(zo):= sup
zD(zo;ro)

Then there exist * *(a, b) > 0 and c c(ro, rl, a, b) < x such that

IIKq(z) Kq-1 (z)l <_ bqcqq!

and

for all z D(zo;ro) all O < e < * and all q < q*(e) -i-c], where [y] is the integer
part of y and e is the basis of the neperian logarithm.

Remark. The proof of this lemma is given in [19] for the case P1 + P2 1 in the
general situation where the spectrum of the (possibly unbounded) operator A(z) is
separated in two parts for any z D(zo, ro) and dim P1 (z)7-/<_ oc. However, the proof

nis the same for the case =1 PJ 1, n >_ 2, apart from the obvious changes due to
the presence of more than two projectors.

COROLLARY 2.2. Let "the hypothesis of Lemma 2.1 be satisfied. Then for all
q<_q*

eq,j(z) ej(z) + O(b2).

Proof. Since Py(z)Ko(z)Pj(z) 0 the statement is true for q 1. For q >_ 2 we
have

(2.18)
q--1 q*

llAq(z) Al(z)l <_ e E ]]K,(z) Km_l(z)] <_ eb E emcmm! O(e2b)
m=l m=l

and therefore the statement follows from perturbation theory. D
We now apply Lemma 2.1 and Corollary 2.2 to control the norm of Uq(x, xo). It

is crucial that Uq follows the decomposition of T/into m>i Pq,m(Z)Tl.
COROLLARY 2.3. Let ro > 0 be such that for each x R the hypotheses of

Lemma 2.1 are satisfied on D(x;.ro) with constants rl and a independent of x and
with constants b(x) <_ b < oc. Then for <_ * and q <_ q*

IlSq(x; zo)ll

_
exp O b(x’) dx’

o
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Proof. We introduce the evolution Wq(x, xo),

(2.19) W(x, xo) Kq(x)W(x, xo), Wu(xo, xo) 1.

From Lemma 2.1 we have

(2.20) IIWq(x, xo)ll < exp (2
Let us choose n eigenvectors ,j(0) of Aq(0) at x 0. The vectors

(2.21) q,j(x) := Wq(x, O)q,j(O), j 1,..., n

are eigenvectors of Aa(x) since W(x,O) interpolates between Pq,m(O) and
Ps,,(x)Vm < n (see (2.13) and (2.14)) and by definition

(.) P,(x)’,(x) o, j .
Let us write Uq(x, xo):-- Wq(x, xo)qq(x, xo). The unknown operator q(x, xo) is the
solution of

(2.23)
iq(x, xo) Wq(xo, x)A(x)W(x, xo)O(x, x0),
(q(xo, xo) 1.

The operator Wq(xo, x)Aq(x)Wq(x, xo) has eigenvalues eq,j(x) with eigenvectors
q,j (xo). Therefore

( )(2.24) (q(X, Xo)99q,j(xo) exp -ie-1 eq,j(x’) dx’ q,j(xo),
o

From Corollary 2.2 and the reality of ey(z),

(2.25) )Im eq,j x’ dx’
o

<_

hence

(2.26) IIUq(x,o)ll < exp {(2 + o())

Note that in the above proof we have factorized the evolution U(x, xo) as the
product

ua(, 0) wa(z, 0)(x, 0),

where I)q only is singular in the limit e 0 and II(I)qll 0(1), IIWqll 0(1). Since in
our simple case (I)a is known explicitly, the solution (x) of

(2.28)
ie’(x) (Aq(x) + iKq(x))(x),
(xo) o
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can be written as

(2.29)

u (z, z0)(0)

E Cq,j(xo)exp -i s-1 eq,j(x’) dx’
j>_l o

where the Cqj(Xo) are defined by the identity

0

THEOREM 2.4. Let r > 0 and g > 0 and let A(x) be analytic in fr (z x+iy
x, y E It, lYl < r}. Let the spectrum of A(x) consist of n real distinct eigenvalues
ej(x), j 1,..., n, such that for all x R

Let

be an integrable function ofx which tends to zero as Ixl --. O. Then there exist constants

* > O, C < c, > 0 such that the above-constructed matrix Uq. (x, xo) approximates
the solution U(x, xo) of the equation

ieU’ (x, xo) A(x)U(x, xo),
U(zo, xo) 1

in such a way that

sup [[U(x, xo) Uq,(X, Xo)[[ <_ C’
x,xoER

Remarks. i) Neither U nor Uq, are unitary in general; however, both their norms
are O(1) as --. 0.

ii) Note that limx_,+A(x) need not exist, since we only require that
limx--.+ Pj(x)= Pj(-t-oc) exists.

iii) The exponential decay rate is given by a 1/ec (see (2.33)) where c is defined
in Lemma 2.1. The decay rate obtained by this method is certainly not optimal but
has the merit, however, to be explicit and rather simple to determine. It should be
noted also that in the general case (i.e., n > 2), it is an open problem to determine
the optimal decay rate.

iv) Similar results were also obtained by different methods: Nenciu [20] considered
and studied a formal series expansion in e satisfying (2.4) and Martinez [21] and
Sjhstrand [22] used microlocal analysis techniques. In particular, the question raised
in the preceding remark is addressed in [21]. However, the estimates needed in 3 are
proved in [19] only.

Proof. By standard arguments of perturbation theory we can verify the hypothesis
of Corollary 2.3 with b(x) integrable on R (see, e.g., 2 of [23]). We recall that

(2.31) q*()
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as defined in Lemma 2.1. The operator R(x) :- Uq, (xo, x)U(x, xo) is a solution of

(2.32)
iR’(x) Uq.(xo, x)(-Aq.(X) ieKq.(X) + A(x))Uq(X, xo)R(x)

iVq.(xo,x)(Kq.-l(X) Kq.(x))Vq,(x, xo)R(x).

From the integrability of b(x) and Lemma 2.1 we have

(2.33)

IIR(x)- 111 < C"(c)a*q*!
<_ C"(ceq*)q*
<_ eC" exp(-ae-1),

where a c" Hence

(2.34)
IIU(x, xo)- ga,(x, xo)ll < Ilgq,(X, xo)llllR(x)- 111

<_ C’ exp(--e-1).

We assume that the hypotheses of Theorem 2.4 are satisfied and we determine
the matrix S up to an error term O(e-s-1). Since IIKo(x)ll and thus lIKq_l(x)ll tend
to zero at infinity in an integrable way (see Lemma 2.1 and Corollary 2.3),

(2.35) lim IIAq(x) A(x)ll 0 Vq < q*

and for all q _< q*, there exist Wq(:l::oc, xo) such that

(2.36) lim Wq(x, xo)=Wq(:l=cx xo).

Let us choose a point xo and a set of eigenvectors j (xo) of A(xo), j 1,..., n. Using
Wo(x, xo) we define a set of eigenvectors of A(x) for all x,

(2.37) () Wo(x, xo),(xo).

Let be a solution of

(2.38) i’(x) A(x)(x)

and let us write as

(2.39) (x) E cj (x)e (x).

Since IIKo(x)ll is integrable, limx.-e cj(x) exists (see, e.g., Lemma 3.2 below).
Let us now define a set of eigenvectors of Aq, (x) by choosing

(2.40)

and setting

(2.41) ;() W. (x, -)(-).
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We can also write (x) as (e =_ eq,,j)

-,i Lo o;(’)’ .(x) ;() v (x)

(2.42) Ec(x)e-’/e f(’)d’e-’/ fo(;(’>-(’)>d’(x).
From (2.39), (2.42), and limx-.-oo IIPq,,j(x) Pj(x)l 0 we have

-File f’ ej(x’) dx’
lira e o P(x)(x) (-)(-)

-,/L (o; (’)-(’)),(2.43) e c(-oc)y (-x).

On the other hand, with the definitions Wq(+/-oc, =c) Wq(+/-C,xo)Wq(xo, H=c), 0 _<
q <_ q*, we have

(2.44)

the last equality defining the factor e-iZ; where / is in general complex. Thus,
similarly,

-,/ +o (o; (’>-o (’>> ,
(2.45) e

Let be a solution of (2.38) characterized by cy(-c) 1 and ck(--oc) 0 for
k = j which we decompose as in (2.42). From Theorem 2.4 and (2.29) an approximate
solution of (x) is obtained by replacing c(x) by c(xo) in (2.42), and we have

(2.46) sup Ic(x) c(xo)l O(e--l), j 1,... ,n.
xER.

Therefore

(2.47) ck(+c) O(e-e-1), k = j

(2.48) c(oc) e-i;e-/e f_+(Cx’>-j(’)) d’ + O(e_-l).

The matrix S defined in the introduction is then given by the following corollary.
COROLLARY 2.5.

Remark. It should be recalled that we did not write explicitly the z-dependence
of e; or Pq,,j, but in Corollary 2.5 we have/ () and e(x’) e(x’,).
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3. Asymptotics of the nondiagonal part of the matrix S.
3.1. Stokes lines. From now on, we deal with the case 7-/= C2; we compute in

this section an asymptotic expression for $21, which, in the simplest case, reads

(3.1) $2 e-iO*()e-i’r*()- (1 + O(e-’-)).
The idea is to combine our iterative scheme (2.11), (2.12) with an analysis in the
complex plane by a method due to Frhman and Frhman [1]. To perform the analysis we
need some precise information about the analytic extension of A(x) into the complex
plane. In particular, we must control the Stokes lines of the problem (Condition II
below). Thus, in this subsection we introduce the notion of Stokes lines and give the
conditions needed to make use of the method of [1] in the next subsection.

Without restricting the generality we impose trA(x) 0. Thus we have A(x)2

p(x)l, with this identity defining the function p(x). The eigenvalues of A(x) are then
el(X)---e2(X) and e2(x)-- k/-, with v 1.

The corresponding eigenprojections are given by

(3.2)
1 ( A(x)Pj (x) - 1 +

ej (x) ]"
On R the eigenvalues are real and distinct and we suppose that there exists g > 0
with p(x) > g, for all x E R.

Let f be a domain of (:3, symmetric with respect to the real axis, containing
R, on which A has an analytic extension. Since p is real on R we have for any
z , p(2) p(z). The analysis of $21 is done by working in the upper half-plane
only, whereas the analysis of $12 is performed in the lower half-plane, as we shall see
below. The eigenvalues and eigenprojections also have analytic extensions in gt, but
it is clear that the zeros of p in f are singular points for these objects. Some of these
singularities play a dominant role in the determination of Sjk, j k.

As in 2 we introduce new operators Aq(z) for all z e f \ {z’: p(z’) 0} by the
iteration scheme (2.11) and (2.12). In our case we can write

(3.3)

go( ) (z)P (z) +
1

[P(z),Pl(z)] 4p(z)[A’(z),A(z)],
where and we compute for all q

(3.4)

Aq(z) A(z) ie[P_i, (z), Pq_,i (z)]

A(z) [A’q_ (z), Aq_ (z)].
4pq_l (z)

Indeed, we have trAq,(z) 0, because the trace of a commutator is zero. Thus pq,(Z)
is defined by A2q,(Z) pq,(z)l. Hence the eienvalues eq,,j(z) (-1)Jv/p,(z) and
Pq,,i (z) is given by an expression similar to (3.2). Equation (3.4) clearly shows that
although the eigenvectors and eigenprojections are multivalued in Ft when we perform
the analytic continuation, this is not the case for Aq(z). In the above construction we
must avoid the zeros of pq,(z) for q’ < q- 1.

CONDITION I. The set X {z e fl p(z) 0} is a finite set. Let r2 > 0 such
that D(zj; r2)t3 D(zk; r2) for all zj # zk X and let

(3.5) =fl\ U D(zi; r2).
\

zj Ex
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There exist constants g > 0 and C < cx) such that uniformly on

(3.6) IP(z)l >_ g’, IIP(z)ll _<

Remark. As we shall see in Conditions II and III below, we must satisfy (3.6) on
a subset of f only.

Condition I allows us to verify the hypotheses of Lemma 2.1 uniformly on .
Moreover the operators Aq(z) are holomorphic on f, provided e is small enough.
Indeed for any <_ * and q <_ q*

p(z) p() + O(b).

(The proof is the same as that of Corollary 2.2.) We define eigenvectors of Aq,.(z), z, by the method of 2. Let ;(0) be an eigenvector of Aq,(O) for the eigenvalue
e;(O),j 1,2. Let W,(z[a) be the analytic continuation of W,(x,O) along a path

in , starting at 0 and ending at z, where

w’.(x, o) K. (=)W.(x, 0),
W,(O, o) . xER,

The operator W,(zl) is a (local) solution of

(3.9) w.’(lo,)- K. ()W.(zl).

The main property of W,(z[a), which follows from (3.9) (see (2.13) and (2.14)), is
that the vectors

.(3.10) Z(zla =_ W,(zla)(O), j 1,2

are two eigenvectors of Aq, (z), which are obtained by analytical continuation of (0)
along a. The vector (z]a) is an eigenvector for the eigenvalue e(z[a), which is the
analytic continuation of e (0) along a.

LEMMA 3.1. Let zj be a simple zero of p in and let l be a simple closed path
around D(zj; r2), counterclockwise oriented and encircling no other disc D(zk; r2) with
p(zk) O. Then for small enough,

1) the total variation of the argument of pq, along rl is 2r, and
2) if ? starts at z 0, then there exist two complex numbers Ok j - k j, k 1, 2,

such that
W,(01r/) (0) := eek;(0), j - k

and
eeJ ee;k 1, j k.

Proof. 1) Using (3.7), we can write

(3.11) p.(z) p(z)(z)

with Ig(z)- 1l < 1 for all z e V. Thus

(3.12)

0
(z)
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2) o(0) is an eigenvector of Aq,(0) for the eigenvalue e(0). After analytical
continuation e(01r/) is an eigenvalue of Aq.(O) and by 1) it is equal to -e*.(0)
e(O),k j. Thus o(01v/) _-- W,(01r/)o;(0 is an eigenvector for the eigenvalu e(0)
and therefore proportional’to o(0). Finally," the last identity is a consequence of
det W,(z[c)= 1 since trKq. (z) _= O.

Let E be a simply connected domain in gt, which contains the real axis. In E the
analytic continuations of e;(x) and o(x) are path independent so that we write
instead of e;(zlo) and so on. Let (z) be a solution of

(3.13) i’(z) A(z)(z), z e E.

We decompose (z) along the eigenvectors of Aq.(z),

2

(. 14) () .()-/ $0 o; c’)’ (z),*
j--1

and we derive a differential equation for the unknown coefficients c(z) using the
identities

(3.15)

and

A(z) Aq, (z) + igq.-1 (z)

(3.16) ;’() g. (z); (z).

By performing scalar products with W-l(z)(O),j 1,2, where f denotes the
adjoint, we get a set of linear equations to be solved for c(z). Let R be the constant
matrix defined by

((O)lv:,(o)) (,(o)1(o))

-1

the elements of which, denoted by rjk, are O(1). We obtain finally

2

(3.18) c’(z) Z exp(i-iAk(z))aJk(z)c(z)’

where

and

z

zxi(z) (i(z,) :(z,))d’

2

,.(.) , r(,7(O)IW:()(K,(z) --K,._.())W,(z)Z(o))

We have a good control of ajk(z) using Lem.ma 2.1 but the factor exp(ie-A.k(z))
may cause trouble when we consider the limit 0 because ImA*.a(z) =fi 0. Since

e(z) ej(z) + O(e:b), we mus actually control he factor exp(ie-Xj(z)), vhere

(3.,21) Aik(z) (ey(z’) et(z’))dz’.
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FIG. 1. The level lines of ((z) near zo.

lp-1 1
IR

FIG. 2. The Stokes lines of Condition II.

The function Ajk is equal, up to a factor +2, to the function

(3.22) (I)(z) := V/p(z’) dz’,

which is naturally associated with the quadratic differential p(z)d2z.
DEFINITION. A Stokes line is a curve in \ {z p(z) 0} such that
1) Im(I)(z) is a constant along ,
2) c is maximal with lroperty 1), and
3) one of the boundary points of c at least is a zero of p(z).
There are different terminologies in the literature. Sometimes our Stokes lines

are called antiStokes lines and vice versa (see below). A Stokes line is always a simple
curve and in our case it is contained either in the upper half-plane or in the lower
half-plane. Near a simple zero z0 of p(z) the level-lines of Im(I)(z) are homeomorphic
to the level-lines

(3.23) Imz3/2 constant

around z 0. For any simple zero z0 of p(z) there are exactly three Stokes lines which
have z0 as boundary point. We call them the Stokes lines of z0 (see Fig. 1).

CONDITION II. A) There exists in the "upper half-plane a nonempty finite set of
simple zeros of p(z), {zl,..., Zp} with the following properties (see Fig. 2)"

1) There exists a Stokes line li, parameterized by (ti, ti+), such that
limt--,t, l(t) z,limtt+ l(t) z+, i 1,... ,p- 1

2) There exists a Stokes line lo, parameterized by (-oo, t), such that
limt--,t, lo(t) z,limt Re/o(t) --oo, lrn_ Im/o(t) =-a-

3) there exists a Stokes line lp, parameterized by (tp,OO), such that

limt-t lp(t) Zp, limt--, Relp(t) oo, lirnto Imlp(t) a+.
B) Along any vertical line Rez x going from the real axis to lo or lp, ImO(z) is

strictly monotone, provided Jx is large enough.
Remark. Condition II describes the situati.on illustrated in Fig. 2.
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Z Zp

O= D(zj,r)

IR

0 D(zj,r2)
FIG. 3. The set ]r o] Condition III.

In our case, if Condition II is satisfied then an analogous condition holds in the
lower half-plane. It follows from Theorem 2.1 in [7] that the region A in the upper
half-plane between the real axis and the closure of the Stokes lines lo,..., lp is a simply
connected region in gt which does not contain zeros of p in its interior. In [7], part B
of Condition II follows from the existence of limiting matrices when t tends to infinity.
As already noted, such limiting matrices are not supposed to exist here. Let r > 0
and let

(3.24) r {z e c dist(z, A) <_ r and Iz- 1 >- , 1,...,p}.

CONDITION III. There exists r > ?’2, sufficiently small so that r is a simply
connected region in t containing the real axis and such that, for any zero zi, i
1,... ,p, each Stokes line of zi in the disc D(z; r) intersects the boundary of the disc

no, D(,) D(z, )= ( F. 3).
The function

(3.25) b(x) := sup Ko(x + iy)]
y:

xiyr

tends to zero at infinity and is integrable on .
Remark. As we already mentioned, we need to verify Condition I on r only and

not on since we shall integrate the differentiM equation (3.18) along a path in .
3.2. The man-bman method. We suppose that Conditions I-III are

satisfied and we study equation (3.18) on . The hypotheses of Lemma 2.1 are thus
verified uniformly on r, so that there exists a q* q*() independent of z r
provided is small enough. Let us rewrite equation (3.18) as a Volterra equation

(3.26) c(z) c(zo) + all(Z’)C(Z’) dz’ + a2(z’)e-;(Z’)c(z’) dz’
o 0

and

(3.27) c(z) c(zo) - a22(z’)c(z’)dz’ + a21(z’)e{e-lAl(Z’)c(z’)dz’.
o o

LEMMA 3.2. /f Conditions I-III hold then limx-+/- c;(x) c;() exist and

lim sup ;( + iy) (11 0.
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FIG. 4. The path of integration close to zi.

Proof. By Conditions I-III we get from (3.20) and Lemma 2.1, as in 2,

(3.28) sup lakj(x + iy)l b(x)O(e--)
y:

and for all z

(a.eg) a() a(z) + o().
Hence the limits limx--.+ c(x) exist on the real axis since Ajk is real there. Then
for all z x / iy on a vertical segment joining R and l0 or lp we can control
IImAyk(z)l, provided Ix] is large enough, using part B of Condition II. Indeed, for
such z, ]ImA/k(z)l is bounded by twice the value of ]Im(I)(z)] on the Stokes lines.
From these estimates and (3.28) we can easily deduce Lemma 3.2 using (3.26) and
(3.2r).

Instead of integrating (3.18) along the real axis we integrate the equation along
the Stokes lines lo,..., lp, as long as we are at a distance larger than r from a zero
of p. Otherwise we integrate the equation along the boundaries of the discs D(zi; r),
staying always in Er (see Fig. 4).

Let z and z0 be two points of Er and let T(z, zo) be the matrix-solution of (3.18)
with T(z0, z0) 1. We can find T(z, zo) by integrating the equation along any path
in Er going from z0 to z. However, because of the factors exp(ie-lAj}(z)) we have a
good control of the equation only on particular paths. For instance, the Stokes lines
are "good" paths. The main work consists of controlling the equation along the parts
of the boundaries of the discs D(zi; r) when we pass from one Stokes line to the next.

LEMMA 3.3. Let z and zo Er and let a be a path, parameterized by [s0, sl],
going from zo to z, and such that s -+ ImA12(a(s)) is nondecreasing on [so, s]. Then

r(, o/= -(o(--) + o(--)
+ O(e-e- )ee-(Im()-Im(o))

Pro@ We consider (a.26) and (a.7) along with c[(zo) 1 and c(zo) 0 and
we introduce new variables

(a.a0) x() (()), x()
e() and (s) ((s)), we getWriting b(s)

(a.al) Xl
o o

X(s) b(s’)e-((l-a(’lX(s’) ds’

(a.a) + b(s’)eie-((s)+(s’))Xl(s’)ds’.
o
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In (3.32) s’ <_ s and AI (s’) -A2(s’). Using (3.29) and the hypothesis on the path
we have

(3.33) exp(--I (ImA2(s) Im(A12(s’))) + O()) O(exp(O())).

Let IIXill sUPso<8<s, IXi(s)l. We get from (3.31), (3.32), and (3.33), using (3.28),

IIXll + o(--)(llXlll + IIX211),
IIX211 o(e--)(llXlll + IIX211),

so that for e small enough IIX]] + IIX2]] 2. Using this a priori estimate in (3.31) and
(3.32) we have

sup [Xx(s) 11 O(e--)
so<s<sl

and

sup IX(s)[ O(e--1).
so<_s<_s

Equations (3.35) and (3.36) allow us to determine the first column of T(z, zo),

1 + O(e-e-’ T12 (z, z0) )(3.37) T(z, zo) e-Imh2(z)O({-s- T22(z, zo)

Since la (z) + au(z)l-- O(e-’-), we get from the Liouville formula

det T(z, z0) exp(O(e-e-’ ))
(3.38) 1 + O(e-e-1).

Moreover T-(z, zo) --T(zo, z), hence

( T(z, zo) -T(, o) )(3.39) T(zo, z)
det T(z, zo) -T2 (z, zo) Tll (z, z0)

The reverse path a- from z to z0 is such that s - ImA21(a-l(s)) is nonincreasing
from sl to so. If c(z) 0 .and c(z) 1 then we can estimate c(zo) and c(zo) as

above, introducing new variables Y2(s) c(a-(s)) and Y(s) eie-al(a-(8))
c.(a-(s)). Thus we can estimate the second column of (3.39). The coefficient
T22(z,zo) is estimated using det T(z, zo)= 1 + O(e-e-).

A Stokes line is a good path because ImAjk(z) remains constant along this line.
The following corollary is thus immediate.

COROLLARY 3.4. If there is a Stokes line going front zo to z, then

1 + O(e--)T(z, zo) O(e_e- ){-lhll2(z
0(e-,e- )e-e-’ImzX=(z) )+ O(e---)

We now come to the difficult part of the method. We must control the matrix
solution T(z, zo) along a portion of OD(zj, r), which is not a good path in the sense
that ImAt2(z) is not monotone. We; must establish two lemmas. The first lemma
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FIG. 5. The points j,j --0,..., 6 on the Stokes and antiStokes lines.

gives a monodromy matrix around the singularity z and is easily proven. The second
and main lemma is more difficult to establish." Its proof is based on Lemmas 3.3 and
3.5 and on a clever use of elementary identities between the coefficients of products of
2 2 matrices and their inverses [1]. This method has a definite advantage over the
use of stretching and matching techniques to compute asymptotics in the sense that
it allows us to obtain better estimates on the remainders (see (1.19) in the introduc-
tion). However, it can only be used for simple zeros of the function p(z), whereas the
stretching and matching method works in more general situations [24].

We consider now the neighborhood of a zero of p(z), say Zl. Let 5 be the boundary
of the disc D(zl;r) counterclockwise oriented, going from 0 to 6 as in Fig. 5. On this
figure the solid lines are the Stokes lines of z and the dashed lines are the antiStokes
lines of z, i.e., the lines along which ReA12(z) ReA2(z). The arrows indicate the
directions in which ImA12(z) is nondecreasing along the boundary of D(z;r).

We compute the matrix T(6, 0) along 5.
LEMMA 3.5.

0 e e-T((, 0)
e
/ f, e-ie; 0

Proof. Let us consider (z) at z @, the solution of which we have obtained by
integration along the Stokes line l0 up to 0. We have

(3.40)
2

(0) ’
j-=l

where in (3.40) the integration from 0 to @ is along a as in Fig. 6 and, simila.rly,

o(0) is the analytical continuation of qo(0) along a.
We make the analytical contimmtion of (3.40) along b" up to 6. Since ’b(z) is

holomorphic at z we have ():= b(.(o) and we can write
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FIG. 6. The paths , 5, and .
where now (6) is the analytical continuation of (0) along c and then along 5.
But this is the same as the analytical continuation of (0) along and then along

in Fig. 6. By Lemma 3.1 we therefore have

*() eo; .(3.42) j k(0)"

Similarly we have

(3.43) ej + ej ey + e.
Hence, by comparing (3.40) and (3.41),

(3.44) c(@)e-i/ f, eiei c(o), k j.

LEMMA 3.6. For e small enough

T(,2,0) ( -i/ef, el
1 + O(e-a/e) O(e-/e)e--mA*())-’; (1 + O(-/)) + O(-/")

Proof. The following computations will involve expressions such as e- ImAl2 (4)
for 0, 2, 4, 6. These expressions are almost equal. Indeed

(a.a) (z) (z) + o()

and for this choice of we have

(3.4) Iml:() Im,(z,), 0,2,,

since these points are on the Stokes lines of Zl. Hence, in particular,

(3.47) ei-’Iml() O(ei-Im:(z)), , 0,2,4,6.

Finally note that (see Fig. 6)

(3.48) e el + O() A(z) + O().
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Let us denote the coefficient jk of the matrix T(, @) by tjk(c, ) and consider
the identity

(3.49) T(+1,) T(+I, +2)T({+2, ).

Using (3.38) again

(3.50) det T(,) -tll (tt, u)t22(tt, u) t12(tt, u)t21 (1, u) 1 + O(e--1

and we obtain for u 0, 2, and 4

(3.53) tl2(U + 1, u)t2(u + 1, r, + 2)t21(u + 2, u).
tll (p -- 1, U)tll (U -- 1, + 2)

These identities express, in particular, the elements of the matrix T(@, @) as functions
of the element t2 (2, 0) and other matrix elements that we can control by means of
Lemma 3.3"

(3.54) t11(2, 0) 1 + O(e-’e-l) + O(e-e- )e-e-ImA12(z’)t21(2, 0),
(3.55) t22(2, O) 1 + O(e--) + O(e-e-1)e-e-Ima2(zl)t2 (2, 0),
(3.56) t2(2,0) O(e--ae-x)e-e-ImA(zl) -J- (O(e--a-)e-e-ImAxg(z))2t21(2, 0).

We are thus led to the determination of t2 (2, 0). Note that these estimates are
true for the elements of T(@, 4) if we replace the arguments (2, 0) by (6: 4). Consider
now the identity

(3.57) T(43, @)T(@, o)T(o, .46) T(3, Ca)T(44, 6).

Using Lemma 3.1 and eI -e to compute T(o, @) T(@, 4o)-, we obtain for the
coefficient 22 of (3.57)

(3.5s)
t21 (3, 2)t1 (2, 0)eN-e + t22(3, 2)t21 e

t21 (3, 4)t12(4, 6) + t22(3, 4)t22 (4, 6)

and for the coefficient 21 of (3.57)

(3.59)
t21 (3, 2)t12(2, O)eieie-’ L e. + t22(3, 2)t22 (2, O)e,iOle

i$-I 2

t2 (3, 4)tll (4, 6) + t22(3, 4)t21(4, 6).
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Lemma 3.3, (3.39), and (3.47)yield

(3.60)
(3.61)
(3.62)
(3.63)

(3, 2) -t21 (2, 3)(1
t21(3,4) -t2(4, 3)(1 + O(e--)) O(e--l)e-mA12(),
t22(3, 4) t(4, 3)(1 + O(e-e-1)) 1 + O(e-’e-),
t22(3, 2) t11(2, 3)(1 + O(e--x)) 1 + O(e-e-1),

whereas from (3.39) and the remark following (3.56) we have

(3.64) t2(4, 6) O(e--ae-)g--ImA’2(zl) -- (O(e-’-’)e-e-’mA.(z))2t21(6,4)and

(3.65) t22(4, 6) 1 + O(e-- + O(e--’ )--e-’ImA(zl)t21(6, 4).

Now we use (3.58) and the above results to get

Hence we see that we have to estimate t21(6, 4) as well as determine t2(2, 0). This
is done by performing a similar computation: We estimate t1(4, 6) as a function of
t2(6, 4) as above and we consider equation (3.59). After multiplication by e-i
--i--I fe e: and using

(3.67)

we obtain another equation for t21 (6, 4) and t2 (2, 0):

(3.68)

Therefore, from (3.66) and (3.68) we deduce the a priori estimates

(3.69)
(3.70)

e--e- ImA 2(z )lt21(2,0)l O(1),
e-e-ImA(z’)lt21(6, 4)1 O(1),

which finally yield

(3.71) t2 (2, 0) e-zeue

This lemma and Corollary 3.4 allow us to obtain an asymptotic expression for
lnS21 beyond all orders by integrating (3.18) from -co to +oc along the paths de--
scribed above. Let us recall" that we have

(3.72) ImA(zl) _--:. ImA2(zi), 1 ,p.
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Thus, along the Stokes lines we use the matrices given by Corollary 3.4 and which we
can write as

(3.73) + o(e---)T := T(z, zo) O(e_-)ee-imA2(z)
O(e-te-1 )e--e-limA12 (zl))1 + 0(-’-1

On the other hand, when we go from one Stokes line, lj-1, to the next one, lj, we use
the matrix given by Lemma 3.6:

1 + O(e-’-
(a. 41 :=

e e-i.(/) (1 + O(e--’))
O(e-ae-1 )e-e-11mA.(z))1 + O(e--)

where fv e[ and 011 (j) are the quantities associated with the simple zero zj of p(z).
Therefore if we start at -oc with the values c[(-oc) 1 and c(O) O, then the
coefficients c[ (+oc) and c(+oc) are obtained by computing

(3.75) ( ) (1)cl(c) TSpTSp-1. olT 0

which proves the final theorem of this section, (restoring the dependence)"
THEOREM 3.7. Under Conditions I-III, the solution of (3.18) such that

c[(-oc) 1 and c(-oc)= 0 is given at x +c by

c’(oc) 1 + O(e-’e-’

and
P

--i/e fnk e (z,e) dz
c(oc) E e

k=l

e-iON.(,) + O(e-,- )ee-ImA,2(z)

where Im fvk e[(z,e)dz ImA12(Zl) 4- O(2) and 02(k, e O(1).
4. Applications.
4.1. Explicit formulae. Let us start by deriving explicit formulae for the eigen-

vectors qo(z) of Aq.(z) defined by (3.10). They will then allow us to give the precise
relation between the coefficients cj(z) defined by the expansion

2

(4.1) o(z) E cJ(z)e-i/ f{ e(z’>dz’ v (z)
j=l

and the coefficients c(z) defined by

2

(4.2) o(z) E cj* (z)e-i/ef e; (z’)dz’ g)j(z).*
j--1

Note that here we have chosen z0 0. Consider the operator Aq, (z), z E E, where E
is a simply connected domain of t. We can write

ic*(z) a*(z) )(4.3) Aq,(z)= b*(z)-ic*(z)
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with

(4.4) pq,(z) p,(z) a,(z)b,(z) (c,(z)) 2.

LEMMA 4.1. The eigenvectors of Aq.(Z) defined by (3.10) are given by

where

and

e-i(-1)a*(z), j 1,2,

i(z)
(z)a.(z)

1/"___ c.(u)a.(u) c.(u)a.(u) dua.(z) - x/p.(u)a.(u)
o,- anu z r, \ y. ,d Y. (z r, .() 0}.

Remarks. i) Any traceless matrix can be written under the form given above;
the lemma actually requires the existence of distinct eigenvalues only. It is true in
particular for the operator A(z) written as in (4.3) without indices *.

ii) The vectors (z) are actually analytic in the whole set E since the operator
W,(z) is analytic in E.

Proof. A direct verification shows that the vectors X(z) are eigenvectors of Aq. (z)
for the eigenvalues e;(z) (-1)J V/p:(z). We set the notation

(a.) p.(z) v/.(z)
and we introduce the eigenprojectors (see (3.2))

1 [ 1 + (-1). ic.(z)
p.(z)(4.6) Pq..j(z) =- P;(z) ( (-1)J b,(z)

p.(z)

(-1)J a.(z)
p.(z)

l_(_l)jic.(z)
The vectors o;(z) must satisfy P(z)ga’(z) =- 0 (see (2.22)). We compute, drop-

ping the arguments,

(4.7)

and

.,: V,a.
c.(p.a.)’Xj (-1)J a. (p. c, +2 k,a,] Px/ff(d (p.a.)3/2

Consequently, the vectors

(4.8) ..., (-1)J c,a, c,a, .Pj Xj i
2 p,a, Xj.
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normalized to 1 at z -c, satisfy condition (2.22).
COROLLAPY 4.2. Let zk E X and let ? be a counterclockwise-oriented loop based

at the origin which encircles the disc D(z, r) only and passes through no point of Y,.
Then the quantity eio2 (k) defined in Lemma 3.1 is given by

e-2ia. (0),

where n Z depends on a, and k.
Proof. It is always possible to choose a loop r/k as described. By Lemma 3.1 we

have

(4.10) V’,. (o1,) V’,. (0)

and

(4.11) a.(Ol,) ei2rna.(O)

with n Z since a,(z) is single valued in f. As a consequence

(4.12)

Finally,

1 L c*a* c*a*(4.13) .(Olva)
k Vfa*

dz + a,(0)

so that
(4.4)

(OI,k) o(0)(--i)’;< IIx(--oo)ll -/ f,,<(.o’.-4o./,,’-<<.)<
IIx(-o)ll

e-2ia.(O).

Consider now the two decompositions (4.1) and (4.2). The relation between the
coefficients associated with the choice of eigenvectors made in Lemma 4.1 is given by
the following corollary.

COROLLARY 4.3. The coefficients cj(-}-oc) and cj(+oc) defined by (4.1), (4.2),
and Lemma 4.1 are such that

forj 1,2.
Proof. We write the operator A under the form

(4.15) A(z)= ( ic(z) a(z) )(z) -idz)

where we can assume, without loss of generality, that

(4.16) lim a(x) a(+oo) # O.
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Indeed, we can always perform a change of orthonormal basis which amounts to replac-
ing A(z) by S-1A(z)S, where S is a constant unitary matrix. Since the gap condition
holds at 4-00, A(4-oc) # 0. Thus, we can bring nonzero elements in the upper right
corner of the matrices S-1A(4-oc)S by taking for S a rotation matrix in the plane of
suitable angle. The corresponding eigenvectors 99j(z) are given by the expressions of
Lemma 4.1, where the indices’, are dropped. Because the operators A(x) and Aq. (x)
coincide at Ixl , we have

(4.17)

(4.18)

Hence

v](-oo) v(-).

(4.19) ;* (+o) (+)-(-)(.(+)-(+)) _= -*; (+c),

so that formulae (2.43) and (2.45) apply. 0
4.2. Invariants. Let us consider now the following three classes of operators

A(z):
1)

(4.20) A(x)-- A(x), x E R,

where [ denotes the adjoint.
)

ic(x) a(x) ) a(x) b(x) c(x) e R, x e R.(4.21) A(x)= b(x)-ic(x)

3)

(x) ) () Z(x) (x) e a, x e a.(4.22) A(x) i fl(x) -c(x)

Note in particular that the operator H(x) in equation (1.7) belongs to the first
class whereas the operators in equations (1.9) and (1.11) belong to the second class.
For these classes of operators there exist expressions involving the coefficients cj(x)
and c(x) which are constant for all x e R.

LEMMA 4.4. If A(x) belongs to class 1, 2, or 3, then the operators Aq(x) con-
structed by means of the iterative scheme (2.11), (2.12) belong to the same class, for
any q <_ q*.

The proof of this lemma is obtained by a straightforward induction and will
therefore be omitted.

LEMMA 4.5. i) If A(x) belongs to class 1, then

ICl(X)l :z + Ic2(x)l : --Ic(x)l :z + Ic(x)l 2 I, xR,

where I is constant.
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ii) If A(x) belongs to class 2 or 3, then

xER,

where I is constant.
Proof. The first assertion is a direct consequence of the fact that U(x, xo),

W(x, xo), and Wq,(x, xo) are unitary if A(x) and Aq,(x) are self-adjoint. Assume
now that A(x) belongs,to the second class and let

(1 0)(4.23) G=
0-1

If (x) is solution of equation (1.12),

(4.24) iso(x)’ A(x)o(x),

then G99(x) is another solution of this equation. Indeed, G2 1 so that we can write

(4.25) ieGg(x)" -Gieqo(x)’ -GA(x)GG(x)

and we compute

(4.26) -GA(x)G A(x), x e R.

Therefore, as trA(x) _-- O, the following determinant is constant for any real x:

(4.27) det((x), G(x)) constant.

Observe that the eigenvectors constructed in Lemma 4.1 satisfy the identity

(4.28) Ggj(x) 99k(x), j k

since a(x) is real and Ilxj(x)ll is independent of j 1, 2 for real a(x), b(x), and c(x).
Then we obtain from the reality of ej(x) and el (x) -e2(x) that

(4.29)

It remains to use the multilinearity of the determinant to get

(4.30) det((x), G(x)) (ICl (x)l 2 Ic2(x)l 2) det(9l (x),

we compute

(4.31) det(l (x), o2(x)) 2
a(-oc) + b(-c)

using p(x) a(x)b(x) (c(x))2. The identities (4.28) and (4.29) are also true for the
eigenvectors (x) due to Lemma 4.4. Hence the same argument and (4.17) show that

(4.32) det(99(x), Gg (x)) (IcI(x)l 2 -Ic (x)12)2a(_oo) + constant.
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If A(x) belongs to the third class, we proceed in a similar way. In this case, if
(x) is a solution of (1.12), (x) is another solution and we obtain from the explicit
formulae of Lemma 4.1 (with the choice v ei/4)

(a.aa)

Finally we compute

det((x), (x)) (Icl (x)l 2 Ic2(x)12)2

(4.34) (Ic(x)12 -Ic(x)12)2(-c) (.-c)
constant.

Remark. It follows from (4.29) that if (c(x), c2(x)) are solutions of (3.18), then
(c2(x), Cl(X)) provide another solution of (3.18) when A(x) belongs to class 2 or 3. The
corresponding symmetry property when A(x) belongs to class 1 is that if (c (x), c2 (x))
satisfy (3.18), then (c2(x),-cl (x)) satisfy (3.18) as well. This property can be derived
from (3.18) directly by using the antiself-adjointness of Kq(x), q <_ q* in this case [13].

4.3. Main applications, a) Let A(x) be a 2 2 hermitian matrix, x E R, as
in equation (1.7). The equation

d(x) A(x)(x) 0(4.35) ie
dx

describes the adiabatic limit of the dynamics of a two-level quantum mechanical sys-
tem. The squared modulus of the element $21 gives the probability P(e) of a quantum
transition over infinite time between the two eigenstates of the system.

COROLLARY 4.6. If A(x) is hermitian and satisfies Conditions I-III,

--i/ fn e (z,e) dz
k

2

e-iO.(k,e) - O(e-ae-1 )ee-12ImA2 (zl)

b) Let A(x) be the matrix (1.11)

( 0 1)(4.36) A(x) E- V(x) 0

associated with the semiclassical regime of Schrhdinger equation

(4.37) _2 d2O(x) + V(x)O(x) EO(x) e 0,
dx2

where infeR E- V(x) > 0. A solution (x) of (1.11) characterized by the asymptotic
conditions c (-oc) 0, c2(-c) I describes a particle coming from the right whose
energy is strictly above the potential barrier V(x). The reflection coefficient T() for

c (+oo)this scattering process is then defined by 7"4(e) c.(+oo)12 As it stands here, it cannot
be computed from the knowledge of $2. However, as a consequence of Lemma 4.5
and the remark following it, we can write

(4.38) n(s)
1 +
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where 51 (-oo) 1 and 52(-00) 0. Hence we have the following corollary.
COROLLARY 4.7. If A(x) given by (4.46) satisfies conditions I-III,

k--1

--i/e fuk e (z,e) dz
2

e-iO-(k’e) d- O(e-ae-1 )ee-i2ImAi(zi)

c) Let A(x) be the matrix

(0 1)(4.39) A(x)= we(x 0

associated with the equation of motion (1.9) of a classical oscillator whose frequency
varies slowly with time

du(O)(4.40) 2 d2u(x) _w2(x)u(x), u(O) uo dxdx2 Ul --- 0.

We assume that the initial values u0 and U are independent of . In terms of the
variable u(x), the adiabatic invariant (1.6) reads (keeping the same notation J)

(4.41) J(x,) l.’(x)l + (x)i.(x)l
(x)

Note that we do not require the initial values u0 and u to be real. Let us express
AJ() in terms of the elements of the matrix S. We set

(4.42)
(x) o

f(x) 0
1

(x)

so that we have with (x) defined by (1.8)

(4.43) J(x, ) ((x)lf(x)(x)).

Writing

2

(4.44) p(x) E di (x)e-i/ f(-1)(’)dx’ v(z),
/=1

where

(4.45)
(-1) V/w(X) i + -(-oo)’

we compute

(4.46) J(x, ) 2
w(-c) lu id2(x)lU

1 + w2(-cx) (Idl(x) +
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Let us introduce the coefficients d (x) by

satisfying the initial condition

(4.48) 9(0)
iul dI(0)99(0) + d(0)99(0).

This last equation and Lemma 4.1 allow us to express the d(0) as functions of u0 and
ul and we have in particular d(0) O(1). As a consequence of Corollary 4.3 we have
Idj(4-cx)l Id(c)l,j 1,2, so that

(4.49) AJ()= 2
I + w2(-c) (Idi(+cx)12 + Id(+cx)12 -]dI(-oo)l2

Then it results from the linearity of equation (3.18) and from the remark following
the proof of Lemma 4.5 that we can write

(4.50) (d!(x)) a(e (cI(x)d2(x c(x) )+ fl(e) (c(x)(X))
where the c(x) satisfy (3.18) as well with boundary conditions cI(-c) 1, c(-cx)
0. These boundary conditions together with equation (2.46) allow us to express the
constants a() and fl() as functions of the dj(0) which are defined by the initial
condition (4.48):

(4.51) ( dI (-cx) ) ( a() ) ( dI (O) + O(e-e-1) )d(-oo) fl() d(O)+O(e-e-1)

We can now express the total variation of the adiabatic invariant as a function of the
matrix S and the initial conditions using (4.49) and Lemma 4.5:

(4.52)

AJ(e) 2
i + w2(-oo) [4Re{a()fl()cl(+oo)c (+oo)}

+ 2lc(+oo)le(l()]e +

Hence, by (4.51) and Corollary 4.3, we have the following corollary.
COROLLARY 4.8. If A(x) given by (4.39) satisfies conditions I-III,

w(-oo) [4Re{d1 (-oo)d2(-oo)e+2/ foo((x,e)el (x))d$1$21 }AJ() 2
1 + w2(-oo)

+ el&l(Id(-oo)l +

If dl (-oo)d2(-cx) 0

AJ(e) 41 -}- w2(-(x))
k--1

+ O(e---
e-iO.(k,e) (Idl (-c) 12 +
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If d1(-00)d2(-00) # 0

(-) {AJ() 8
1 + w2(-00)Re d[(0)d(0) E e

k--1

+ O(e-,-
where the quantities dj(0)= O(1) are determined by the initial condition (4.48).

Remark. i) The coefficients dj are O(1) since the initial conditions u0 and ul are
independent of .

ii) The condition dl (-00)d2(-00) 0 is equivalent to dl (0)d2(0) 7 0. From (4.45)
and (4.48) we compute

(4.53)

dl (0) 02(--00) u0V/02(0)
V/02(0)

ul

li1+w2(-00) ( )d2(0) w(-00) uv/w(O) + X/rUl
so that dl (-00)d2J(-00) - 0 is equivalent to Ul =fi =t=iw(O)uo. This condition is always
true for real initial values u0 and Ul.

Appendix. We briefly describe in this appendix an explicit example of potential
V(x) for which the semiclassical above barrier reflection coefficient can be computed
by applying the general theory developed in this paper. Consider the potential

1
(A.1) V(x)

1 + X4

and choose an energy level E > 1. Then the function

(A.2) p2(x) p(x)= E
l+x4

is positive for any x E R. This function is meromorphic in C with first-order poles at
the points

(A.3) yt: ei((/4)+kOr/2)), k 0, 1, 2, 3

and first-order zeros at the points

((A.4) zk 1 ei((’/a)+k(/2)), k 0, 1, 2, 3.

Hence the matrix A(x) given by (1.11) has an analytic continuation in the set
C \(yl,y2,y3,y,} The Stokes lines are obtained by studying the level lines of the multi-
valued function f dzp(z) in the set t. By a numerical study, we see that these lines
behave in the first quadrant of the complex plane as described in Fig. 7.

We can show by exploiting the symmetries of the function p that these lines are
symmetric with respect to both the real and imaginary axes. Hence, Conditions I,
II, and III are satisfied and the above barrier reflection coefficient can be computed
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FIG. 7. The level lines of f: dzlp(z) in the first quadrant of the complex plane.

asymptotically as h goes to zero using the method explained above. In particular,
we see from Corollary 4.2 that in the first-order asymptotic formula, 12(k), k 0, 1
is real since the function c(z) 0 and IIXl(-t-oc)ll IIX2(-t-c)ll; see (4.7). Hence it
remains to compute fv p(z)dz, k-- 1, 2, to get. the first-order asymptotic formula for
7(h). Moreover, the presence of two first-order zeros in the upper half-plane linked
by a Stokes line shows that an interference phenomenon takes place (Stiickelberg
oscillations) at the first order already, even though the potential barrier displays one
bump only. The high-order corrections can be systematically computed using the
theory developed in this paper; we omit this computational aspect here.

Acknowledgments. We thank the referee for constructive suggestions and C.
Ballif for computing numerically the Stokes lines of the example in the appendix.
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BIFURCATION OF SPATIAL CENTRAL CONFIGURATIONS FROM
PLANAR ONES*

RICHARD MOECKELt AND CARLES SIM
Abstract. Central configurations are important special solutions of the Newtonian N-body

problem of celestial mechanics. In this paper a highly symmetrical case is studied. As the masses
are varied, spatial central configurations appear through bifurcation from planar ones. In particular,
spatial configurations can be found which are arbitrarily close to being planar.

Key words, celestial mechanics, central configurations, bifurcation

AMS subject classifications. 34, 58, 70, 85

1. Introduction. This paper is concerned with certain highly symmetrical cen-
tral configurations of the Newtonian N-body problem. It is shown that under certain
conditions, spatial central configurations (that is, nonplanar ones) bifurcate from pla-
nar ones as the masses are varied. Moreover, the bifurcation is described in detail.

Recall that the N-body problem concerns the motion of N point particles with
masses rnj E R+ and positions qj E R3, where j 1,..., N. The motion is governed
by Newton’s law

OU
mqj Oqj"

Here U(q) is the Newtonian potential

mimjU(q)-- Iq

Let q (ql,...,qN)T R3N and M diag(ml,ml,ml,...,mN,mN,mN). Then
the equation of motion can be written as follows:

In studying this problem, there is no loss of generality in assuming that the center
of mass of the particles is at the origin: mlql +.. "-t-mNqN 0. Because the potential
is singular when two particles have the same position, it is natural to assume that the
configuration avoids the set A {q. q qj for some 7 j}.

DEFINITION 1. A configuration q Ra\A is called a central configuration if
there is some constant such that

M-
OU

Aq.
Oq
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Using Newton’s law one sees that j Aqj; in other words, the acceleration vector
of every particle is pointing toward the origin with the magnitude of the acceleration
proportional to the distance from the origin. From the fact that the potential is
homogeneous of degree -1, it is easy to show that A -U(q)/(qTiq).

If the masses are released from a central configuration with zero initial velocity,
the configuration collapses homothetically to the origin. This explains the use of the
term central. In the planar case one can choose the initial velocities to produce circular
and elliptical periodic orbits with the configuration remaining similar to the initial
central configuration. Central configurations are important for celestial mechanics,
but here they will be studied for their own sake.

Central configurations are the rest points of a certain gradient flow. Introduce a
metric on R3N (q, q) qTMq and let

S- {q: <q,q) 1,mlql +... + mNqN 0}

denote the unit sphere with respect to this metric in the subspace where the center
of mass is at the origin. Since the subspace has dimension 3N 3, S is a (3N 4)-
dimensional sphere. It follows from the homogeneity of the Newtonian potential that
the vector field X M- ou + Aq, where A U(q), is tangent to S. Moreover, it has
rest points exactly at the central configurations with (q, q) 1. Finally, it is easy to
check that (X(q), v) DU(q)v for every q E S and v TqS. These facts show that
the vector field M- ou

-ff + U(q)q is the gradient of UI, the restriction of U(q) to the
unit sphere S with respect to the metric (., .). Moreover, the rest points of this vector
field are exactly the central configurations in S. Note that any central configuration
Jis homothetic to one in S. Thus the problem of finding central configurations is
essentially that of finding rest points of the gradient flow of UIs or, alternatively, of
finding critical points of

The gradient flow preserves certain submanifolds of S. For example, the set of
all collinear configurations and the set of all planar configurations are invariant. In
addition, some sets of configurations with symmetry are preserved. One of these is
the main object of study in this work.

2. Symmetrical configurations. Consider the set of all configurations in
R3 consisting of two regular N-gons, N >_ 2, lying in horizontal planes, centered on
a common vertical axis, and aligned so that corresponding vertices lie in the same
vertical half-plane (see Fig. 1). Suppose that all of the particles in one N-gon have
mass # and all of the particles in the other N-gon have mass 1. Then, it follows from
symmetry that the gradient vector field of UIs is tangent to , so is invariant under
the flow. To find central configurations in , it suffices to study the gradient flow of
UI. As is only two-dimensional, this is a great simplification,

Figure 1 shows three parameters (r, s, t) which can be used to describe such a
configuration. The metric in these coordinates is

(q, q) N#r2 / Ns2 -t- N

To express the potential in these coordinates, note that the potential of a regular
N-gon of unit size and unit masses is simply NA, where

1 1 1
csc(rj/N).A - .= i1_ e2y/N - J=
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S

FIG. 1. The symmetrical configurations considered here.

The potentials of the two N-gons in the configuration are simply NAtz2 and N__4A. In
"addition, there will be the potential arising from the interaction of the two N-gons.

The total potential is

V(q) Y + A + gtz
j=l

Aj

where

2 8ei2j/Ni2 t2 r2 82 t2Aj Ir + + + 2rs cos(2rj/g).

The factors of N in both the metric and the potential can be dropped without essen-
tially changing the results. Then the unit sphere is given by the equation

#. t2_=l.#r2+s2+
1+#

The gradient of UI with respect to this metric is

(U, U, ! +.# + (Ur, Us, Ut).

Thus we obtain the following differential equations for the gradient flow:

i" --A Fr + Gs + Ur,

1
-fiA- #Fs + #Gr + Us,

-(1 + #)Ft + Ut,

where

N

and

cos(2rj/N)
Aj

The central configurations in E are obtained by setting all three derivatives equal to
zero; however, since the vector field is tangent to the unit sphere, only two of these
equations are independent.
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For the computations that follow, it is convenient to introduce two parameters
r Then, a short computation gives and .on the unit sphere. Let x and y .

However, the equations can be simplified by multiplication by s3. This can be viewed
as a change of time scale in the gradient flow and will not affect the results. Denoting
the derivative with respect to this new time variable by a prime instead of a dot, the
equations become

x’ f(x, y) xg(x, y),
(1) y’--yg(x,y),

where

f(x, y) #xP + Q -hA,
g(x, y) P + #xQ- A,

N
1

N
cos(2rj/N)Q=s3G

d
d s-2A 1 + x2 + y2 2x cos(2rj/N).

The equations for central configurations are x yt 0. These are invariant
under the transformation (x, y, #) - (5, , ) together with a time rescaling by px.
Thus, it suffices to find all central configurations with 0 < x 1. In the next section,
it will be shown that there is always a unique planar central configuration with x in
this range.

In what follows, the value of A as a function of N will play an important role.
The following lemm gives an asymptotic expansion for A(N).

LEMMA 1. Let A csc(rj/N). Then, A(N) has the ]ollowing asymp-
totic expansion for N large:

+ log + (-1)(2-1 1)B-I 1

where / stands for the Euler-Mascheroni constant and B2k stands for the Bernoulli
numbers.

(3)

Proof. Consider the case where N is even; the odd case is similar. Then

A= 2 _, csc(rj/N) + l
j=l

The cosecant can be written as follows [1]"

csc(z) z-1 + h(z), where

(4) h(z) E (--1)k-12(22-
k>

(2k)!
1)B2kz2k-



982 RICHARD MOECKEL AND CARLES SIM

Here h(z) is analytic for Izl < . In our case, Izl Ix[ < for all j.N
To carry out the sum in (2) we split the cosecant as in (4). The first part can be

summed using the digamma function (the logarithmic derivative of the F function)
rn-1

(m) --’ + j-l,
j--1

which has the asymptotic expansion

1 B2k(5) (z) log(z)
2z 2k z2k"

Recall the Euler-lV[acLaurin summation formula

(6)

g(j) g(z) dz- - (g(0)+ g(m))
j--1

B2k g(2k- 1) (0))-t-
(2k)! (g(2k-1)(m)

k>l

This will be applied to g(z) h(rz/N). We use the following facts, which follow from
the definition of g(z)"

0NI2
(csc(zTrlN) -(zTrlN)-1) dz--

N log4 g(0) 0, g (-) =1 2

Substituting these into (6) and using (5) we obtain

) ( /N 1 S2k g 4 1 2
log + log 1

2 g 2k (N/2)2k r 7r - r

(2k)’ 2k-1
k> r (N/2) 2k

Finally, using this in (3) leads, after simplification, to the desired result, rl

For most purposes, it is enough to use a few terms of the asymptotic expansion
(2). Recall that 7 0.57721566490153286, and that the first few Bernoulli numbers

B6-- 2" Soare B0 1, B1 1/2, B2 -, B4 30,

N( 2N) r 7r3 31r5

(7) A 7+log
r 144N 86400N3 7620480N5

More generally, the Bernoulli numbers are defined by

t - Bmtm
et- 1 m!

m>0
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and satisfy B2n-1 0 for n _> 1 and B2n (-1)n-12(2n)!(2n)/(2r)2n, where
(s)-- k>l k-8 is the Riemann zeta function. It is easy to check,, using the Euler-
MacLaurin summation formula with remainder, that the absolute error is less than the
absolute value of the first neglected term. The best estimate is obtained by taking
terms up to k0 [rn] or k0 [rn] + 1, where [] denotes the integer part. With
this choice, the absolute error is less than N1/2 exp(-2rN). Even for N 2, when
A 1/4, the choice k0 6 gives an error less than 1.5 10-6. Furthermore, for practical
computations, formula (7) gives a relative error less than 10-16 for N >_ 47. With
k0 18, one could achieve this error for N >_ 6.

3. The planar case. The set of planar configurations consisting of two nested
regular N-gons is obtained from the above family by setting y 0. The restriction
0 < x _< 1 means that the polygon with particles of mass # is inside the other one. At
x 0 the inner polygon shrinks to a point, while at x 1 the two polygons collide.
In both cases, the potential becomes infinite. It will be shown that there is a unique
intermediate value Xp representing a central configuration. When y 0, the second
equation in (1) is tr.ue and the first will determine Xp.

Let h(x) f(x, O)-xg(x, 0). Then limx--.0 h(x) -c, while limx--.l h(x) +c.
Thus, to prove the existence of a unique zero of h(x), it suffices to show that h(x) is
increasing. Now h(x) can be written as follows:

(h(x) x -5 A + #x (P(x, O) xQ(x, 0)) + (Q(x, o) xP(x, 0)).

Let
N

j--1

It follows from the definitions that

(x) (1 + x2) P(x, O) 2xQ(x, 0),

which implies

P(x, O) xQ(x, 0) (x) + x (Q(x, o) xP(x, 0)).

Moreover, the expression (Q(x,O)- xP(x,O)) is simply -x" Substitution into the
formula for h(x) gives

(s)

The first term is clearly increasing. The other two terms are handled by the following
lemma, which will also be useful later.

> 0. 0 < x < 1,
(x) and all of its derivatives are positive. Moreover, the same is true for (x)
,;=1 cos(2rj/N)/d.

Proof. An explicit power series expansion for will be obtained, and it will turn
out that all of the coefficients are nonnegative. Recall the expansion

1
oo

(1 z)/2 E anZn’
n’--O
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where the coefficients are positive numbers depending on A. Following Euler, one can
write

1 1 1

d (1 xe+i2rj/N))/2 (1 xe-i2rj/N)A/2

Using the power series above gives

1
O

n--0

where

c3 Z kOllei2rj(k-1)/N"
k+l--n

This must be summed for j 1,..., N. But the sum over the roots of unity is N if
k =- mod N, and 0 otherwise. Thus

Cx(x) N’ oot Xn

n--’O k+l--n
k=_lmodN

Here, all of the coefficients are nonnegative and infinitely many (including all of the
even ones) are positive. The claim about Cx (x) and its derivatives follows. A similar
computation works for (x).

For future reference, note that P(x, 0) 3(x) and Q(x, 0) 3(x), so it follows
that both of them are increasing for 0 < x < 1. It also follows that (x), (x), and
their derivatives are negative for x > 1.

From (8) and Lemma 2 with A 1, one finds for any mass ratio # exactly
two planar central configurations of nested regular N-gons, one 0 < Xp(#) < 1, and
one :p(#) > 1. By symmetry we have p(#) 1/Xp(). Before turning to the
nonplanar case it is interesting to investigate the dependence of Xp on the parameters
# and N; only the solution between 0 and 1 will be considered. From the definition,
h(xp(#)) 0. Differentiating this gives

h(xp(tt)) + hx(xp(tt)) dxp(#) O.
d#

It has already been shown that hx > 0. On the other hand, equation (8) gives

de0 xpA + -x(Xp) + #h,(xp),

which shows that h(xp(#)) < 0. Thus

dxp(#) > O.
d#

In other words, as the mass of the inner polygon is increased, the size of that polygon
in the central configuration also increases.

In the limit as # --, 0, Xp(#) O. To see this, note that the only negative
contribution to (8) is the term -A#/x2. Using the power series in Lemma 2, one
finds the more precise asymptotics

2A+N
# 2A XP(#)3 + O(xaP)"
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On the other hand, in the limit as # --, c, xp(#) --, Xp((X:)) < 1, where Xp(OC) is the
solution of

A x2d
The case of equal masses is of special interest as well. Taking/ 1, the equation for
the central configuration simplifies to

(9) (1 + x + x2) A x2(1 + x)Q(x, 0).

Finally, one can view the symmetrical central configuration determined by xp(#)
as a rest point of the gradient flow on ... It will be important in what follows to know
the eigenvalues of the linearized flow near this rest point. These linearized equations
are quite simple since the derivative matrix of the vector field (1) is diagonal when
y 0. Thus, the eigenvectors are parallel to the x and y axes with eigenvalues

,kp hx(xp(#)),
0).

Here, the subscripts indicate whether the eigenvector is planar or perpendicular to
the planar manifold. It has been noted several times already that h > 0, so the
eigenvalue within the planar manifold is always positive. It turns out that while A+/-
is usually negative, it can be positive under certain conditions. This fact was already
noted in [3], but a proof will now be given..

First, note that A+/- (#) -g(Xp(#), 0) is a decreasing function of #. To see this,
just differentiate

d,k+/- dxp + o).
d#

Now, g(x, O) P,(x, O) -t- #Q(x, o) -F #Q(x, 0), and the remarks following Lemma 2
show that this is positive. Also, it was just shown that dxp/d# > 0. Finally, g,(x, O)
xQ(x, o) > o.

For the equal mass case, the eigenvalue is negative. In fact, using (9) to eliminate
A in the formula for g(xp(1), 0) yields

-+/-(1) P(xp(1),O) /
1 -t- Xp(1)-F Xp(1)2Q(xp(1)’O) > O.

Since A+/-(/) is decreasing, it must also be negative for/z > 1. On the other hand, as

# ---. O, Xp(#) -- 0 as well, so

lim A+/- (#) A- P(0, 0) A- N.
/-+0

Thus, there will be an interval on which A+/- (#) > 0 if and only if A > N.
Lemma 1 gave an asymptotic expa.nsion for A(N). The first term in the expansion,

together with the remark about the error after the proof, shows that A(N) is increasing.N

Thus we only need to find the first N such that A(N-- > 1. Solving A(x) x using
just the first term of the expansion gives x exp(2r--) 472.27. This suggests
N 473. According to the first term,

A(aTe) A(aVa)
0.99990875, while 1.00024558,

472 473
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and the first neglected term has absolute value less than 10-7. Thus A > N if and
only if N >_ 473.

If N < 473, the. eigenvalue A+/- (#) is negative for all values of #. But if N >_ 473,
there is a unique bifurcation value #0(N) such that +/-(#) > 0 for # < #0 and
A+/- (#) < 0 for # > #0. The results of this section can be summarized as follows.

THEOREM 1. For every mass ratio #, there are exactly two planar central con-
figurations consisting of two nested regular N-gons. For one of these, the ratio Xp of
the sizes of the two polygons is less than 1, and for the other it is greater than 1. For
most values of the parameters N and it, these represent saddle points of the gradient
flow of UIE; however, for N >_ 473 there is a constant #o(N) < 1 such that for # < #o
and # > 1/#0, the central configuration with the smaller masses on the inner polygon
is a repeller.

It follows that in the case N >_ 473, nonplanar central configurations must bi-
furcate from the planar central configuration as t increases through tt0, a conclusion
already drawn in [3]. In the next section, the exact nature of this bifurcation will
become clear.

4. The nonplanar case. In this section, all of the central configurations with
y : 0 will be found. In this case, setting the vector field (1) to zero gives

(10) f(x, y) g(x, y) O.

Since only y2 appears in the equations, the solutions will come in pairs related by
reflection through a horizontal plane. The main result is that there is either exactly
one such pair or none at all, depending on whether the eigenvalue A+/- (#) is negative
or positive.

Some a priori information on the shape of a possible nonplanar central config-
uration will be useful. When tt 1, it is clear that there will be a pair of central
configurations with the two N-gons stacked one above the other, that is, with x 1.
It will now be shown that for # < 1, any nonplanar central configuration has x < 1.
For # > 1 the situation is reversed. In other words, the N-gon with the smaller
masses is smaller. To see this, consider the quantity f #g, which must vanish for a

nonplanar central configuration. From the definitions one finds

I-#9=#(x-1)P+(1-#z)Q+#A 1-
Suppose that <_ 1 but that, in contradiction to the claim, x > 1. Then the fact that
P > Q gives #(x- 1)P > #(x- 1)Q, so

J’-.>(_-.)z+.A - >0.

This proves the claim and, incidentally, also shows that for equal masses, the stacked
N-gons are the only possibility. With this information in hand, there is no loss of
generality in considering the cases # _< 1 and z _< 1.

The solutions of (10) with > 0 will be found by first fixing z and solving
g(x,y) 0 for y(x), and then solving f(x,y(x)) 0 for x. Note that the partial
derivative gy(x,y) < 0 when y > 0. Furthermore, limy__.o g(x, y) -A < 0. Thus,
for a given value of x, there will be a unique solution of g(x, y) 0 provided only that
g(x, 0) >_ 0. The behavior of g(x, 0) was studied in the last section. It increases from
N- A to oc as x goes from 0 to 1. Thus, if N < 473 it is always positive, whereas if
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FIG. 2. Bifurcation diagrams.

N >_ 473 there will be a unique x0(#) E (0, 1) at which point it changes from negative
to positive. Thus, in the former case one can solve for y(x) > 0 for any x E (0, 1],
while in the latter one can find y(x) > 0 only for x (x0, 1] and y(xo) O.

It is important to know the relationship between the endpoint x0(#) and the
position of the planar central configuration Xp(#). Recall that the value of g(Xp(#), O)
is just minus the eigenvalue A+/- (#). Thus the sign of g(Xp(#), 0) is negative if # < #0
and positive if # > #0, where #0 #0(N) of Theorem 1. On the other hand, at x0(#)
one has g(xo(#), 0) 0 by definition. Since g(x, 0)is increasing, it follows that the
order will be Xp(#) < X0(#) if # </to and x0(#) < Xp() if # > #0.

Once y(x) has been found, the equation f(x, y(x)) 0 must be satisfied. It will

be demonstrated below that df(x,y(x)) > 0. This already implies that there is at mostdx
one solution. Now, we must check the values at the endpoints. It is always the case
that f(1, y(1)) >_ 0 with equality only for # 1. To see this, note that when x 1,
f #P + Q #A. But from the definition of y(1), P(1, y(1)) + #Q(1, y(1)) A.
Using this to eliminate A in the formula for f gives f(1, y(1)) (1-#2)Q(1, y(1)) > 0.
Thus everything depends on the sign of f(x, y(x)) at the other endpoint.

In the case in which N < 473, limx_0 f(x,y(x)) -(x. In the case in which
N >_ 473, the sign of f(xo, y(xo)) f(xo, 0) is negative if and only if # > #0. To
see this, recall that if # > #0 then x0(#) < Xp(#). Also, the increasing function
h(x) f(x, O) x(x, 0) vanishes at Xp by definition. Thus h(xo) < 0, so f(xo, O) <
xog(xo, 0) -0 as desired. If # < #0 the inequalities are reversed.

Thus, if either N < 473 or N _> 473, and # > #0, there will be a unique pair
of spatial central .configurations (xs(#),+/-ys(#)); otherwise there are no nonplanar
central configurations. These results are summarized in the bifurcation diagrams of
Fig. 2 which show the y coordinates of the central configurations as functions of #.
The bifurcation whose existence was inferred in 3 is now seen to be a simple pitchfork
bifurcation in which nonplanar central configurations bifurcate from the planar central
configuration with the small masses inside.

As already remarked in [3], there are several surprising consequences of this phe-
nomenon. First, nonplanar central configurations can be almost planar; this is in
contrast to the fact that any noncollinear central configuration is actually far from
collinear. Second, in the case where no nonplanar central configurations exist, the
absolute minimum potential energy (within the symmetric configurations considered)
is attained at a planar configuration. This is surprising because, intuitively, there is
more room for the masses to spread out in three dimensions. Finally, again in the
case where no nonplanar central configurations exist, the fact that the eigenvalue A+/-
is positive implies the existence of certain interesting total collision orbits in the 2N
body problem. Briefly, the relation between central configurations, and total collision
orbits is as follows: along any orbit which, experiences such a collision, the configura-
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tion (rescaled to unit size) tends to a central configuration, and the set of all orbits
converging to a given central configuration is locally a submanifold of the phase space
[2]. The fact that A+/- > 0 implies that the manifold of orbits converging to the planar
central configuration contains nonplanar orbits. In other words, there are total colli-
sion orbits which are initially nonplanar but which are asymptotically planar. Once
again, this is in contrast to the collinear case where any orbit which is asymptotically
collinear must, in fact, be collinear for all time.

We still must prove the inequality df(x,y(x)) > 0 Some computation yields thedx
formula

gY dx fxg f
2A# + -QQ )

+#2x(pQ QPv) + (1 #2x2)(QPy PQ).

Since gy < O, it suffices to show that all terms on the right side are negative. This is
clearly true of the first term. The second term is also simple to handle. For the third
term write

1
(cos(2rj/N) cos(2k/N)) ( 1

PQy QPy -3y 3 3 2

It is clear that cos(2rj/N) > cos(2rk/N) if and only if d > d, so every term with
j k in the sum is positive. Finally, in the fourth term in the expression, the factor
1- p2X2 is positive, since it is assumed that # and x are less than 1. The other factor
is

1
N cos2 (2rj/N)QP.v PQu -9y -j=l dj j=

The sums in the square brackets can be interpreted as inner products of the vectors
u (1,..., 1) and v (cos(2r/N),..., cos(2rN/N)) with respect to a metric with
coefficients d-5. Then the square bracket is just lul21vl 2 -(u, v)2, which is positive
by the Schwarz inequality. This completes the proof.

The behavior of the spatial central.configuration (x.(#), Ys(#)) as # varies is quite
simple. Since the family begins by bifurcating from the planar central configuration,
one has (xs(tto),ys(tt0)) (Xp(#O), 0). At equal masses the spatial configuration is
stacked N-gons so (xs(#), ys(#)) (1, ys(1)), where ys(1) satisfies

g(1, y) P(1, y) + Q(1, y) A 0.

For #0 < # < 1, both x(#) and ys(#) are strictly increasing. To see this, differentiate
the equation f(Xs, ys) g(xs, Ys) 0 to obtain

g gy g

Solving this with Cramer’s rule and using the inequalities fx, gx, g, > 0 and fy, gu, f <
0, which are easily checked, shows that both x. and y are increasing (recall that the
determinant has already been shown to be negative).
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N<473 or N>473, iXo<lX<l/Ixo N:>473, <1.o

FIC. 3. Phase portraits for the gradient flow.

Another remark about the shape of the spatial configurations is that Xp(p)
is(it) < 2p(#) always. By symmetry, it suffices to show the first inequality. This can
be done by considering the function h(x, y) f(x,y)- xg(x, y). This is just x’ in
equation (1), so it vanishes at the central configurations. In particular, h(xp, O) O.
It can be shown that this implies h(xp, y) < 0 for y > 0. Taking y y(Xp) as in the
proof above shows that f(Xp, y(Xp)) < Xpg(Xp, y(xp)) 0. But f(x, y(x)) is increasing
and reaches 0 at (is, y). Thus Xp < is.

Next, the eigenvalues of the linearized differential equations near a nonplanar
central configuration will be studied. Since it is a gradient flow, both eigenvalues
are real. Furthermore, when the nonplanar configurations exist, they are the absolute
minima of UIE, since the planar configurations are saddle points. Now the determinant
of the linearization of (1) at a nonplanar central configuration is y(fyg fgy). This
expression has already been shown to be positive. This shows that, in fact, the
nonplanar configurations are n.ondegenerate minima, so both of he eigenvalues of the
linearization are positive.

Combining this with the information about the planar central configuration from
3 leads to the following phase portraits of the gradient flow on UI shown in Fig. 3. In
these pictures, the point (1, 0), the y-axis, and the unbounded regions of the half-plane
are all attracting since the potential becomes infinite there.

The main results about spatial central configurations can be summarized as fol-
lows.

THEOREM 2. If N < 473, there is a unique pair of spatial central configurations
of parallel regular N-gons. If N >_ 473, there are no such central configurations for
it < #o(N). At it #o a unique pair bifurcates from the planar central configuration
with the smaller masses on the inner polygon. This remains the unique pair of spatial
central configurations until # 1/#0, where a similar bifurcation occurs in reverse,
so that for it > 1/ito, only the planar central configurations remain. When the spatial
central configurations exist, they are repellers in the gradient flow of

5. Asymptotics and some numerical results. Finally, we give additional
information on the asymptotic behavior of the solutions, both planar and spatial,
for large N and other limiting cases. We also display the evolution of the solutions,
when changing it, for several values of N, comparing the numerical results with the
asymptotic ones. Since both it and N will be varied, we will adopt the notation
Xp(it, N) for the planar central configuration in (0, 1) and (is(it, N), Ys(it, Y)) for the
spatial central configuration with y > 0.

First we shall consider the asymptotic behavior when it goes to 0. We need to
introduce several auxiliary variables. Let cj cos(2rj/Y) and sk - ’]=1 c. We
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immediately obtain (recall N >_ 2) the following:

(11)

so 1, 81 0,
s2--1 if N--2, 1/2 otherwise,
83=1/4 if N---3, 0 otherwise,
84--1 if N-2, 1/2 if N-4, -38 otherwise.

We need the expansions of P(x, y), Q(x, y) (P(x, 0), Q(x, 0) for the planar case)
near x 0. I,et A (1 -t- y2)1/2. For the planar case A 1. Then the derivatives of
P and Q with respect t6 x are easily obtained as follows:

N
P(0, y) A3’ Px(0, y) 0,

(12) Q(0, y) 0, Qx(0, y)

3 1582 /Pxx(0, y) --g + AT N,

382N 15saN
A5, Q(O.y)= A7

Qxx(O, y) A---i-+ A9
N,

where the values of s are given in (11).
In the planar case we have

itx3p(x, O) + x2Q(x, O) itA x3p(x, O) + itxaQ(x, O) Ax3.

Hence, using (12),

(13) O(x3)

om (13) we get the following proposition.
PROPOSITION 1. For small, the values ofxp(, N) have the following expansion:

Xp(, N) el1/3 -e e2p2/3 T e3p + 0(4/3),(14)

where

A 1/3 5 83 e21, e3(15) el e2-- 2 42

Awhere 3s2 1 + .
358a -63082 + 2) e3,

It follows from (14), (15), and Lemma 1, that this is a good approximation pro-
vided it log N is small. We want to remark that the coefficient of it1/3 in Xp(it, N)
increases as a function of N and tends to 1 as N c. The e2 coefficient is 0 unless
N 3, and ea -- 0 as N --.. cw. The curves xp(it, .N) increase with respect to N
for all it (see Fig. 4). This follows for large N from Proposition 4. For values up to
N 1000, it has been checked directly.

Let us pass to the spatial case. We know that to trove solutions for it small
requires N < 473.

PROPOSITION 2. irt the spatial case, for it small and N < 473, the values of
:cs (#, N) and y (it, N) have the expansions

Xs(it, N) (. /_A)2/3 )1/3
ys(it, N) yO + yit2/3 + Ru
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Xp(p,N)

0.75

0.5"

N 1010000 N 101000

o
-2o -lO o lO

10100

1010
=o=

10"::
104
103

=100

N =10

N=5

N=3

N=2

FIG. 4. Planar case: Xp versus log#. Solutions of h 0 up to N 1000; solutions of
asymptotic equation (23) x3(24), kipping TI and T3, for N > 1000.

where

/1 yl 1 5s2 1 A 2/3 2/3

and

Rx O(2/3) for N 3, 0(#) otherwise,

Rv 0(/) for N 3, O(#4/3) otherwise.

The proof is elementary from the equations

(6) #x3p(x, y) "t- x2Q(x, y) p,A O,
P(x, y) d- #xQ(x, y) A O,

and the expansions provided by (12).
Now let us proceed to predict the value of the bifurcation parameter/0(N) for

N larger than, but close to, 472. For N >_ 473, let 6N -- 1 (so 6473 - 2.455.10-4,
6474 5.816.10-4, 6475 - 9.170.10-4, etc.). We need the functions P, Q and the x
derivatives at (0, 0) as given by (12), but the exceptional cases of (11) do not occur
now. We also need P.x=xx(0, 0) (45 630s. -t- 945s4)N fiN. From this we have
the following proposition.
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PROPOSITION 3. For N close to 472 and N > 472, the bifurcation parameter is

(17) 453/2 29 5/2 O(5v)#0(N)= N ---VN +

and the corresponding value of x is given by

(18) Xp(#o(N), N) xs(#o(N), N)
2 61/2 25 ,3/2
5 0-, + o(),

where N - 1.
Even for N 475 the formulas (17) and (18) give relative errors less than 10-5.
Next we proceed to study the behavior for N large. To this end we want to

replace the sums defining P and Q by integrals with controlled error.
For 1- 1, 3 let

Fl(z) (1 + x2 + y2_ 2xcos(2rz/N))-l/2 ((1 + x)2 + y2 4xcos2(rz/N))-/2.

Then

N

(19) P(x, y) ’ F3(k) 2--N ((1 + x)2 + y2)-3/2S3,
k=l

where

(20)

N fr/2S= - (1= mcos2(rklY))-/
o

(1 tacos2 u)-/ du + n
1
E(m) + 9Z3.1-m

In (20), m 4x((1 + x)2 + y2)-l, E(m) stands for the complete elliptic integral
of second kind and parameter m, f0/2(1- mcos2u) 1/2 du (see [1]), and n3 is the
remainder to be bounded below.

In a similar way,

N

(21) (1 + x2 + y2)p(x,y) 2xQ(x,y) Fl(k) 2--N ((1 + x)2 + y2)-1/2S1,
k=l

where

(22)

N

Sl= -(lk=l mcs2(rk/N))-l/2
Jo

(1 tacos2 u) -1/2 du + 7Z1

K(m) + TI,

K(m) being the complete elliptic integral of the first kind and parameter m, and 1
being the corresponding remainder.

Using (19) to (22) and substituting in the expressions of f and g we get

(23) (2#x3 + xw) E(m) + -T3 xu(K(m) + hi)
#uvl/2r

v 2
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(24)
u

(2 + #w) (E(m)+ 73) #u(K(m)+ 1)
uvl/2F

where u (1 x)2 + y2, v (1 + x)2 + y2, w 1 + x2 + y2 F 2A__2E and, then,g
m 1- . We recall, for further use, that E(m) (resp., K(m)) decreases (resp.,
increases) monotonically from to 1 (resp., from to oc) when m goes from 0
to I. Furthermore, for m close to 1, one has E(m)

_
1 + (ml/4)log((16/e)/m),

K(m)
___

1/2 log(16/m), where ml 1-m, the complementary parameter of the
elliptic integrals.

To bound Tl, I, 3, we shall need rough a priori bounds of m as a function of
F.

LEMMA 3 Let F 2A__z and m ((1 x)2 + y2)/((l + x)2 + y2) where (x, y)
are the coordinates of planar or spatial central configurations. Then, .for N > 691,
one has

0.9

Proof. First we consider the planar case (y 0). As Xp(#,N) is an increasing
function of #, and m decreases as a function of x for 0 < x < 1, it is enough to
consider the limit behavior as # goes to infinity.

The limit equation is P- xQ A/x3. Using (19), (21), and the definition of ml,
this equation is written as follows"

ml/2o (1 + x) x-3F
o3 + SI

2

Neglecting the S1 term and using just k N in the sum defining $3, we have m >
o.9 Hencex(1 + x)-/(Yr). If x < we have m > 0.01. If x > then ml >

0.9in all cases we have ml > min(0.01, V-) and the minimum is the second term. for
N>26.

In the spatial case we need a bound on y. As both x and y have been proved to
be increasing with respect to #, we consider # 1 (and then x 1). The equations
reduce to P + Q A, and now ml y2/(4 + y2).

We claim y2 <_ 2 if N is large enough. Assume this is not true. Then m > 5"
Again using (19) and (21), the equation P + Q A becomes

$3 S1
(4 + y2jl/2 F

2

The terms in $3 are not more than the one corresponding to k N, and this one is
bounded by 33/2 Hence

33/27r N 6/2F7r (4 + y2)l/2F
>

2N
33/ > $3 > Sa S

2 2
k=l

We obtain F < 37r2-1/2, which is false for N > 691. This proves the claim.
In the general spatial case (# < 1), the equation g 0 gives P < A. Using the

term k N in (19), we have ((1 + x)2 + y2)-3/2m3/2 < A, that is, ml > A-2/3/6,
where x <_ 1 and" y2 <_ 2 have been used. This bound is larger than the bound in the
statement of the lemma for N > 3. [:]
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Now we proceed to bound the remainders 1 and T3.
LEMMA 4. For N > 691, the remainders T3 and TI in (20) and (22) are bounded

by

NF) exp(-(O.9N/F)1/ ).

Proof. Let us consider the functions t(u) (1-m cos2 u) -/2, 1, 3, appearing
in (20) and (22). These are real analytic r-periodic functions with Fourier expansions

’kezce2iku. The contribution of the c0 term to St is the part expressed by the
integral. Hence the remainder is bounded by

(26) Intl <
7r

-2N E Icl"
kZ\(0}

N
e2ikj/N

j--1 keNZ\(0}

Let us bound Icl. Consider the functions t, 1,3, in the complex strip
1/2 1/2Im ul < "1 The maximum modulus of on that strip is attained at u -4-zm

(mod r) and equals

1/2 ]+ co h(e.  
2

Expanding around m 0, the square bracket is of the form 2 2m +.-., with all the
coefficients positive. Hence

(3/2)t/2

where I denotes he supremum norm for IIm ul <_ ". Therefore,

Ic l _< mi exp(-Iklm  / ).

By substitution in (26) we get

r(3/2)’/2 exp(-Nml112) 6 1/2In, <
mi 1 exp(-Nm]12) < m--l exp(-Nml )"

From this the lemma follows. [:]

We note that using the bound (25), the remainders are less than 2- 10-1 for
N _> 50000. Hence the remainders can be completely neglected in (20) and (22) for
large N.

Remark. When we know the remainders are small, we can go back and redo
Lemma 3 to have better estimates on ml by using formulas (23) and (24). Then we
return to Lemma 4 for improved estimates on the remainders. In this way, we reach
for 7 bounds of the form exp(--) for some c > 0. Finally, the remainders can be
neglected even for moderate values of N (say N .>_ 1000).

A computed from Lemma 1 andOne can solve (23) and (24), for N large, with W-
skipping 7t, 1, 3, avoiding the sums. The results are shown in Fig. 5 for N _> 1000,
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2

YS(I,N)

1.8

1.6

1.4--

1.2--

1""

0.8

0.6

0.4

0.2

0 06

FIC. 5. Spatial case: ys versus xs. Solutions of f g 0 .for N < 1000; solutions of equations
(23) and (24) for N >_ 1000.

where we also display the numerical results obtained by using the original equations
for N < 1000. Different curves correspond to different values of N. The variable Ys
is shown against xs. One can see that there is no intersection of the curves obtained
for different N. The formulas (23) and (24) allow us to compute for very large values
of N (such as 1016). Figure 6 shows a magnification of Fig. 5 near (x, y) (1, 0) for
N very large, making apparent the fact that the curves tend to circles; Fig. 7 shows
a magnification near (x, y) (0, 0).

From (23) and (24) it is clear that, for any finite value of # in (0, 1], when N goes
to oo, u should go to 0.

First consider the planar case.

PROPOSITION 4. For N large enough, in the planar problem # can be expressed
as a function of Xp by

(eT)
x ((E(m)l(1 x)) + (K(m)l(1 + x))) + x3(r/2)
(F/2) x3 ((E(m)t(1 x)) + (K(m)l(1 + x)))

w.here F- 2Ar
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Ys(I,N)
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0.01

0
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FIG. 6. Magnification of Fig. 5.
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FIG. 7. Magnification of Fig. 5.
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Furthermore, the bifurcation parameter satisfies

4
#0(N) 1

rl/2 + O

The value of x at the bifurcation parameter is given by

Xp(#o(N), N) xs(#o(N), N) 1
2 2 (logr + + o \

Proof. The first part follows from f(x, O) xg(x, 0) 0 by using (20) and (22)
and skipping the 7El terms. Using f 0 and g 0 simultaneously, one obtains the
remaining exressions.

COROLLARY 1. For any value of
Itl/3 as N oc. For It 1 we get Xp(1, N) 1 -(F)1/2 -O( lgF)F as N -- oc. For
It ---, oc, the limit satisfies Xp(CX), N) 1-

The proof follows immediately from (27).
To close, we consider the spatial case.
PROPOSITION 5. For any fixed It E (0, 1], when N goes to oc, the spatial solution

behaves like

(28)
4

(1 x)2 + y y + O(F-3/2).

Furthemore, a point (xs,y) in the solution curve for a given N is related to the
parameter It by means of

1 It + O(F_I)"(29) l-x,=
2

For It 1, xs 1, one can obtain a more precise expression .for y as

2 O(log F)(30) Ys-- F1/2 A- F3/2

The proof is easily obtained by introducing 2 (1 x)/F!12, y/F112, It 1
/FI/2, inserting in (23) and (24), cancelling terms, and simplifying. One immediately
gets 2

__
2 4 t order zero in F and, hence, (28). By equating terms in F-I/2, one

obtains the relation between 2 and P and, therefore, (29). The lack of terms in F-I
in (30) follows from the fact that only even powers of y appear.

Note that the rsults of Propositiohs 4 and 5 give the asymptotic behavior of sev-
eral quantities when N goes to infinity. However, the remainders in these expressions
go to zero slowly. For instance, as F is of the order of log N, the value !.og0og N)

F log N

appearing in the error term of It0(N), is just 0.136 for N 10l and 3.36.10-3 for N
as large as 10l. Some tedious but elementary computations can give more terms
in all the estimates of these propositions.
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A MATHEMATICAL MODEL OF TRAFFIC FLOW
,ON A NETWORK OF UNIDIRECTIONAL ROADS*

HELGE HOLDENt AND NILS HENRIK RISEBRO$

Abstract. We introduce a model that describes heavy traffic on a network of unidirectional
roads. The model consists of a system of initial-boundary value problems for nonlinear conservation
laws. We uniquely formulate and solve the Riemann problem for such a system and, based on this,
then show existence of a solution to the Cauchy problem.

Key words, traffic flow, conservation laws, network
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A new problem, which has arisen in the twentieth century, is how to organize road trajCfic so

that the full benefits of our increased mobility can be enjoyed at the lowest cost in human life and
capital. The problem has many sides--constructional, legal, educational, administrative.

M. J. Lighthill and G. B. Whitham (1955)

Introduction. The modeling of traffic flow by conservation laws was studied by
Lighthill and Whitham [18], [19], and aichards [22]. They argued as follows: Consider
a road with one lane with heavy traffic so that a continuum description is a good
approximation. Let p-- p(x, t) denote the density of cars. Then, conservation of the
number of cars yields [17], [24] ("traffic hydrodynamics")

+ 0,

where v v(x, t) denotes the velocity of cars at (x, t).
Equation (0.1) is valid for continuum descriptions of any conserved quantity. The

first fundamental additional assumption we will make for the problem of traffic flow
is that the velocity field v is a function only of the density p, v v(p).

We also assume certain reonable properties of the function v: when the density
is small, there is a maximum velocity Vmax, and when p increes to some maximum
capacity Pmax, the velocity vanishes.

A linear interpolation then gives the simplest possible velocity

One of the earliest velocity fields to be studied w the so-called Greenberg model
wih

supported by experimental data from the Lincoln tunnel in New York [8]. (Although
v is divergen at low density, we see that the relevant quantity in (0.1) is pv, which

Received by the editors September 26, 1993; accepted for publication November 3, 1993.
Department of Mathematical Sciences, The Norwegian Institute of Technology, University of

Trondheim, N-7034 Trondheim, Norway (holden(C)imf.unit .no).
Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, N-0316 Oslo, Nor-

way (nilshr@ikaro. uio.no).

999



1000 HELGE HOLDEN AND NILS HENRIK RISEBRO

converges.) Other common models include Underwood’s model,

(0.4) v Vmaxe(-p/pmax)

(which has been used as a model for low densities); Greenshield’s model,

(0.5) v- Vmax (1--(PmPax)n)
and the California model,

(0.6) v=v(lp Pmaxl /
which, as the name suggests, fits best for heavy traffic. See [20, p. 296ff] and [7, p.
69ff] for an extensive comparison of these and other models and their experimental
support. The resulting conservation law can be written as

(0.7) p + f(p) O,

where

(0.s)

Given initial data of the form p(x, O) po(x), (0.7) can be analyzed using the com-
prehensive theory available for conservation laws [24], [23], [17].

We will use a flux function f, which is concave with a unique maximum, and
f(0) f(Pmax) 0, which is commonly assumed in traffic analysis ("the fundamental
diagram of road traffic"); cf. [20], [7, p. 55], [16, p. 97], [9, p. 290], which excludes
models (0.4) and (0.6). A modified analysis, however, would also cover these mod-
els. Before we discuss various extensions and alternative approaches to the analysis
presented here, we will give a brief presentation of the model and our results.

Consider any finite, connected directed graph. Let the edges model the roads
with traffic in the given direction. The vertices correspond to junctions. In addition,
we may attach to the graph roads extending to infinity and connected to the graph
at only one end. We call this system a network. The graph does not have to be
planar; a nonplanar graph corresponds to the occurrence of bridges or tunnels. On
each individual road we assume that we have heavy traffic in one direction only, so that
the density satisfies a conservation law (0.7) for a certain flux function f. The roads
connecting two junctions have finite length. If there is not much interaction between
the traffic in the two directions on a two-way road or between the lanes in a multilane
road, we can approximate this by two or several unidirectional roads connecting the
same two endpoints (junctions). See Fig. 1.

A direct analysis of two-way traffic is complicated (see Bick and Newell [2]) since
this leads to a system of conservation laws. Even in the simplest cases, one obtains a
mixed hyperbolic/elliptic system for which even the solution of the Riemann problem
is difficult; see, e.g., [10], [13].

One has to specify how the cars distribute at the junctions to obtain a well-
defined model. We call this condition an entropy condition in accordance with the
terminology used for conservation laws, since this condition gives a unique solution at
least for Riemani initial data. In this paper we will discuss an entropy condition that
comes from maximizing the flux at each intersection. More precisely, given a concave
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FIG. 1. A traJfic network.

function g, we maximize the flow at the junction J measured by

roads j at J

where fmax denotes the maximum of f.
We will now discuss why this is a reasonable entropy condition for this type of

model. Consider a car going from a location A to a location B. When the car arrives
at a junction, the driver will usually know which road to take and will make the
appropriate choices at each junction. However, the continuum model for traffic that
we use does not allow for individual tracking of cars, but it does describe the dynamics
of the macroscopic density of the cars. What we have in mind is the following situation:
if the driver arrives at a junction with the intention of turning, e.g., right, but sees
that this road is (almost) blocked, she or he would probably take another road at
this intersection (the principle of least resistance), and at a later intersection, after
a small detour, get back on the right track. This also corresponds to the commonly
observed fact the many people prefer to drive a longer distance at a higher speed than
risk a severe bumper-to-bumper traffic jam. We model this by trying to maximize
the flow through the junction locally for each intersection, which can be considered
an important task for city planners who cannot consider individual cars per se. The
timing of traffic lights, although not explicitly built into our model, also has t.he
intention of maximizing the flow. Hence the model is probably most suitable for a
heavily trafficked city center with many intersections. Our entropy condition will thus,
in an average sense, maximize the flow at each junction as measured by the function
g above. We imdgine that the function g should be determined from observations and
possibly depend on the intersection (although we use the same g for simplicity). We
have not considered the question of how to measure g. Although our choice of entropy
condition gives a unique solution to the problem with Riemann initial dat, we have
not proved uniqueness for the generM Cauchy problem.

The solution of a conservation law develops singularities in finite time even for
smooth initial data, thereby making it necessary to consider weak solutions of the
partial differentiM equation.



1002 HELGE HOLDEN AND NILS HENI:tIK RISEBRO

Singularities in the sense of jump discontinuities moving with (finite) speed are
called shocks. Specializing to Riemann initial data, i.e., two constant states separated
by a single jump (see (2.1)), the solution consists of combinations of two elemen-
tary waves: shock waves and rarefaction waves. (This terminology comes from gas
dynamics.) Rarefaction waves are continuous solutions.

One carefully has to distinguish between the concept of wave speed (e.g., the
speed of a shock) and the speed of an individual car. In the context of traffic flow this
can be exemplified as follows.

When a car on a road with heavy traffic has to reduce its speed due to, e.g., a
traffic light turning red, we will have a shock wave, i.e., an abrupt change in density
propagating in the opposite direction of the individual cars. Conversely, as the red
light turns green, we will have rarefaction waves extending in both directions as the
cars in front accelerate and spread out and the density of cars decreases continuously.

The method we use to solve the initial-boundary value problem for the resulting
system of conservation laws is based on the technique introduced by Dafermos [4],
where one replaces the flux function by a polygon, i.e., a continuous piecewise linear
approximation. In addition one approximates the initial value function by a step
function, thereby obtaining (multiple) Riemann initial data. Since the flux function
is piecewise linear, one obtains no rarefaction waves in the solution, since these are
approximated by small shocks. These shocks are then tracked. Dafermos’s method
was proved to converge, in [11], [12].

Thus, we first prove that the Riemann problems have a unique weak solution.
The general Cauchy problem is approximated by finitely many Riemann problems,
and using estimates from [11] we can prove existence of a solution of the general
Cauchy problem:

The general framework presented in this paper allows for many extensions. We
have assumed that the flux functions are identical for all the roads in the network,
and, similarly, for the entropy function g. One could allow for individual flux functions
for each road, thereby studying, for example, how the quality of individual roads as
measured by the flux function influence traffic on the network. Furthermore, one could
study the situation where the flux function also depends on position on the road, i.e.,

f f(x, p) (see, e.g., [19], [6], [21]), which could be used as a model of bottlenecks.
In addition, traffic lights could be built into the model; see [19], [24].

Recently the study of stochastic conservation laws began; see [14], [15]. In this
context, this would correspond to the situation where, e.g., the initial density is .not
known exactly or the exact form of f is uncertain. The analysis of such a stochastic
model would be an interesting extension of the analysis in this paper.

A very interesting question to discuss for this type of problem is the possible
occurrence of Braess’s paradox [3], [1], [5].

For extensive discussions of the advantages and disadvantages of the hydrody-
namicM approach to traffic flow, we refer to [20], [7], [16], [9], which also contain
alternative models for traffic flow. To the best of our knowledge, the hydrodynamicM
approach has not been analyzed for a network of roads prior to this analysis. Standard
traffic models on networks treat the dynamics in a much simpler way than this model
without, using differential equations. These models then allow for discussing other
questions resulting from, e.g., the tracking of individual cars. On the other hand, our
model takes a more global point of view, assuming, in the sense discussed above, that
the drivers try to maximize the flow locally at each intersection. From this and the
continuum description, the model gives the total flow pattern. In this paper we dis-
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cuss fundamental mathematical results of this model, provide a numerical technique,
and give some examples on simple networks. We plan to treat a detailed, real-world
example in a separate paper.

1. The Riemann problem. Consider a network of unidirectional roads which
are connected at intersections. The precise definition of a network can be written as
follows.

DEFINITION 1.1. By a network we mean a finite, connected directed graph, where,
in addition, we may attach a finite number of directed curves extending to infinity.

Let each edge or curve correspond to a road and assume that the traffic is in the
direction given by the direction in the network. The vertices correspond to junctions
or intersections. A road may be connected to other roads at both ends or at one end
only; in the latter case the unconnected end is assumed to extend to infinity. We
assume that we have have N roads which are connected at M junctions. See Fig. 2.

FIG. 2. A network.

Let p p(x, t) denote the density of cars at road with x E [a, bi], where

ai -cx or bi cx if the road extends to infinity. Assume that the traffic goes in
the direction of ai to bi. We will use the notation

t_>0, xi_[ai,bi], i--1,...,N.

Away from intersections, conservation of cars yields [24], [17],

(1.2)
Op Of(p)

0, i 1,... N,
Ot Ox

which should be interpreted in the distributional sense.
density at each road, viz.,

We have given an initial

o) p,,o(x), x e N.

The roads will be coupled in terms of boundary conditions at the intersections. The
weak formulation of the system of conservation laws will provide us with the right
boundary conditions.

Consider a junction J and assume, by relabeling if necessary, that roads 1,..., n
enter J and roads n + 1,..., n + m leave J. (Whenever we study a fixed intersection
J in the following, we will assume this labeling.) Write

(1.4) ci { bi
ai

for 1,...,n,
for i n + 1,...,n-t- m.
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Let {}N be smooth test functions with defined on [a, b] having compact
support in [a, b], i 1,..., n / m, that also are C smooth across junctions; i.e.,

(1.5) (c, t)= cj(cj, t) and (c,t)= (cj, t)

for all 1 i, j n + m, and similarly for other junctions. A weak solution of (1.2) is
a set of functions p(x, t), which satisfies

(1.6) p + f(p,) dzdt + p,o(x)(x,O) dx 0

for all satisfying (1.5).
By performing an analysis similar to the derivation of the Rankine-Hugoniot

jump relation for shocks (see, e.g., [23, p. 246), one eily obtains, as a consequence
of the weak formulation, that for each intersection J,

(.) ((,.))= ((a,.))
i=l i=n+l

for t > 0; i.e., all cars that enter an intersection must emerge at some other road
leaving the intersection. (Consider test functions with support near the junction J
and perform n integration by parts.) We call (1.7) the Rankine-Hugoniot condition
for intersections. (Equation (1.7) resembles Kirchhoff’s law in electromagnetism, but
we will not use that terminology here.) Alternatively, we could consider the system
(1.2) of N separate equations and impose boundary conditions (1.7) at each junction.

We will make certain assumptions on the function f that are reasonable in the
context of traffic flow (cf. the discussion in the imroduction). Normalize p so that
Pmax 1. We essentially assume that f hs a unique mximum, viz.,

() ](0) (1) 0, e (0,1). f’() 0, (- )f’() < 0, .
These restrictiom hold for flux functions commonly used in the nalysis of traffic flow
[20], [9]. In the remaining part of this section we study the Riemann problem for
single junction J, i.e., the case with M 1.

DEFINITION 1.2. By the weak solution of the Riemann problem for the junction
J, we mean the weak solution of the initial value problem (1.2), (1.3), (1.7) for the
network consisting of the single junction J with n incoming roads and m outgoing
roads, all extending to infinity. The initial data are given by

(.s) ,0(x) ,0, e [, ], = ,...,g,

where P,o, 1,..., N are constants and N n + m. See Fig. 3.

FIG. 3. The Riemann problem.
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Before we introduce the notion of an entropy condition for the Riemann problem,
we will discuss some immediate properties of any weak solution. Consider Riemann
initial data (1.8) for a single junction. Irrespective of whether the initial data al-
ready satisfies the Rankine-Hugoniot condition at J, the solution must. But it is not
sufficient to impose (1.7) to determine a unique solution since we have N unknowns
(the possible states at the junction) and only one equation, the Rankine-Hugoniot
condition. To obtain uniqueness, one has to impose a proper entropy condition. Let

(1.9)
denote the solution at the junction; thus, e.g., pj(O) (Pl,0,..., PN,O). Once pj is
determined, we will solve the Riemann problem in the usual way for each of the roads
with fii as the right state for incoming roads (i <_ n) and left state for outgoing roads
(i >_ n + 1). The solution will then consist of waves (either shock waves or rarefaction
waves) emerging" from the intersection J. For roads with incoming traffic (i.e., roads
i 1,..., n), these waves must have negative speed and, similarly, for the roads with
outgoing traffic (i.e., roads i n + 1,..., N), the waves must have positive speed.
Thus we see that for the Riemann problem, pj will in fact be independent of t for
t > 0. This imposes certain restrictions on the possible values of the solution close
to the junction. For any p E [0, 1], p = a, we define -(p) as the unique number
with T(p) p such that f(T(p)) f(p). If p a then T(p) p. Furthermore,
-(a) a. To be specific, consider an incoming road, i.e., E {1,...,n}. If Pi,0 > a

then t3i e [a, 1], while if Pi,o < a then fii e {pi,0} U [T(pi,O), 1]. For outgoing roads, i.e.,
i {n + 1,... ,N}, we similarly have that

[0, a] for pi,0 < a,
(1.10) fiie [0, T(pi,0)] U {Pi,o} for Pi,0 > a.

Let
n n+m

(1.111 A=IxOc=H[a,l] x H [O,a] CIn+m,
i=1 i=n+l

where
n nWm

(1.12) I H[T(pi,0), 11, O H [0, T(pi,0)].
i=1 i--n+l

We would like to have pj A, but .because of the possibility of fii P.,0, if Pi,0 < a,
and { 1..., n}, and similarly for i > n, this is not guaranteed. However, we will see
that we can modify the weak solution (on a set of measure zero) to obtain this. To see
this, assume that we have a weak solution of the Riemann problem satisfying (1.6) as
well as the Rankine-Hugoniot condition (1.7) and, to be specific, let us assume that

fil pl,0 < a. Then, the function

x ,t)

with ti Pi for 2,..., N, and

T(p,o) for X O,
(1.14) l(Xl, t)

pl(Xl, t) for X < 0

will still be a weak solution as 5 p in L N(I]=l[ai, bi] [0, ec}); it also satisfies the
Rankine-Hugoniot condition. Here we have introduced de facto a stationary shock,
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which we call a virtual shock, that will not change the solution. In this way we may
(and we will from now on) assume that the solution at the junction is in A, i.e., pz E A.

This brings us to the point of introducing the entropy condition. The motivation
for our choice was discussed in the introduction, and we will concentrate here on its
mathematical formulation and consequences. The aim of this condition is to single out
a unique point pg in A such that the Rankine-Hugoniot condition (1.7) is satisfied.
Having determined the value of the solution at the junction, we then determine the
solution inside each of the intervals [ai, bi], i 1,..., N, in the standard way; see [23,
p. 301ff]. (See the last section of this paper for an explicit example.)

Let the flux function f satisfy (gv), and let g be some differentiable strictly concave
function of a single variable defined on . Write -y() f()/f(a) for i
1,..., N. We define the entropy of the junction J as

N

(1.15) Ej- -g(/i).
i--1

Introduce the Hugoniot locus (i.e., the points where the Rankine-Hugoniot condition
is satisfied) as

(1.16) Hj PJ (1,..., #N) E RN f(#i) f(Pi)
i----1 i=n+l

The entropy condition is written as follows:

Find a j (/1,..., N) Hj f A which maximizes Ej.

With the above assumptions on g we have that Ej is a strictly concave function defined
on a convex set, and hence has a unique maximum. This maximum will be found either
as an interior point where VEj 0, or at the boundary of the domain. Let us first
study stationary points. Using the function -, we can write the Rankine-Hugoniot
condition as

or

n N

i--1 i--nq-1

n N-1

(1.18/ /N ’7,- Z ’’/’"
i:l i:n+l

Observe that when pj A there is a one-to-one correspondence between /i and fii
which we will use whenever convenient in the rest of the paper. We may rewrite the
entropy condition as

Thus

(1.20)

(1.19) Ej Z g("Yi) + g i "Y,
i=l i=1 i=n+l
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where

(1.21)
O’g { +1 for 1,...,n,

0 -1 for n + 1,...,N- 1.

Therefore, VEj 0 implies that g’ (/i) -g (N) for 1,... ,n, and g’ (")’i)
g (N) for i n + 1,...,N- 1. Thus

(1.22) 3’i
-3’N for 1,..., n,

YN for n + 1,..., N- 1,

where ’g is the solution of the equation

provided this equation has a solution (m/n), [0, 1]. (A unique solution of
(1.23) will exist in [0, 1] if, e.g., g’(0) -g’(1).) The condition that p A transforms
into a condition j (/,..., /N) yIN= [0, ,.i(pi,o)] c_ yiN= [0,1]. Here -(pi) is
defined as

1 ifi<_nandp>_a, ori>nandp<_a,
(1.24) ai (P)

(p) otherwise.

If the stationary point we have computed above is not in l-I/N=1 [0, tci(Pi,0)], one or more
of the coordinates will have to be found on the boundary. We omit the details.

As we said above, once we have determined the (unique) value of the solution at
the junction, we construct the solution on the individual roads. We have now proved
the following theorem.

THEOREM 1.1. Assume that f satisfies (), and let g be a strictly concave dif-
ferentiable function. Then the Riemann problem for the single junction J with entropy
condition () has a uniue solution. Let lag denote the entropy solution at the junction.
Then the solution is written as follows: First consider incoming roads (i {1,..., n}).
For > po,i, we have

f P,,o forx<st,
(1.25) pi(xi, t) p for st < x < O,

while if fii < po,i,

(1.26)
Pi,o

pi(xi,t)

Pi

for x < ff (pi,o)t,

for f’(pi,o)t
for tf’ (i) < x < O.

For outgoing roads (i E {n + 1,..., N}), we similarly find that if fii < po,i,

f P,o forO < x < st,
(1.27) p(x,t)

P,o for st<x,
while if fii > Po,i, we have

Pi,o

for 0 < x < f’(fii)t,
for ff (fii)t < x < tff (pi,o),
for tf’ (Pi,o < x.
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Here s If]liP] (f(Pi,o)- f(fii))/(pi,o- fii) is the (standard) Rankine-Hugoniot
shock speed.

2. Construction of approximate solutions. We will now turn our attention
to the general Cauchy problem with the entropy condition ($’) imposed on each in-
tersection. Based on Dafermos’s method [4], [11], [12], we will construct approximate
solutions to this problem, and in the next section we will show that this construction
yields a convergent subsequence.

First, we briefly review the solution of the Riemann problem for the scalar conser-
vation law if the flux function f is piecewise linear and concave. Consider the Riemann
problem

ut + f(u)x O,

(2.1)
u(x,

u for x < 0,
0)

ur for x >_0,

where u is a scalar function. If u _< ur then the solution is simply

(2.2) u(x,t)= { u forx<st,

u,r for x > st,

where s [f]/[u] (f(u)- f(u))/(u- u). If u > u, we have the following
solution: let u0 u, uk u, and

u0 < <... < e 0,...,k,

such that f is linear on each [ui, u+l], viz.,

(2.4) u E [ui, ui+l] = f(u) f+ f (u- ui) + f, i 0,..., k 1.
ui+ u

Then we have the following theorem.
THEOREM 2.1. Consider the Riemann problem (2.1), where f is piecewise linear

and concave. Then the solution is given by

<
u(x t)

u for x > st

if u <_ Ur, where s [f]/[u] (f(u) f(ur))/(u Ur) and

u for x < sot,

(2.6) u(x,t) u for si_t < x < sit, i=l,...,k-1,

ur for x > sk_t,

where

(2.7) s{
f/+l ,

0, k 1
U+l ui

if t Ur.
Observe that in this case u(x, t) is a piecewise constant function in x/t. For a

scalar conservati)n law on the line, Dafermos’s scheme consists of approximating the
initial function by a step function, thereby generating a series of Riemann problems.
The solution of these problems will then define a set of discontinuities which propagate
linearly in (x, t) space. At some t > 0, two of these discontinuities will collide, and
one then solves the Riemann problem defined by the values to the right and left of the
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collision. This gives another set of discontinuities, and the process can be continued
up to the next collision time. In [11] it is shown that this is a well-defined process and
that the solutions generated converge as the approximation of the flux function f and
the initial value function u0 converge.

We will use.this strategy to construct an approximation of the solution of (1.2),
(1.3). First, we make a polygonal approximation of f. Let k be some positive even
integer and divide the interval [0, a] into k/2 + 1 intervals of length 2a/k. The interval
<a, 1] is then divided at points {Sj k}j=k/2+l, chosen such that

for j 0,...,k/2, i.e., tSj T((2a/k)j). For j <_ k/2 we define tSj 2(j/k)a. We
define fk(p) as the piecewise linear continuous function

(2.9) fk(p) f () + f () f (+) (p_ ) for p e [j, tSy+].

Having approximated the flux function f, we now approximate the initial data p,0

with a step function p,o(X) taking values in the set }y=0" The solution of the
Riemann problem (2.1) away from the intersections will take values in {ty} (el. The-
orem 2.1), but the solution of the Riemann problem (1.8) at the junctions may take
us outside {tj }. However, we approximate the exact solution by choosing the closest
density in this set; i.e., assume that on one particular road the exact solution of the
Riemann problem adjacent to the junction is given by p (ty, tSj+/. Then we let the
approximate solution be tSj if ItSy Pl < ItSy+- Pl and tSy+ otherwise. By doing this,
we introduce an error in conservation, and the approximate solution is no longer an
exact weak solution of an approximate problem. But this error is of size O (l/k), and
thus vanishes as k

In the remaining part of this paper we let N denote the total number of roads
in the network, and we also denote the densities on all roads by the vector p=
(p..., PN), calling attention to the difference between the break point j and the
function pj (x, t). The approximate solution is then denoted by pk (p,..., pkN). For
the Riemann problems defined by f f and the discontinuities of P,0,k we can find
the solution using Theorem 2.1. The approximate solution p (p,..., PN) defines
set of discontinuities moving in the intervals [a, b] for i 1,..., N. Clearly, p can be
defined at least until the first collision of discontinuities. This collision defines a new
Riemann problem whose solution creates new discontinuities which can be propagated
until the next collision and so on. Obviously, this can be repeated an arbitrary number
of times. Below we will show that p can indeed be defined up to any time, but first
we must show some lemmas.

k xWe now have that p t), 1,..., N, will be a step function in x and thus will
k forj 0, nsuchthat k kdefine a number of constant states Pi,j P,0 P (a,’) and

so on. We will also label the times (in increasing order) when some discontinuities
collide, either with each other or with an intersection, by Q for l 1, 2,

LEMMA 2.1. Assume that we have an entropy state pg (and the corresponding
j (I,...,’YN)), which is a solution of the Riemann problem for the junction J.
Consider a shock colliding with J from road r. Let the new entropy solution after the
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collision be denoted by j with corresponding J (1,..., N). If r n then

(2.10)
; >- for i= 1,..., n, i r,
;y
_

for n + 1, n + m,

and if r > n then

(2.11)
/ <- / for i-- 1,..., n,
;yi >_ "yi for i n + l,. ,n-b m, i r.

Proof. We will show the lemma in the case r <_ n; the proof in the other case
is identical. Since the colliding discontinuity has positive speed, the density to the
left of the discontinuity t must be in the set (PIP < a and (p) < /r}. The possible
densities adjacent to the junction on road r.after the collision are from the set (PIP >
a and -y(p) <_ (t)). In particular, r < Yr. Now (2.10) will follow if

OEj f > 0 for 1,..., n, r,

0" ( ,+_) <0 fori=n+l,...,n+m.

Let n+m <, >n +"" Since < "Yr, +m < "+m, and since g is

a decreasing function, g’(/n+m) > g’(9/n+m). Thus, from (1.21) we get, for <_ n, that

(2.13)
OEj I’(1 .+_

0=_0Ejb,i g (’ + g /’+" < g / + g / +" 1)

(2.14)
OEj

< O,
0" (1 .+-1)

and the lemma is proved.
LEMMA 2.2. Assume that we have an entropy state pg with corresponding [j

(1,..., [N), which is a solution of the Riemann problem for the junction J. Consider
a shock Colliding with J from road r. Let the new entropy solution after the collision
be denoted by J with corresponding Zyg (z/l,... Z/N). Then

Proof. Without loss of generality we can assume that r <_ n. By the previous
lemma, -i >_ i for i <_ n, i r, and i _< /i. Subtracting the Rankine-Hugoniot
relations for -j and j we get

n n+m n n+m

ir i=n+ iyr i--n+

All terms in the last equation are positive and the lemma follows.
Introduce

(2.17) z z(p)-- (/(p), sgn(p- a))

with sgn(x) -1 for x <_ 0 and 1 otherwise, and write, for simplicity,

(2.18) z.. k

Similarly, for i > n,
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Furthermore, for Q-1 < t < tt, we define the functional Te by

(2.19) Te

where I(f, i)l- Ill + I1 and n is the number of discontinuities on road u. We now
have the following lemma.

LEMMA 2.3.

(2.20) TTM _< T.
Proof. It follows from Theorem 3.1 in [11] that T does not increase when two

discontinuities collide. In the case where a discontinuity collides with a junction,
Lemma 2.2 implies that T does not increase. This is true because the waves emitted
from a junction in .the approximated solution will always be smaller or equal to the
correct waves described by Lemma 2.2. .

jNow, since " takes values in a finite set and T is positive, it follows that after some
finite number of collisions L, T remains equal to some constant TL. If T is constant for
collisions between discontinuities, we can only have collisions between discontinuities
separating (/,i) and (’m, im), and (m, im) and (/,ir). In this case 3m must be
between - and "r. In particular, this implies that both discontinuities have positive
or negative speed. So, after tL all roads must have discontinuities of either positive or
negative speed only. Let us examine the situation on some particular road-r after tL.
Assume that all discontinuities on r have positive speed. From the start of r, a single
discontinuity can emerge because of a collision with the junction along some other
road connected to r there. No discontinuity can emerge from the end of r, since this
would lead to a collision between fronts which have speeds of different signs. Thus,
eventually, all fronts on r will have collided with the right endpoint of r, and we are
left with a single virtual shock. The situation is similar if all speeds on r are negative.
In particular, front tracking on a traffic network is a well-defined construction.

3. The Cauchy problem. In this section we will show three lemmas which,
by a standard diagonalization argument, imply that as k cx a subsequence of

Nzk (Zkl,.. z) converges locally in L1 l=l[a{, b] x [0, oc>).
LEMMA 3.1.

sup Iz2( , t)l _< 2.
k,i,x,t

This is obvious and needs no proof.
Now we will define the total variation of zk"

N

(3.2) T’V’(zk) E T.V.xe[a,b]Z (x, t).
i--1

Our second lemma states that the total variation is uniformly bounded in time.
LEMMA 3.2.

(3.3) T.V.(zk(x,t)) <_ K

for some constant K independent of k and t.
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Proof. By construction of the functional T, (2.20), and Lemma 2.3, we have that

T.V.(zk(x,t)) <_ T for t E

(3.4) <_ T _< K,

which proves the lemma.
LEMMA 3.3. Let T1 > T2 be such that (’1 -T2) is sufficiently small. Then there

is a constant K independent of k, i, T1, or T2 such that

(3.5) Iz(x, T1) zki (x, T2)[dx K(T1 T2).

Proof. Let r be a road with "density" zk (x, t) and endpoints a and b. Assume that
r is connected at a through the junction Ja with roads rl,..., rn, and at b through the
junction Jb with roads rl+n,..., rm+n. Let C be a number such that C >_ max ]f’(p)[
such that the speed of any discontinuity in pk is bounded by C. Now assume that
(T1--’2) is SO small that C(T--’2)

_
1/2 min<<N(b--ai). Define a’-- a-be(T1-’2)

and b’ b- C(T1 -’2). For x < a’, let ta(z) T1 --(X- a)/C, and for x > b’ let
tb(X) T1 (b x)/C. For a’ <_ x <_ b’ we have that Izk(x, T) Zk(X, ’2)[ is bounded
by the spatial variation of zk (y, T2), where x C(T1 T2) < y < X -t- C(T ’2). For
x < a’ or x > b’, Izk(x, ’)- z(x, T2)[ .is bounded by 4 by Lemma 3.1. Thus

b rb

./. [zk(x, T) Zk(X, T2)]dx

_
2(a’ a) + ./., [zk(x, T) Zk(X, ’2)ldx q- 2(b b’)

<
-c(---.) - ddx + aC(r r),

where Idz/d l is.a measure with total mass T.V.(z). By changing the order of inte-

gration we obtain for some constant ,
(3.7) ]zk(x, T) Zk(X, T2)ldx

_
dM(T

where the right-hand side is bounded by Lemma 3.2.
Now, by a standard technique (see, e.g., [23, p. 385ff]), one can show that Lemmas

3.1-3.3 imply that as k oc, a subsequence of zk converges in L1, or, more precisely,
we have the following theorem.

THEOREM 3.1. Assume that f satisfies (). Let z0(xl,... ,XN)= (Z,o(X),...,
ZN,O(XN)) be such that T.V.(z0) is bounded. Then, as k -- oc, there exists a sub-
sequence kj and a function Z(Xl,..., Xg, t) (Zl(Xl, t),..., ZN(XN, t)) such that for
any finite time T, z as defined in 2, converges uniformly to z in Lc for any t < T.

Since the map (2.17), viz., p -. z(p), is such that its inverse - is uniformly
continuous, this implies that some subsequence of pk also converges to p-- -l(z).

Now we would like to show that the limit function p is indeed a weak solution to
our problem (1.1), and to this end we have to show that the functional

(a.s) W(p) + f(P )-5 x ] + O) x)
vanishes for all i in C for 1,..., N. For simplicity we will now label our
convergent subsequence pk. Since pk is almost a weak solution of (1.2) and, therefore,
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satisfies W(pk) --0 (N/k) with f-- fk, we can write

(3.9) W(p) E (p, pki + (f(p,) Ik(pki ))-x ]
dzdt

i=1

+ [,0( 0(]e(, 0e + o

for aW k. Therefore,

(3.i0) lip, P I}Lx
i=1

(3.lOb) + IIf(P)

(3.10c) + II (Pi)-

(3.1Od) + Illllp(x, O) p(x, O)IIL

( .lOe)

By Lipshit continuity of f and fk, the terms (a.10b) and (a.10c) are small; the term
(a.10a) is small since is the L limit of p, and the last term (a.10d) is small by the
construction of pk(z, z,0). Therefore, for any e > 0, we may find a k such that
Iw()l < e, concluding that O is indeed a weak solution. Thus we have proven the
following theorem.
TOaM a.2. Cosider the Cch problem (1.2), (1.a), (.7) with flfctioe

f satisfin9 condition (). Assume that the ieitial dat po(x,...,z)
(p(z),... ,p()) is sch that T.V. ( (p0)) is boeded. Thee the initial-boedar
problem has weak solution coestrcted from he soltioe of the Riemaee problem
sie9 the etrop condition (g).

Ezmle 1. Consider a simple junction consisting of two incoming roads and one
outgoing road. Let the density on the two incoming roads be denoted by p and
and the density on the outgoing road be denoted by Pa. Similarly, we denote the fluxes
i. Let the flux function f be given by

(3.11) f(p) 4p(1- p).

The choice of entropy function g will be motivated by practical insight in traffic flow,
and this choice will of course determine the solution. As we shall see below, not all
choices of g give reasonable results. Let us first use g f. Assume that we initially
have the entropy state

(3.12) = ( 1 2),, o p=
6 6 6

Now sume that a discontinuity with left density 0 collides with the junction from
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road 1 at t 0; i.e., for negative time, the density on road 1 is given by

0 for x < st,
(3.13) Pl .3.+..d for x > st

where s 2/(3 + v/) is the speed of the discontinuity given according to the Rankine-
Hugoniot condition. Where there is no ambiguity, we will also denote the densities
for t > 0 by pi. After the collision, the density on road 1 can only be 0 away from the
junction with a virtual shock at the endpoint connecting it to a density of 1. Therefore,
the Rankine-Hugoniot condition now demands that "/2 73 and/92 1 p3. Since
g(?) has a maximum for ? 1/2, the entropy condition ($) gives ?2 ?3 1/2 or

P2 (2 + v/-)/4 and p3 (2- v/)/4. Thus we see that the densities for positive
time are given by

(3.14)

p (, t) 0,

3+ for x < -4./=t,6 V 3

p2(x, t) 21 8tx for -4ft < x <_ -2x/t,
2+ for -2x/t < x,4
2- .v2 for x < s3t,

p (x, t)
for x > 83t.6

The speed 83 is given by

2
(3.15) s3 3v/- 2x/-"
Thus, as expected, the densities adjacent to the junction on roads 2 and 3 are smaller
after the collision than before, but we also note that this entropy function implies that
the density adjacent to the junction becomes smaller than both the densities on roads
2 and 3. It would be reasonable to expect that once road 1 stops feeding cars into the
junction, its effect would no longer be felt, and the solution for positive time would
be the same as for the Riemann problem on a single road with initial data

+vrd for x < O,
(3 16) p(x, O) 6

3-vr for X > 0.6

If we choose g(?) as a function which has a maximum for ? 1, then the above
argument shows that after the collision we have P2 /93 1/2. Then the solution of
the Riemann problem on each road is a rarefaction wave and these waves "fit" for
x/t O. Thus, the solution is given by

(3.17)

3+v for x < --4 t,
p(x, t) -for -4/2=t < x < O,2 8t V

{
z forO<x< v

3-../6 for 33 t _< x.

We see that the junction no longer influences the densities, since this is also the solution
of the Riemann problem (3.16). In practice, this choice of g would therefore be more
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reasonable.
With this new choice of entropy function, the initial state z does not satisfy the

entropy condition; i.e., it is not a solution to the Riemann problem. If we assume
that the fluxes are the same but the densities are smaller than a 1/2 on the incoming
roads, we have that / is an entropy state.

Example 2. Now assume that we have a simple network consisting of a double
fork with two incoming and two outgoing roads such that one of the outgoing roads
doubles back into the network again; see Fig. 4. We will use the same f as in example
1 and assume that g is a strictly concave function with a maximum at /= 1.

FIG. 4. A traJic network.

Denote the left junction by A and the right one by B. To simplify the discussion,
we consider a situation with low density traffic with P2,0 p4,0 (3- v/)/6 and

P3,0 (3- )/6. The densities are adjusted so that both the Rankine-Hugoniot
condition and the entropy condition are satisfied initially at B, and hence the solution
at B will remain unchanged until one has interference from A. Now assume that we
have a shock on road 1 with left value 0 that hits A at time t 0, i.e., for t < 0,

3- for st < x < O,
(3.18) pl(x,t) 6

0 for x <_ st

with speed s =. 2/(3- v/). Thus at the junction A we have that 1(0) ill,0 0,
fi2(0) =/52,0 (3- V)/6, and fi3(0) 3,0 (3- V)/6 at t 0. We see from the
velocity considerations prior to (1.10) that, using virtual shocks, the solution on road
1 can be written as

1 for x 0,
(3.19) pl (x, t)

0 for x < 0.

Thus / 0 and 2 3. From the entropy condition we infer that 2 "3 ,
giving 2 T(/52,0) and fi3 2,0, which implies that we have another virtual shock
on road 2. Hence, near A for small t we have

a+v for x b2,
p (x t)=

forx <b26
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(recall that b2 denotes the end point of road 2), and

3-.v for x ( s3t,
(3.21) p3(x,t) 6- for x > s3t6

with s3 1/(3/- 3v/-).
At t to (b3-a3)s3 the shock on road 3 will hit junction B. The "initial state"

for t to at B will now be p2(a2, to) p3(b3, to) pc(ca, to) (3 v/)/6. From the
Rankine-Hugoniot condition we have that the solution has to satisfy "3 "Y2 +’a, and,
in addition, the entropy condition requires that g(’3) + g(’2) + g(’4) be maximized
with -j e [0, aj((3- v)/6)] [0, 1/2] for j 2, 3, 4. We infer that "2 "4 because of
symmetry, and hence we have to determine the maximum of h(/2) g(2"2) + 2g(’2)
with 2-72 "2 E [0, 5]" Since g is strictly concave with maximum at - 1, we see that

and hence "2 3’4 which impliesthe maximum is reached when 2"72 "Y3 , ,
that/52 =/54 1/2(1 V/-/6) and/53 (3 + x/)/6. On road 3 we will have a virtual
shock, viz.,

3-v forx<b3
(3.22) p3(x,t) 6

3+f forx-b36

while

(3.23)
3.v for x > (t to) + aj6

(1 V/) for X < (t to) + aj j 2, 4,

where x//(3v/- 6). (The solutions (3.22) and (3.23) are only valid for t > to
until the shock on road 2 hits junction A (roads 2 and 3) or returns to B (road 4).
After that, the solution will have to be recalculated.)

We see that the difference in flux carried by the shock will be halved after the
collision at B, one shock propagating out of the system on road 4, and one shock on
road 2. The shock on road 2 will, after some time, hit junction A, but since road 1
is empty, just pass this junction unchanged. Thus the system will gradually empty;
each time the shock on road 2 hits junction B, it will halve its strength in - and also
move faster. However, the network will not be completely empty in finite time!
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CHARACTERIZATION OF Lp-SOLUTIONS FOR THE TWO-SCALE
DILATION EQUATIONS*
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Abstract. We give a characterization of the existence of compactly supported LP-solutions,
1 <_ p < o, for the two-scale dilation equations. For the L2-case, the condition reduces to the
determination of the spectral radius of a certain matrix in terms of the coefficients, which can be
calculated through a finite step algorithm. For the other cases, we implement the characterization by
the four-coefficient dilation equation and obtain some simple sufficient conditions for the existence of
the solutions. The results are compared with known ones.

Key words, cascade algorithm, compactly supported LP-solutions, dilation equation, Fourier
transformation, iteration, spectral radius, wavelet
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1. Introduction. A two-scale dilation equation is a functional equation of the
form

N

(1.1) f(x) c,J’(ax Zn),

where f" R -- R (or C), > 1, 0 < 1 < < ]N are real constants, and Cn
are real (or complex) constants. The equation is called a lattice two-scale dilation
equation if

N

(1.2) f(x) Cnf(kx n)
n=0

for an integer k >_ 2. A special case of the functional equation (k 3, N 4,
and cn 1, 2/3, 1/3, 1/3, 1) was first studied by de aham [dR] as an example of
a continuous nowhere differentiable function. Recently this equation has attracted
a lot of attention, especially for the lattice case with k 2. In wavelet theory, the
study of multiresolution and the search of various orthogonal, compactly supported
wavelets has lead to the investigation of the existence, uniqueness, and smoothness
of such continuous integrable solutions (see the work of Cohen, Colella, Daubechies,
Heil, Lagarias, Lawton, Mallat and Meyer; see the survey paper [HI). The equation

" nalso plays an important role in the "subdivision schemes" and interpolatio schemes"
of constructing continuous spline curves, surfaces, and fractal objects (see the work
of Cavaretta, Dahmen, Deslauriers, Dubuc, Dye, Gregory, Levin, Michelli, Prautzsch;
see [DL1] and [DL2] for an historical development and references).

The general two-scale (in fact m.ultiscale) dilation equation (1.1) arises in the
consideration of self-similar measures (Hutchinson [Hu]), and the singularity of the
measures induced by the infinite Bernoulli convolutions. The latter has been studied

*Received by the editors October 13, 1992; accepted for publication (in revised form) December
10, 1993.

Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania
15260.
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for a long time and the question is still unsettled (see the work of Erdhs, Garcia,
Jessen, Salem, Wintner; see ILl] and [L2] for some recent developments and remarks).
In another direction, Strichartz [JRS], [Str] studied the asymptotic behavior of the
Fourier transformation of such distributions, and made many interesting observations
on the averages with respect to some fractional powers.

There are two major approaches to the equation: the Fourier method (the fre-
quency domain approach) and the iteration method (the time-domain approach). The
Fourier transformation converts the functional equation to the form

l]
j=O

Nwhere p() -5 n=O cne" Using this, Daubechies and Lagarias [DL1] proved that
for A -I -Cn,

(i) if IAI < 1 or A --1, then (1.1) has no integrable solution;
(ii) if A 1 then it has at most one nonzero integrable solution;
(iii) if IAI > 1 and if an integrable solution f exists, then A c- for some

nonnegative integer m. The dilation equation obtained by replacing the coefficients
(Ca} with ((-mcn} has a nonzero integrable solution g, and for suitable choice of
normalization,

dm

dxm
g(x) f(x i.e.

For an integrable solution, the above result essentially reduces the coefficients of
the equation to the special ce

n .
By using the Fourier transform of f and the Paley-Wiener theorem, it was also proved
in [DL1] that f h compact support in [O,NN/(- 1)]. The Fourier method,
however, does not give sharp criteria for the existence of L-solutions in terms of the
coefficients (Cn}. Some partial results are given in [La] and [M].

The iteration method is restricted to the lattice ce. It applies particularly well
in the ce of compactly supported solutions. The bic idea is to identify a given
function f supported by [0, N] with the vector-valued function

f(x) If(x), f(x + 1),..., f(x + (N- 1))], x [0, 1],

and to use the right side of the dilation equation to construct two N N matrices To
and T1 (see 2 for details). A constant vector v is used as the initial condition, followed
by iteration with the matrices To and T1. (the cascade algorithm). The limit, if the
sequence converges, will be the solution of the dilation equation. Such an approach was
used by Daubechies and Lagarias [DL2], and independently by Michelli and Prautzsch
[Me]. It was also used by eerger and Wang [nWl], and Collela and Seil [CH1] and
[CH2].

For two given matrices A0 and A1, Rota and String [RS] and String IS] defined
the joint spectral radius of A0, A. by

where

f(A0, A lim sup Am(A0, A),

Am(Ao, A) max IIAjII
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with J (jl,... ,jz), Aj Ajl Aj, ji 0 or 1. A useful sufficient condition for
the existence of solutions is given in [DL2] and [BWl].

THEOREM 1.1. For k 2, C2n C2n-t-1 1, let

If (TolH,TIIH < 1, then the equation has a nonzero continuous integrable solution.
Colella and Heil [CH1] and [CH2] also showed that the condition is "essentially"

necessary. More recently Wang [W] introduced the notion of mean spectral radius:

1
(T0, T1) lim sup

m--,c

He proved, among other interesting results, that if C2n C2n+l 1 and fi(A0, A)
< 1, where

Ti bi A i=0,1,

then a nonzero integrable solution exists.
This characterization in terms of the joint spectral radius, although elegant, is

difficult to evaluate in practice. By using a geometric convergence consideration and
a different iteration argument, Pan [P] gives a simple sufficient condition for the exis-
tence of compactly supported Lp-solutions of the functional equation (1.2) with four
coefficients.

In this paper we will continue to study the existence of the compactly supported
Lp-solutions of

N

f(x)
n--O

using the cascade iteration algorithm with the matrices To and T. The regularity of
such solutions will be dealt with in a forthcoming paper. Note that in the previous
literature, one always starts with an initial condition that is, in a certain sense, quite
arbitrary (for example, a spline function or X[0,]). Our fundamental observation is
the following proposition.

PROPOSITION 1.2. Suppose 1 <_ p < oc and Cn 2. Let f be a compactly
supported Lp-solution of (1.3) and let

V

Then v is an eigenvector of (To + T corresponding to the eigenvalue 2.
It follows that we can start with the iteration algorithm on the 2-eigenvector of

To + T1, and the convergence condition will be imposed only on the subspace involved
with such eigenvector. This allows us to obtain sharper results. The basic theorem is
as follows.

THEOREM 1.3. Suppose 1 <_ p < oc. Then equation (1.3) has a nonzero com-
pactly supported Lp-solution if and only if there exists a 2-eigenvector v of (To + T
such that

1
ITj (To I)v p 0 as oc.2-i
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For computational purposes we let H() be the subspace in Rn generated by the
Tjg’s for all J, where (To I)v, and let {vl,..., vk} be a basis; then the above
condition is equivalent to the existence of an integer such that

1 IIT v II <

for all vi, i 1,...,k.
The above results, as well as some corollaries and remarks, are proved in 2. A

slight improvement of Theorem 1.3 under the condition that the coefficients satisfy
the "m-sum rules" (see (2.7)) is also considered.

In 3, we consider the equation for the three-coefficient (N 2) and the four-
coefficient (N 3) cases. For the first case we obtain a complete characterization
of the compactly supported Lp-solutions. The second case is less trivial; it contains
the well-known Daubechies wavelet D4 [D], and has been studied in detail in [HI and
[P]. By using the basic theorem, we are able to derive some simple criteria for such
solutions to exist.

In 4 we give an improvement of Theorem 1.3 for the L2-case. In this case, the
left-hand side of (1.4) can be calculated and leads to an explicit expression of an
N N matrix W (Lemma 4.1, Proposition 4.3). Under a stronger assumption on the
coefficients

we show that the matrix W has an eigenvalue 2; (1.4), and hence the existence of the
compactly supported L2-solution, is essentially equivalent to the fact that all other
eigenvalues of W are less than 2 (Theorem 4.4 and Proposition 4.6). For the four-
coefficient case we obtain a complete characterization of the existence of the compactly
supported L2-solutions (Theorem 4.8).

There are different criteria for the existence of L2-solutions; e.g., see [E], [Herl],
[Uer2], and IV]. Their approach is via a Fourier method which is quite different from
ours (see Remark 9 in 4).

In [CH1], Collela and Hell used (co, ca) as free parameters for the four-coefficient
case satisfying co + c2 cl + c3 1, and plotted different domains in R2 that admit
or do not admit solutions. We conclude our study with an appendix for displaying
our result and some other well-known results with the same kind of plots.

2. The basic theorems. Throughout this paper we will consider the compactly
supported Lp-solutions, 1

_
p < co, of the functional equation

N

(2.1) f(x) cnf(2x n).
n--O

The general lattice case can be handled similarly (see (2.5)). For convenience we let
c,, 0 if n (0,..., N}. Our basic assumption on the coefficients is c 2. For
some cases we will also assume that c2n C2n+ 1. We will further restrict
the cn’s and the function f to be real valued, though there is no difficulty in extending
our method to the complex case.

It is known that if an L-solution exists, then it is necessarily unique, and is
supported by [0, N] [DL1]. This is not true if 1 < p < cx), since the Hilbert transfor-

pruction of such solution is again an Lp-solution [HI. We will use Lc-solution to denote
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the compactly supported Lp-solution. An LP-solution must be integrable, and hence
supported by [0, N].

Formally, the solution f is obtained by taking the limit of Sn(g) for a suitable
function g on R, where

N

s()(x) (x ).
n--0

In some previous papers [BW], [CH1], [CH2], [DL2], IMP], [W], it is found that the
analysis is a lot more convenient if we convert the involved functions into vector forms
and the operator S into a matrix operator. For this we let

TO--[C2i-j-1]l<_i,j<_N

co 0 0 0
C2 C1 CO 0
c ca c2 0

o.

0 0 0 CN-1

T1--[c2i-j]l<_i,jN

cl co 0 0
C3 C2 C1 0
5 C4 a3 0

0 0 CN

For any g defined on R vanishing outside [0, N], we decompose g into N pieces and
form a vector function as follows: let gi(x) g(x + i)X[o,1),i 0, 1,...N- 1, and
define a vector function (I)(g) g:R -- RN by

[0(x), a (x),...,
_

()]g(x)= 0
if x e [0, 1),
if x [0, 1).

Here we use v to denote the transpose of a vector v. Let I" be any fixed norm on RN

and define, as usual, Ilgli IlgllL" (f IIg(x)llPdx) 1/p, so g e LP[O, N] if and only if
g e Lp([0, 1],RN). Note that if we take the/p-norm on RN, then IlgllL, IlgllL,.

Let T be an operator defined on the vector-valued functions g by

(Tg)(x) To. g(b-(z)) + T. g(l(x)),

where 0(.x) x, 1(x)= 1/2x + 1/2. Equivalently, T is given by

:/}). g(2x)(Tg)(x)
T1. g(2x- 1)

if x E [0, ),
if x E [1/2, 1),

and (Tg)(x) 0 if x [0, 1). If we iterate the operator T on g repeatedly and obtain
a formal limit f, then f will satisfy

(2.2) f(x) 7}). f(: (x)) + TI. f(-1 (x)).

PROPOSITION 2.1. Let f be supported by [0, N], and let. I,(.f) f be defined as

above; then
S(f) T(f).
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Moreover, f is an LP-solution of (2.1) if and only if f E Lp([0, 1], RN) and f Tf,
i.e., f satisfies equation (2.2).

Proof. The proof of the commutativity of the operators only involves a direct
computation of x in [i, i q- 1/2] and [i + 1/2, i+ 1]. The second part is a consequence of
the first part, making use of the fact that if the solution has compact support, then it
must be contained in [0, N]. []

We begin with some simple considerations of the eigenproperties of To and T1.
Unless otherwise specified, eigenvector will mean right eigenvector. By a A-eigenvector
of a matrix M, we will mean an eigenvector of M corresponding to the eigenvalue A.
The following proposition is known.

PROPOSITION 2.2. If Cn 2, then 2 is an eigenvalue of (To + TI) with left
eigenvector [1,..., 1].

Furthermore, if C2n C2n+ 1, then 1 is an eigenvalue of To and T with
[1, 1] as a left eigenvector.

Proof. We need only observe that in the matrix (To / T), each column has sum
equal to 2. The proof of the second statement is similar. []

It follows that the right 2-eigenvector of (To +T) exists also; it will play a central
role in the existence of the solution of (2.1). Let fA be the average of f over an interval
A, i.e.,

L, T Ill,

where I/ 1 is the length of A.
PIOPOSITION 2.3. Let f be an LPc-solution of (2.1); let v [f[0,1l,..., f[N-,N]]

be the vector defined by the average of f on the N subintervals as indicated. Then v
is a 2-eigenvector of (To q- T).

Proof. Since f Tf, i.e.,

f(2x) if x e [0, 1/2),f(x)- T f(2x-1) ifxe[1/2,1),
when we integrate the expression over [0, 1/2] and [1/2, 1] separately, we have

--Toy, =Tlv.

f[N-1,N-1/2] fin-1 N,
On the other hand, note that on each interval [i, i + 1], the average satisfies

f[i,i+1/2] -b f[i+1/2,i+ll 2f[i,i+l];

hence we conclude that (To / T1)v 2v. []

We will show, under suitable conditions, that the 2-eigenvector of (To + T) ac-
tually defines a step function that generates the solution of (2.1). This is done by
iterating with the operator T, and is itself the average vector of the solution. For this
purpose, we need to introduce some notation for the indices: For any k >_ 1, let

J:(jl,...,j), where ji 0 or l, i=1,2...,k,

and set J 0 if k 0 for convenience; we will use JI to denote the length of J, and
let

A:{J: IJ[:k, k:0,1,2,...}
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denote the class of indices. For J, J’ e A, we let (J, J’) (jl,..., jk, j,..., j,). Let
I be the interval [0, 1); Ij will denote the dyadic interval Cj, o Cj o Cyk ([0, 1)). For
example, I0 [0, 1/2), I1 [1/2, 1), and Ig I(j jk) [a, b), where

It follows that I(g,o) U I(j,1) Ij and I(j,j,) C_ Ij for any J, J E A. The matrix Tj
represents the product TI... Tj and To is the identity matrix.

LEMMA 2.4. Let f0(x) v for x [0, 1), and fk+ Wfk, k 0, 1,...; then
fk(x) Tjv for each x Ij.

Moreover, if f is an LPc-solution of (2.1) and v is the average vector of f defined
in Proposition 2.3, then

where (Ig-t-j) is the interval (x/j x e Ig}. Also, fk f (f) in Lp([0, 1], RN).
Proof. We will use induction to show that f(x) Tjv for x Ij with IJI k.

Suppose that fk(x) Tjv for x Ij. Let x I(o,j) 0(Ig); then -(x) 2x Ig
and

fk+(x) W(f(x)) To. fk(2x) ToTjv T(o,g)V.

Similarly, if x I(1,J), then fk+l (x) T(,j)v.
Let f- (I)(f); then f-- Tf and f(x) Tjf(l(x)) for x Ig. Integrating this

over the interval Ig, we obtain

The fact that f f in Lp([O, 1],RN) follows by a proposition in
JR, p. 129].

LEMMA 2.5. Let v be.a 2-eigenvector of (To + T), and let fk be defined as above;
then for each k,

(2.3) J[0,] fk(x)dx=v.
Proof. Equation (2.3) follows from the following induction argument:

rio fk+l (x)dx [o To fk(2x)dx + f[1/2,1 ,1/2] ,11

l (T o,il fk(x)dx + T [O,l
1_2 (To + TI) ff[o,l] fk(x)dx
_1 (To / T)v v. D
2

T. fk(2x- 1)dx

fk(x)dx)

For any 2-eigenvector v of (To + T), we have

(To
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Let (To I)v and H() be the subspace in RN spanned by

{Tj" J E A}.

THEOREM 2.6. For 1 <_ p < oc, the following are equivalent" (i) equation (2.1)
has a nonzero LPc-solution; (ii) there exists a 2-eigenvector v of (To + T1) satisfying

lim
1

0;

(iii) there exists a 2-eigenvector v of (To + TI) such that there exists an integer >_ 1
such that

1
(2.4) 2-7 E [[Tju[]p < 1 for all u e H(), [lul[ _< 1.

Proof. Let fo v and fn+ Tfn. By Lemma 2.4, for x Ij and [J[ n,
fn(x) Tgv. Let gn fn+ fn; then fn+t fo + go +"" + gn, where

g(x) ( T(j,o)V T.v Tj

T(j,)v jv -TjO
if x I(j,o),
if x I(j,),

and
1

Ilg,ll 2-- IITJll.
Since (i) implies that Ilgnll converges to zero, (ii) follows immediately.

To prove that (ii) implies (iii), we note that H() is finite dimensional and has a
finite basis of Tj,’s. Let u Tj, with IJ’l- k; then

2
IITjullP

2.
IITjTj, vIIP < 2

1
2n+k

IJ[-n+k

as n ----, x), and the convergence is uniform for all liull x. Hence (2.4) follows by
taking n for n sufficiently large.

Now assume (iii) holds. Since H(9) is finite dimensional, there is a constant
0 < c < 1 such that for any u H(),

1

2

For any [J’l n, let u Tj, O e H(O); then

1

Summing over all IJ’l n, we have

21+n
1
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It follows from the expression of lgnll given alcove that

For each fixed n, ([Ig+l[)% is dominated by a geometric series, hence f+x
fo + go +"" + g converges in Lp. The limi f is nonzero by Lemma 2.5, and so by
Proposition 2.1, (i) follows.

Remark 1. If
1
2 IITjIH()IlP < 1,

then (2.4) is satisfied. Hence, if the joint spectral radius [BWl], [DL1] or the mean
spectral rdius [W] of {TolH(),TllH()} is less than 1, then a nonzero L-solution
exists.

Remark 2. If condition (2.4) is satisfied for one particular norm on RN, then it
will be satisfied for all the (equivalent) norms (the integer will depend on the choice
of norms). This follows directly from Theorem 2.6 (ii).

Also, condition (2.4) can be replaced by the following slightly simpler condition:

1
2

IJl=t

where {Ul,..., uk} is a bis of H(). To see this, we define a norm on RN such that
its restriction on H() is the/p-norm given by

k k

i=1 i=1

Let u Eau H(); then

k k
1 1

which implies (2.4).
For computationM purposes it would be interesting to know the optimal choice

of bound of the integer in condition (2.4), in prticulr, when the norm on R is
the/p-norm.

Remark 3. In [DL1, Thin. 3.1 and Rein. 1], it is proved that if c 2 and
a nonzero compactly supported tempered distributionM solution f exists, then the
Fourier transform of f must have the form

A
k=l

N-1
follows that f is unique up to a multiplicative constant. By Proposition 2.3, the above
v equals [f[0,],..., ft_x,l]t, so that the 2-eig4nvector satisfying (2.4) is unique. Also,
it follows from the expression of A that

N

0,
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hencevH--{u" Y4N=0ui=0}.
We are not able to prove these two facts without using the Fourier transform.

Nevertheless, we have the following result, whose negation is useful in proving the
nonexistence of solutions.

COROLLARY 2.7. Under the same hypotheses of Theorem 2.6, assume that the
solution f exists; then v H(), and the dimension of H() is < N- 1.

Proof. By Theorem 2.6 (ii),

for any u E H().

It follows that if v E H(), then

Iivllp ll(To +T ) vllP IITjvIIP 0

as n oo This contradicts v # 0. E]

Remark 4. In the construction of the solution f, if we start the iteration from
a vector other than the 2-eigenvector v, then the process may not converge, or may
converge to the zero function. For example, consider

f(x) f(2x) + f(2x- 2).

In this case co 1, Cl 0, c2 1, and

1 0’ TI= 0 1"

The 2-eigenvector of (To + T1) is v [1, 11 and H() 0, hence condition (2.4) is
satisfied. The (normalized) solution f is the characteristic function of the interval
[0, 2]. However, if we start with the vector [1, 0] t, then the iteration with W will not
converge.

Nevertheless, we are still able to choose a large class of vectors that can serve as
initial values.

COROLLARY 2.8. Suppose Y Cn 2. Let w [wl,w2,...,WN] be a vector in
Rg and H(w) be the subspace spanned by

{Tj(Ti I)w J . A, i O, 1}.

Suppose w H’(w) or wi # O, and suppose

1
llr. uilP < 1 all u e H’(w), Ilull <__ 1;2-7

then (2.1) has a nonzero LV-solution.
Proof. As in the first part of the proof of Theorem 2.6, we define f0(x) w for

all x [0, 1] and fk+l Tfk; then f. will converge in Lp([0, 1],RN) and the limiting
function f will satisfy equation (2.2).
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We still need to show that f # 0. If w Hi(w), then from the proof of Theorem
2.6 we have

n

f= lim fic=fo+ lim Zg
./=0

with f0(x) H’(w) and g(x) E H’(w), so f(x) H’(w) and f is nonzero.
To prove the second case, we assume that wi 0; then by Proposition 2.2,

e [1,..., 1] is a left 2-eigenvector of (To + T1), so

Repeating this argument, we have

f
e" / fk-F1 (x)dx e. f0(x) e w wi O.

,1]

This implies that f[0,l f 0, and the proof is complete. [3

Remark 5. Let D be the set of (co,..., CN) for which (2.4) holds; then
(i) D C_ Dl and
(ii) D c_ ukD for any l.
Indeed, if (2.4) holds f6r some l, then

1

_
IlTjullp < Ilull’ for all u e H().2-7

Since Tgu e H() if u e H(O), we have

1 1 1 1

IJl--- 2l IJ’l’-I IJ"l=l

To show (ii), let c be a number 0 < c < 1 such that

1
IITjullp < cllullp for all u H()2-7

IJl=t

holds. If IJI 2k, we write J (J,..., Jm, J’), where IJil and IJ’l < l; then

IJl=2k Jl=l Jm=l J’

1
< cm2" IITj’u[Ip,

j,
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which is less than 1 for IluII <_ 1 if k (hence m) is large enough.
COROLLARY 2.9. Equation (2.1) has a nonzero LPc-solution if and only if (co,..., cN)

E Uk=
Remark 6. One can also consider the functional equation

(2.5) s(x)

for some integer k > 1 and constant 0. Note that the LoP-solution will be supported
by [0, N/(k-1)] [DL1]. Theorem 2.6 still holds with minor modifications of the proof.
The matrices for the cascade algorithm will be

Tm [Cki+m-.i], O <_ i,j <_ N-1,

for m 0,..., k- 1. If we define era(x) + m 0,..., k- 1, the vector form
of equation (2.5) becomes

k-1

f(x) E Tmf(i(x))’
m--0

and the proof follows as above.
NTHEOREM 2.10. Suppose n=O Cn k and 1 <_ p < cx. Then equation (2.5) has

a nonzero LPc-solution if and only if there exists a k-eigenvector v ofrn Tm satisfying
the following" there exists an integer >_ 1 such that

1
k--i E IIT-i’ Tj u P < 1

j=O k-1

for all vectors u, with lull <_ 1, in the smallest subspace containing (Tin I)v and
which is invariant under Tm ,m 0,..., k- 1.

To conclude this section we consider some special cases of Theorem 2.6. First, we
assume that C2rl C2n+l 1. This is a necessary condition for the solution to
be the scaling function of a wavelet that defines a multiresolution (see [DL1], [CH2]).
By Proposition 2.2, we know that e [1,..., 1] is a common left 1-eigenvector of the
two matrices To and T1. Since fn(x) Tjv if x E Ig Cj([0, 1)),

Hence e. f(x) equals the constant vi for almost all x E [0, 1]; that is,

N-1

r--O

for almost all x [0, 1],

and
N N-1

fo f(x)dx=E fo f(x+n)dx=Evi’
n--0

which is not zero as we mentioned in Remark 3.
Let H be the hyperplane of RN defined by
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then H is invariant under To and T1. For any vector v E RN, we always have
(To- I)v, (T1 -I)v H (since the sum of the coordinates of (To- I)v equals
e. (To I)v 0). Hence H(9) C_ H.

COROLLARY 2.11. Suppose that C2n Y. C2n+1 1. If there exists an
integer >_ 1 such that

1
(2.6)

2 E I[TjulIP < 1 for all u e H, Ilull <_ 1,

then equation (2.1) has nonzero LPc-solutions.
Assuming y ci 2, the condition c2n Y c2n+1 1 is equivalent to (-1)ncn

0. More generally, we can consider the m-sum rules; that is,

N

(2.7) E(--1)nnJCn 0 for j 0, 1,... ,m.
n--0

The m-sum rule is used to ensure higher order of regularity (see [DL2]). It is known
that there is a matrix B such that

BToB-1

"1 0 0 0 0

1/2
0 0 0

* 1/2m 0 0

* , * ,

* , * ,

BT1B-1

"1 0 0 0 0

1/2
0 0 0

* 1/2m 0 0

* , * ,

* , * ,
The matrix B can be orthonormalized by the Gram-Schmidt process; the first
of B is the vector [1/x/-,..., 1/./] and the first (m + 1) rows of B are linearrow

combinations of vectors

[lJ, 2J,... ,NJ],

Let H’ {[0, ul,..., uc-llt}, H’m C_ H’ be the subspace of vectors whose first (m+ 1)
components are zero. Then H B-1H’, and Hm := B-H’m is actually the following
subspace:

It, [u0,... ,?AN_l]t" ?zJlZn =0, j 0, 1,...,rn
n-----0
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(here 0 1).
COROLLARY 2.12..

an integer >_ 1 such that
Suppose Cn 2 and the m-sum rules hold. If there exists

1
I;ll < 1 or a u e Hm, I111 _< 1,2

then equation (2.1) has a nonzero LPc-solution.
[0,... 0 1,0,... 0] be the vectors whose jthProof. For j 1,...,m, let vj

component is 1. Let vj B-1 Hvj; then vj E vj H, and

1
BTovj BToB-1. Bvj BToB-lv} -v) + wj

for some wj’ Hm, so Tovj (1/2J)vj + w0,j for some wo, e Hm. Similarly, Tlvj
(1/2J)vj + wl,j for some w,j Hm.

Note that {Vl,...,v,} and Hm span H. By Corollary 2.11 and Remark 2, we
need only show that for each j 1,..., m there exists k such that

1
k ": IITjvll’ < 1.

Let Cp 2p-l; then for the usual lp norm we have Ilu + vllp < Cp(llullP + IlvllP)
for any vectors u and v. For any j 1,..., m and -- 1/4Cp, by assumption there is
an integer such that

1
for 0, 1.

Then

IJl=n-X

Irjwo,llP/Cp ITjWl,lIp]IJl=n-1 IJI-n-1

Hence

s,+<s+ aci+-_+...+ <_+=
for sufficiently large n. D

3. Special cases: N <_ 3. The simplest nontrivial 2-dilation equation occurs
when N 2, i.e.,

(3.1) f(x) cof(2x) + clf(2x 1) + c2f(2x 2),

where co + al -+- C2 2.



1032 KA-SING LAU AND JIANRONG WANG

THEOREM 3.1. For 1 <_ p < oc, equation (3.1) has a (nonzero) LP-solution if
and only if either Cl 1 and

or co c2 1. In the later case f --CX[o,2).
Proof. We will use the/p-norm on R2. Note that

TI= andT0+Tl=
C2 Cl 0 C2 C2 C1 -[- (22

If (co, c2) (0, 0), then (To + T1) 2I. Any nonzero vector v Ix, y]t will be
a 2-eigenvector. It is a dirict calculation that v E H(0) and, by Corollary 2.7,. no
nonzero LP-solution exists.

We assume that (co, c2) (0, 0); the 2-eigenvector of (To + T1) is v [co, c2]t, so
that

(3.2) (To-I)v=
ri o( o i)l
L .IC2(I--C2)

For an LoP-solution to exist, H(0) can only be {0} or one-dimensional (Corollary 2.7).
In the first case, 0 0, condition (2.4) is automatically satisfied. The only

possible cases are

(co, c2) (1, 1), (0, 1), or (1, 0),

and the (normalized) solutions are given by f(x) X[0,2), X[1,2), or X[0,1), respectively.
In the rsecond case, 0 0. Since H(0) is invariant under To and T1, ToO cO

for some c. Expression (3.2) yields the following cases (excluding those considered
above):

(a) cc 0 for i 0 or 2. In this case v e H(0) and Corollary 2.7 implies that
(3.1) has no LoP-solution.

(b) ci 1 for i 0 or 2. In this case a direct calculation shows that ToO,
are independent. Hence H(0) is two-dimensional and by Corollary 2.7 no LP-solution
exists.

(c) ci 0, 1 for i 0 and 2. By equating (3.2) and

(3.3) ToO [
with ToO cO, we have c co, so that by (3.2) and (3.3),

+ + + 2)  o(1

that is

(co + c2 2)(co + c2 1) 0.

Hence, either (i) or (ii) below holds.
(i) co+c2 2. In this casev [co,2-co] and0 (co-1)v. Once again

v H(0) and no LP-solution exists.
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(ii) co + c2 1. In this case a direct calculation shows that To co, TI
c2. By Theorem 2.6, equation (3.1) has an LP-solution if and only if there exists an
integer >_ 1 such that

1 1
2-(Icolp / 121P)llllp IITJIIp < II]lp.

IJl-I

This is equivalent to

(101 + I -0 <

The theorem follows by summarizing all the cases. E]

It follows directly from the theorem that if co + c2 1 and if
(a) co e (-1/2, ), then an Lc-solution exists;

1: +) then an L-solution exists;(b) coe( 2 "(c) co (0, 1), then an L-solution exists for all 1 p < .
The conditions are also necessary except for f X[0,2). We remark that in [W]

it is proved that if co + c2 1, then equation (3.1) has a continuous solution if and
only if co (0, 1), which is stronger than (c). Other proofs of the L-, L2-cases in (a)
and (b) are also known (see [P]).

We will now consider the 2-dilation equation with N 3:

(3.4) f(x) 0f(2) + f(2x 1) + =(2x 2) + 3(2x 3)

with the stronger assumption co + c2 c + c3 1. The matrices To and T1 are given
by

[ o0 o]To= c Cl co T= ca c c
0 ca c 0 0 ca

It is ey to show that (To + T h 1, 2, and (1 co ca) as eigenvMues, and the
2-eigenvector is

[ ( + o )(1 o +
ca(1 co + ca)

provided that (co, ca) (0,-1) or (-1, 0) in these cases the 2-eigenvectors are given
by [1, 0, 0] and [0, 0, 1] t, respectively). It follows that (excluding the two exceptional

(To I)v -co(co -1)(l + co ca) ca(1- ca)(1- co + ca)
( (1 o +

Recall that the subspace H() is generated by Tj(), J A. Under the assumption
co + c el + ca 1, Tj is invariant on

{[,, l + +
and H() H. Por convenience we will reduce the matrices To and T on H by
considering the first and the third coordinates of [, , z] in H. This defines two
matrices Si, i O, 1, in [CH1]. This can be seen by the following diagram:

TH H
r ,r-,
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where Si T-1TiT with T" R2 H denoting the natural isomorphism Ix, z] ---.

Ix,-(x + z), z]. The explicit expression of Si, i 1, 2, is given by

--c3 1--co--c3 0 c3

Slightly abusing the notation, we will still use 0 and H(0) in R2 for the corresponding
terms in H. The new 0 in R2 is given by

v c3(1 c3)(1 co + c3)

for (co, c3) - (0,-1) or (-1, 0). The following theorem follows readily from Theorem
2.6.

THEOREM 3.2. For 1 <_ p < oc, equation (3.4) has a nonzero LP-solution if
and only if there exists an integer such that

1
(3.6) 2-7 E I]Sjul]P < 1 for all u e H(O) and ]lull < 1.

For the degenerate case (i.e., H(0) {0} or one-dimensional), condition (3.6) can
be displayed explicitly. This is shown in the following two lemmas.

LEMMA 3.3. H(0) {0} if and only if (co, ca) e {(0, 0), (1, 0), (0, 1), (1, 1)}.
Proof. This is a consequence of (3.5), and a direct computation of the two special

cases (c0, c3) (0,-1) or (-1,0) (for such cases the corresponding H(0) are two
dimensional). ]

The solutions for these special cases can be handled easily as follows:
If (co, c3) (0, 0), then the solutions are f cx[1,2l.
If (co, c3) (1, 0), then the solutions are f cx[0,1].
If (co, c3) (0, 1), then the solutions are f cx[2,3].
If (co, c3) (1, 1), then the solutions are f cx[0,3l.
It is also simple to show that for the exceptional cases (co, ca) (0,- 1) or (-1, 0),

condition (3.6) is not satisfied; therefore there is no LcP-solution.
LEMMA 3.4. H(0) is one-dimensional if and only if (co, c3) ((0, 0), (1, 0), (0, 1),

(1, 1) ) and one of the following holds:

C0 0, C3 0, or 1 cO c3 O.

Let Oo SoO, O SO. Then for the above three cases we have

O=c[0,1]t, andO0=(1-co-c3)O, O=c30;

0=c[1,0]t, andO0=coO, 01=(1-co-c3)0;
O c[co,-ca] t, and O0 coO, 01 c30,

respectively.
Proof. The sufficiency is clear; we only prove the necessity. Assuming co, c3 #- 0,

we want to show that (1 co c3) 0.
Suppose (1 -co -c3) 0. Note that So has two eigenvalues co and (1 -co -c3)

with corresponding eigenvectors [1-2co-c3, c3] and [0, 1] t, and S1 has two eigenvalues
c3 and (1- co- c3) with Corresponding eigenvectors [co, 1- co- 2c3] and [1, 0] t. The
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one-dimensional assumption implies that S0O A0O, $1 1 for some constants
A0, A. Then it follows that

and

=c’[ 1-2c-c3]c3 =c"

for some constants d, c". Thus

(1 2co c3) (1 co 2c3) coc3,

and we have either (1 co c3) 0 or (1 2co 2c3) 0. Since (1 co c3) -7(: 0, we
must have (1 2co 2c3) 0, so c’"[1, 1] t. By the formula of in (3.5), we have

co(co 1)(1 + co c3) c3(1 c3)(1 co 4- c3).

Simplifying this, we end up with 0 3/8, which is a contradiction.
THEOREM 3.5. Let 1 < p < x3. Suppose that co + c2 ci + c3 1 and one of

co, c3, or 1- co- c3 is zero; then equation (3.4) has nonzero LPc-solutions if and only

(3.7)

Proof. Let ]1" be the/p-norm on R2. In view of Lemmas 3.3 and 3.4, we can
assume that # 0 and H(O) is one-dimensional. We first consider co 0. The fact
that Sou (1- c3)u, Su c3u for any u E H() yields

1 1
]p2 llSJll (11 c3 + [c31v)

Now apply Theorem 3.2. We see that equation (3.4) has nonzero LP-solutions if and
only if ]1 -c31P + Ic31P < 2.

Similarly, we can show that the corresponding conditions for c3 0 and 1 -co
c3 0 are Ico]P + I1 co]P < 2 and ]colP + Ic3]P < 2, respectively. This completes the
proof. E]

The following is an improvement of Theorem 3.2.
THEOILEM 3.6. For 1 <_ p < cx, equation (3.4) has a nonzero LPc-solution if and

only if either (co, C3) (1, 1) or there exists an integer such that

1
(3.8) 2 IISjullp < * a,* e and Ilull

Proof. By Theorem 3.2, we need only show that condition (3.8) holds when H()
is zero or one-dimensional.

The case when H() {0} is obvious by Lemma 3.3, so we suppose that H() is
one-dimensional. Equation (3.7) implies that

1

for u [0, 11 and [1,01
Remark 2. rl

which is a basis of R2; therefore the theorem follows by
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As a special case, we have the following corollary.
COROLLARY 3.7. Let 1 <_ p < (x). Suppose co + c2 cl + c3 1 and

(3.9)

then (3.4) has nonzero LP-solutions.
Proof. Let I1.11 be the/v-norm. As mentioned in Remark 2, we need only verify

condition (3.6) for a basis of R2. Therefore, condition (3.9) implies (3.8) for u [1, 0]
and [0, 1] with/= 1. [2

Similarly, we can take t to be other integers and obtain sufficient conditions for
(3.4) to have nonzero LPc-solutions. However, the expression is more complicated. For
example, for p- 1 the condition of (3.8) for 2 is equivalent to

c + c] + (I co ca) + lco(1 co)l + lca(1 c)l + Ico(1 co ca)l
/ I( 0 )I < 4.

In the appendix we will plot the different regions of (co, C3) that admit solutions.
They include the ones determined by (3.9) and (3.10), and some other known regions.

4. L2-solutions. In this section we will show that condition (2.4) in Theorem
2.6 can be reduced to a more explicit form for the case when p 2. We will use the
Euclidean norm on ag. For any u E RN, let Ak(u) :-- (1/2k) -lgl=k IlTjull 2; then

where Mk := EIjI_k TJTj, and M0 is the identity matrix. Since Tj T(j,,O or T(j,,1
for some J’, it is easy to see that Mk satisfies the inductive identity

M+ TMkTo + TMkT

The matrix M is actually determined by its first column; its explicit form is given as
follows.

LEMMA 4.1. For any integer k >_ O, Mk has the following form:

a(o a

a a(o

"N-I 2

a(k)
N-1

,...,a ]t, then a(k) Wa(k-) Wkel, where
[1, 0..., 0], and W is an N N matrix with

O<_i,j<_N-1,
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where

Ci=l=2j :--
ai-2j "- Ci-2j

Proof. We prove the lemma by induction. Supposing Mk has the form as given,
let (_k) Ik); by using Mk+l TMkTo +TMT1, the (i, j) entry of M+I is given
by

(m 2n or m 2n- 1)

(We can extend the sum from -x) to /cx) since cn vanishes for n {0,... N- 1}.)
By the symmetry of the range of and m, we can rewrite the above equation as

(M+I)i,j c,+2c,_+k)

/=0 m=--x)

Hence (Mk+l)i,j (Mk+l)i+l,j+l (Mk+l)j,i, and Mk has the form as asserted. Also
from the proof above, we see that

N-1
k+l) (ik+l)i,O em+/-21Cm-iO}k)

/=0

Therefore we may write

O(0kq i) O,/(0k)
(+) a+)O/1 W

(’+) ()
N-1 N-1

We+

1
0

where W is an N N matrix with (i, j) entry as

O<_i,j<_N-1.
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PROPOSITION 4.2. The matrix W can be written as the product A. B, where

A-[ci+j]0<i<g-l,, B [ci2j]
ljl_N-i O_j<_N-I

For any vectors u- [uo,..., UN-], let (u) be the vector

2 2 UitiT1 2 tiUi+N-1(u) ui,

then Theorem 2.6 can be written as follows.
PROPOSITION 4.3. Equation (2.1) has a nonzero L2c-solution if and only if there

is a 2-eigenvector v of (To + T) such that for any u 6 H(),

1

(4.2) lim
1 O._-=(u W. 0.

Proof. For any u [uo,..., UN-1] e H(O), by (4.1) and Lemma 4.1, we have

2 [u0 UN-1]MI - UiUjO

UN-1 i--O j--O

Now, apply Theorem 2.6 and the proof is complete. D
We now assume EC2n E c2n+l 1; then the vector [1,..., 1] is a right

eigenvector of W with eigenvalue 2. Indeed, for any 0 _< _< N- 1, the sum of the ith
row equals

Also, [1,..., llWtu [2,..., 21u 2 E ui implies that W is invariant on H.
Recall that the algebraic multiplicity of an eigenvalue o is the order of the factor

(- 0) in the characteristic polynomial. We can now state and prove our main
theorem of this section.

THEOREM 4.4. Suppose C2m E C2m+1 1. g the eigenvalue 2 of W is of
algebraic multiplicity 1, and all other eigenvalues of W are less than 2 in absolute
value, then equation (2.1) has nonzero L2c-solutions.
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Proof. For any u [u0,..., uN-l] e H() C_ H,

:0,
k

so (u) E H. It follows from the assumption that the eigenvalues of W on H are less
than 2 that we have for w E H,

lim
1-wt. W 0.

Theorem 4.4 now follows from Proposition 4.3 directly.
Remark 7. We can write the matrix W as follows: Let P o, PN-1] be an

orthonormM matrix with p0 [NN’ V-pit; it follows that

P*WP=
0 W1

where the (N- 1) x (N- 1) matrix W1 is the restriction of W on H. Theorem 4.4
tells us hat equation (2.1) has a nonero L-solution if W has spectral radius less
than 2.

For the converse of the above theorem we need the following lemma.
LEMMA 4.5. The image ofH under the map t contains an (N-1)-dimensional

region of H.
Proof. This follows from the observation that the vectors

[2,-2,0,...,0], [2, 0, -2, 0, 01, [2,0,...,0,-21

are the images of

[1,-1,0,...,0]t, [1, 0, -1, 0, 0] t, [1,0,...,0,-ll

under the continuous map 9.
PROPOSITION 4.6. Suppose c2n ’c2n+1 1 and (2.1) has a nonzero

L2-solution f. Let v [f[0,1],..., f[0,N-]] be the average vector of f; if H() H
and {Wke}kg=l spans RN, then the eigenvalue 2 of W has algebraic multiplicity 1,
and all other eigenvalues are less than 2 in absolute value.

Proof. If {Wkel} spans RN, then (4.2) is equivalent to

lim
1

--o (u)* W 0

for any u e H(). But if H() H, then by Lemma 4.5, (H) is also a (N- 1)-
dimensional region contained in H. So the spectral radius of W must be less than 2
and the proposition follows.

Remark 8. If we impose the m-sum rules (2.7), then for any u Hm, we also
have (u) Hm. This is true because for any j 0, 1,..., m,

=Z
k=0

(N 1)5
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N-1which is 0 since it can be shown inductively that k=0 kJui+k 0 for j 0, 1 m
and any i. By Theorem 2.12, Proposition 4.3 reduces to the following corollary.

COROLLARY 4.7. Suppose that Cn 2 and the m-sum rules hold, and sup-
pose there is a 2-eigenvector v of (To A- T1) such that for any u E Hm,

1

lim
1

Wz. 0.
l-- ut

Then equation (2.1) has a nonzero L2-solution.
Remark 9. In [E], [Herl], [Her2], and IV] there are various characterizations of

the existence of L2c-solutions; the Sobolev exponents and energy moments are also
obtained. In those papers the Fourier method was used; the dilation equation (2.1)
becomes

where mo() 1/2 ce-ik. Let g() k___ I]( + 2rk)12; then

(a.3)
2

-f" m0

Villemoes IV] showed that a nonzero L-solution exists if and only if there is a non-

negative trigonometric polynomial g() N-1=-(N-) ake-ik satisfying g(0) > 0 and

For g() Ek=-(N-1)N-1 ake-ik, it follows from a direct calculation that equation

(4.3) is equivalent to the fact that [a_(N_l),... aN-l] is a left 2-eigenvector of W’,
where W’ is a (2N- 1) (2N- 1) matrix with (i,j) entry equal to

E Ci+mCmW2j, -(N- 1) _< i,j < N- 1.

By the symmetry of W and the fact that the c’s are real, one can reduce the operator
W’ to the matrix W we consider here (see Remark 3.2 in IV]).

Lawton [La] showed that the scaling function f generates an orthonormal basis
of L2 if and only if the vector [a-(N-1),...,aN-] with ak 5o, is the only left
eigenvector of W corresponding to eigenvalue 2.

Herv [Serl] and [Ser2] used an iteration argument based on (4.3) (with 2 re-
placed by p) to determine the condition for the existence of the solution whose Fourier
transform ] is in Lp. He alo calculated the Sobolev exponents

Sp sup {s>_O" /I]()lp(l+llps)d< oc}
for such f.

To conclude this section we will demonstrate the foregoing results for the case
N 3. By Lemma 4.1, we calculate that

5) o ]1-coc3 1 coc3
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where 5 co c + c3 c]. In addition to 2, W has two eigenvalues

_(_11 co - C C3 - C23 Q- 26C0C3 C3)1 (C +2

where

wl (18c + 18c] 16coc3 + 6), w2 (9c + 9c] + 16c0c3 + 15).
It follows from Theorem 4.4 that if the two eigenvalues are less then 2, then Lc2-
solutions exist.

For N 3, if we adopt the approach in 3 by reducing the matrices Ti on H to
Si on R2, i 0, 1, then the above analysis is more transparent and the result can be
sharpened.

Let Mo be the 2 2 identity matrix. Assume

Mk~ I a(k) (k)]/J /(k) o/(k)

A direct computation shows that

/k-)-i ": E StjSJ Sk,So -- Sik,Sl[ (cg + c + d2)c(k) 2c0c3(k)
-(cod + c3d)(k) + (cod + cad)f(k)

-(cod + c3d)c(k) + (cod + c3d)fl(k) I
(c / c + d2)a(k) 2coc3(k) J

where d (1 -co -c3). Compa_ring the first columns of the two matrices//k and
21:/+1, we can define the matrix W as follows:

(k-[-1) " (k) 0

where

-a(c0 + a) a(0 + ca)

A direct computation shows that l, has the same eigenvalues as W1 in Remark
7; however, we do not known their exact relationship.

THEOREM 4.8. Suppose co + c2 c + ca 1; then the dilation equation (2.1)
with N 3 has nonzero L2-solutions if and only if either (co, ca) (1, 1) or the matrix

c + c] + d2 -2c0c3 ]-d(co + c3) d(co + c3)
where d (1 -co- c3), has spectral radius less than 2.

Proof. For any u Ix, y]t we have

--2’ IJI---IE llSJull u ’JI--’E tStjSJ _t
IJ’-IE StjSJ U

1= [,12-/ -/ flq) a() y

1 [aq)]2--- Ix + yU, 2xy] ()

[+’1 0
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Since (Ix2 + y2,2xy];

1

is equivalent to

Ix, y] E R2} spans R2, the condition

IISgul20 as loc for all uER2

(4.4)
2-7 0 ---* 0 as --, c.

We will show that (4.4) holds if and only if the spectral radius of I/;V is less than
2; hence Theorem 3.6 applies and we are done.

If d(co 4-ca) =/= O, let ul l/;d[1, 0It; then ul and [1, 0] are linearly independent.
lllu _.__+ 0 for all u R2 and hence(4.4) is equivalent to the statement that F

~lW ----. 0 as x3. This means that the eigenvalues of W are less than 2.
If d(co 4- c3) 0 then W is of the form

for some Wl and w2. It follows that

Wl W2 10 0

and (4.4) implies 1(1/2l)wZ < 1 that is, Iwll < 2 Again the eigenvalues of W are all
less than 2 in absolute value.

Appendix. For the four-coefficient dilation equation

(A1) f(x) cof(2x) 4- cf(2x 1) 4- c2f(2x 2) 4- c3f(2x 3)

with co 4- c2 1, cl 4- C3 1, let co, C3 be the independent parameters. We use the
Mathematica on a NeXT workstation to plot the following regions of (co, c3), for
which the compactly supported L and L2 solutions exist.

Let Dz be the regions of (co, c3) for which

1
(A2) 2 IlSgull<l for ueR2, I}ull <1

holds. By Theorem 3.6, except for (c0, c3) (1,1), equation (A1) has a nonzero
compactly supported L-solution if and only if (co, c3) is in the union of the regions
D, 1, 2 In Fig. 1 we display the regions D for 1, 2, 4, and 8.- Here the
norm is I[x, y]t II Ixl + lY].

Note that the regions are increasing (Remark 5, Theorem 2.6). When 1 and
2, condition (A2) can be written as

Icol + Ic31 + I1 co cal < 2,

and

Co2 4- c 4- (1 co c3)2 4- Ico(1 co)l 4- 1c3(1 c3)1 4- Ico(i CO

4- 1C3(1 CO C3)l < 4,
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1.$

-0.S

1.5

0.S

-0.S

FIG. 2.

respectively. For _> 3, the expression is more tedious.
In Fig. 2 we plot the regions Dl for 6 and 8. Note that they are very close,

and hence they are good approximations of the admissible region of (co, c3) for L1-

solutions.
In Fig. 3 we plot the following regions of (co, c3) for the existence of the L1-

solutions from some previous results.
The region outside the ellipse

c + c co c3 + c0c3 1

is known to have no L-solution for (A1).
The region bounded by the dotted line

c + c + Ico(1 co)l + Ic(1 c)l + 211 co c31 < 4

is a sufficient condition given by Pan [P].
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FIG. 3.

2:

1.5

1

0.5

0

-0.5

-1 -- ’o.s o:s’i s
FIG. 4.

The region Ds is determined by (A2) with 8.
Also, the triangular-shaped region approximates the domain where the joint

spectral radius of To and T1 is less than 1, hence nonzero compactly supported con-
tinuous solutions exist there.

In Fig. 4, we plot the following regions:
First we plot the region determined by the ellipse as in Fig. 3.
Next we plot the region bounded by the thicker line consisting of points (co, c3)

for which the matrix

c +c +d2 -2coc3 1 where d 1 co c3-d(co / c3) d(co / ca)

has spectral radius less than 2. This is a necessary and sufficient condition for (A1) to
have nonzero compactly supported L2-solutions with one exception: (c0, c3) (1, 1)
(Theorem 4.8).
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We also plot the region for the existence of compactly supported continuous
solutions as in Fig. 3.

Finally, we plot the circular region

(co- 1/2)2 / (c3- 1/2)2 <_ 1/2,

a sufficient condition of the existence of L2-solutions given in [La]. The boundary
is called the circle of orthogonality: if the wavelet generated by the scaling function
satisfying (A1) is orthonormal, then the point (co, c3) must be on the circle.
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many valuable comments and for providing the relevant literature for the L2-case.
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INTERVAL OSCILLATION CONDITIONS FOR DIFFERENCE
EQUATIONS*
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Abstract. IntervM-type sufficient conditions for oscillation of solutions of second-order difference
equations are established. These conditions are new even though their analogues for differential
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1. Introduction. We study oscillatory properties of solutions of the symmetric
second-order linear difference equation

(1.1) A(pnAx,) + qnXn+l 0, n 1,2,...,

where A is the forward difference operator Axn Xn+ -Xn, and p (Pn; n
and q-- (qn; n E N} are sequences of real numbers with pn > 0 for n

The oscillation problem for equation (1.1) has been considered by many authors
[1]-[9], [11]-[14], some for the equivalent form

pnXn+l -" Pn-lXn-1 bnxn, n 1, 2,...,

where bn Pn + Pn- qn-1.

In view of the extensive literature concerning the corresponding second-order
scalar differential equation

(1.3) (p(t)y’ (t))’ + q(t)y(t) O,

it is interesting to obtain discrete analogues of known oscillation criteria and note the
similarities and differences which arise between the continuous and discrete cases.

The main purpose of this paper is to establish a discrete analogue of the telescop-
ing principle of Kwong and Zettl [10] for equation (1.3), which is surprisingly useful
for establishing and improving oscillation criteria, and apply it to obtain some new
results on the oscillation of equation (1.1).

DEFINITION 1.1. A sequence x {xn; n N} is said to be nonoscillatory if there
exists an integer n such that for all n >_ n, we have that x,Xn+ > O. Otherwise,
the sequence x is called oscillatory.

Since either all solutions of equation (1.1) are oscillatory or none are oscillatory
(cf. [1]), equation (1.1) may be classified as oscillatory or nonoscillatory.

Our approach to the oscillation problem of equation (1.1) is based largely on a
discrete version of the Riccati equation. If x {xn; n N} is a solution of equation
(1.1) with x,xn+ > 0 for n >_ nl _> 1, we let

(1.4) un --pnAXn/Xn, n >_ nl.

Then, since -Un + Pn pnXn+/Xn > 0, we have

(1.5) AUn u2n + qn
--Un -t- Pn

Received by the editors June 29, 1993; accepted for publication October 11, 1993.
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or, equivalently,

pun(1.6) Un+l + qn.
--Un -{- Pn

The cardinality of a set A is denoted by card(A). Denote by S the set of all real
sequences x- {Xn; n e N}. The notation In, m] denotes the interval of N consisting
of {n, n + 1,..., m}. Similarly, (n, m] denotes the half-open interval including m but
not n, etc.

In the following we assume

J
(1.7) (H) J- U Ji’

i--1

Ji--(ai, bi], i- l,..., j, j <_

where ai, bi e N, 1,..., j, satisfy ai < bi < ai+ and card(N \ J) oc.
Based on the above set J we define an interval shrinking transformation t tg

N N as follows:

(1.8) N t(n) card ([1, n] n jc),

where jc N \ J. Let Ai t(ai); then A t(n) for n e [ai, bi], i- 1,... ,j. This
transformation t induces a transformation T Tj S S defined as follows: for
x E S, x- (xn; HEN},

(1.9) Tx- X- (XN; NeN} withXN-xnwhen t(n) N.

2. Telescoping principle. The following lemma is from Chen and Erbe [1].
LEMMA 2.1. A sequence x S is a solution of equation (1.1) satisfying XnXn+l >

0 for n <_ n <_ n2 <_ oc if and only if the corresponding solution u of equations (1.5)
or (1.6) defined by (1.4) satisfies Un < Pn, nl <_ n <_ n2.

Our first result is a type of comparison theorem.
THEOREM 2.2. Let Pn > 0 for n N, and assume (H) holds. Let P Tp,

Q Tq for T Tj. Assume

bi

n=aW1

qn>_O, i=l,...,j.

Suppose Y {YN; N N} is a solution of the equation

(2.2) A(PNAYN) + QNYN+I O, N I, 2, 3,...,

such that YNYN+ > 0 for N < K and YKYK+I <_ O. If X {Xn} is a solution of
equation (1.1) such that Xl 0 and PlAxl/Xl <_ P AY1/Y1, then there exists h <_ k
such that XhXh+l <__ O, where K t(k). More precisely, if K <_ Ai, then there exists
h <_ ai such that XhXh+ <_ O, i 1, 2,..., j.

Proof. In this proof, by x Y we mean either x >_ Y or x does not exist. The
proof is by induction. Assume the conclusion is not true. Then u {un} defined
by (1.4) satisfies (1.5) and (1.6) for n 1,...,k and u < Pn, n 1,...,k. Let
VN PNAYN/YN Then

(2.3) VN+I -v+PI
+QN, N-- 1,...,K- 1,
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and by Lemma 2.1, VN < PN, N 1,..., K- 1, and VK PK.
If K _< A1 al, then for n 1,...,K, N n, and hence PN Pn, QN qn,

and equation (2.3) is the same as (1.6). By the hypothesis ul >_ V1, comparing (1.6)
and (2.3) step by step, we find that un+l _> Vn+l, n 1,... ,K- 1. In particular,

Uk UK >_ VK PK Pk.

This implies that Uk pk, contradicting the assumption.
If A1 < K _< A2, then arguing as above we see that ual+l UA+l >_ VA+I.

Adding (1.5) for n from al to bl and using (2.1) we obtain

hence -bl--I Ual--i VAI+I" Noting that t(bi + 1) Bi + 1, we see that Un, VN
satisfy the same Riccati equation for bi + 1 _< n _< k and Ai + 1 _< N _< K, respectively.
As before, we see that uk > VK PK Pk and, again, this implies that Uk . p,
contradicting the assumption. The proof of the inductive step from to / 1 is similar
and hence is omitted.

THEOREM 2.3 (telescoping princilhle). Under the conditions and with the notation

of Theorem 2.2, if equation (2.2) is oscillatory, then equation (1.1) is oscillatory.
Proof. Let Y {Yn} be a solution of (2.2) with Yi - 0. Let x {Xn} be a

solution of (1.1) satisfying xi - 0, piAxi/xi <_ PiAYi/Yi. By Theorem 2.2, there
exists hi > 0 such that XhiXhi+l

_
O. NOW, working on the solution for n > hi + 1

instead of n >_ 1 and proceeding as before, we show that there exists h2 >_ hi + 1
such that Xh2Xh2+I

_
O. Continuing this process leads to the conclusion that x is

oscillatory, hence (1.1) is oscillatory. [:]

This principle can be applied to get many new examples of oscillatory equations.
We use a process that is the reverse of the construction in Theorem 2.2. Start with
any known oscillatory equation (2.2). Choose a sequence of integers A --, c. Cut
the plane at each vertical line n A and pull the two half-planes apart to form
a gap of arbitrary finite length. Now fill the gap with an arbitrary positive p and
any qi whose sum over the length of the gap is nonnegative. Do this at each A and
denote the new coefficient sequences thus constructed by p, q. Then equation (1.1) is
oscillatory.

The telescoping principle is also useful in extending various known oscillation
criteria. It implies that any sufficient conditions for oscillation need only be verified
on intervals, for example, on N \ J,. where J is defined by (1.7); on J, pn and qn can
be arbitrary as long as Pn > 0 and the qn have a nonnegative sum over each interval
(ai, bi] of J, i 1,...,j.

3. Perturbation of nonoscillatory equations. The telescoping principle ob-
tained in 2 is not’as convenient to (se as the one for differential equations. The
difficulties are caused by the jumping behavior of the sums

n

i--1

In general, the sum

N

(3.2) RN Q
i--1
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is different from rn and this causes considerable difficulty in applying the telescoping
principle. To overcome this difficulty we introduce a technique based on a perturbation
which leaves the nonoscillatory property of equation (1.1) invariant.

Equation (1.6) (or (1.5)) is said to be nonoscillatory if it has a solution u E S
satisfying Un < Pn, n > nl for some nl. Assume (1.6) is nonoscillatory. The results of
this section will show that by adjusting the values of Pn and qn at the boundary points
of J, the adjusted equation is also nonoscillatory and the sums r, do not change on
N\J.

LEMMA 3.1. Assume equation (1.6) is nonoscillatory and u S is a solution of
(1.6) such that un < Pn, n >_ n. Let m N, m >_ n, and let c be any real constant.
Consider the equation

nWn(3.3) Wn-F1 -Jr n, n 1, 2,
--w +

where n Pn, tn qn for n < m; n Pn-1, tn qn-1 for n > m 4- 1; and
Om qm 4- c, Om+ -c. Then, if ibm+l is sujficiently large, there exists m > Pm
such that equation (3.1) is nonoscillatory. Furthermore,

m "-4 Pm as /m+l "-+ Oo.

Proof. Let wn Un for n _< m and Wn un-1 for n > m 4- 1. Then we only need
to pick a iSm corresponding to iSm+ such that the solution of the adjusted equation
satisfies

llm Wm < m and win-I-1 < m/l.

To this end, compare

PmUm(3.4) Um+l 4- qm
-urn 4- Pm

with

(3.5)
Win-t-1

--Urn 4-m 4- q’ + c,

m-t- Wm-t-1
m-}-I ?Zm-F2

--Win4-1 4-.mT1

and
For a sufficiently large iSm+l, the solution Wm+ Wm+(m+) of (3.4) exists

Also, w,+(m+l) Um+ 4-C as m+ c)O. It is easy to see that the function
f(p) pu/(-u 4- p) is continuous and decreasing for p > max{0, u}. Thus, from (3.4)
and the second equation of (3.5), for a.sufficiently large iSm+ we can find iSm > Pm>
Um satisfying the first equation of (3.5) and m --* Pm as m+l -- Oo. I-]

Remark 3.1. Let rn be defined by (3.1) and assume equation (1.6) is nonoscilla-
tory. Then Lemma 3.1 implies that we can make a perturbation to equation (1.6) at
the point m by adding a new point m’ between m- 1 and m, defining or redefining
Pro’, Pro, qm’, and q, such that Pm’ can be arbitrarily.close to the original Pro, the
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rn’s do not change except at n m’, rm, can be any value we want, and the expanded
equation is still nonoscillatory.

THEOREM 3.2 (another version of the telescoping principle). Let Pn > 0 for
n e N. Let (H) hol(t, rn be defined by 1[3.1), N- t(n), and the mapping T be defined
as in (1.8) and (1.9). Assume equation (1.6) is nonoscillatory. Then the telescoped
equation

(3.6) VN+I +QN, N- 1,2,...

is also nonoscillatory provided QN (Tq)N, PN (Tp)N, N Ai + 1, PA+I is

sujficiently close to Pa+, i- 1,...,j, and RN- rn, N- 1,2,..., where RN is

defined by (3.2).
Proof. According to Lemma 3.1 and Remark 3.1 we can make a perturbation to

between aiequation (1.6) at the points ai + 1, i 1,... ,j, by adding new points a
and ai +. 1 and defining or redefining Pa, Pa+l, qa, and qa+ such that Pa PA+,

t’S do not change except for n 1, j, and the expandedra rb+l the rn ai
equation of (1.6) is still nonoscillatory.

Define

U U(al, +
i--1 i---1

For the set J, define a function t on N as

M -(n) card([1, n] fq jc), n 1, 2,...

and Ci (a), 1,..., j. The induced transformation T on S is given as follow.s:
for x {xn;n E N} in S,

7X=={’M; MEN} with ’M=Xn where (n)=M.

Consider the equation

(3.8) WM+I q" OM, M 1,2,...,

where/5 p and O ’q.
Since ra’ rb+, we have .,i=a+l qi 0. Noting that the expanded equation

of (1.6) is nonoscillatory, by Theorem 2.3, equation (3.8) is also nonoscillatory.
Comparing (1.7) and (3.7), we see that PN 15M, QN (M for N :fl Ai +

1, M - Ci + 1, and PA+ Pa Pea+l, QA+I Qc+I, since RN RM for
N M 1, 2, This implies that equation (3.6) is nonoscillatory and completes
the proof. B

THEOREM 3.3. Let Pn > 0 for n e N and let (II) hold. Assume n= qn is

convergent and let rn i=n qi" Let N t(n) and define the mapping T as in (1.8)
and (1.9). Assume equation (1.6) is nonoscillatory. Then the telescoped equation (3.6)
is also nonoscillatory provided QN= (Tq)N, PN (Tp)N, g Ai + 1, PA+ is

N 1 2 where R*lVsuJficiently close to p+l, i 1,...,j, and R*N rn,

Proof. Tim proof is similar to that of Theorem 3.2 and is therefore omitted.
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4. Extensions of known oscillation criteria. Here we establish some exten-
sions of known oscillation criteria. The following assumptions are involved in the
results"

(4.1) Pn > 0 and Z oo;
n= Pn

(4.2) Z qn is convergent.
n---1

We let
n

(4.3) rn qi

i---1

and

(4.4) r
i--n

if (4.2) holds.
Result 1 (Hintoaa and Lewis [6]). Assume (4.1) and (4.3) hold and limn--.o rn

oc. Then equation (1.1) is oscillatory.
Result 2 (Mingarelli [12]). Assume (4.1), (4.2), and (4.4) hold. If

=1
p - +e, k > ko > l

for some e > 0, then equation (1.1) is oscillatory.
Result 3 (Mingarelli [12]). Assume (4.1), (4.2), and (4.4) hold. If

* k>k0>l
n-’k Pn

for some e > 0, then equation (1.1) is oscillatory.
To extend the above results, we need the definition below.
DEFINITION 4.1. Let J be defined by (1.7). A sequence p e S is said to be

adjusted according to J if pb+ is replaced by Pa+; all other PnS including Pa+
are le unchanged for n bi + 1, 1, 2,..., j.

It is easy to see that ncg 1/pn for the adjusted sequence p S is equivalent
to ncg 1/(pn+l) for the oginal sequence p S. Since this concept of an
adjusted sequence plays an important role below, we illustrate it for the convenience
of the reader.

Illustration. Let

P {PlP2... Pa Pa+l... Pbl Pb+lPb+2... PaPau+l...
Pb Pb+1 Pb+2 };

then p adjusted according to J is given by

{P,P2,. ,Pa ,Pa+, ,Pb ,Pa+,Pb+2, ,Pa,Pa+, ,Pb,Pa+,Pb+2, .}.
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THEOREM 4.2" Let Pn > O, and let rn be given by (4.3) .for n E N. Assume that
for some increasing sequence of positive integers El, n2, ha,...,

(4.5) lim sup rn lim rn oc

and

k=l Pn/l

Then equation (1.1) is oscillatory.

Proof. Assume the contrary; without los of generality we may assume (1.6) has a
solution u E S satisfying un < Pn, n 1, 2, Let J N \ {El, n2, rt3,...} be as in
assumption (H) of (1.7). Let N t(n) and the mapping T be defined according to J.
By Theorem 3.2, the telescoped equation (3.6) is also nonoscillatory and Rk rn,
where QN (Tq)N, PN (Tp)N for N A+ 1, PA+I is sufficiently close to Pa+,
and Rk Yik=l Qi- Eik--_l qni, k- l, 2,

Choose PA+ so close to Pa+ that N= 1/PN oo. This is possible by (4.6),
and for the adjusted sequence (Pn) we can make

E 1 1

neJN[1,k] Pn t= -N <_1 for allk.

Since limN--,o RN limk--,o rn oc by Result 1, equation (3.6) is oscillatory. This
contradiction completes the proof. [3

THEOREM 4.3. Let (4.2) hold, r be given by (4.4), and I be an infinite subset of
N. Assume Pn > 0 for n N and

and for k I, k >_ ko >_ 1, assume that

(4.8)
nE ,kl Pn

rk - + e,

where > 0 and {Pn} is adjusted according to J N \ I. Then equation (1.1) is

oscillatory.
Proof. Assume the contrary. Without loss of generality, we may assume (1.6) has

a solution u S satisfying u < Pn, n 1, 2, Let N t(n) and let the mapping T
be defined according to J. By Theorem 3.2 and Remark 3.1, the telescoped equation
(3.6) is also nonoscillatory, and Rv r where Rv*, ’=N Q IN[,o)q if

g= 1/PN , andN t(n) and PA+ is so close to Pa+ that

K

nIa[1,k] Pn N=I
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where M max.kei{r} < oc and K- t(k). From (4.8),

neXn[1,k] Pn
2M

> .__ >__+e
,e ,klPn

rk 2- 4 2 2

According to Result 2, equation (3.6) is oscillatory. We reach a contradiction.
An immediate consequence of Theorem 4.3 is as follows.
COROLLARY 4.4. Let (4.2) hold, rn and r be given by (4.3) and (4.4), respec-

tively, I {n < N; r >_ 0}, and (r)+ max{r, 0}. Let Pn > 0 for n N, and
assume that (4.7) and (4.8)--with r replaced by (r)+--hold, where e > 0 and {Pn}
is adjusted according to I. Then equation (1.1) is oscillatory.

THEOREM 4.5. Let (4.2) and (4.7) hold where I is an infinite subset ofN. Assume
p > 0 for n N, and for k I, k ko 1, assume that

pK

where > 0 and p S is adjusted accordin9 to J N I. Then equation (1.1)
oscillatory.

Proof. The proof is similar o ha of Theorem 4.3 and hence is omitted.

5. More oseillation criteria. In this section we obtain discrete analogues of
oscillation criteria of Kwong and Zettl [10], [11] for second-order differential equations
which are extensions of criteri obtained by Fire, Leighton, Winter, Harman, Wil-
IeSt, Olech, and others. Our results are also extensions of discrete oscillation criteria
obtained by Kwon, Hooker, and Pathla [9], Chen and Erbe [1], [2], and Erbe and

[3].
The following lemma is used in the proofs.
LEMMA 5.1. Assume that a sequence S has the property that there ezists

>0, p>0, i=1,2 ,suchthat
n 2

(i) > < yo n=
i=.

--ui + Pi

and

(ii)

Then k <
Proo]:

equation

c2 E 1

,,= pi+l (-c + pi)
> 1.

Assume the contrary. Then Un < Pn for n 1, 2, Consider the

n 2

(5.2) v.+ a + "-" vi with v. a,.

Noting that g(v) v2/(-v + p) is increasing for 0 v < p, by induction we have
that; un >_ vn and vn < Pn for n 1, 2, Frown (5.2),

,:2Vn
Vn

--Vn W Pn
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Since vn < p, and h(v) v/(-v + p) is increasing in v for v < p and p > 0,

1 1 Av v a

vi Vi+l vi+lvi vi+l (-vi + pi) pi+ (-c + pi)

hence

Vn+l Vl Vn+l Vi Vi+l pi+(- / pi)

Therefore,

< E i_o2 1

Vn+ i=
p+(-c +pi) .= P+I(- +Pi)

n 1,2,

By condition (ii), there exists nl such that 1/Vn+l < 0 for n >__ n, contradicting

The next result is for the ease when r is large often enough.
THEOREM 5.2. Let p, > 0 for n E N and rn be defined by (3.1). Let J() {n >_

2; rn-1 < } and J() {n > 2; r,_ _> }. Assume there exists an increasin9
sequence of. positive numbers

such that
(i) there exists nk e J(Ak) satisfying Pn <_ Ak, k 1, 2,..., or
(ii) for k 1,2,..., Pn > Ak for all n J(Ak) and there exists c e (0, 1) such

that

1
(5.3) A2k E p(n+l).(_CAk/pn) >1’

where (n + 1)* min{m e J(Ak) m >_ n + 1} and p e S is adjusted according to
g()).

Then equation (1.1) is oscillatory.
Proof. Assume the contrary and, without loss of generality, assume equation (1.6)

has a solution u E S satisfying un < pn, n 1, 2, Therefore, for n >_ 2,

n--1 2

(5.4) + +
U

i=1 -u + p

(i) Choose c (0, 1). Then Pn <- A} implies that p <_ kA + cA, and hence
+ >_  lk, so

1 >1(5.5) A2k E --cAt:+p--’ k=l,2,
nY()

We first show that

(5.6) E U2n cx.
n-"

Un -" .Pn
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By passing to a subsequence if necessary, we may assume that A1 > -u1/(1 -c).
From (5.4),

n-1 2

From (5.5) there exists gl E N such that g >_ 2 and

Then

1 >c.
,](,,k.)[1,.]

Next we may assume that A2 is so large that A2 > maxl<n<l_l rn. Then J(A2) C
(tl, c). Repeating the above arguments we obtain g2 E N such that 12 >_ ll + 1 and

hence

2 2 c3ui
-us + ps 2

as before. In general, we obtain n N, n 1, 2,..., such that n+l >_ n -}- 1 and

ui
-ui / ps n / l

The divergence of ’n=l U2n/(--Us + Pn) now follows. Since min
oc, we can choose a k large enough such that n min J()k) satisfies

n --1 2

>0.

Then from (5.4), Un > )k for all n J()k). In particular, Unk > At: >_ Pnk, contra-
dicting the assumption.

(ii) It is easy to see that (5.3) implies (5.5) if Pn > )k for n J()k). Then (5.6)
holds. Let A be one of the An’S with n large enough and 2(A) [.J= (us, ms] such
that (5.7) holds. Rewrite (5.4) as

Itn+ rn + it - lti
nc

ui

S=l -us + Ps -us + Psi--hi

Consider the telescoped equation obtained by cutting out J(A) from N, letting

(5.8) VN+I RN + Ul - E Ui

S=l -us + Ps s= -V + Ps’
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where N t(n) is defined by (1.8) according to J(A), RN rn, PN Pn for
N N + 1 t(n + 1), and PN+I is sufficiently close to Pn+I, 1,... ,j, such
that

(5.9) A2
PN+I (--CA + PN) > 1.

N--1

By Theorem 3.2, equation (5.8) is nonoscillatory, i.e., VN < PN for N 1,2,
However, from (5.8) and (5.7) we see that

i=i

This, together with (5.9), contradicts Lemma 5.1 and completes the proof.
COROLLARY 5.3. Let Pn > O, and rn be given by (4.3) for n E N. Assume that

for some increasing sequence of positive integers n, n2, n3,..., we have

lim sup rn lim rnk O

and Pnk+1

_
rn, k 1, 2, Then equation (1.1) is oscillatory.

Proof. This follows from (i) of Theorem 5.2.
COROLLARY 5.4. Let d be any positive number less than (1 + v/)/2. Assume

Pn > 0 for n N and there exists n J(Ak) such that Pn

_
d Ak and P(n+l)*

k 1,2,..., where (n+l)* is defined as in Theorem 5.2 and {Pn} is adjusted according
to J(Ak). Then equation (1.1) is oscillatory.

Proof. Choose c (0, 1) such that (c + v/c2 + 4)/2 >_ d. Then

l(c + V/c2 + 4)(-c + V/c2 + 4)AP(n+I)* (--CAk zr- Pn)
_
d(-c + d)A <_

hence

Then either (i) or (ii) of Theorem 5.2 is satisfied. [:]

Example 5..1 Letp,-2-, n-l,,2 r =2n ifniseven, andr =0if
n is odd. Then the condition of Corollary 5.3 is satisifed and hence equation (1.1) is
oscillatory.

As far as we know, no previously known criteria apply to Example 5.1.
The next result is for the case when {r} is oscillatory.
THEOREM 5.5. Let J(%) and J(%) be defined as in Theorem 5.2. Let Pn > 0 for

n N and assume that
(i) there exists a real number iX such that

1

p(+l).pneJ()

where (n + 1)* min{m e ]() m >_ n + 1} and {Pn} is adjusted according to J(A);
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(r_ )=(5.11) (ii) 7 --(rn--1 ) q- Pn

Then equation (1.1) is oscillatory.
Intuitively, conditions (i) and (ii) of Theorem 5.5 on the sequence {rn} mean that

rn assumes values larger than or equal to A often enough and, on the other hand,
assumes values less than often enough.

Proof. Assume the contrary and, without loss of generality, assume (1.6) has
a solution u E S satisfying Un < Pn, n 1, 2, There are two possible cases
depending on whether or not u / Y.n=l U2n/(--U + Pn) ).

In the former case, noting that (5.10) implies that card(J(A)) cx, we can choose
nl E J(A) such that

n1-1 2

u+ E
i=1 -ui + p

Rewrite (1.6) as

n1-1 2 / 2u u
Un+l rn q- Ul q- _._ +

= -u + p -u + pi
i-’nl

It follows that
n 2

(5.12) Un+ > e + ---- u for n + 1 (A),
--ui + Pii-’nl

and hence Un > e for n J(A). If there exists n* J(A) such that Pn* < e, then
Un* > Pn*, contradicting the assumption. Otherwise, as in the proof of Theorem 5.2
(ii), by using Theorem 3.2 we may assume without loss of generality that (5.12) holds
for all n > n, and (5.10) is replaced by

n=nl
Pn+lPn

This implies that

(5.13) e2 E Pn+l(--e + Pn) > 1.
n"-nl

Now, (5.12), (5.13), and un < Pn, n 1, 2,..., contradict Lemma 5.1.
In the remainilig case,

n=l --Un + Pn

it follows from (1.6) that u,+ <_ rn- < 0. In particular, for all n J(A),
un < rn- A < 0. Since f(u) u2/(-u + p) is decreasing for u < 0 and p > 0, we
see that for n e J(A),

> (-- )
-u’n + Pn -(rn-. ,.) + Pn
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Then

n=l --Un + Pn nEJ(A) -Un d- Pn nEJ())
--(rn- A)2 + Pn

This is also a contradiction. The proof is complete. [3

COROLLARY 5.6. Let p E S be bounded, Pn > 0 for n N, rn be given by (3.1),
and J(A), J(A) be defined as in Theorem 5.2. Assume

(i) there exists a real number ) such that card((/k)) c,
(ii) Enej(A)( rn_l)2 (:x:).

Then equation (1.1) is oscillatory.
Proof. It is easy to see that condition (i) implies that (5.10) holds. If inf{rn; n

N} -(x, then sup{A- rn-; n e J(A)} x, and hence (5.11) holds. Otherwise,
-(rn-1 )) + Pn <_ c for a positive number c. Then, by condition (ii),

> 1

--(rn-1 )) + Pn C
n6J(,k) n6J())

hence (5.11) holds. By Theorem 5.5, equation (1.1) is oscillatory.
COROLLARY 5.7. Let p S be bounded and assume there exist two numbers

< # such that both (#)= {n _> 2; rn- >_ #} and J(A)= {n _> 2; rn- < } have
infinite cardinality.. Then equation (1.1) is oscillatory.

Proof. Choose (A, #). Then the hypothesis of Corollary 5.6 is satisfied with
in place of .
COROLLARY 5.8. Let p S be bounded, Pn > 0 for n N, and

-o <_ lim infn_. rn < limSUPn rn _< +x.

Then equation (1.1) is oscillatory.
Proof. Choose A and it so that

lim infn-,o rn < < it < limSUPn rn.

Then the conclusion follows from Corollary 5.7. [:1

Example 5.2. Let p 1, n 1, 2,..., rn 0 if n is odd, and r -1/x/ if n
is even. Choose A 0. Then card(g(A)) c, and

E ( m--l)2 E - (:X:)"

n_J(X)

By Corollary 5.6, equation (1.1) is oscillatory, although in this case limn_. r 0.
Remark 5.1. Theorems 5.2 and 5.5 can be compared with Theorems 2 and 3 of

Kwong and Zettl [10] for the differential equations case.
In the difference equations case, Chen and Erbe in [1] and [2] have strong results

related to those above. However, Examples 5.2 and 5.5 do not appear to be covered
by the results in [1] and [2]. In contrast to these authors, we do not assume for
Theorems 5.2 and 5.5 that the leading coefficient sequence p is bounded. Also, as
remarked above and illustrated with Example 5.2, Theorem 5.5 covers some cases
where limn- rn exists as a finite number. On the other hand, Cten and Erbe’s
results cover systems which ours do not.



1060 Q. KONG AND A. ZETTL

REFERENCES

[1] S. CHEN AND L. H. ERBE, Riccati techniques and discrete oscillations, J. Math. Anal. Appl.,
142 (1989), pp. 46s-asT.

[2] , Oscillation and nonoscillation for systems of self-adjoint second-order difference equa-
tions, SIAM J. Math. Anal., 20 (1989), pp. 939-949.

[3] L. H. ERBE AND P. YAN, Weighted averaging techniques in oscillation theory for second order

difference equations, Canad. Math. Bull., 35 (1992), pp. 61-69.
[4] L. H. ERBE AND B. G. ZHANG, Oscillation of second order linear difference equations, Chinese

J. Math., 16 (1988), pp. 239-252.
[5] T. FORT, Finite Difference and Difference Equation in the Real Domain, Oxford University

Press, London, 1948.
[6] D. B. HINTON AND R. T. LEWIS, Spectral analysis of second order difference equations, J.

Math. Anal. Appl., 63 (1978), pp. 421-438.
[7] J. W. HOOKER, M. K. KWONG, AND W. T. PATULA, Oscillatory second order linear difference

equations and Riccati equations, SIAM J. Math. Anal., 18 (1987), pp. 54-63.
[8] J. W. HOOKER AND W. T. PATULA, Riccati type transformations for second-order linear dif-

ference equations, J. Math. Anal. Appl., 82 (1981), pp. 451-462.
[9] M. K. KWONG, J. W. HOOKER, AND W. T. PATULA, Riccati type transformations for second-

order linear difference equations, II, J. Math. Anal. Appl., 107 (1985), pp. 182-196.
M. K. KWONG AND A. ZETTL, Integral inequalities and second order linear oscillation, J.

Differential Equations, 45 (1982), pp. 16-33.
, Asymptotically constant functions and second order linear oscillation, J. Math. Anal.

Appl., 93 (1983), pp. 475-494.
A. B. MINGARELI, Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential

Expressions, Lecture Notes in Mathematics, 989, Springer-Verlag, New York, 1983.
W. T. PATULA, Growth and oscillation properties of second-order linear difference equations,

SIAM J. Math. Anal., 10 (1979), pp. 55-61.
Growth, oscillation, and comparison theorems for second-order linear difference equa-

tions, SIAM J. Math. Anal., 10 (1979), pp. 1272-1279.

[10]

[11]

[12]

[13]

[14]



SIAM J. MATH. ANAL.
Vol. 26, No. 4, pp. 1061-1074, July 1995

1995 Society for Industrial and Applied Mathematics
013
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Abstract. Coifman and Meyer constructed univariate and tensor product bivariate orthonormal
wavelet packets in [Orthonormal wave packet bases, preprint]. In this note, we give a general way
to construct nontensor product orthonormal multivariate wavelet packets with an exponential decay.
In particular, we give concrete constructions of exponentially decaying orthonormal wavelet packets
and compactly supported semiorthogonal wavelet packets of two and three variables directly from
the scaling function and its refinement mask.

Key words, scaling functions, wavelets, wavelet packets, box splines
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1. Introduction. In [7], Coifman and Meyer introduced orthogonal wavelet
packets for L2(IR) and, by using tensor products, constructed orthogonal wavelet
packets in L2(]R2). Recently, Chui and Li [3] studied nonorthogonal wavelet packets
and their dual wavelet packets in the univariate case, thus generalizing the orthogo-
hal wavelet packets of [7]. Applications of wavelet packets in signal processing and
compression can be found in [8] and [18]. Since signals, as well as images, are multi-
dimensional, most applications are multivariate.

In this note, we will study the general theory for multivariate wavelet packets.
In particular, in L2(IRs) we construct nontensor product orthogonal wavelet pack-
ets with exponential decay and compactly supported semiorthogonal wavelet packets
from multivariate scaling fu.nctions. Constructions of nontensor product multivariate
wavelets and prewavelets from multivariate scaling functions have been studied in [1],
[4], [10]-[12], and [15]-[17]. The related results in the literature can be found in these
references.

Next we introduce some notation. For s, we use the abbreviation

When is used as an index set, it can be identified with the 28 vertices of the unit
cube {0, 1}8. We denote

.= {z >_ 0, < <_ s}.

Recall the standard notion

](y) :=/k exp(-iyx)f(x)dx

for the Fourier transform of f e L2(IRS). For a e g2(8), its Fourier transform is
denoted by

h(Y) :-- E a(a)exp(-iya).
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The convolution of f and g in 2(IR is denoted by

f g(y)"= [ f(x)g(y- x)dx

and, for a and b in 2(8),

a b(/) := a( a)b(a).

The symbol of f E L2(IR8) is defined as

(1.1) f"(Y) := I](Y + 27ra)]2 f * f(-.)(a)exp(-iay),

where the last equality is in the L2(s) sense. If f is a compactly supported continuous
function, then equality holds pointwise. More generally, the (complex) symbOl of the
function f is the Laurent series

(1.2) fz) "= f,/(-.)()za;

sequence if and only if f(y) 1 a.e. y E .
2. Orthogonal wavelet packets. Coifman and Meyer used the scaling func-

tions with refinement masks satisfying the conditions of Theorem 3.6 in [9] to construct
univariate wavelet packets. We will use multivariate scaling functions (e.g., orthogo-
nalized box splines or box splines) and their refinement mks to construct multivariate
wavelet packets in this section.

Let be a refinable function called a scaling function with its refinement mask a.
We assume that has an exponential decay and its shifts form an orthonormal basis
of the space

V:= {ec()(’-)’c2()}"
Although results in this note still hold without the restriction that has an exponential
decay, since we are interested in constructing exponentiMly decaying orthonormal
wavelet packets, we are content with this restriction. If is an exponentially decaying
function, its refinement mk a decays exponentially well.

To simplify the notation, we introduce the dilation operator af := 2s/2f(2.), and
for any closed. subspace S df L2(N), aS := {af f S}.

It is well known that, for an exponentially decaying scaling function , the cor-
responding sequence of spaces anV, n e , form a multiresolution of L2(N.) (cf. [1],
[101).

Let W be the orthogonal complement of aV. Suppose that au, u {0} are
exponentiMly decaying sequences, and functions

:=
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and their shifts form an orthonormal basis for W. (The functions , e \{0}
are called wavelets.) Then, the sequences a, E , with a0 a and their Fourier
transform have the following property, whose proof can be found in [10], [16].

RESULT 2.2. The matrix

(2.3) U := (2-s/2a( + r#)),e is unitary for all y IRs.

We note that the functions , e .\{0}, defined in (2.1) by a and their
shifts, form an orthonormal basis for W if and only if (2.3) holds.

It is well known and easy to check that if s 1, the sequences a0(a) := a(a)
and al (a) :-- (-1)a(c + 1) satisfy the above conditions (cf. [9] and [13]). For s 2
and 3, in the case in which is symmetric, Riemenschneider and Shen constructed
the exponentially decaying sequences a with a0 a which satisfy condition (2.3) (cf.
[151, [161).

For the case s > 3, such exponentially decaying sequences a, 7Z, with
a0 a and satisfying condition (2.3), can be constructed directly from the sequence a
by Jia and Shen’s construction of higher dimension wavelets from symmetric scaling
functions (cf. [11]).

For each 7Z\{0}, define the space W := {_a c(a)(.- a), c

t2(*)}; then W e\{o}W. The space a"W for each n E is called the
wavelet space. Furthermore,

In this section, we use the scaling function and the sequences a with a0 a
and satisfying (2.3) to construct orthogonM wavelet packets.

Define p0 as , and for an arbitrary a _,
(2.4) p(x) p2+(x):= E 2*/2a(a)P(2x

where

_
and u are the unique numbers such that a 2 + u. Since

is refinable with refinement mask a, definition (2.4) is consistent with p0 .
Furthermore, the functions p, u \{0}, are the wavelet functions . Moreover,
since P0 is an exponentially decaying function and the sequences a, u E Z, are
exponentially decaying sequences, it is easy to prove inductively by using (2.4) that
p for all a are exponentially decaying functions.

The Fourier transform of p is

(2.5) l(y) l2+(y)= 2-s/2(y/2)(y/2) for all

It can be proved inductively that for each fixed _, the functions {p(y +
a), a e ’} form an orthonormal sequence in L2(IRS). This is trivially true when

0, since p0 . Assuming that it is true for all (nl,..., ns) E

_
such

that I1 := nl +...+us < n for the case I1 n, p is defined by p, where
e Z_ is the unique one in such that 2 + with . Since for each

I1 < n, the sequence {p(.- c), a e } forms an orthonormal sequence, i.e.,
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Ee8 1i5(" + 27ra)[2 1, we have that

Hence, the sequence {p(--
closed subspace

a E Z8 } forms a complete orthonormal basis of the

P := {s s _, c()p(,- ),

of L2(]RS). It is clear from the construction that P0 V and P W for all u E .
PROPOSITION 2.6. For an arbitrary , the space aP can be orthogonally

decomposed into spaces P2f+u, u G , i.e.,

Proof. First, we prove that

aP { f" f ’e.e b,(a)p2+,(. c).

It follows from definition (2.4) that each p2+ aP, E 7Z. We next prove that
for each f e aP,

there exist sequences b t2(), such that

Taking the Fourier transforms of (2.7) and using (2.5) gives us

(e,s)

Canceling iSZ(y/2)in (2.8), we have

(2.9)
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For each c E g2(8), finding such sequences b, u E , is equivalent, for each
(y) e L2[0,27r], to finding / e L2[0,27r], u e , such that the above equation
holds. Since (y/2) and 5(y/2), u are 47r-periodic, the solvability of system
(2.9) is equivalent, for each (y) e L2[0, 27r], to finding e L2[0,27r], which satisfies
the following system of equations:

The solvability of system (2.10) in L2[0, 2r] for each (3(y) e L2[0, 27r] follows from the
facts that its coefficient matrix U (2-s/25(y/2 + 7r#)),ue is unitary and each
entry of U is measurable arid bounded. Hence,

b e2(8), for all

Finally, we show that the functions p(.- a), , and ( E 7/2 are an
orthonormal basis of aP by using the fact that 15 1 for all t _. For arbitrary

and 2 in 7Z and j 7Z8,

50,j 6u1,2.

Hence, the functions

form a complete orthonormal basis of aP.
For an arbitrary n +, define the sets

nI := { (n,..., ns) e _\{0}" 2n-1 _< ni <_ 2" 1, 1 < _< s}.

We are ready to state the main result of this section.
THEOREM 2.11. The functions

{p,(.-o), a E nI, o 8}

form a complete orthonormal basis of anW. In particular, the functions {p(.-
a), a e _, a e 8} form a complete orthonormal basis of L2(IRS).
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Proof. Since

we have

 Voe o=
\{o}

Hence, aPo ( Po W, since P0 V and W (em\{0} W (e\{0} P"
It can be proved inductively by using Proposition 2.6 and (2.12) that

(2.13) anPo e an-lPo P.

Since anPo 0 an-lPo an-IW, by (2.13),

(2.14)

Therefore, the fact that the functions {p(.- (), a E _, c E 7Zs} form an
orthonormal basis of L2(IR8) follows from the fact that the sequence (p(.- c),
8} forms an orthonormal basis of P for each t

_
and (2.14).

The functions

"-=- {2nS/2p(2n.--), a c TZ, n C VZ, ( E TZs}

are called an orthogonal wavelet packet of L2(lR). In the next section, we provide
various ways to construct orthonormal bases of L2(]R) extracted out from P.

3. Orthonormal bases from wavelet packets. To construct an orthogonal
basis of L2(IR) from wavelets, we use the orthonormal basis of W generated by

. e , e

and their dilations. We now have more choices of orthonormal bases for the wavelet
space anW th/n the 2n dilations and 2-n shifts of , u e Z\{0}. This gives us a
chance to construct various orthonormal bases of L2(]Rs) according to any practical
problem at hand. In this section we provide some orthonormal bases of L2(IRs) by
using the functions in 7). The first basis is chosen from the orthonormal basis of anW
constructed in the last section.

PROPOSITION 3.1. For each fixed n > O, the functions

(3.2) (2k/2p(2k.-c), a nI, k e , s}

form a complete orthonormal basis of L2(IR).
Proof. Since the functions

(3.a) .enS,
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form an orthonormal basis of anW by Theorem 2.11, for each k the functions

{2kS/2p(2k.-a), E HI, a

form an orthonormal basis of akanW fin+kW. For each fixed n, since

akanW-- an+kW-- akW,
kE kE k6

the functions in (3.2) are a complete orthonormal basis of L2(IR).
It is easy to see from the proof that the above construction of a complete orthonor-

mal basis of L2(IR) for each fixed n is done by picking an orthonormal basis given by
(3.3) of the space anW, instead of the known wavelet basis {2-ns/2(2n.
Z8}, then dilating the functions in (3.3) to form the functions in (3.2), which are
shown to be a complete orthonormal basis of L2(IR). In the above construction, the
orthonormal basis for L2(IR) varies when the integer n changes. In particular, if
n 1, the orthonormal basis constructed above is the one formed by the wavelets de-
fined in (2.1). Such a generalization provides a better localization in frequency space
as pointed out by Coifman and Meyer in [7]. In the construction, the integer n is fixed
and the dilation k runs through .

In the next Construction, we allow n and k to vary simultaneously. To do this,
we introduce the notion of a disjoint covering of . A collection of pairs

:={(n,k):ne+\{0}, ke}

is called a disjoint covering of if for each a , there exists a unique pair (n, k)
such that a n + k.

THEOREM 3.4. Let the collection of pairs be a disjoint covering of . Then,
the functions

(3.5) {2k/2p(2k.-a), HI, (n,k) }

form a complete orthonormal basis of L2(lR).
Proof. Since the functions

{p(.-a), tnI, as}

form a complete orthonormal basis of a’W by Theorem 2.11, the functions

{2kS/2p(2k’--a), HI}

form a complete orthonormal basis of an+kW. Hence (3.5) forms a complete basis
of L2(]RS), because ,7 is a disjoint covering of and L2(]Rs) (n,k)e3" akanW
(n,k)eT an+kW. [:]

Remark. 3.6 The results given here are still true if we use an arbitrary integer-
valued dilation matrix A with the spectral radius of A-1 smaller than 1. Their proofs
can be followed line by line with certain modifications from the proofs given here.

As an example, we construct the wavelet packets from box splines. A box spline
can be defined on I for a given set of integer-vMued matrices in IRs as specified by
an s n matrix via its Fourier transform

(3.7) (Y) H 1 exp(-iy)
iy
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If rank.=, s, then M.=. is a nonnegative real-valued compactly supported piecewise
polynomial with its support in the set

When s 1, Mz is called a B-spline.j The relevant facts about box splines can be
found in [2].

Denote
r(.,) := min{Z C E" E\Z does not span}- 1.

Then, it has been shown in box spline theory that M_= is r(E) 1 times continuously
differentiable (cf. [2]). Furthermore, M.=. is a symmetric function with respect to the
center

i.e., M=_(c=_ + x) M=_(c.=. x).
Since Mz is a compactly supported function, the symbol of M=_, M.=., is a Laurent

polynomial. If the matrix .. generating the box spline M. is unimodular, that is, the
absolute value of. the determinant of each s x s submatrix of E is either 0 or 1 (cf.
[2]), then its symbol never vanishes on Ir. We will only use box splines generated by
unimodular matrices, hence the symbol M will not vanish on 31.

Define

(3.9)

Since the symbol of the function is 1 on the torus, the function and its shifts form
an orthonormal sequence in L2(lRS).

It was proved in [15] that is refinable and has an exponential decay. Further-
more, its refinement mask is also an exponentially decaying sequence and can be easily
calculated as follows:

(3.10)

H 1 + exp(-iy)
exp(-iay)dy a Ea(a) (2)s

.,]8 M.=.(2y) Ce.=.
2

Riemenschneider and Shen (cf. [15], [16]) constructed the exponentially decaying
sequences a from a with a0 a as follows:

(3.11) a(a) (-1)"a((-1)2c---(a + /())),

where the map U" Z - satisfies the following conditions:

r/(0)=0, (/()+r/(#))(+#) is odd, ##, ,#e.

Such a map was constructed in [15], [16] for s 1, 2, 3. It was also remarked in [15]
that such a map does not exist when s > 3.
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It was proved in [15], by using (3.12) for sequences a given by (3.11) that the
matrix

V := (-/a(. + )),,
is a unitary matrix. Hence, it is easy to carry out the constructions of wavelet packets
from box splines and the exponentially decaying sequences a given by (3.11).

Recently, Jia and Shen in [11] constructed exponentially decaying sequences a for
s > 3 with a0 a by using Householder matrices. We note that [11] and [16] also pro-
vided a construction of exponentially decaying sequences a from general symmetric
scaling functions and its refinement mask.

4. Semiorthogonal wavelet packets. The orthogonal wavelet packets con-
structed in the previous sections are exponentially decaying but not compactly sup-
ported functions. In this section, we provide a construction of compactly supported
wavelet packets. As in the construction of compactly supported prewavelets (cf. [5],
[10], [14], and [16] and called Semiorthogonal wavelets in [4]), we obtain the com-
pactness of the wavelet packets by sacrificing some of the orthogonality. However, the
wavelet packets constructed here still provide Riesz bases of L2(]R8) and do keep some
orthogonality.

Let be a compactly supported scaling function with a finitely supported refine-
ment mask a. Assume that and its shifts form a Riesz basis of the space V.

We say that, for arbitrary function f E L2(I[), f is stable if the functions
{f(.- a): c E s} form a Riesz basis of the s.pace

Vf’={Ea c(a)f(.-c)}
Recall that (cf. [1], [10]) f is stable if and only if there are 0 < C1

_
C2 < (:x:) such

that its symbol f satisfies

C1 <_]<_C2. a.e. on Ir.

The sequence of spaces anV, n , generated by form a multiresolution of
52(IRs) (cf. [1], [10]).

Let a \{0} be finitely supported sequences such that the functions

(4.1)

and their shifts form a Riesz basis for W, the orthogonal complement of aV. Then,
the sequences a, , with a0 a and their Fourier transform have the following
property (el. [10], [16]).

RESULT 4.2. The matrix U(y) := (h(y + #)),e has the full rank for each
y E IRs.

For the finitely supported sequences a vith a0 a such that the functions
given in (4.1) and their shifts form a Riesz basis for W, define p0 as , and for an
arbitrary a E _,
(4.3) p(x) p2+(x):=
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where E

_
and u E are the unique numbers, such that 2 + u. It is clear

that pv Cv, e \{0}, where the functions , e , are defined in (4.1). Since

99 and the sequences a, E , are compactly supported, each function p, Z_,
is a compactly supported ftnction and its Fourier transform can be written as

(4.4) /3(y) =/32+(y) 2-s/25(y/2)(y/2) for all e .
Sincep is a compactly supported function, we only need to check that the symbol

i5 ofp does not vanish on the torus to prove that p is stable for each E _. This
can be done inductively. The proof is the same as the one in 2, where we proved that
p given by (2.4) is an orthonormal sequence.

Since p is stable, the space

P,:={g’g= E c(a)p(’-a), cf2(s)}
is a closed subspace of L2(IR8) and the functions {p(.- c), c e 8} form a Riesz
basis of P.

PROPOSITION 4.5. For an arbitrary fl 7Z, the functions

{P2Z+v(’-a), ue, ceTZs}

form a Riesz basis of the space aPz.
Proof. The proof that

is the same as the proof of the corresponding part in Proposition 2.6.
Since for each u 7Z.,

’and the matrix U (2-s/25u(y/2 + r#))u..es has "the full rank for all y IRs,
the sequence {P2Z+("- c). u . c } forms a Riesz basis of aP by
Proposition 3.6 in [16]. [

With the above proposition, the proofs of the following two propositions are the
same as the proofs of the corresponding results for orthogonal wavelet packets. In
fact, one can prove these two propositions easily by following those proofs in 2 and
3 line by line and changing "orthonormal basis" to "Riesz basis."

PROPOSITION 4.6. The functions

{p(.-c), tEnI, a}

form a Riesz basis of anW. If nl 7 n2, then PI ("- a) _1_ p. for all 1 nlI,
2 n2I, and

The functions

i:R {2ns/2p 2n O N e 7Z

_
n e rZ oz e Zs}
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are called a semiorthogonal wavelet packet of L2(]RS). We next provide various ways
to construct a Riesz basis of L2(IR8) extracted from 7YR.

PROPOSITION 4.7. For each fixed n > O, the functions

form a Riesz basis of L2(IRs).
We next construct Riesz bases of L2(IRs) by changing n and k simultaneously.

However, this case is more complicated than the orthogonal one. As pointed out by
Cohen and Daubechies in [6], semiorthogonal wavelet packets are unstable in general.
To construct Riesz bases from :PR by changing n and k simultaneously, we need the
notion of n-finite. We say that the collection of pairs

is n-finite, if there is N < oc such that for all (n, k) E , n _< N.
THEOREM 4.9. Suppose that the collection of pairs is a disjoint covering of Z

and is n-finite. Then the functions

(4.10) {2k/2p(2k -c), e hi, (n,k) e ,7}

form a Riesz basis of L2(lR).
Proof. Since for each fixed n, the functions

(p(.-c), anI, cs}

also form a Riesz basis of rynW by Proposition 4.6, the functions

(2kS/2p(2k --), t hi}

form a Riesz basis of an+kW.
Denote, for each fixed n, fin ((n, k)’(n, k) E r}. Since ,7 is n-finite, is a

finite disjoint union of n. Furthermore, since , is a disjoint covering of ,
n

It is clear that for each fixed n, the functions

{2k/2p(2k.-a), enI (n,k) e fin}

form a Riesz basis of ((n,k)EV’n an+kW" Ther.efore, since ,7 is n-finite, the functions
in (4.10) form a aiesz basis of L2(IRS).

If is a disjoint covering of , the functions {(2-21-n/11i5111/2)p(2k" -c)
hi, (n,k) 7,( s} form a Bessel basis for L2(]RS). Recall that a set of

functions f L2(IRS), a X, where X is a countable set, is called a Bessel basis of
L2 (IR) if L2 (lR) is the closure of the space

e
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where lo is the space of the finitely supported sequences on X and, furthermore, there
is a constant C such that, for an arbitrary sequence c E t2(X),

PROPOSITION 4.11. Sitppose that L2.(IRs) nEWn, where Wn is the closed
subspace of L2(IRS). If the functions fn,k, k , form a Bessel basis of Wn and there
is a constant C such that for an arbitrary n and an arbitrary c t2(),

(4.12)

then the functions

(4.13) {fn,k, n e , k e }

form a Bessel basis of L.(IRS).
Proof. Let

H := {a (an)n’an e 2(7Z), with 2}nE

For arbitrary a (an)ne H and b (b,)nem H, define

n

then H is a Hilbert space isometric to g2(X), where X U.
For an arbitrary a (an)ne H and the function g "= ne’ke an(k)f,k,

(4.14)

Ilgl122= Z Z a(k)fn,kll
2

nETZ k TZ 2

Hence, (4.13) is a Bessel basis of L2(IR8) by (4.14) and L2(IRs) (ne Wn. [J

THEOREM 4.15. Let the collection of pairs ff be a disjoint covering of 7Z; then
the functions

(4.16) {2-s21- 1 }
form a Bessel basis of L2(IRS).

Proof. Since for each fixed n the functions
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form a Riesz basis of anW by Proposition 4.6, the functions

{2kS/2p(2k .--a), e; E nI}

1073

form a Riesz basis of an+kW.
Since 7 disjointly covers 7Z, L2(]R8) (n,k)e3" an+kW" To prove the functions

in (4.16) form a Bessel basis of L2(IRS), we note that the symbol of

{1}
is at most one. Therefore, the functions in (4.16) form a Bessel basis of L2(]R8) by
Proposition 4.11. []

Let M.=. be the box spline defined in (3.8) with its symbol not vanishing on qI.
Then, function Mz is refinable with the finitely supported refinement mask a, whose
Fourier transform is

1
(4.17) 5(y) 28/2 H + ex.,-o,

2

On the torus, the symbol of M=_ can be written as

/rz" E (M.--. M.=.(-.))(c)exp(-ic.).

Since the box spline M.--. is compactly supported, {(M.--..M-=(-.))(c)}aes is a finitely
supported sequence. Therefore, the sequence

(4.18) b := d a,

where d(c):= (Mz * M_=(-.))(c), is finitely supported.
The sequences a, E 7Z, are defined .by the sequences a, b given in (4.17),

(4.18), and the map r/satisfying (3.12) as follows:

a0 : a,

and for each e \{0},

(4.19) a(a) := (-l)b((-l)----(a + /(u))).

Since the sequences a and b are finitely supported, the sequences a, , are
finitely supported. Furthermore, the functions {(.- a), e 7Z\{0}, a e 7Z8}
defined as (4.1) with q Mz and a given by (4.19) are compactly supported and form
a Riesz basis of aV 0 V W (cf. [16]). Therefore, we can construct semiorthogonal
compactly supported wavelet packets from box splines as given by (4.3).

Acknowledgments. The author thanks Carl de Boor, Ingrid Daubechies, Kirk
HMler, and Sherman Riemenschneider for their comments. He also wishes to thank
the referee for his suggestion to state the results here in this general setup.
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Abstract. We study the asymptotic regularity of orthonormal bases of compactly supported
wavelets when their support width tends to infinity. We construct sequences of wavelets whose ratio
of regularity to support width is greater than that in previously known examples.
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1. Introduction. There is a well-known method for constructing compactly sup-
ported wavelet bases in L2(R). We start with the two-scale difference equation

N

(x) k),

where, at this point, the only condition on the complex numbers ck is that ck 1.
In order to solve this equation we first define the trigonometric polynomial

Then the inverse Fourier transform of the entire function

(1.3) A(z) H m(2-Jz)
j’-i

is a solution of (1.1). In general, is a distribution with compact support contained
in the interval [M,N]. If (or equivalently A) is in L2(R) and m0 satisfies Co-
hen’s criterion [12, Def. 5.2], then is a scaling function of multiresolution analysis.
Cohen’s criterion is satisfied if m0 does not have zeros in I-r/2, r/2]. Then a stan-
dard definition leads to the associated wavelet and the corresponding wavelet basis of
L2(R).

In this paper we study the (Sobolev) regularity index of scaling functions and
wavelets obtained in the way described above. By the regularity index of a function
defined on R we mean the supremum of all s E R such that the considered function
belongs to the Sobclev space H8. The regularity index of wavelets was studied in [1]-
[8], [11]-[13]. Since wavelets have the same regularity index as the scaling function
from which they are derived [12, Prop. 10.3], it is sufficient to investigate the regularity
index of the scaling function or, equivalently, the growth of the entire function A
for z - +/-cx. Our first problem is thus quite simple to formulate.

PROBLEM 1. Given a trigonometric polynomial mo with m0(0) 1, find the
behavior of the entire function A for z --

Received by the editors May 14, 1993; accepted for publication (in revised form) December 10,
1993.

Department of Mathematical Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Mil-
waukee, Wisconsin 53201.
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In 2 and 3 we give a method for handling this problem.
We are interested in finding scaling functions as regular as possible under given

constraints. For example, it is known that the most regular scaling function with a
given support width S (i.e., the length of the interval [M, N]) has regularity index
S- 1. It is given by a basic spline and m0 is a power of (1 + eiz)/2 [12, p. 1532].
However, the following problem is open (see [12, p. 1542]).

PROBLEM 2. Find the most regular "orthonormal" scaling functions with a given
support width.

By an orthonormal scaling function we mean a scaling function such that its
integer translates (x- n) form an orthonormal system in L2(R). The corresponding
condition for m0 is

(1.4) Imo(z)l 2 + Imo(g +  )12 1, z e R.

In this paper, we attack this problem when the support width of the scaling
function tends to infinity. We know that the regularity index can grow only linearly
with the support width. It is therefore useful to consider the ratio of the regularity
index to the support width. Let us call this quotient the regularity ratio. We then
arrive at the following problem.

PROBLEM 3. Find sequences Cn of orthonormal scaling functions whose support
width tends to infinity as n --, cxz such that the limit (if it exists, otherwise use the
lim inf) of their regularity ratios is as large as possible.

Let us call this limit (or lim inf) the asymptotic regularity ratio of the sequence
of scaling functions. We should mention that Problems 1 and 2 depend on the type
of regularity (Sobolev, Hblder, etc.) that we use, but Problem 3 is independent of the
notion of regularity.

In the well-known example of Daubechies’s wavelets, the asymptotic regularity
ratio equals 0.5 log4(4/3 0.1037... see [13]. We prove this result again in 5. As
the main result of this paper, we construct sequences of orthonormal scaling functions
with an asymptotic regularity ratio greater than 0.5 log4(4/3 in 6.

2. Regularity bounds. Let m0 be a trigonometric polynomial with m0(0) 1,
and let A be the corresponding entire function (1.3). We define 27r-periodic functions

(2.1) fm(Z) Imo(2Jz)] m e N.
\ =o

We note the equation

IA(2mz)l IA(z)lfm(z)m

It is known [1] that the sequence Am of the maximum norms of the functions fm,

(2.3) Am max{fm(Z)’Z e [-r, r]},

converges to itsinfimum. This follows from the submultiplicativity of the sequence,. Another proof is given in the next section (Theorem 3.2). We denote the limit
of the sequence Am by X(m0). We have A >_ 1 because m0(0) 1.

THEOREM 2.1. The function IzlSlA(z)[ is bounded for z -- =kx if s < log2 A.
Proof. Let s < -log2 < 0. Then there exists k0 E N such that Ak <_ 2-s for

k > k0. Now (2.2) shows that

IA(z)] <_ IA(2-kz)}2-8 for all z E R,k >_ k0.
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If we choose 2k _< Izl < 2TM, then we obtain

IzlSIA(z)l <_ C for all Iz >_ 2,
where C is the maximum of

Usually, the above result is applied only if m0 does not have zeros at r. In the
general ce we proceed s follows. Let
trigonometric polynomial o such that

(2.4) too(z) (1 +eiz)
L

2
 o(z)

and

where is defined in (1.a) with 0 in place of m0. Together with Theorem 2.1
this equation implies the following result.
TOaM 2.2. g m0 hs the fo (2.4), then the fctioe 11()1 i bodd

for z if s < L- log (o). In particular, the reglarit indez of the iverse
Fourier tresform of A is at least

1
log (0) 2"

The final statement of the above theorem also follows from [12, Prop. 9.5 and 9.7].
he same reference also implies the following partial converse of the above theorem.
NOaM

nd satisfies Cohen’s criterion, then the reglarit iedez of the scalin fctio
associated with m0 is at most

log (0).

We remark that the regularity index of can be calculated more precisely by other
methods; see [61, [7] for Sobolev regularity and [111 for H61der regularity. However,
these methods tend to become tedious if the support width is large. The above
estimates,are appropriate for the study of the asymptotic behavior of the regularity
index when the support width tends to infinity.. eometre means. In the previous section we saw an example of the follow-
ing more general problem: let

be a given transformation of the interval [a, b] into itself. Then the iterates T of T
are well defined. As usual, T denotes the identity transformation. Let

be a given bounded nonnegative function on [a, b]. We define the geometric means

fm (X) f(TJx) x e [a, b]
=o
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and their suprema

(3.2) sup{I ( ) x e [a,

Then the problem is to find the behavior of the sequence ,m as m tends to infinity.
In the situation in 2 we take [a, b] I-r, r] and T U, where

2x
(3.3) U(x) 2x- 2r

2x + 2r

and f(x)

if -/2_< x <_ r/2,
if r/2<x<_r,
if -r_< x < -r/2,

For another closely related example, we take [a, b]--[0, 1] and T W, where

(3.4) w(t) 4t( t).

If f is an even function on [-r, ], then the numbers Am formed with respect to
the transformation T U coincide with those formed with respect to the function
g(t) f(sin2(t/2)).and the transforma.tion T W.

The above problem is related to ergodic theory. In ergodic theory one usually con-
siders arithmetic means but the geometric means can be written as arithmetic means
using the logarithm. In ergodic theory one assumes that T is measure-preserving and
ergodic, which is the case for the transformation T U with respect to the Lebesgue
measure. Then the individual ergodic theorem [9, p. 18] states that the sequence of
functions fm converges almost everywhere to a constant function if In f is Lebesgue-
integrable. However, this and similar results do not help much in solving our problem
because we consider all x e [a, b] in the definition (3.2).

We further remark that Amm is the operator norm of the operator Sm, where
S B[a,b] -- B[a,b] is the operator defined by (Sg)(x) f(x)g(Tx) and B[a,b]
denotes the Banach space of bounded functions on [a, b] equipped with the supnorm.
By Gelfand’s formula for the spectral radius of a bounded linear operator, we see that
the sequence Am converges to the spectral radius of the operator S. However, we will
not use this fact in what follows.

We now return to the general situation described above. In order to investigate
the sequence A,, it is useful to consider the functions

(3.5) gm(X) min{fk(x) k 1,..., m}, x e [a, b],

and their suprema

(3.6) #, sup{gm(X) X e [a, b]}.

The sequence #m is nonincreasing and #m -< Am. The numbers ,m and #, are also
related in the following way.

LEMMA 3.1. Assume that #k > 0 for a fixed k E N. Then

Am <_ cl/m#k for all m N,

where

c=max "j=l,...,k
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is a constant independent of m.
Proof. We prove the above inequality by induction on m. The inequality is true

for all m 1,..., k by the definition of c. We now assume that the inequality holds
for m- k + 1,..., m in place of m, and we are going to show that the inequality also
holds with m + 1 in place of m. Let x E [a, b] be arbitrary. By the definition of
there is e (1,..., k} such that gk(x)- fl(x). The functional equation

(x)m+l (Tx)m+-f+ f() f+

shows that

fm+l (X)m+l
_

#lk(,m+l-l)m+l-l.

Now the induction hypothesis implies

)[xm-i re+l--1 m+l.+1 < p culk

Since x is arbitrary, this proves the desired result. [:]

If #k 0, then the lemma remains true if we replace #k by e > 0.
We now obtain the following result.
THEOREM 3.2. The sequence m i8 convergent. Its limit satisfies

A inf )m inf #m.
m m

Proof. The sequence m converges to its infimum because it is nonincreasing and
nonnegative. Lemma 3.1 and the subsequent remark show that

lim sup ,m
_

Pk for all k N.
m---- (:x:)

Since m -- ,m for all m, this proves that the sequence , converges to the same
limit as the sequence Pro. It is then clear that the limit equals the infimum of both
of the sequences Am and #m. [’]

The above-mentioned problem can now be reformulated as follows: given the
transformation T and the function f, find the limit of the sequence ,. Usually,
the calculation of is difficult but we can always estimate . By Theorem 3.2, each
Am,m is an upper bound for . The upper bounds #, usually lead to much better
estimates than the upper bounds Am. For example, in the case of the Daubechies
wavelets, the sequence m becomes constant beginning with #2, so that
whereas the bound Am never gives the exact value of A (see 5). We remark that the
idea to use the numbers m to estimate A also appears in a somewhat different form
in [5, Lem. 7.1.6].

The following theorem provides lower bounds for .
THEOREM 3.3. Let x be a fixed point of T, where k N. Then

> A(x).

Proof. By assumption, fm(X)- fk(x) for all m e N. This implies mk >_ fk(x)
for all m N. As m oc, we obtain >_ f(x).

In the special case T W, we see that 3/4 is a fixed point of T which yields

(3.7) ,k >_ f(3/4) if T-- W.
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4. Constructing scaling functions. Let p be a polynomial of degree n which
satisfies

(4.1) p(x) + p(i- x)= 1 and p(0)= 1.

Furthermore, let p(x) be nonnegative for 0 <_ x <_ 1. Since p(sin2(z/2)) is an even
nonnegative trigonometric polynomial, there exists a trigonometric polynomial

n

k--O

with real coefficients such that

(4.2) ]mo(z)] 2 p(sin2(z/2)) and rno(O)= 1.

This follows from a well-known theorem of F. Riesz [10, p. 81]. The trigonometric
polynomial m0 satisfies the functional equation (1.4) because p satisfies (4.1). We
note that m0 is not uniquely determined by (4.2), but this does not play a role here
because we are only concerned with Imo(z)l. If, in addition, m0 satisfies Cohen’s
criterion, then the inverse Fourier transform of the infinite product (1.3) solves
the two-scale difference equation (1.!), and is a scaling function of multiresolution
analysis leading to an orthonormal wavelet basis. The support width of this scaling
function is equal to the degree of the polynomial p. The regularity index of b can be
estimated in the following way.

THEOREM 4.1. Let p be a polynomial solution of (4.1) that is nonnegative on

[0, 1]. Let p have a zero of exact order L at x 1, and let q be the polynomial defined
by

Let A be the limit of the sequence Am defined in 3 with respect to f q and the

transformation W(x) 4x(1 x).
Then the regularity index a of an orthonormal scaling function associated with

the polynomial p as introduced above satisfies
1

L log4 A

_
a

_
L log4 A.

Proof. Let m0 be a trigonometric polynomial satisfying (4.2).
trigonometric polynomial rh0 such that

Then there is a

rh0(z) and ]rho(z)l 2 q(sin2 (z/2)).

Now A is the square of the number A(rh0) used in 2. Therefore, the statement of the
theorem follows from Theorems 2.2 and 2.3.

We solve equation (4.1) in the following way.
PROPOSITION 4.2. The polynomial solutions of (4.1) are given by

(a.3) f: s(W(t))dt
s(W(t))dt
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where s is any polynomial such that the denominator of the fraction is nonzero.
Proof. A polynomial p satisfies (4,1) if and only if p’(x) -p’(1 -x) 0,p(0) 1,

and p(1) 0. The equation for p’ means that p’(x) is a polynomial in (x- 1/2)2
or, equivalently, in W(x). This shows that the polynomials given by (4.3) solve (4.1)
and, conversely, each solution is of this form.

We now construct sequences of orthonormal scaling functions in the following
way. We start with an arbitrary real polynomial r (not identically zero) and define,
for each n E N,

(4.4) pn(X)
1 f j01r(W(t))ndt, where an r(W(t))ndt

if an 0. Thus Pn is the polynomial (4.3) when s(y) r(y)n. By Proposition 4.2,
this polynomial satisfies (4.1). If n is even then an > 0, Pn is nonnegative on [0, 1],
and Cohen’s criterion is satisfied because pn(X) > 0 for 0 _< x < 1. If r itself is
nonnegative on [0, 1], then, of course, this is true for all n. For each even n, let Cn be
the scaling function associated with the trigonometric polynomial m0 derived from
pn(sin2(z/2)) using (4.2).

Our goal is to investigate the asymptotic regularity ratio of these sequences of
scaling functions. We do this in 6, but let us first consider a well-known special case,
the sequence of scaling functions introduced by Daubechies [3].

5. Daubechiess scaling functions. For each n E N, we consider the polyno-
mial

(5.1) pn(X)
1

W(t)ndt,

where

(5.2) an W(t)ndt 4n
(n!)2

(2n + 1)!"

This is the special case of definition (4.4) when r(y) y. The polynomial Pn is of
degree 2n + 1 and has a zero at x 1 of order n + 1. Let qn be the polynomial of
degree n defined by

(5.3) p(x) (1 x)n-t-l qn (X).

If we differentiate this equation and compare it with p -W(x)n/a, then we
obtain

(5.4) (1 x)q(x) (n + 1)qn(x) (2n + 1) ( 2nn ) xn"

We use this differential equation to show that

n( )qn x jo’= n +2" j
In fact, we easily verify that the right-hand side satisfies the same linear first-order
differential (5.4) as qn and the two solutions agree for x O.
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The polynomials qn are the same as those considered in [3, (4.13)]. Daubechies’s
scaling functions are, then, those associated with trigonometric polynomials m0 sat-
isfying

Im0(z)]2 pn(sin2(z/2)).

In order to estimate the regularity index of these scaling functions, we will use
Theorem 4.1. In order to compute the A-limit formed with respect to the polynomial
qn and the transformation W, we need several simple lemmas.

LEMMA 5.1. We have

qn(1)=2n+ l ( 2n )n+l n
qn(1)=n(2n+l) (2n /n+2 n

Proof. We set x 1 in the differential equation (5.4). Then we differentiate this
equation and again set x 1.

LEMMA 5.2. We have

qn (X) > qn (1) n(n + l
for all O < x < l

+

Proof. Since q, is a polynomial of degree n with nonnegative coefficients, we
obtain from Lemma 5.1 that

(5.5) qn(X) > qn(1)xn 2n+ 1(2nn+ln ) xn

(5.6) qn(X) >_ qn(1)xn_l n(2nn + 2
+ 1) ( 2n )

By (5.4) and (5.6),

qn(x) (n + 1)qn(X) + xq(x) (2n + 1)(2n )
>(n+l)qn(x)_ 4n+2(2nn+2n ) xn"

By (5.5),

qn(x) >_ (n + 1)qn(x) 4n+2 n + l n(n + l)--qn(x) --qn(x).
n+2 2n+l n+2

LEMMA 5.3. We have

n<_ ,for all 0 < x < 1.
qn(x) x

Proof. This inequality holds for all polynomials of degree n with nonnegative
coefficients. [-I

LEMMA 5.4. Wehave

qn(x)qn(W(x)) <_ qn(3/4)2 for all 3/4 <_ x _< 1.



COMPACTLY SUPPORTED WAVELETS 1083

Proof. Since this inequality is an equality when x 3/4, it is sufficient to prove
that the derivative of qn(X)qn(W(x)) is nonpositive for all x between 3/4 and 1. This
is equivalent to the inequality

>-w’(z) q (x)

for the same x. Because of Lemmas 5.2 and 5.3, it is enough to show that

(Sx + 1) > n_
n+2 -x

or

8x2 4x > .n +___2
-n+l

for all x between 3/4 and 1. This is true because

8x2-4x>-3 > n+2
-2-n+1

for all 3/4 <_ x <_ 1 and all positive integers n. [3

We can now prove the main result of this section.
THEOREM 5.5. Let the numbers Am,#m,A be defined as in 3 with respect to

f qn and the transformation T W. Then A #2 qn(3/4). In particular, the
regularity index an of Daubechies’s scaling function associated with the polynomial pn
(which has support width 2n + 1) satisfies

log4 pn(3/4) 1/2 <_ an <_ log4 pn(3/4).

Proof. If 0

_
x _< 3/4, then qn(X)

_
qn(3/4) because qn is increasing for x _> 0.

Together with Lemma 5.4 this shows that

min{qn(X), (qn(x)qn(W(x))) 1/2}
_

qn(3/4) for all 0

_
x

_
1.

Since we have equality for x 3/4, this proves that A _< #2 qn(3/4). Now (3.7)
shows that 2 qn(3/4).

The final statement of the theorem follows from Theorem 4.1 because L n + 1
and

L log4 A n -k 1 log4 qn(3/4) -log4 pn(3/4).

The numbers pn(3/4) appearing i the previous theorem are given by

p(3/4) an W(t)ndt.
/a

The asymptotic behavior of this sequence as n - ec can be found by standard meth-
ods. We only need that

1
(5.7) log4 Pn (3/4) --, loga (3/4) as n --,

n

which, for example, follows from the following lemma (proof omitted).
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LEMMA 5.6. Let h be a nonnegative continuously differentiable function defined
on [a, b]. Let H max(h(x) a < x < b} > 0. Then there is a positive constant e
(independent of n) such that

e-Hn < h(t)ndt <_ (b-a)Hn.
n

In combination with Theorem 5.5, the relation (5.7) implies the following corol-
lary.

COROLLARY 5.7. The asymptotic regularity ratio (as defined in the introduction)
of the sequence of Daubechies’s scaling functions is given by

1- log4(3/4 0.1037

We remark that the results of this section are known. In particular, Lemma 5.4
and Theorem 5.5 are proved in [2]; see also [5, 7.1]. Lemma 5.4 is contained in [5,
Lem. 7.1.8] but the proofs are different. Corollary 5.7 is proved in [13].

6. Sequences. of highly regular scaling functions. We now return to the
more general sequences of scaling functions introduced in 4. To be more specific, we
assume that the polynomial r is given by

(6.1) r(y) yM(y al)(y a2)... (y aK),

where the numbers aj satisfy 0 < al < a2 < < aK < 1. In the previous section,
we had M.= 1 and K 0. The idea is to choose K > 0 to obtain sequences of more
regular scaling functions. If, for fixed support width 2n(M +K) + 1 of Cn, we increase
K, then the number L nM+ 1 of Theorem 4.1 decreases; however,/k also decreases
for appropriately chosen zeros al,..., ag.

Let Pn be the polynomial defined by (4.4) for even n. By estimating the integral
in (4.4) we obtain

1-x
p(x) <

on

where R is defined by

We also have

R(W(x))n for all 1/2 _< x _< 1,

R(y) max{It(t)[" 0 < t <_ y}, 0<y<l.

p (x) <
X--x
On
R(1)n for 0 <_ x <_ 1/2.

Therefore, if we define a continuous function f on [0, 1] by

(6.2)
(l--x) M if

f(x) R(W(x))(1 x)-M/R(1) if
4M l-I=l aj/R(1) if

0<x< 1/2,
1/2<x< 1,

then Pn satisfies

(6.3) pn(X) < 1(1 -x)nM+lf(x)nR(1)n for 0 < x _< 1.
On
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We now use Theorem 4.1 to obtain the following lower bound for the asymptotic
regularity ratio of t’he sequence bn.

THEOREM 6.1. Let r be a polynomial of the form (6.1). Then the sequence of
orthonormal scaling functions (n (n even) derived from r has an asymptotic regularity
ratio greater than or equal to

M log4 ,k

2(M + K)’

where A is the limit of the sequence Am defined in 3 for the function f of (6.2) with
respect to the transformation W.

Proof. The polynomial Pn has a zero of exact order L -nM+ 1 at x 1. Let qn
be the polynomial defined by

pn(X) (1 x)nM+lqn(x).

Then (6.3) shows that

(6.4)
1

qn(X)

_
f(x)nR(1)’ for 0 _< x _< 1.

By Lemma 5.6, we find e > 0 such that

(6.5) a > -R(1).
n

Let A(qn) be the A-limit of 3 corresponding to f qn and T W. Then the
inequalities (6.4) and (6.5) show that

A(qn) <_ nan.
By Theorem 4.1, the regularity index an of.n satisfies

an >_ nM + 1 n log4 ,k log4
1

The support width of Cn is equal to the degree ofpn which is 2n(M+K)/1. Therefore,
the asymptotic regularity ratio of the sequence Cn is at least

M log4 )

2(M + K)

This completes the proof.
The simplest upper bound for

x < 1. We can write

(6.6) #1
sup{ir(W(x))l(1- x)-M’l/2 <_ x < 1}

max{lr(y)]" 0 _< y <_ 1}

because the supremum of {R(W(x))(1- x)-M 1/2 <_ x < 1} is equal to that
of {Ir(W(y))l(1- y)-M 1/2 _< y < 1}. This follows from the observation that,
for every 1/2 _< x < 1, there exists x _< y < 1 such that R(W(x))
Consequently, R(W(x))(1 x)-M <_ Ir(W(y))l(1 y)-M.
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Let us consider an example. Let M 2 and K 1. Then r is of the form

r(y)--y2(y_ a), where 0 < a < 1.

We estimate the number ) by #1. According to (6.6), we have

16max{Ix2(W(x)- a)l 1/2 <_ x _< 1}
max{ly2(y-a)l" 0 _< y _< 1}

The maximum in the numerator is equal to

16 max{[x(W(xo) a)l, a},

where

X0
3 + x/9- 8a

If we choose a 0.2762..., then X2olW(xo) a[ a and #1 16a/(1 a). We now
apply Theorem 6.1 and obtain that the asymptotic regularity ratio of the sequence of
scaling functions derived from r is at least

2-1og4(16a/(1-a)
=0.115

This ratio is greater than that obtained in Corollary 5.7.
This result can be improved if we use #2, P3,.. as upper bounds for A. Computer

calculations using #3 as an upper bound for A led to the choices in Table 1 of the
polynomial (6.1) and estimates for the asymptotic regularity ratio of the corresponding
sequence of scaling functions. By using upper bounds #m for larger m it is possible
to find asymptotic regularity ratios close to 0.19.

TABLE 1

M K al <... < aK asymp, reg. ratio _>
1 1 0.43 0.147
2 1 0.52 0.155
1 2 0.09 < 0.56 0.157
2 2 0.17 < 0.57 0.162
3 3 0.08 < 0.36 < 0.64 0.171
4 4 0.05 < 0.26 < 0.45 < 0.67 0.175

We conclude this paper with the following open questions:
1. Are there more efficient methods for estimating the limit A of 3?
2. }tow should we choose the integers M and K and the zeros a.,.., ag of r in

a systematic way to obtain large asymptotic regularity ratios? (M K seems to be
good.)

3. What is the largest asym.ptotic regularity ratio we can fid by the presented
method?

4. What is the largest asymptotic regularity ratio for sequences of orthonormal
sctling functions?
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A STEFAN PROBLEM FOR A REACTION-DIFFUSION SYSTEM*

AVNER FRIEDMANt, DAVID S. ROSS:, AND JIANHUA ZHANG

Abstract. The paper deals with a Stefan problem for a system of three weakly coupled semi-
linear parabolic equations. The system describes dissolution of a spherical particle in solution. The
dissolved species A reacts chemically with species B already in the solution, thereby forming species
C. Species C diffuses in the solution and some of it adsorbs to the particle’s boundary and gradually
shuts down the dissolution. It is shown that the mathematical model has a unique solution with
finite shut-down time. When the reaction rate K increases to infinity, the limit model should exhibit
phase separation between A and B, and it thus has two free boundaries: the particle’s boundary and
the A- B interface. It is proved, in the case in which A and B diffuse at the same rate, that the
solution with finite K converges to the solution of the limit problem, and the A phase in the limit
problem disappears in finite time.

Key words. Stefan problem, reaction-diffusion system, asymptotic estimates, dissolution

AMS subject classifications. 35K57, 35R35, 35B40

1. The model. Consider a solid spherical particle composed of chemical A with
uniform concentration A*. The particle is in a solution of chemical B. As the particle
dissolves, the A that enters the solution reacts with B to form chemical C. Then C
diffuses in the solution and some of it reaches the solid particle and adsorbs to its
surface. The presence of the adsorbed C inhibits the dissolution and ultimately shuts
it down entirely.

Assuming radially symmetric data and radially symmetric functions A, B, C, we
denote by r R(t) the radius of the solid sphere at time t. Then the equations

(1 1)
OA
Ot DAAA KAB,

OB
(1.2) 0- DBAB KAB,

(1.3)
OC

DcAC + KABOt

hold in {r > R(t)}, where K is the reaction rate and DA,DB,Dc are the diffusion
coefficients. These equations indicate that A and B are lost in a second-order reac-
tion in which C is formed and all three species diffuse. In the standard mass-action
model of chemical kinetics, the concentrations are all expressed in moles/liter and the
coefficient/(, the second-order reaction rate, is expressed in liters/(mole-sec). Then
KAB is the number of moles per liter per second that undergoes reaction; in our case,
A and B are consumed, C is created, the same number of moles of A and B are lost,
and this nunber of moles of C is created. A nice reference fbr this material is the
book by Erdi and Toth [4].
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Next,

(1.4)
dR OA
d--- a--r on r R(t),

where a is a positive constant, i.e., the rate at which the radius of the particle decreases
is proportional to the flux of species A away from the particle. We also have

(1.5)
OB
Or

=0 on r=R(t),

i.e., there is no flux of B through the particle’s surface and B does not undergo any
surface reaction.

The adsorption of C to the surface is proportional to the local saturation; it is
given by an empirical law DcOC/Or vC" for some positive constants V, n (see [13,
pp. 104-105]); for definiteness we take n 4, i.e.,

OC
(1.6) Dc-r VC4"

However, all the results of this paper remain valid with minor changes if we replace
vC4 by any other monotone increasing function f(C) with f(0) 0, f(C) > 0 for
C>0.

The boundary conditions at r- oC are

(1.7) A(c, t) 0, B(c, t) B*, C(c, t) 0,

where B* is a positive constant.
We now impose initial conditions. First,

(1.s) R(0) Ro > 0.

Next we assume that

A(r, 0) Ao(r), B(r, 0) Bo(r), C(r, O) Co(r)

for r > Ro, where Ao, Bo, Co are approximately 0, B*, 0 (i.e., initially, only B is mostly
present in the solution and its concentration is nearly uniform). We also assume that
the initial conditions are smooth and fit smoothly with the boundary conditions

(1.10)
AoEC2+[Ro,c), A(r)<_0, Ao(Ro)=A*,

Ao(r) O ifr>Ro+51forsome51>0;

(1.11)
Bo E C2+[Ro, c), Bo(r) >_ O, B)(r) >_ O,

Bo(r)=B* ifr_>Ro+52 for some 52>0;

(1.12)

Co( ) e C [Ro, Co( ) > 0,

Co(r) O ifr>Ro+53forsome53>0,

DcOC=vC at r=RoOr
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for some0<p<l.
Finally we need to determine the boundary condition for A at the particle’s

surface. The flux of A from the particle depends on the amount of C that is adsorbed
to the surface. On a portion of {r R} where there is no adsorbed C, A A*,
the saturation concentration of A; local thermodynamic equilibrium is established
instantaneously. On a portion which is fully covered by C, OA/Or O, i.e., the
dissolution shuts down. This is actually a microscopic statement, which we shall now
"average." We shall use the "weighted average"

(1.13) (t)

0C
R2(s)Dc-ffr ]r=R(8)ds +

R (t)

where/ is a positive empirical parameter and 5 is a small positive parameter such
that 5/R < 1. We then impose the boundary condition

OA
(1.14) (o(t)DA-ffr + (1 o(t))(A- A*) 0 on r R(t),

where

(1.15) 0(t) -.min{(t), 1}.

Thus the dissolution shuts down as soon as (t) becomes equal to 1. This boundary
condition has the basic properties demanded by the physical problem; it reduces to the
Dirichlet condition in the absence of adsorbed C, it reduces to the Neumann condition
when the surface is covered, and it makes a continuous monotone transition between
these two conditions as a function of the fraction of surface area that is covered.

Remark 1.1. The parameter 5 in (1.13) ensures that (0) > 0 and, therefore, the
boundary condition in (1.14) does not degenerate at t 0. All the results of this
paper, however, except uniqueness, extend to the case 5 0 by simply going to the
limit with -+ 0. If 5 0, the solution is not smooth at (R0, 0) and our proof of
uniqueness (for the case 5 > 0) does not carry through.

For additional information on the model see [9, Chap. 18].
2. The main results.
DEFINITION 2.1. We refer to the system (1.1)-(1.15) as problem (P). By a

solution to problem (P) we mean (A,B,C,R) satisfying (1.1)-(1.15) in the classical
case; in particular, R(t) is continuously differentiable for all t >_ O.

DEFINITION 2.2. Suppose T* is such that

(t) < l if t < T*, (t) >_ l if t >_ T*.

Then we call T* the shut-down time.
Note that (1.4) and (1.14) reduce to

(2.1) R(t) R(T*), Ar(R(T*), t) 0 for t > T*.

THEOREM 2.1. There exists a unique solution of (P), and it has the following
properties: (i) R(t) > O, R’(t) <_ O, and ’(t) > 0 for all t > 0; (ii) it has a finite
shut-down time T* and R’(t) < 0/f 0 < t < T*; (iii) R and belong to C1+[0, cx) A
Ca(O, T*) for any 0 < it < 1.
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We are interested in the case of fast reaction, i.e., K >> 1. This motivates the
study of the solution

(AK, BK, CK, RK) of (P)

as K c. It can be shown that

T cx

AKBKr2 dr dt <_ K
o RK(t)

and

0
0-- AK<--O’

It follows, formally, that the limits

A lim AK,
(2.2)

R lim

B=limBK, C=limCK,

and, =limK
are such that AB 0, i.e.,

(2.3) A(r,t) > 0 if R(t) < r < S(t),
=0 if r>S(t),

(2.4) B(r,t)>O if r>S(t),
=0 if R(t) < r < S(t)

for some function S(t); furthermore,

(2.5) OAot DAAA if R(t) < r < S(t),

(2.6)
OB

DBAB if S(t) < r < oa,Ot t:>0,- DcAC DA if R(t)<r<c, t>0,

dR OA
(2.8) d--- Cr r=R(t)

OA
(2.9) oDAr + (1 o)(A A*) 0 at

where 0 is defined by (1.13), (1.15), and

OC
(2.10) Dc _-a2-__ =3,C4 on r R(t),

R(t),

(2.11) A(S(t),t) =0,

(2.12) B(S(t),t) =0,
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OA OB
(2.13) DA =--Ds on r--S(t).

Since A / B C, the generation of C which occurs at r S(t) is at the same rate as

DAOA/Or or -DBOB/Or, which explains both (2.a) and the source term in (2.7).
Finally, we have the initial conditions

(2.14)
A(r,O)=Ao(r) if R(0)<r<S(0),
B(r,O) Bo(r) if S(0)
C(r, O)---Co(r) if R(0)

(2.15) S(0) to, where ro is such that Ao(ro) Bo(ro)

(ro is uniquely determined), and the conditions at r c,

t) B*, t) 0.

DEFINITION 2.3. We shall denote the problem (P) by (PK) and refer to the
 o  tion to

(A, B, C, R, S, Tf such that all the equations are satisfied in the classical case for
O < t < Tf, and

R(t) < S(t) < oc

S(t) R(t) --. 0

in particular, R(t) and S(t) are continuously differentiable for 0 < t < Tf and con-
tinuous for 0 <_ t <_ Tf and At(r, t) is continuous for R(t) <_ r <_ S(t).

The curve r S(t) is the interface between the separated phases A-and B, and

TI is the final time, i.e., the time at which phase A has totally disappeared.
THEOREM 2.2. Assume that DA DB and Co(r) O. Then there exists a unique

solution to problem (Poe) and it has the following properties: (i) R(t) > 0, R’(t) <_ O,
and ’(t) > 0 for all 0 < t < T, and R’(t) < 0 as long as (t) < 1; (ii) T < ec; (iii)
R, S, and belong to C[0, TI] V) C1+[0, Tf) g) C(0, Tf).

THEOREM 2.3. Assume that DA DB. Then, as K ---, oc, the limits in (2.2)
exist, where (A, B, C, R, S, TI) is the solution to problem (P); the convergence of
AK, BK, Cg is uniform in any compact subset of

(2.17) {R(t)<r<S(t), 0_<t<Tf}U{S(t)<r<ec, 0_<t<Tf},

and the convergence of RK and g is uniform for 0 <_ t < TI.
Theorem 2.1 is proved in 3-6 and Theorems 2.2 and 2.3 are proved in 7-10.
Remark 2.1. Reaction-diffusion systems of the form

At DAAA- KAB, Bt DBAB- KAB

with K --. ec have been studied in [1] and [12]. Evans [5] considered (2.18) in a fixed
cylinder l’t x (0, T) under the assumptions

OA OB
(2.19) On

0 on 0t, 0--- 0 on vO, AoBo 0,
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where A0, B0 are the nonnegative initial values for A and B, respectively. He proved
that, as K x, A u+ and B u-, where u is the solution of

ut=div(a(u)Vu)=O in tx(0,T)

with Ou/On 0 on 0t and u[t=o Ao B0; here

a(u)=DA if u>0, a(u)--DB if u<0.

(Uniqueness for the limit problem was established in [2].) His proof relies heavily on
the assumptions in (2.19) and does not seem to extend to the present case where we
have a moving boundary r R(t) and different boundary conditions from those in
(2.19).

Remark 2.2. For the general study of the Stefan problem in n dimen8ion8 we refer
to [8] and [10] and the reference8 therein. In the case of radially symmetric solutions,
existence, uniqueness, and regularity have been established by several methods (see [6]
and [7] and the reference8 therein). In the standard Stefan problem one assumes that
A vanishes on the free boundary. The condition (1.14) is called a "kinetic" condition.
A Stefan problem for one heat equation in one dimension with kinetic condition was
studied by Visintin [14] and Xie [15].

3. Local existence for (P). In this section we prove the following theorem.
THEOREM 3.1. There exists a solution (A, B, C, R) of problem (P) for O < t < T,

where T is some small positive number.
The proof is based on a fixed-point argument. For any No > 0, set

KR {R(t) e C’1[0, T], R(0)= R0, -M _</(t) <_ 0 a.e.},

 (t/e rl,- _< <_ No, 0 _< 4(t/_< N

where

A*R2o
DA

and N is a positive constant to be determined. We endow KR and K with the
C[0, T] norm; then g K is a compact set in C[0, T] C[0, T].

For each (R(t), (t)) e KR K there exists a unique solution (A(r,t), B(r,t))
of (1.1), (1.2), .(1.5), (1.14), (1.7) with the initial conditions as in (1.9); since the
parabolic system is weakly coupled, such a solution exists for any given time T. By
the maximum principle,

O <_ A(r,t) <_ A*, O <_ B(r,t) <_ B*.

Next we prove that

(3.2) At(r, t) <_ O, Br(r, t) <_ O.

If we differentiate (1.1), (1.2) with respect to r, we get a coupled system of parabolic
equations

0
A,. E.A,. -KAB,.

Ot
0

B,. .B,. KBA.,
Ot
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where is an elliptic operator. On t 0 and the boundary r R(t) we have
Ar _< 0, Br >_ 0. We approximate At, Br by solutions A, Br satisfying the same
parabolic system with initial and boundary conditions given by

A=A-, B=B+.
ThenA < 0, B > 0for R(t) <_ r < oc, O <_ t <_ T. Indeed, otherwise there isa
smallest to such that A <_ 0, B >_ 0 for R(t) <_ r < oc, 0 <_ t <_ to, and A 0
or Br 0 at some point (r0, to). This is a contradiction of the strong maximum
principle applied to A or B.

If we now let 0, we obtain assertion (3.2).
Motivated by (1.4), (1.14), we now define

(3.3)
a /1-0(s) A*R(t) Ro + o(s) [A(R(s), s)- ]ds.

0

Next we consider the parabolic equation (1.3) in R(t) < r < oc, 0 < t < T with
boundary conditions (1.6) and C(oc, t) 0 and initial conditions C(r, 0) Co(r).
Since the functions KA*B*t + C (C supC0) and 0 are a supersolution and sub-
solution, respectively, the existence of a solution can be established by a fixed-point
argument (cf. [6, Chap. 7, 5]). Uniqueness follows by a comparison principle [6].

We now define

Z7 / +
(3.4) (t) o

and consider the mapping W:

W(R(t), (t)) (-(t), -(t)).
If we show that W has a fixed point in KR K, then this yields a solution to problem
(P).

LEMMA 3.2. W maps KR K into itself.
Proof. From (3.3), (3.4) we get

d (t)= a 1-o(t) (A-A*),(3.5) d DA o(t)
d 2 dR(t)(3.6) d- (t) ’)’C4((t), t)- - -(t)

dt

From (3:5) we see that

(3.7) M < dR(t) < O.
dt

Since C <_ KA*B*t /C, we find from (3.4) that (t) _< No if T is small enough. From
(3.6) and (3.7) it then follows that

O<
dt

(t) <_ ,
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provided N is a sufficiently large number independent of N (see the definition of K).
Hence, choosing N N we see that (R, ) belongs to KR K. [:l

LEMMA 3.3. W is continuous (when KR K is endowed with the C[0, T]
C[0, T] norm).

Proof. If we use the transformation r- R(t) in order to flatten the boundary
r R(t), we get a new parabolic equation for A, where a new term/Ar is added to
the heat operator. On the lateral boundary ’- 0,

-Ar + a(t)A b(t),

where a, b are Lipschitz continuous and their Lipschitz constants are bounded inde-
pendently of (R, ) in KR K. We can therefore apply Lp estimates [10] to deduce
that

(3.8) IIAlli(ar) + IIAlli(n) + IIAtlli(a) < C

for any 1 < p cx3, where

tT={R(t)<r<c, 0<t<T}

and C1 is a constant depending on p but not on (R, ) and T. By Sobolev’s imbedding
[11] we then have the Hblder estimate

(3.9)

for some 0 < # < 1 and C2 independent of T and (R, ).
We now proceed to prove that W is continuous.
Suppose (Rn, n) and (R, ) belong to KR K and Rn --+ R, Cn in the

C[0, T] norm. We need to prove that

W(R , W(R,

Define An, Bn, n,n, and Cn corresponding to R,, ,, so that W(Rn, ) (-n, n)"
Applying the estimates (3.8), (3.9) to An and similar estimates to B, and Cn, we can
easily show that any subsequence of n’s has a subsequence for which

AnnA, BnB,

where A,B satisfy the same parabolic system in R(t) < r < , 0 < t < T which
A, B satisfy. By uniqueness it follows that A A and B B. Therefore

(3.10) An --+ A, Bn --+ B uniformly in Pn (t) <_ r< , 0 <_ t <_ T,

where pn(t) max(Rn(t), R(t)}.
We proceed to prove that

(3.11)

c { ]" l n’(S) [An(Rn(s s) A*]dsRn(t) R(t) n,O(S)
0

o(s) [A(R(s), s) A*]ds - O,
0
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where 4n,o min{n, 1 }. By (3.9),

IAa(Ra(s),s) Aa(pa(s),s)l < C]R(s)
]A(R(s),s) A(pa(s),s)] < CllRa(s) R(s)l’.

Also using (3.10) we conclude that

a / 1 (n,o(S)[An(Rn(s), s) A(R(s) s)]ds
0

< C2 /IRn(s) R(s)lPds Wn,
0

where Ca - 0 uniformly in t as n cx3. Since a(t) (t) uniformly, we deduce
from the expression for Rn R in (3.11) that

IRa(t)- R(t)l--. 0 uniformly in t e [0, T].

Similarly, we can prove that Ca C for R(t) < r < oc, 0 < t < T, and n(t) --+ (t)
uniformly in 0 < t < T, and this completes the proof of Lemma 3.3.

Proof of Theorem 3.1. From Lemmas 3.2 and 3.3 we have that W maps the
compact set KR x K into itself and is continuous. By the Schauder fixed-point
theorem W has a fixed point (R,(), and this completes the proof of Theorem
3.1.

4. Uniqueness. In this section we prove the following theorem.
THEOREM 4.1. For any T > O, problem (P) has at most one solution.

Proof. Suppose there are two solutions (Ai, Bi, Ci, Ri, ) (i 1, 2). Set

Ai(x, t) Ai(r, t), Bi(x, t) Bi(r, t), Ci(x, t) Ci(r, t),

where x r Ri(t). Then

Ai DA ,xx -- .i,x 4- iAi x KAiBi in
x+R

-DAi,oAi,x+(1-i,o)(Ai-A*)=O for x=0, t>0,

Ai(x,O)=Ao(x+Ro) for x>0,

lim Ai(x,t)=O for t>0.
X

QT--(x>O, t>

Similar systems can be written for Bi and Ci. Set

u A1 A2, v B B2, W C1 -C2

and

D al R2, 7 1 -2.

Then

a [ 1 (x, O) A*)
1 2,0(t) (fi-2(x, 0) A*)]
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so that

Next, from (1.13) we easily estimate

(4.3) In(t)l <_ C [IIPlIL(O,T) + IIw(0, t)IIL(O,T)]

Since p(0)= 0, (4.2) yields

(4.4)

Substituting this into (4.3), we get

(4.5) IIIIL(O,T) <_ CT
1 CT [ilu(O’t)]IL(O’T) + I]w(O,t)IILo(O,T)]

if T is such that CT < 1. Finally, using (4.5) in (4.4) we get

(4.6) IIPlIL(O,T) < CT [[lu(O, t)ll(O,T) + IIw(O, t)ll(O,T)]

From (4.1) we see that u satisfies a parabolic system

(4.7)

2DA )Ut DAUxx -t- -I- 1 ux KBlu + F in
x+R1

--DAl,OUx + (1 l,0)u G if x 0, t > 0,

u(x, O) O, x>0,
lim u(x, t) O, t > O,

X---O

where

I1 < c [IIPlILO,T)/
< c [IIIIL<) / I1,11<) /

by (4.2), (4.5), and

It is easy to see that the function

C(t + T). [1111() + Ilvll=(-) + Ilwll=()]

is a supersolution to (4.7), so that

The same estimate can similarly be established for v and w. Hence if T is small
enough then u v w 0 in QT. We can now proceed step-by-step to prove that
u v w 0 for all t, as long as the two solutions exist.
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5. Global existence. In this section we prove that there exists a solution to
problem (P) for all time. We first recall that, as long as 4(t) <_ 1,

(5.1) /(t) a 1 -(t)(A- A*)DA (t)

(5.2) (t) /C4(R(t) t) 2(t) /(t).
R(t)

Hence

< o, (t) > o.

LEMMA 5.1. There exists a positive constant R, such that

(5.4) R(t) >_R, as long as (t) <_ 1.

Proof. Take A and a positive and small such that

C4(R(t), t) <_ 1 and
1- Ro < R(t)

for allA_<t_<2A. Fort>2A,

R2(t)

Hence R(t) > R, as long as (t) <_ 1, where R, (/IA)1/2. []

Remark 5.1. Note that the lower bound R, is independent of the regularizing
parameter 5; cf. Remark 1.1

THEOREM 5.2. There exists a global solution to problem (P), and R
Ca(O,T*)foranyO<#< 1.

Proof. Suppose we already have a solution for 0 <_ t <_ T, where T is a positive
number not necessarily small. By Lemma 5.1, R(t) >_ R, for 0 <_ t <_ T.

Since R(t) _> R, > 0 (R, independent of t), a review of the proof of local existence
shows that the solution can be extended to 0 _< t <_ T + To provided To is a small
positive constant depending only on an a priori bound on sup I/(t)l. By (5.1),
is indeed uniformly bounded (independently on t) and, therefore, the solution to
problem (P) can be extended step-by-step to all t > 0.

To prove the a priori regularity of R and , we perform a change of variables

A(x, t) A(r, t), B(x, t) B(r, t), C(x, t) C(r, t),

where x r R(t). Then, for any T > 0, A satisfies

At=DA + +Ax-KAB in QT

-DAoA+(1-.@)(A-A*)=O for x=0, 0<t<T,

A(x,O) Ao(x + Ro), x > O,
lim A(x,t) O, O < t < T.
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Since/(t) is uniformly bounded, the same is true of (t) by (5.2) (recall that C(R(t),
is bounded by KA*B*T+ C). We can therefore apply the Lp parabolic estimates [10]
to A and conclude that

(IArl + IArI + IAtl)p
_

Cp,T

for any p > 1. This implies that

A^ E .,t’/2(QT) for 0 < # < 1

and yields the C1+/2[0, T] regularity of R(t).
Similar Lp estimates can be established for B and C and then, from (5.2), one

deduces the C1+/2[0,T] regularity of (t).
The above arguments can be used to prove step-by-step the CI+[0,T] and

C(0, T) regularity of R(t) and ((t) for any 0

6. Finite shut-down.
LEMMA 6.1. /f ((t) < 1 for all t :> 0 then

(6.1) lim/(t) 0.

Proof. By the interior regularity argument used in the proof of Theorem 5.2, if
((t) < 1 for all t > 0 then

(6.2) IICa(T,T+I) <_ C V T > 1,

where C is a constant independent of T. Now suppose that (6.1) is not true. Then.
there exists a constant # > 0 and a sequence tn -- oc such that tn+ > tn + 1 and

/(t,) <_ -2#

for all n. Then, using (6.2) we also have

for some A > 0 independent of n. But then, by the mean value theorem,

n(t + ) n(t, ) i() <

for all n _> 1, which is impossible since R(t) is monotone decreasing and positive for
all t > 0.

LEMMA 6.2. If (t) < 1 for all t > 0 then there exists a positive constant M such
that

M
(6.3) C(R(t), t) >_

for all t large.
Proof. For any to > 0, C(r, to) > 0 for all r

such that

(6.4) to) >
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for some e0 > 0 and define

(6.) 5(, t)= / -(t-to)3/2 eco(lyl)dY’ 0 < < 1

11

for r Ixl > R(t), t > to. Since C(R(to), to) O,

C(R(t),t)>C(R(t),t) if t0<_t<_tl

for some t > to. On the other hand, for r R(t), t >_ tl we have

-Dcr +7a <_ -Dce / lYl n(t) IR()-.2

(4r)a/22v/D (t- to)/
e vd (-o)

C14+ <0
(t- to)

if e is sufficiently small. Also recalling (6.4), (6.5) and noting that C is a subsolution
of (1.3), we conclude, by comparison, that if is small enough then

C(r,t)>C(r,t) if t>t0,

from which (6.3) follows upon using (1.6).
We finally prove the following theorem.
THEOREM 6.3. There is a finite shut-down time T*.
Proof. Suppose (t) < 1 for all t > O. For r R(t) we can write

(t) =/DcCr (t) 2/(t) 2a

R(t)

DcC (1 (t))(A A*).R(t)

Setting

we can write

n(t) ;(t) , 2c
q(t) =-7(A* A(R(t), t)),

i + q(t) DcC(n(t), t) =_ p(t),

so that

q(’)d" q(s)ds

(6.7) rl(t) e o 7(0) + fo p(T)e dT.

First consider the case in which there exists a positive constant so and a sequence
tn --+ oo such that

n
(6.8) t-l /(A, A(R(r), T))dT _> SO

0

tn --- CX;
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then,

q(T)dT >_ aotn
o

as tn ---+

By using (6.3) in (6.7), we get

for some to > 0 and all tn sufficiently large. This is a contradiction since r/(t)
(:(t) 1 < 0 for all t > 0.

It remains to consider the case where (6.8) is not satisfied for any a0 > 0, that is,

1 /A(R(s),s)ds__.A. as toz.(6.9)
0

Since

A(R(t), t) _1 (t) --. 0

by Lemma 6.1, we can derive, by comparison,

(6.10) A(r, t) < W(r, t)

for any > 0 and t > t, where W is the supersolution

(6.11) W(r, t) Me t,vr--e +-(R(t))2r
and t is sufficiently large, so that DA(t) < if t > t. It follows that

A(R(t),t)O if t,

a contradiction to (6.9).
7. Asymptotic estimates as K . We now study the behavior of the

solution (Ag, BK, CK, Rg,K) K , suming that

(7.1) DB DA.

Recall that

(7.2)

and

0 < AK <_ A*, 0 <_ BK <_ B*

i)
AK < 0,

0
(7.3) 0-- r BK > 0, K(t) <_ O.
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LEMMA 7.1. There exists a positive constant M such that

0 0
(7.4) M <_ -r AK, -r BK <_ M, --aM <_ g(t)

for all K.
Proof. Consider the function u AK BK. It satisfies

ut DAU if r > RK(t), t > 0,

--g,o(t)DAUr (1 (g,o(t))(A* A)
u(r, O) Ao(r), r > Ro,

t>o,

if r Rg(t), t > O,

where K,0 min{K, 1}. Applying the maximum principle to ur, we deduce that

(7.6) -M <_ u _< 0,

where M is a constant independent of K. But then, upon recalling (7.3) as well,

(Ag,r) 2 Ag,rur + Ag,rBg,r

_
Ag,rUr

_
SO that IAK,rl

_
M. The proof that IBt(,I _< M is similar. Finally, /K aAtc, _<

LEMMA 7.2. There exist positive constants No, N independent of K such that,
for any T > O,

(7.7)
T

o RK(t)

for all K.
Proof. Integrating the equation

0
(7.8) KAKBK DAAAK - AK

over RK(t) < r < cx, 0 < t < T and using Lemma 7.1, (7.7) readily follows. [:]

In order to obtain uniform HSlder estimates on Ate, BK, we consider the function
v-- AKBK. It satisfies

(7.9)

vt DAAv- 2AK,rBK,r K(AK + BK)V,
--K,O(t)DAV (1 g,o(t))(A* AK)BK,
v(r, O)= Ao(r)Bo(r), r > Ro,
v(c, t) o, t > o.

r > Rg(t),
r Rg(t),

LEMMA 7.3. For any T > 0 and any compact set T in {RK(t) < r < 0, 0 <_
t <_ T}, whose distance to r Rg(t) is >_ c. > O, there exists a constant M depending
on T and c. (but not on K) such that

[KAKBK(AK + Bg)]2r2drdt <_ M.
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Proof. Let (r, t) be a cutoff function such that 1 in [’T and 0 outside a
((1/2)c,)-neighborhood of tT. Multiplying the differential equation for v by 2Kvr2
and integrating, we obtain

where

0 RK(t)

is bounded independently of K by Lemmas 7.1 and 7.2; this implies the assertion
(7.10). l-]

LEMMA 7.4. Let fiT be as in Lemma 7.3. Then there exists a constant M
depending on T and c, (but not on K) such that

<-- M,
S M.

That means that the AK and BK are uniformly HSlder continuous (in ’T) with
exponent i/4 in r and exponent 1/8 in t.

Proof. By Lemmas 7.2 and 7.3,

vt-DAAv is in L2(tT)

uniformly in K. By L2 estimates it, then follows that

Ilvllw=:,,(a ,) < M

with a slightly smaller set ’T and a larger constant M, both, however, independent
of K. By Sobolev’s imbedding [11] we then have

with yet another constant M.
The function u AK BK satisfies (7.5) and we can apply Lp estimates to

deduce that u also satisfies estimate (7.13). Thus, both AKBK and AK BK belong
to C1/2’l/4(tT) uniformly in K. Since

AK + BK (4v + U2) 1/2,

it follows that AK zr BK is in 61/4’1/8(-T) uniformly in K, and the same then holds
for AK and BK. D
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THEOREM 7.5. Let T be any compact domain which is contained in RK(t) <
r < oo, 0 <_ t < T for all K sufficiently large. Then

(7.14) lim AK(r, t)BK(r, t) 0
K---+cx

uniformly in (r, t) E ’T"
Proof. By Lemma 7.2,

f AKBKr2drdt < M----+0
-K

if K -+ oo. Since AKBK is uniformly Hhlder continuous in T with exponent and
coefficient independent of K, (7.14) follows. E]

8. Asymptotic limits as K ---. cx. The estimates of 7 show that, for any
sequence K’n -+ oo, there is a subsequence Kn such that, as Kn -+

(8.1) RK (t) -+ R(t) e Lip[O, T] in C[0, T],
(8.2) Ag (r, t) --, A(r, t) e C1/4’I/S(QT) in C(QT),
(8.3) Bgn(r,t) --+ B(r,t) e C/a’l/S(QT) in C(QT),
(8.4) KnA:BK --+ f in the sense of weak convergence of measures

for any 0 < T < oo, where

QT {(r, t); r > R(t), 0 <_ t < T},

and f is a measure.
From Theorem 7.5 we have

(8.5) A(r, t)B(r, t) O.

The functions A, B both satisfy the equation

(8.6) wt DAAW -k f 0

whereas the function u A- B satisfies

(8.7) ut DAAU 0

in )’(QT),

in QT

since each of the functions Atzn BKn satisfies this equation.
By (7.3) it follows that ur < 0 in (T, and then, by the strong maximum principle,

(8.8) ur < 0 in QT.

It follows that there exists a curve r S(t) with S(t) C+[0, T] f3 C(O,T) such
that

(8.9)
u(r,t) > 0 if r < S(t),
u(r,t)<O if r>S(t);

here is as in (1.10), (1.11). Since A0 B0 is positive at r R0 and negative at

(8.10) R0 < S(0) < .
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Take T such that

(8.11) S(t)>R(t) for all 0_<t_<T.

Forr < S(t) we haveu > 0, orA > B. SinceAB =0, it follows that B =0.
Similarly, A 0 if r > S(t); thus

A(r,t)=O if r>S(t),
(8.12)

B(r,t) 0 if r < S(t).

In any closed domain in {r < S(t), t < T} we have B 0 and then, by (8.6) with
w B, f 0. Similarly, f 0 if r > S(t). It follows that f is a measure supported
on r S(t), 0 < t < T. In particular,

At DAAA 0 if r < S(t), 0 < t < T.

Since, in addition, A(S(t), t) 0 and S(t) is smooth, regularity results for the heat
equation imply that A is in Cl+v in R(t) <_ r <_ S(t), 0 _< t _< T and in C in
R(t) <_ r <_ S(t), O < t <_ T.

Next, from (8.6) for w A,

(8.13) A(-t DAA)r2drdt =//fr2drdt
for any test function in QT. Using the fact that A 0 if r > S(t) and integrating
by parts in (8.13), we find that

T

fr2drdt J
o

S2(t)DA Ar(S(t) O, t)(S(t), t)dt.

It follows that

(8.14) f(r, t) DAAr(S(t) O, t)5(r S(t)).

THEOREM 8.1. For any sequence Kn
such that the solutions of (PKn) converge to a solution of (P) uniformly in compact
subsets of {r > R(t), 0 <_ t <_ T}.

Proof. We have already proved most of the theorem. Since S(t) > R(t) for
0 _< t <_ T, it follows that A .satisfies the two boundary conditions (2.8), (2.9), where

limK__, CK. Using the C1+ regularity of A (which one obtains by the same
argument as the one for problem (PK)) as well as the C+ regularity of RK(t) and
the AK near r RK(t), we can deduce that CKn --* C uniformly near r R(t) and
C satisfies the boundary condition (2.10). The remaining assertions of Theorem 8.1
have already been proved.

Denote by Tl the supremum of all T’s for which (8.11) holds. We claim that

(8.15) if Tf < cx then S(t)--. R(Tf) if t TI.
Indeed, if lim S(t) > R(Tf) then (8.11) holds for T > Tf (since u is smooth and
u < 0 in {r > R(t), t > 0}). On the other hand, if the limit S(T- 0) does not
exist then ur(r, TI) will vanish on a nonempty interval, contradicting the inequality
ur <0.
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In 9 we shall prove uniqueness for problem (Poo); this implies that the conver-
gence asserted in Theorem 8.1 is not just for a subsequence Kn -- cx but for all

In 10 we shall prove that TI < c, and this will conclude the proof of all the
assertions made in Theorems 2.2 and 2.3.

9. Uniqueness for (P). In this section we prove the following theorem.
THEOREM 9.1. Assume that DA DB. Then there exists at most one solution

to problem (Po).
Proof. We begin with some remarks on the regularity of any solution (A, B, C, R, S).

Consider the function

A if R(t)<_r<_S(t),u= -B if r>S(t)

for all t < T, where T < TI, the final time of the solution. Then

ut DA Au

and u A in a neighborhood of { (R(t), t), 0 < t < T}. From this and the boundary
conditions for A and C at r R(t) we easily deduce, as in earlier sections, that R(t)
and (t) belong to el+u[0, T] and C(r, t) belongs to Cl+u in R(t) <_ r < S(t), 0 <_
t _< T for some 0 < # < 1, and

(9.1) M < ur < 0 for

furthermore, the function S(t) defined by

is in C+"[0, T] with

r>R(t), 0<_t<_T;

(t) _ut(S(t),t)
ur(S(t),t)"

(Note that ut C with # up to t 0 since A0 and B0 belong to C2+.) The
function C(r, t) is Ca off r S(t). Near r S(t), the regularity of C(r, t) is the
same as the regularity of the special solution of (2.7):

(9.2)
I-l

(4r2Dc(t T))3/2 u(S(T), T)dagdT.
o lYI-R(r)

This is a single layer potential and, since ur(S(T), T) is in Ct’, this potential is in Cz
(across r S(t)) for any 0 </3 < 1, and its derivative from each side of r S(t) is
uniformly continuous (the proof.is similar to the proof of Lemma 1 in [6, p. 217]).
Thus, in particular,

(9.3) IClLoo <_ M’, M’ const.

Now suppose that (Ai, Bi, Ci, R, S) are solutions of problem (P) for i 1, 2
and set

u(r, t) { Ai(r, t)
-B(r,t)

if R(t) <_ r <_ S(t),
if S(t) < r < cx

r S(t) if u(r, t) O
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for 0 <_ t <_ T, where T is such that

(9.4) S(t)-R(t)>,>O for O<t<T and i=1,2

where x r- Ri(t) and

(x, t) (x, t) (x, t),
c(, t) c (x, t) C(x, t).

Set

Ft={0<x<x3, 0<t<T} forany T<T.

The functions , C satisfy (for simplicity we take DA Dc 1)

(9.5)

t=+ +/t + +/- -/2 2, in
x + R x + R x + R2

-,0 + (1 ,0) (,0 2,0)[2, + 2 A*] if x 0, 0 < t < T,
(x, 0)= 0, x > 0,

(,t)=O, O<t<T,

and

(9.6)

Ct Cxx -t- -1-11 x -- -1- [:1- -f2x A- R1 x A- R x zr- R2
+,(S R.,t)5( + R S) ,(S R,,t)5(x + R Sl)

-x+7(01+2)(02+)5=0 if x=0, 0<t<T,

C(x, O) 0, x > 0,

C(c,t)=O, O<t<T.

By the maximum principle,

(9.7)

for any 0 < T < T, where N is a constant independent of T; in what follows we shall
denote any such constant by N.

Differentiating the differential equation in (9.5) in x, we obtain a parabolic equa-
tion for z. Using the maximum principle, we find that

(9.8) IIllL<a.) <-- NIII--211L<a.) -4- NT[IIR1

Since nl (0)= n2(0), we also have

(9.9)
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From the boundary conditions for i at x- 0,

I -/a[ cl,(O, t) ,(0, t)l
1

(1- )- (2 A*),o A*
1 2,o

O
1,0 2,0

so that

(9.10) [[/ -/2][ _< N [IIIIL<> + I11 IIL<O,>]
Substituting (9.9), (9.10)into (9.7), (9.8) and choosing T < 1/(2N), we get

(9.11)

Next, from the definition (1.14), (.15) of ,o, we deduce that

(9.1)

and we need to estimate C(0, t).
Denote by G(x, y, t, s) the Green function for the problem (see [3])

)Wt Wxx + + 1 Wx in T,
x+R1

+  (51 + + 0

w(,t)=0, 0<t<T.

Then (using (9.6)) we can represent C in the form

y -[- R1 (8)
-[-/1 (8) -/2(s) 2 (Y, s)dydsy+R2(s) ’Y

0 0

+ / G(x, S2(s) R2(s), t, s)2,x(S2(s) R2 (s), s)ds
0

/ G(x, Sl (8) R1 (8), t, 8)l,x(Sl (8) R1 (8), t s)ds
0

Jl + J2 + Ja.
We can write

J2(0, t) -- J3(0, t)l

_
/ IG(0, 2 R2, t, 8)ll2,x(S2 R2, 8) l,x(S1 R1
o-- / Il,x(Sl RI, s)][G(0, 2 R2, t, s) G(0, 81 RI, t,

o

where Si Si(s), Ri Ri(s). The difference in the first integral is equal to

[2,x($2 R2, 8) 2,x(ql R1,8)] q- ;x(S1 R1, 8).
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Therefore, if 0 < t < T,

J2(0, t) q- J3(0, t)] <: N IllS1 S2]]Lo(0,- --]IR1 R2]]Lo=(0,r) q-

Using the regularity result. (9.3) we can also immediately estimate ]J(O,t)] by the
n norm of JR1 R2] + ]R R2]. Hence

(9.1a) (0, t) N[l :[(0,) + IS, Sll(0,) * ll()].
Next we need to estimate S $2. By the mean value theorem,

(s R, t) (S R, t) ,(, t). (S R S + R),

where y is apoint between S1-R and.S2-R2. Since ]u,x[ p0 > 0 (0 is a
constant which depends on the A in (9.4)), we get

1s (t) s(t)] R1 R +.(Sl R, t) (S R, t)
1

1

Substituting this into (9.13) and using the result in (9.12), we find, after also using
(9.10) and (9.11), that (9.12) becomes

Hence (t) 2(t) if 0 t T, small. This implies (by (9.11) and (9.10)) that
Ul u2, R R2, and the two solutions coincide if 0 t T. Similarly, we proceed
step-by-step to complete the proof of uniqueness.

10. Tf < . In this section we prove the following theorem.
THEOREM 10.1. ff DA DB and Co(r) 0 then TI < .
We shall denote by T the smallest t (if it exists) such that ((t) 1, and we first

prove the following lemma.
LEMMA 10.2. ff Tf then T < .
Pro@ Suppose the assertion is not true; then (t) < 1 for all t 0. Since TI

well, A(r, t) u(r, t) for all (r, t) in a neighborhood of {(R(t), t), 0 t < } and,
consequently,

(10.1)

(10.2)

DAur+(1-f)(u-A*)=O if r=R(t), t>O,

ur=c/ if r=R(t), t>O,

If a < 1 then we can use the comparison argument as in the proof of (6.10) to
deduce that

(10.3) lu(,, t)- u()l w(,t) for all t > O,

a= lim (t); then a<l.

where u limg--.oc(AK BK). Set
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where W is defined in (6.11) and u(r) is the harmonic function in p < r < oc, where
(p limt__. R(t)) satisfies

(10.4) DAau,r(p) + (1 a)(u(p) A*) O, u(c) -B*.

Next we argue as in Lemma 6.2 (with to --0 in (6.4)) and deduce that

M
(10.5) Cg,r(Rg(t),t) >_ (M > O, t >_ 1),

where M is independent of K. Hence

M
(10.6) c(n(t),t) >_ (M > O, t >_ 1).

Using this estimate and (10.1), (10.2), we can proceed as in the proof of Theorem 6.3,
deriving (6.7) for r/(t) (t)- 1 and concluding that, if

tn
1

(10.7) t- I(A* u(R(T), T))dT > aO > 0

0

for a sequence tn cx, then ?(tn) > 0 for tn large enough, which is a contradiction
of the assumption that (t) < 1 for all t > 0. Hence

(10.8) -1 /u(R(T),T)dTA. as t
t

0

This, together with (10.3), implies that u(p) A*. Hence u takes it maximum
at r p and, by the maximum principle, u,r(p) < 0. However, since u(p) A*,
we must also have u,(p) 0 by (10.4), which is a contradiction. We conclude that
a 1, i.e., (c)= 1, and then, by (10.1),

(10.9) u(R(t),t) --. 0 if t c.

By (10.9) and a comparison argument we then get

t) < t),

where W is defined in (6.11); therefore

(10.10) u(R(t),t) 0 if t c.

Next observe that the argument that led from (10.5) to (10.8) is independent
of the question of whether a < 1 or a 1. Thus (10.8) still holds and this is a
contradiction of (10.10). The proof that T is finite is thereby complete. [:]

Proof of Theorem 10.1. Suppose Tf oc. Then, by Lemma 10.2, T <
Therefore

ur(R,t)=O if t>T (R=R(T)).

Also, since ut DAAU and u(cx,t) -B*, it follows by the comparison argument
that

lu(r, t)+ B* <_ M
t3/2

if t > T.
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Consequently, u(r, t) < 0 for all r :> R(t), t >_ T provided T is sufficiently large, and
this is a contradiction of the assumption that T, c (which implies that u remains
positive for all t > 0).
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ON INTERFACE CONDITIONS FOR A THIN FILM FLOW PAST A
POROUS MEDIUM*

GUY BAYADA AD MICHLE CHAMBAT$

Abstract. This paper is concerned with the problem of finding the boundary conditions at the
interface between a fluid flow in a porous medium and an adjacent narrow layer of free fluid flow in,
for instance, a lubrication area or cracks in a porous nedium. It is a two-small-parameter problem,
which can be rigorously studied using both asymptotic analysis and homogenization theory. The
existence of a critical ratio between the characteristic length of the porous medium microtexture and
the characteristic width of the gap is proved. Interface conditions are found to be the continuity of
the pressure and of the normal velocity while the tangential velocity vanishes. The existence and
uniqueness of the coupled limit problem is obtained.

Key words. Stokes flow, thin film Reynolds equation, homogenization, asymptotic analysis,
interface conditions

AMS subject classifications. 41A60, 76D07, 76S05, 76D08

1. Introduction. This paper is concerned with the study of a fluid flow in a
porous medium drawn by an adjacent narrow layer of free fluid flow whose motion
is imposed through nonhomogeneous boundary conditions. The precise situation de-
scribed here is related to a lubricated device such as a porous journal bearing.

Under the periodicity assumption of the microstructure of the porous medium, it
is known [21] that the macroscopic behavior of the flow obeys the Darcy law. In the
thin film flow, the asymptotic pressure follows the Reynolds thin film equation which
is related to the height of the thin layer and to the velocity on the boundary.

The aim of the present study is to find the boundary condition that should be
imposed at the interface between the two media. Different approaches exist. If the
thin film aspect is neglected, we can refer to [2], [17], and [20] in which the continuity
of the normal flux and a nonslip condition for the tangential velocity are proposed.
The problem has been restudied in [8] and [12], which take into account multiple
scales and asymptotic expansions. If the thin film thickness is taken into account, the
situation is still ambiguous. At first glance, the thin thickness of the free fluid could
emphasize the roughness effects of the porous medium, but to what extent? Moreover,
experimental evidence is overshadowed by the occurrence of other phenomena such as

cavitationJ3], [13]. Most authors have used a continuity boundary condition in which
the tangential velocity at the interface for the free fluid flow is chosen to be the same
as the tangential one issued from the porous medium using the Darcy law [13], [16],
[19]. See also [9] and [18].

The main result of the present work is that there is a continuity of the pressure at
the interface while the tangential velocity vanishes. This result is obtained for a critical
ratio between the height of the free fluid film and the depth of the microstructure of the
porous medium. For this critical ratio, the two asymptotic pressures have the same

* Received by the editors April 2, 1.993; accepted for publication (in revised form) February 15,
1994.

)Ddpartement de Mathdmatiques, Institut National des Sciences Appliquds de Lyon, Batiment
401, 69621 Villeurbanne cedex, France.

:Laboratoire d’Analyse Numerique, Universitd de Lyon I, Batiment 101, 69622 Villeurbanne
cedex, France.
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order of magnitude at each side of the interface, leading to a balance of the fluxes
issuing from each of the media. Similar critical ratios have already been exhibited in
other situations, like thin cracks through porous media in fluid problems [4], [11] or
in thermal ones [5].

Section 2 is devoted to the introduction of the two-small-parameter problem. In
3, both limit problems at each side of the interface are obtained separately. Coupling
effects are introduced in 4, allowing the determination of the critical ratio and the
general features of the coupled limit problem. To obtain a well-defined asymptotic
equation, further results are needed which relate to the behavior of the averages of
the pressure in each of the domains. This is done in 5. Finally, by introducing an
intermediary layer inside the free film flow, we axe able to prove in 6 the continuity
of the asymptotic pressure at the interface. As a consequence, we show the existence
and uniqueness of the limit problem, which appears to be a Ventcel-type problem [10]
in which a Reynolds equation acts as a boundary condition for the Darcy problem.

2. The basic problem, gt is a bounded domain in R3--a cube, for instance.
At a microscopic level, t gt tA T, where the fluid part te is obtained by sub-
tracting from t a set Te of similar obstacles of size , << 1, periodically deduced by
translation and homothetic transformation from a given obstacle T. We assume that
T is a connected set with a smooth boundary strictly contained in the unitary cube
Y [0, 113. We denote by F w x {0} the upper surface of i2 and let F 012 \ E.

The thin film I. where the free fluid lies is bounded below by E and bounded
above by an upper surface F_ and a lateral surface Fs. We obtain

X E I" t: x E w,
XFxOw,

0 <_ x3 <_ h(x),
0 <_ x3 <_ Th(x),

with X (xl,x2,x3) and x (xl,x2).
The smooth function h(x) describes the shape of the fluid film and r/is a small

parameter. We assume that

O<a<_h(x)<_b Vxew.

In the domain De. fie U I, tA E, the fluid obeys the Stokes law where inertial terms
have been neglected, since the Reynolds number is small [13]"

(2.1) #Aue, Vpe,,
(2.2) divue" 0 in De,,

where ue, and pc, are the velocity and pressure, while # is the viscosity.
Boundary conditions are given on the velocity such that there exists a smooth lift

ge. in H/2(ODe,)3 so that

(2.4)
ge"=0 on0TeUF,
ge, s, (sl, s2, v/s3) on F., sl, s2, s3 given in R,
ge, (g, g, /g) on Fs, g, a given function.

Condition (2.3) is a nonslip condition on the solid boundaries, while (2.4) is related
to a given velocity field for the upper part of the device.
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Taking into account the small height of the free flow, we introduce the following
rescaling in the thin film:

(2.6) z x3/7 for x3 > 0,

so that all geometrical data with superscript r/are associated with fixed geometrical
elements (with respect to ), which will be marked by omitting the superscript /; for
instance I, De,... corresponds to Iv, Deu. We assume that

g,(x, riz) g(x,z), O < z < h(x), x e Ow,

where g(x, z) is a given function independent of v/, and we suppose a compatibility
condition for the boundary condition

Jfr g nda jf s Vh dx + L s3 dx O’

where s (sl, s2) and n (nl, n2, n3) is the unit normal vector exterior to I, so that
(2.1)-(2.5) is replaced by

whose solution is unique [22], the pressure being determined up to an additive constant.

3. Asymptotic analysis. The aim of this section is to obtain the asymptotic
behavior of the pressure and the velocity in each of the subdomains. An interesting
feature of this study is that no assumptions are made about the relative behavior of
and 7- In 3.2, we find the classical Reynolds limit equation in the thin film and in

3.3 the Darcy law in the porous medium. Coupling effects only appear because of
the existence of unknown terms in both limit equations.

In the following, IA will denote the L2(A) or the L2(A)3 norms, while g will
be any constant with respect to /and . Rescaling (2.6) induces a fixed domain I and
we will denote dI dxdz.

For any function in L2(I), the average through the gap is written as

1 h(x)dp(x)
h(x) (x,z) dz.

3.1. A priori estimates. Assumptions (2.7) and (2.8) allow us to find an ex-
tension of the nonhomogeneous boundary conditions, whose divergence is zero and
whose behavior with respect to and y is known.

(3.1)
2J Hi(I)3, div(J) 0 in/,

J g on F+ A
J= (0,0,0) on E.
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LEMMA 3.1. The following estimates are valid:

(3.2) _< K, zt
i

< K, 1, 2,
i

(3.3) vlVu,l < K.

Proof. Setting Gv (J1, J2, r/J3) in Iv and zero on Ft, where J is given by (3.1),
un -Gv is a test function for (2.9). Rescaling (2.6) and extending the velocity by
zero in the whole , we get

i=1=
Oz ]

dI

f fl OuTOJ,Ouv OJi dI + Oz Oz
dI + dI

Ox Oxj
i=1,= j=l Oxi Ox

+ Oz Oz

As J does not rely on e, using the Cauchy-Schwarz inequNity, the estimates of
the lemma are proved... Lmit equation in the thin film I. The asymptotic analysis of the Stokes
thin film is performed using the same tools as those for an impervious boundary [1].

PaOPOSITION a.2. There eists u* in gz, s* in L()a, and sbseqence of
() again denoted b (usn), such that s e and tend to O, sn weakl converges
towards u* in gz sch that

(3.4) u O,
(3.5) u* s on r+,
(3.6) u. tends to s weakly in L2(w) for i-- 1, 2,

where Yz { L2(I)3 such that O/Oz L2(I)3}.
Proof. uv has nonhomogeneous boundary conditions on F+, but these conditions

are independent of and r/. So, after a translation, we use Friedrich’s inequality in
the z direction and estimates of Lemma 3.1 show that uv is bounded in Vz. The
classical compactness argument allows us to extract a subsequence of uv which weakly
converges in Vz. By.using the continuity of the trace from Vz to L2(E)3 and L2(F+)3

(see [7]), (3.5) and (3.6) are obtained. Moreover, (2.4) shows that u 0 on F+. As
un converges in D’(I) and using (2.2), we obtain

Ou lim 7 + O.
0Z C0Xl 0X2 ]

Then the zero value of u at the boundary implies that u 0 in the whole I.
PROPOSITION 3.3. There exists a subsequence of uev such that the trace, of

on E weakly converges towards t in Hi(w) satisfying the following equality. For any
in S (w),

i.x .xhfi + si + s3 + hg" n dT;(3.7) <t, >
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(,) denotes the duality between Hi(w) and Hi(w)’.
Proof. Let (x) be any function in g(w). We define a test function q in (2.10)

such that q(x, z) (x) in I and q 0 in te, and we obtain

div(u) dX O.

Performing the rescaling (2.6) and using the Green formula, this equality reduces to:

All values of the velocities are known on OI except on E, so that the equality is
rewritten

E2 0 uv dx dz- (x)s, x/dx
i--1

+ .= 9nid + -r Crsa dx -r an dx.

Now using Lemma 3.1 and Proposition 3.2, we get

Sup
<K

As does not rely upon z, we obtain

Hi(w)

Taking the limit in (3.8) by using Proposition 3.2 and averaging through the gap, we
get (3.7). I

PROPOSITION 34. Let p+ be the solution of (2.9), (2.10) with ft P+ dI 0; there
exists a subsequence p+n such that 2p+n weakly converges in L2(I) towards p with

o  /Oz o.
Proof. Let be any function in H(I). We choose (, 0, 0) in (2.9), then

(0, , 0) and (0, 0, ). The estimates in Lemma 3.1 give

(3.9)

(3.10)

H-I(I)

<K.

i= 1,2,

Due to the particular choice of the pressure determination p+ which lies in the zero-
average closed subspace of L2(I), (3.9) and (3.10) imply that (see [22]) Ir/2p_nlt is
bounded, which gives the convergence of ?2p, to p_ weakly in L2(I), while the com-
parison between (3.9) and (3.10) directly implies that Op/Oz O.
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The goal is now to express u* in terms of p in the divergence-free equation to
obtain the characteristic Reynolds equation for the pressure in the thin film.

THEOREM 3.5. The pressure obeys the Reynolds equation in Hi(w)

D,L[
"= i=1

2

l_ hi .nid + {t;,) re,Hi(w), pHl(w),

with the supplementaw condition p dx O.
Prod. Lt O(x) be n unction i H](). Choosin (z(z- h)O(x), 0, 0) in S

nd 0 in ( is a test function in (2.9)) and taking the limit, we let

Applying Green’s formula in the z-direction as lies in gz and using the boundary
values, the first integral becomes

II -21"uO dl + s "u(20z Oh)n3 da "(-2" + s + s)hO dx"

Now applying the Fubini theorem to the right-hand side I2 where p does not
rely on z, we obtain

om the equality I1 I2, we obtain

hOP+ (-2ill + s + sl)h in g-l(w).(3.11)
6

A similar result is obtained for Op+*/Ox2 by choosing (0, z(z- h)0, 0) a test function
in (2.9).

As the right-hand side is not only in g-i(w) but also in n2(w), (3.11) gives
supplementary regularity result for p, which in turn is in Hi(w) and not only in
L=(m). Substituting fit for (3.11) in (3.7) and performing Green’s integration enables
the result to be obtained.

3.3. Limit problem in the porous media. As in the classic homogenization
of the Stokes flow, it is necessary to obtain estimates of the velocity and pressure in
the whole domain . Because of (2.3), we extend ue, by zero to the whole and we
use the same notation. We will use the extension of Tartar [21] for the pr.essure, which
is determined regardless of the constam that is added.

LEMMA 3.6. There exists a linear operator R e L(HI()3, Hi()3) so that

R(w)=w on0,
R(w) 0 on OT,
w 0 on OT R(w)= w,
div(w) 0 div(R(w)) 0,

(.le) IR()I g(ll + IWI),
11. + IWl.)(.1) IVR()I g(
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Proof. The proof is that of Lemma 4 in [21, p. 373].
It is now possible to build an extension for the pressure.
LEMMA 3.7. There exists an extension of the pressure pen, denoted by p with

zero average on so that

Proof. Let us define Fe in H- (gt) by

W e HI(a),

where <, is the duality product between H-I(D)3 and H()3, and Re is defined in
Lemma 3.6. Using (2.9), we obtain

<Fe, w> -/ #VueVRe(w) dX,

so that <Fe, w/ is zero if div(w) 0 and Fe appears to be the gradient of a function
qe in L2(D) such that <Vqe,, w> =/Vpe,, w> as soon as w is in H(Fte). Then qe is
an extension of pen, which is defined as whatever additive constant is added. In the
following, we will denote by p" the particular choice of qe, with a zero-average value
one:

(3.15) /a p? dX O.

From (3.3)and (3.13), we get

and (3.14) directly follows as pO is zero-average. [:!

PROPOSITION 3.8. There exist subsequences such that when and tend to zero,
ev/p_ strongly tends towards a function p*__ in L2(D),
(v/-/e)ueO weakly tends towards a function v* in H(div,
v* and p* fulfill the Darcy law

(3.16)

(3.18)

v*=-KVp* in H-I(),
div(v*) 0,

<v* -n, > 0 V e H1/2(0), =0onE.

is the permeability matrix defined by (3.21).
Proof. Classical homogenization techniques [21] using the Poincar6 inequality in

give the following estimates:

(3.19)

But as div uen 0, then (x/-/e)ue is bounded in H(div, it) and (3.17) is obtained.
The continuity of the trace from H(div, D) to H-1/2(0) and the homogeneous bound-
ary condition for uen on 0g/\ E imply (3.18).
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To get (3.16), the energy method works exactly as in [21]. As it will be useful for
5, we restate some of the proof here.

Letting (ei) be the canonical basis in R3, we define the so-called local problem in
the following y-variables. Find wi, Hi, the y-periodic solutions of the nonhomogeneous
Stokes problem

#Avwi=VvIIi-e inY\T,.
(3.20) divvwi=O inY\T, i=1,2,3,

w 0 on OT.

These problems have a unique solution in HI(Y \ T)3 and L2(y \ T) and are used to
define the components of the permeability matrix K:

(3.21) Kij ] (wi)j dy, j 1, 2, 3.
JY\T

Due to the regularity of T, we have

(3.22) wieH2(Y\T)3 and HieHI(Y\T).

Now, for any in H (a), Cw is a test function for (2.9) while Cuv is one for the weak
formulation associated with (3.20). Comparing both expressions and letting
tend to zero leads to (3.16).

As v* is in n2(t)3, we deduce the following theorem from (3.15)-(3.17)o
THEOREM 3.9. p* is in H(I) and satisfies the elliptic equation

divKVp* 0 in H-(I),
KVp* n v* n in H-/2(OI).

4. Coupling effect. Until now, each domain has been considered separately
and the limit problems given in Theorems 3.5 and 3.9 are based on two unknowns,
t and v, on the interface. In this section, we show that a critical ratio s O(3/2)
involves an equilibrium between the two flows at E.

4.1. Calculation of s*. We will prove that for small s, the influence of the
porous medium induces a zero limit velocity on the interface. This is a consequence
of the following lemma.

LEMMA 4.1. The following estimate is valid: X/lueV] <_ K.
Proof. Following Nguetseng [15], we may use the Poinca% norm for uv in the

s-layer of basic cells in the porous medium defined by

Q {x,x ,- <_ xa <_ 0}.

In the basic cell, we obtain in the y-variables

E
(ue’)2 dy dy2 < Kllull2 < KIV,u,I2

’IOY
H1/2(Oy)2 Y"

After rescaling in the x macrovariables and summation in Qe, this inequality becomes

j 2
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The proof ends by using estimates (3.3). [:]
From (3.6), we immediately obtain the following corollary.
COROLLARY 4.2. For o(), s* 0.

4.2. The critical case. We recall now that convergences occur in each domain
concerning different powers with respect to s and , especially those of the normal
velocity components which are obtained by the Vz and H(div, t) convergences of the
velocity in I and 2, respectively.

The physical aspect of the coupling is to impose conditions so that in the two
media, the convergences occur simultaneously with the same order of magnitude,
inducing a balance of the two normal fluxes through the interface. This will only take
place for a particular ratio between the small parameters: we call it the critical ratio
and cancel the superscript in the notation when in that situation.

To give a mathematical meaning to the determination of such a ratio, we first
need test functions with additional regularity on E. This kind of function has already
been used for solving thin-coating elasticity problems in the Ventcel problem [10] and
for the study of some nonlinear free boundary problems related to porous bearings

Let H {, e Hl(gt),/ e g(w)}.
LEMMA 4.3. H is a Hilbert space with respect to the norm

Proof. As this space may be equivalently defined by the closure of D(t) with
respect to the norm I1, the result is obvious. [:]

PROPOSITION 4.4. For - O(r13/2), the limit problem for (2.9) and (2.10) is

defined in this way (for the sake of simplicity, we take O(r/3/2) r/3/2): p+ and
weakly converge in L2(I) and L2(t) to p and p*_, satisfying the coupled equation

h(s 7) nC d’y Vdp E H.

Proof. For any in H, we extend it to a function (I) defined on I so that (I)(x, z)
(x) in I and take it as a test function for (2.10). After rescaling we obtain

divuenO dX + 7 Oxi + OX2 OdI =0.

Multiplying by U- and using the Green formula,

(Ul’nl + u2 n2)d/+ s3d.

Propositions 3.2, 3.3, and 3.8 imply that each integral in (4.2) is bounded and has
a finite limit. So, coupling effects are obtained through the factor ./U3/2. In the
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hypotheses of the theorem, it is equal to O(1). For the sake of simplicity, we take it
as equal to 1, so, taking the limit of each term in (4.2), we obtain

As ( (xl,x2,0) in I, we take the z-average in I.

Using (3.11) and (3.16) we obtain

-#Vxp VxCdw + KVp*_. VCdf

L L L Ls" Vx(h) dw -s Vxdw s3dw hO nCdT.

The proof is completed by using Green’s formula on the first term of the right-hand
side.

5. Asymptotic behavior of the pressure on . The main result in this
section is the continuity of the pressure on for O(T]3/2). The global pressure is
determined in the whole domain D by (2.9), (2.10) up to an additive constant. In 3
it was extended in f by Tartar’s technique (see Lemma 3.7). It has been shown that
the extension is obtained by defining p in T using a particular constant.

From now on, we call p the unique determination of this extended pressure whose
global constant is chosen so that

(5.1) pe dX O,

and we try to find its behavior when tends to 0.

1 iPdi(5.2) p=p+c_ inI, withc_=
(5.3) p=p+ce inf,, withc

1 /apdf.
We already know the estimates on p and p_, so a first step is to find estimates on
the two constants.

5.1. Convergence of the pressure averages.
LEMMA 5.1. The following estimates are valid:

Proof. (5.1) gives a relation between the two constants:

(5.4)  lIIc _ + o.
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Let X be any function in D(w); there exist functions of HI(I) and of HI(D) such
that and are equal to X on and to 0 on the boundary of D f t2 1 U . We
define

=(0,0,) and (I)=(0,0,) in I, (I) Re () infe,

where Re is defined as in Lemma 3.6. (I) is a test function for (2.9). After rescaling,
we obtain

But ne()/Of /Of (Lemma 3.6). Using (5.4) we find

Now we will show that all the integrals of the right-hand side are bounded. The first
one is bounded by K7 from (3.2). Using (3.3) and (3.13), we obtain

72VueVRe() dX <_ lVRe()ln <_ K.

Moreover, Proposition 3.4 implies

72P--z dI <_ K.

Writing e3, where e3 is the z unit vector, divRe() is bounded in L2(f) [21],
[14] as well as 72p ((3.14) and e 0(73/2)). So (5.5) shows that 72c_ is bounded
and (5.4) shows that 7c is bounded.

PROPOSITION 5.2. There exists a subsequence of 72pe, with pea solution of (2.9),
(2.10), and (5.1), that weakly converges to p* so that

(5.6) p* =p_+c* inI,

(5.7) p* p* in f.

Proof. From Lemma 5.1 we already know that

(5.8) 72c_ --. c* and 72c

_ -- 0.

Using (5.2), (5.3) and Proposition 4.4, the result is then obvious. [:]

5.2. Continuity of the pressure on the interface. We introduce an interior
layer Be with height to take into account the influence of the porous medium in the
thin film near the interface E. (We note that s 73/2 implies that for small e, Be is
contained in Iv.) Then we apply the so-called energy method to find the limit of the
pressure on E.
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Let us recall that (wie, Hie) are the classical elementary functions defined by Y-
periodicity in gte from the solution of the local Y-periodic problem (3.20). We recall
the classical estimates [21].

LEMMA 5.3. The following estimates are valid:

IwielLa) <_ K, e]VwieIza _< K, [IlielLa) _< K.

Now, let us first introduce wi+ (y) and Hi+(y), which are the unique solutions of the
Stokes local elementary problem (up to a constant for Hi+) in the y-variables

#Aywi+ VyIIi+ in Y,
divywi+ 0 in Y,
wi+(yi, y2, O) wi(yl, y2, 0),

fOifOwi+(Yl, Y2, 1) wi(y, O) dyl dy2 k

(w is given by (3.20) and k is a constant of R3),
wi+ Hi+ are yl y2-periodic

Boundary conditions for wi+ satisfy the condition

fo wi+ n dY O,
Y

so existence and uniqueness are obtained.
From (wi+, Hi+) we build (wie+, Hie+) interior layer functions in the x-variables

defined in Be by translation and homothetic transformation. Now we define global
functions in Hi(De)3 L2(De)

we=wie infte, wie+ in Be,

extended to the whole In by the constant value k

Hie infe, Hie+ in Be 0 elsewhere inI

(the index does not appear in the global functions we and qe since the result in
Proposition 5.6 will be independent of i).

Let B { (x, z) E I, x E w, 0 < z < x/} be the rescaled interior layer correspond-
ing to Be after the change z x3/. (In fact, B has a height that depends on , but
we do not use the superscript in the notation for the sake of simplicity.)

Set { (x, z) I, x w, z v/-}, the upper boundary of B.
LEMMA 5.4. The following estimates are valid for 1, 2:

[We[L2(B)
__

Kr]I/4,

rOwel’z,
_
KIll4,

(B)

L2(B)

_
K/@/4,

IqelL-(B) <_ /(rl/4.

Proof. wi+ and Hi+ given by (5.9) are obviously bounded in Hi(Y)3 and L2(y)

/B(We)2 dxdz l
(we)2 dX -1 f(w+):a dY <
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The same argument is valid for q"

\ Oxi ]
dxdz= Ox dY= s fy k Oy ]

dY <_ K/rl512,

dY <_ KIll2.

LEMMA 5.5. The constant k defined in (5.9) and the permeability matrix K
defined by (3.21) are such that

k Ki3

for the chosen in the right-hand side of the local Stokes problem (3.20), (5.9).
Proof. Extending w by zero in T, we get divyw 0 in Y = foe wi" n 0 for

any subdomain of Y.
Choosing 0 Ot {Y (yl, y2,y3), 0

_
yl, y2

_
1, 0 < y3 < t < 1} and taking

the periodic condition into account, we obtain the result that f0 f0 w(yl, y2, t)dy dy2
does not depend on t and is equal to the constant ki.

Applying bini’s theorem to (3.21),

Ki3 w(y) dY k dt k.
Now we use the energy method with a special test function to gain the continuity of
the limit pressure.

PROPOSITION 5.6. The limit pressure is continuous through E in this way:

+ in

Proof. The strong formulation of the problem whose solution is (w, q) is

1 1
-Axw+-VXq= ei, divxw=0 in

1
-Axw+-VXq=0, divxw=0 inB,
w=k= constant, qe=0 inlvB.

By multiplying these equations by Cu, where is any regular function in D(D),
integrating, and using Green’s formula, we obtain

VwVCu dX --div(u) dX

where [7] denotes the jump of 7 through either N or (from I to a).
We set w a test mnction in (2.9) and we compute the difference with (g.10).

We obtain

# SD(VuV(w) VwV(u)) dX J’D
fred sdX+ integralsnwU"

qe
div(u)) dX(pdiv(w) --
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This can be written as

(5.11) #Ae Fe C + Ee.

Computing the limit of each factor, we obtain

Lemmas 3.1, 5.3, and 5.4 and the fact that wT is a constant in I \ B imply

(5.12) r2A -+ 0,

(b) Fe= w ue VCdX +E k
(PeWe q

a--oxk
dI0

k’-I

qe u)+ (pew 7 dI,

lim 2Fe lim 2peweVdX + 2 pew dI

In the first integral, 2 2(p + c) tends to 2p: in L2() strongly due to the
strong convergence of the pressure in the porous medium and because 2c tends to 0
from Lemma 5.1; moreover, w weakly converges towards its average gi,j (see (3.21)),
SO

pvdX : K, dX.
j=l

Let us now consider the second integral. Lemmas 5.1 and 5.4 and Proposition 3.4
imply

072 pew dI ---+ O,

so that

0 f/ 0lim rl2pewz dI lim ?2pew-z dI
\B

.0 fi c*’kiOlim 72pek dI (P- + +J 3-z dI.
\B \B

Then

(5.1a)
a 0lim r2fe P* E Ki,j dX + (p_ + c*)k0--zdI.

j--1
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(c) Proposition 3.8 implies

(d) In /2Ee, the integrals on w contain Ow/Oyj or q, which are regular, bounded,
and periodic functions of L2(w) due to (3.22). From Lemma 4.1, u tends strongly in
L2(w) to zero, so these integrals vanish at the limit. For the integral on a, we use the
inequality

(5.15) 2 da _< 2 2 dw + dx dz

which is easily obtained by a density argument for any in Hi(B). Applying (5.15)
to u, using Lemmas 3.1 and 4.1, we obtain

The limit of the integrals on a is computed in the same way as those on w, and this
limit is equal to zero, so

(5.16) r/2E 0.

Now we are able to find the limit in (5.11), using (5.12)-(5.16):

p* y Ki,J-x dX Cv dX + (p + c*)k-z dI O.
j--1

Using (3.16) and the fact that p_ does not rely on z,

fwP*Ki,3dw + fw(P + c*)k dw O V e D(D).

Lemma 5.5 = p* c* D’(w). This is continuityp+ -4- in the of the pressure r/2pe
at the limit.

6. The limit problem. We now write the main result of the paper in the critical
case O(T]3/2).

THEOREM 6.1. The unique solution of problem (2.9), (2.10) is such that 2p
weakly converges in L2() to p*, which is the unique solution in H(12) of

(6.1)

(6.2)
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Proof. Using Propositions 4.4, 5.2, and 5.6, we find that there exists a subsequence
of pe that converges to p*, which is the solution of (6.1), (6.2) as it belongs to H(t).
The uniqueness is obvious, so the whole sequence converges.

The limit velocities are obvious to compute, as shown in the following theorem.
THEOREM 6.2. In the rescaled, thin film, the limit velocity is

Op*
z(z h) + si z/h, i=1,2, 0;

in the porous medium, u/ weakly converges in L2() to

(6.4) v* -KVp*,

where p* is the unique solution of problem (6.1), (6.2).
7. Concluding remarks. We completely determined the limit problem in the

critical case s O(?3/2), that is, the first term of an asymptotic expansion of the
velocity and the pressure. Equality (4.2) led us to the choice of the critical values of
the small parameters. We return to (4.2) to see what conclusion can be given when
#
If < O(r/3/2), (4.2) implies that the asymptotic analysis is obtained in the

thin film without any influence from the porous medium. The "limit pressure" p* is
the solution of the Reynolds equation (see (3.5)) with t 0, and the coupling will
take place only if we want to find the second-order terms. We could say the porous
medium is too compact for the free flow to penetrate inside.

--If > O(T]3/2), (4.2) implies, after multiplication by ?3/2/, that the porous
medium has a trivial asymptotic solution, zero velocity, and constant pressure. The
velocity of the free flow cannot influence the porous medium due to the lateral bound-
ary layer, but Corollary 4.2 is not always true and a more precise study should be
carried out to give the complete coupling at the second order.
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EXISTENCE OF SHOCK PROFILES FOR VISCOELASTIC
MATERIALS WITH MEMORY*

SHUICHI KAWASHIMAt AND HARUMI HATTORI$

Abstract. In this paper we discuss the necessary and sufficient conditions for the existence
of smooth monotone shock profiles for viscoelastic materials with memory. We also discuss the
uniqueness. We consider both convex and nonconvex constitutive relations. In the case of nonconvex
constitutive relations, we include a degenerate case where the speed of the shock profile is equal
to the speed of the equilibrium characteristics at one of the end states. This was not discussed in
previous literature.

Key words, hyperbolic system, shock profile, viscoelasticity
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1. Introduction. In this paper, we shall dicuss the existence of smooth shock
profiles for a system

Vt x
(1.1) /__"+ d,

arising in viscoelastic materials with fading memory. In (1.1), v and u are strain and
velocity, respectively. In this paper we make the following assumptions on a, r/, and

Assumption 1.1. (i) a and are smooth and a > 0, > 0. We also require that

(1.2) -= o(v)

satisfies

(1.3) X’ > O.

(ii) For a(t) we assume

a, a’, a" E L (0, cx),
(1.4) a(t)

We call +/-v/ and +/-v/ the instantaneous and equlibrium characteristic speeds,
respectively. The shock profiles are defined as follows.

DEFINITION 1.1. The function (V, U)(x- st) is the shock profile for (1.1) con-
necting constant states (v_, u_) and (v+, u+) if and only if the following hold:

(i) (V, U)() is smooth and strictly monotone as a function of n, and

(1.5) (V, U)() -- (v+, u+) as -- +/-oc.
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EXISTENCE OF SHOCK PROFILES 1131

(ii) (V, U)(x st) satisfies (1.1).
Here, s is the speed of the shock profile.

When s X 0, for the behavior of V() as +/-ec, we require that

v(a +(1.6) w+(T)---- lim >0 forT>O.
-v+/-

Note that as long as the limits w+(r) exist, we always have 0 <_ W+/-(T) _< 1 by the
monotonicity of V().

Our goal is to obtain the necessary and sufficient conditions for the existence of
the shock profiles for (1.1) satisfying (1.6), and also to discuss the uniqueness. We
shall include the case where X’ (v+/-) s2 for s 0. This is precisely the case which was
not covered in previous literature. The above conditions consist of the following three
conditions. First, the end states (v+/-, u+/-) satisfy the Rankine-Hugoniot condition

-c(u+ u_) x+ x-,

where X+/- X(v+/-). We shall use this type of abbreviation throughout the paper.
Second, the following entropy condition is satisfied: for s 0,

(18) s2 < X(v)-x- for v e (v+, v_)

Under (1.7) this entropy condition is equivalent to

(1.9) s2 > X(v)-x+
V V+

for v (v+, v_).

Third, the following nonresonance condition holds:

(1.10) s2 < a’(V) for v e [v+,v_].

We should note here that (a, b) or [a, b] in this paper does not necessarily imply a < b.
This will be assumed throughout the paper.

System (1.1) describes a one-dimensional motion of an unbounded, homogeneous,
viscoelastic bar. The integral term represents the memory effect of the material.
Regarding the existence of shock profiles for (1.1), Pipkin [6] discussed the case where
the kernel a(t) is an exponential function. Greenberg [1], [2] and Greenberg and
Hasting [3] disucussed this in the case where both a and X are concave. Liu [5]
discussed the existence of shock profiles for (1.1) without assuming the convexity of a
and X. It is interesting to observe that the shock profile may become discontinuous.
The stability of shock profiles for (1.1) with additional assumptions on the kernel a(t)
was discussed in [4].

This paper consists of four sections. In 2 we discuss the necessary conditions
for the existence of shock profiles and in 3 we give the sufficient conditions. In 4
we discuss the uniqueness of shock profiles. We are interested in the case where X
is nonconvex and s2 X’(v+/-) for s 0. The proofs in 3 and 4 basically follow
Greenberg and Hasting [3].
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2. Necessary conditions. In this section we shall prove the following theorem
stating the necessary conditions for the existence of the shock profiles for (1.1) satis-
fying (1.6).

THEOREM 2.1. Suppose Assumption 1.1 is satisfied. If there exists a shock profile
(V, U)(x-st) for (1.1) connecting (v_, u_) and (v+, u+), then conditions (1.7), (1.8),
and

< e

hold. Furthermore, if there exists a shock profile satisfying (1.6), the stronger non-
resonance condition (1.10) is satisfied.

The Rankine-Hugoniot condition. Suppose (V, U)(x st) is a shock profile
for (1.1) connecting (v_, u_) and (v+, u+); then we see

-sV’ U’ O,
(2.2)

-sU’ a(Y) + a’(7)l(V( + sT))d7

Integrating the above relations, we have

-sV U A1,
(2.3)

-sU- a(Y) + a’(q’)l(V( + sT))dq- d2,

where d,, A2 are constants of integration. From (V, U)(cxz) (v=, u+) and

we see

(2.4) A -sv+ u+, A2 -su+ x+.

This implies the Rankine-Hugoniot condition (1.7).
The entropy condition. Solving the first equation in (2.3) for U and substi-

tuting in the second equation, we have

(2.5) s2V + a(V) a’(T)l(V)( + s’) d" + A,

Where

(2.6) A sA1 A2 -s2v+ + +.
The integration of the memory term in (2.5) yields

s a(T)(I’(V)V’)( + sT)d" -s2V + x(V) A.

Consider the case where s > 0 and v+ <> v_. Because V() is strictly monotone,
V’() 0 for E TO. Therefore, from Assumption 1.1, we see that the left-hand side
(LHS) of (2.7) >< 0 for e TO. This implies

-s2v+x(v)-A 0 for v e (v+, v_).
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So using (2.6), we obtain

(v- v_) (-s +

This yields

for v E (v+, v_).

s2< X(v)-x- forve(v+,v_),

which is the entropy condition for s > 0. The case where s < 0 is similarly shown.
The nonresonance condition. Differentiating (2.5) with respect to , we find

(2.8) (-s2 + a’(V))V’ a’(T)(7’(V)V’)( + s’) dT.

If v+ v_, then V’() >< 0 for T. This fact, along with Assumption 1ol, implies
t.hat the right-hand side (RHS) of (2.8) 0 for n and, therefore,

-s2+a’(v)>0 forve(v+,v_).

We now show that if Y() satisfies (1.6), then

(2.9) s2 < a’(v=l=)

is also satisfied. Taking the limit as v -- v_ or v+ in (1.8) and (1.9), we see

X’(v+)<_s2<_X’(v-) if s>0,
(2.10) X’(v-) <_ s2 <_ X’(v+) if s < 0.

Combining this with X < ap, we obtain

< ’()
Next, we show

for s O.

s2<a’(v+) fors 0.

We discuss the case where s > 0. Expanding (2.5) about v+, we see

(2.11)
-v+ + (+) + (- + ’(v+))(v() v+)+ o(Iv() +1)

A a’(-){q(v+) + q’(v+)(V( + ST) V+) + O(IV( + sT) v+2)} dT

as +. Using

A a’(T),(v+)dT --S2V+ + a(v+)

and dividing (2.11) by (V()- v+), we obtain- + ’(+) + o(Iv() v+l)
(2.12)

a’(T) ’(V+) Y( + ST) --V+ + o(v( +) +) d
V() -v+
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as -- +oc. Taking the limit as --, x), we see

s + a’(v+) f0 a’(T)’(V+)W+ (T)dT > O.

So, if (1.6) is satisfied, then

: < o’(+).

The case where s < 0 is proved in the same manner.

3. Sufficient conditions. We shall discuss the sufficient conditions for the ex-
istence of the shock profiles. Because of (2.10), we discuss the following two cases.

Case A.

(3.1) X’(v+)<s2 if s>0, X’(v-)<s2 if s<0,

Case B.

X’(v+)=s2 and X"(v+)#0 if s>0,
(3.2)

X’(v-)=s2 and X"(v-)O if s<0.

In Case B we see from (1.8) and (3.2) that

X"(v+), 0 forv+ >< v_ ifs>0,
(3.3)

X"(v-) 0 forv+ >< v_ if s<0.

This can be seen as follows. When s > 0, expanding (1.9) in a Taylor series about
v v+, we obtain

1 X"> x’(+) + (v+)( v+) + O(Iv v+l).

Since v+ v for v e (v+, v_) if v+ X v_, we obtain (3.3) from (3.2). The case where
s < 0 can be shown in a similar way.

Case A is a nondegenerate case. This case has been discussed in [3] and [5]. If
X is strictly convex (or concave), we have only Case A. Case B is one of the simplest
degenerate cases and is limited to the case where X has an inflection point. We shall
not discuss the cases where X has higher degeneracy. For example, we do not discuss
the case where s > 0 and

(3.4) X’(v+) s2, X(J)(v+) O, 2 <_ j <_ m, X(’+)(v+) : 0

for an integer m >_ 2.
THEOREM 3.1. Suppose Assumption 1.1 is satisfied. Assume that (v+, u+) and

s satisfy (1.7), (1.8), and (1.10) and that (3.1) or (3.2) holds. In the case where (3.2)
holds, we also assume that the kernel a(t) satisfies

(3.5) (1 + t)3a’(t) e L(O, c).

Then, there exists a shock profile .for (1.1) which connects (v_, u_) and (v+, u+), and
satisfies (1.6).
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(3.6)

We assume that X satisfies one of the following:

(i) X"(v) > 0 for all v,

(ii) X"(v) < 0 for all v,

(iii) X"(v) 0 forv<> 0,

(iv) X"(v) O, forv<> O.

If we assume (1.8), only Case A occurs in (i), (ii), and (iv) of (3.6). In (iii) of (3.6),
only Case A or Case B is possible and the higher degeneracies such as those in (3.4)
do not occur. Therefore, from Theorems 2.1 and 3.1 we have the following corollary.

COROLLARY 3.1. Suppose that Assumption 1.1 holds. Assume that X satisfies
one of the conditions in (3.6) and that (3.5) also holds in (iii) of (3.6). Then, there
exists a shock profile for (1.1) which connects (v_, u_) and (v+, u+), and satisfies
(1.6) if and only if (1.7), (1.8), and (1.10) are satisfied.

We prove Theorem 3.1 for s > 0 only. Case A is essentially from Greenberg
and Hasting [3] and Liu [5]. We follow [3]. Define a function space X as follows: if
v_ > v+, then

(3.7)
X {() () is piecewise continuous, nonincreasing, and

() v+, (-) <
_

},

and if v_ < v+, then

(3.s)
X {() () is piecewise continuous, nondecreasing, and

() +,(-) > v_ }.

We also define

(3.9) p(v) _= -,:,, + o(), e [+, _],

(3.10) K[]() a’(T)()( + sT)dT + A, e X.

From (1.10) we see that w =_ p(v) is a smooth and monotonically increasing function
mapping Iv+, v_] onto [p+, p_], where p+ p(v+). So, there exists an inverse function
v p-l(w) on w E [p+,p_], which is smooth and monotonically increasing. Note
that

K[]()e[p+,p_] foreT ifCeX.

This implies that the operator T defined by

(3.11) T[]() p-l(g[])(.), e X

is well defined. Now we see (2.5) is written as

p[V] g[v], i.e., V-- T[V].

Therefore, the existence of a shock profile for (1.1) is equivalent to finding a fixed
point of the operator T. In the following lemmas, we discuss the properties of the
operator T.

LEMMA 3.1 ([3]). Assume that s > 0 and (1.7) and (1.10) hold. Then, T satisfies
the following:
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(i) If C E X, then T[] E X N B, and if X N Bk, then T[] X C Bk+l
(k >_ O, integer).

(ii) /f 1, 2 X and _< 2, then T[] <_ T[2].
In this lemma/3k means the space of k-times continuously differentiable functions

with bounded derivatives on 7. We omit the proof. See Lemma 1 in [3].
In Lernmas 3.2 and 3.3 we show the asymptotic behavior of the shock profiles as

approaches one of the end states. Lemmas 3.2 and 3.3 correspond to Cases A and
B, respectively.

LEMMA 3.2 ([3]). Assume that s > 0 and that (1.7) and (1.10) hold. Then, in
Case A there exist nontrivial , 2 X satisfying

(3.12) < 2, 1 <_ TIC,I, T[2] _< 2 for E 7.

Proof. Although the proof is given in [3], we show it briefly for the sake of
comparison with Lemma 3.3. Set

(3.13) () v+ + 5e- + #e-, 5 v_ v+,

where A > 0 and tt 7 are constants to be determined. After expanding p(b)() and
K[]() in powers of e-, we see, as +cx, that

(3.14)

The following statements are shown in [3]:
1. There exists a unique A > 0 such that C1 (A) 0.
2. There exists #+ and #_ such that #+ > #_ and C2(A, #+) > 0 > C2(A, #-).

Using theabove A and #+, for v+ < v_ we set

v++he-+#_e-2, >_R,(3.15) () 1 (R), < R,

v+,+ 5e + > R,(3.16) v_ <R,

where R is a large positive number. This R is chosen so that

p()() < K[](), p(2)() _> K[2]()

are satisfied for >_ R. This implies that, for >_ R,

< >

It is shown in [3] that (3.17) actually holds for < R as well.
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For v+ > v_ we set

f v+ + e- +_e-, > R,(.lS) () v_, <R,

v++6e-+#+e-2, >R,(3.19) 2() 02(R), < R.

The rest of the proof is the same as the case where v_

LEMMA 3.3. Assume that s > 0 and (1.7), (1.8), and (1.10) hold. We also
assume (3.5). Then, in Case B there exist nontrivial 1, 2 E X satisfying (3.12).

Proof. Set

(3.20)

where a,/, and 7 are constants to be determined. For a given smooth function f, we
have the following expansions for large :

f()() f(+) + f’(v+)( +- +-)-
1
f,,(3.21) + (v+)(a2 + 2a/-1 + (2a7 +/2)-2)-2

1-+- f’"(V+)O?-3 -4- 0(-4 log ),

(3.22)
f()( + ST) f(v+) + f’(v+)(c + -1 ._ ff-2)-1

+ (f"(v+)- s-f’(v+)) ( + -i)-
_f_ (f,,,(V+)t3 sTf,,(V+)C2 + (s.)2f,(v+) + s.f,(v+)/) -3

{ lff,, }--2 a+ (f"(v+) 3STf’(v+))7 + (V+)2 + O(T3 log),

where in (3.22) the order 0 is uniform in T large. Using (3.21) for p(v) and (3.22) for
(v), we obtain for large ,

v()() []()
(- + x’(v+))(. + Z- + -=)-1

+ "(+) + lV’(+) ( + -1)-

(a.a) + g (+) + 1"(+) v’(+)-’(+) -+ (x"(+) + a’(+)) + (+ + o(- og)

Co. ( + -1 +-)- + c()( +-)-
+c(, )-a + ca(, ,)-- + o(- log ),
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where

(3.24) aj a’(T)TjdT > 0, j 1, 2.

Consider the case where v+. < v_. From (3.2),

(3.25) Co -s2 + X’(v+) O.

We determine the value of c from

1 X" r/(3.26) C(a) --- (v+)a + sa (v+) O.

Since X"(v+) < 0 by (3.3), > O. Next, we determine the value of using

(3.27) C2(, ) X"’(v+)3 + sa"(v+)2 s2a2’(v+) saq’(v+) O.

Using (3.26), we see that the coefficient of in C(, ,) i8 given by

(3.28) X"(v+)a + 3sal’(v+) 8al’(v+) > O.

Because C3(a, D, 7) is linear in if we choose 7+ > 7- appropriately, we have

(3.29) c(,Z,) (x"(+) +3 (+)) + "(+)Z 0.

Using a, , and , we define and 2 as follows:

v+ + (a + Z- + _-)-, R,
(3.30) 1 ()

1 (R), < R,

(3.31) ()
v_, <R,

where R is a large number such that (3.17) holds with the above 1 and 2 for :> R.
The rest of the proof is the same as in Lemma 3.2.

In the case where v+ > v_, we see from (3.3) that X"(v+) > 0. Therefore, a < 0,
3, and /+ > /_ are determined in the same way as before. We define 1 and b2 as
follows:

()=
v++(a+(-1+_-2)-1, _>R,

(a.ae) 1
t v_, <R,

(3.33) 2()
2(R), < R.

Proof of Theorem 3.1. We employ the successive approximations used in [3]. We
prove only the case where s > 0. Define a sequence of functions {Vn}, Vn E X, as
follows:

(3.34) V1 1, Yn-bl T[Vn] for n _> 1,
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where 1 was defined in Lemmas 3.2 and 3.3. From (3.12) it is easy to see that {Vn}
is an increasing sequence. Using Lemma 3.1 (ii), we also see 1 <_ Vn <_ 2 for n >_ 1,
where 2 is the function defined in Lemmas 3.2 and 3.3. These imply that (Vn} is a
bounded sequence and for each E n, limn--,o Vn() Y(). Therefore,

(3.35) 1 _< V() _< 2, E TO.

Now differentiating the relation p(Vn+I) K[Vn], n >_ 1, with respect to , we have

(--82 -[- rt(Ynq_l))Y.nq-1 a"(T){rl(Vn)( + ST) l(Vn)()}dT.

This implies

(3.36) IV()I _< C[61, e T for n _> 2,

where 161 Iv+ v_ and C is a positive constant independent of n. So, from Ascoli-
Arzel, {Vn} converges uniformly to V on any compact set of TO. Therefore, taking
the limit as n --, in (3.34), we see V satisfies Y T[V] and, therefore, Y XNB.

We now show that V(-c) v_. For this purpose set V(-oc) v,. Clearly,
v, [v+,v_]. So, suppose v, v+. Then, V() v+ for TO. This is a
contradiction. Now assume that v, E (v+, v_). Then, taking the limit as -c in
(2.5) yields

-s v. + a(v.) fo a’ (T)(v,) dT + A a(O)(v,) + A.

This equation and (2.6) imply

x(v.)

which contradicts (1.8). Therefore, v, v_ is the only possibility.
Finally, we show that V satisfies (1.6). From Lemmas 3.2 and 3.3, for large we

find that in Case A,

(3.37) v+ + 6e + o(e

and in Case B,

(3.38) V() v_b -[- c-1 -[- fl-2 log -[- O(-3 log2 ).

Therefore, W+(T) --e-s in Case A and W+(T) 1 in Case B. This completes the
proof of Theorem 3.1.

4. Uniqueness. In this section we shall prove the uniqueness of the shock pro-
files for (1.1). We discuss the case where s > 0. In Case A we have the following
theorem.

THEOREM 4.1 ([3]). Suppose that Assumption 1.1 holds. Let s > 0, (1.7), and
(1.10) hold. Consider Case A. Suppose there exist two smooth and strictly monotone
solutions VI() and V2() for (2.5). /f

(4.1) V1 ()- V2(
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for a constant > , then V1 =- V2, where > 0 is determined in Lemma 3.2. In
particular, the solution of the form (3.37) constructed in Theorem 3.1 is unique.

In Case B we have the following theorem.
THEOREM 4.2. Suppose that Assumption 1.1 holds. Let s > 0, (1.7), (1.8), and

(1.10) hold. We also assume (3.5) holds (actually (1 +t)2a’(t) e LI(0, cx) is enough).
Consider Case B. Suppose that there exist two smooth and strictly monotone solutions
VI() and V2() for (2.5) of the form

v() + + -’ + o(-’) a -* +,

where is determined in (3.26). If

(4.3) V (c) V2() 0(-m) as +x

for a constant m > 2, then V1 =- V2. In particular, the solution of the form (3.38)
constructed in Theorem 3.1 is unique.

Proof. The difference V1 V2 satisfies

(4.4)

where

Set

H( + sT) (VI V)( + sz’)dT,(V V2)() a’(T)--s2 + S()

s() ’(y()+ o(y, V)())dO,

/oH() rl’(V () + O(V1 V2)())dO.

(4.5) Nk() supl(V 1/2)()1,

where 2 < k <_ m. Estimate (4.4) using Nk(). Then we see

(4.6)

where

l(V1 V2)()l _< D()N(),

H( + s-) (1 +(4.7) D() a’(-)-s2 + S()

Consider the asymptotic behavior of D() as --, +oc. Since V and V2 satisfy (4.2),
for V0 E [0, 1],

y () + o(y y.)() v+ +- + o(-) s --, +.- + s() - + ’(v+) + "(v+)- + o(-’) s - +.
This implies

1 1
-s + S() -s: + ’(v+)

OJ’ (V+)0 --1

(__.,: + ,(+)): + 0(--
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Similarly, as

H( + ST)(1 + s’r-l) -k

’(v+) + (V"(v+)c ksTr’(v+))-1 + 0(-1) + O(-2-2).

We note that 0 and O are uniform in - large. From the above computation, we obtain

H( + 87) (1 + STy-l) -k
+

+
1 {(’(v+)+ +

---0(-1) - O(T2--2).

Substitute this in (4.7) and evaluate the integral. In doing so, observe the following
relations:

-s2 + a’(v+) a(0)7’(v+),

where (3.26) was used to obtain the second relation. These relations yield

(4.8) D() 1
(k 2)sal

_
+ o(_1) as +x.

a(0)

So, choosing Co such that 0 < Co < (k- 2)sal/a(O), we have for large R > 0,

D() <_ l-co-- for_>R.

Choose a value of k such that 2 < k < m. Since k](V1 V2)()I -- 0 as --, +c,
there is a maximum of kl(v V2)()I on >_ R. So, there exists a , >_ R such that

N (R) I(V 

On the other hand, from (4.6),

(4.9) k](V V2)()I _< D()Nk(R) for >_ R.

Therefore, if we set ,, we have Na(R) <_ D(,)Nk(R). As D(,) < 1, it follows
that N(R) 0. This implies VI() V2() for >_ R. Extending into <_ R using
(4.4), we see V1 --- V2. This completes the proof.
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DEGENERATE SEMICONDUCTORS *
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Abstract. One of the most accurate models for carrier transport in semiconductors is based on
the Maxwell-Boltzmann system. Degeneracy effects are taken into account by the nonlinearity of the
collisions operator. We use two recent techniques developed for the study of kinetic models, upper
solutions and mean compactness results, to prove existence of stationary solutions with arbitrary
large boundary data, in any kind of geometries.

Key words, boundary value problem, stationary solutions, Vlasov-Maxwell systems, Fermi-
Dirac distribution, semiconductor
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Introduction. For bulk components, the drift diffusion equations give the basic
model for the transport of carriers. However, transport phenomena that occur in
submicron devices are due to hot and ballistic electrons. In these conditions, it is well
known that the drift diffusion model is no longer valid. The physics description needs
kinetic models. This paper is devoted to the analysis of one of the most accurate
kinetic models, the Maxwell-Boltzmann system.

We use the upper solutions technique of [8] to construct solutions for station-
ary boundary value problems. In a previous paper [10] we analyzed the Maxwell-
Boltzmann system for semiconductors but with a nondegeneracy assumption. Com-
pared to this previous work, the new difficulty is to control the nonlinearity of the
collision operator that takes into account the degeneracy effects. The main tools
for that are the mean compactness results of [4] and a monotonicity property of the
nonlinear collision the operator.

1. The kinetic model and the main result. In kinetic theory, the transport
process of charged particles in a self-consistent electromagnetic field is modelled by
the Vlasov-Maxwell equations. In semiconductor statistics [2], [3], the distribution
function depends on the position x and the wavevector p, instead of the velocity, as
in classical theory, in order to take into account some quantum phenomena. Then the
velocity and the energy of an electron are given functions of the wavevector. They are
related by the relation

1
Vp(p),v(p)

where (p), the energy of the particles, belongs to (Cg(IR3))3, v(p) is the velocity, and h
is the reduced Planck constant. For instance, with the parabolic band approximation,
we get

(.) (P) h IPl (;)
2m* ’Ill,"
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2, France.
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where m* is the effective mass of electrons. Then we find the classical identity

But another model, often used in semiconductor physics, is given implicitly by

(.a) () +()

where c is the coefficient of nonparabolicity. Hence, for the sake of generality, we will
consider an arbitrary band diagram g(p). We only assume that there is a constant D
such that for any unitary vector e of 3, and any positive reals R and /,

meas{Ipl _< R and Iv(p). e] <_ /} < c(R)7.

This means that the velocity v cannot be concentrated along one direction. This
assumption is needed for using a compactness property on averages on p of solutions
of transport equations. Clearly, it is satisfied if g is given by (1.2) or (1.4).

Then the distribution f f(x,p) is determined as follows. Let gt be an open
bounded set of R3, modelling the device geometry. Let E_ denote the subset of the
boundary where the velocities are inward:

(1.6) r_,_ {(x,) e 0n s. v(). ,(x) < 0},

where u(x) is tile unit outward normal to Oft.
The distribution f solves the following Vlasov-Maxwell equations"

(.7) (). vf(x,) + F(x,). Vf(x,) C(f)(x,), x
q
[N(x)- p(x)] x(1.8) -Axe(x) e--

(1.9)
q
[v(x) ()(1.10) F(x, p) -The constants q, st, and #r are, respectively, the cilarge of the electron, the permit-

tivity, and the permeability of the semiconductor. Tile function N is the given doping
profile. We assume N in L(ft). The operator C is intended to model the collisions
between the electrons, impurities, and phonons of the semiconductor [7]. It is defined
by

(1.11)

C(f)(x,p) J[a s(p,p’)[m(p)f(x,p’)(1 f(x,p)) m(p’)f(x,p)(1 f(x,p’))] dp’.

The function rn is a Maxwellian:

(1.12) rn(p) exp(--g(p)/O),

where 0 is a physical constant related to the fixed temperature of the semiconductor.
The terms (1- f) in (1.11) come from Pauli’s exclusion principle. They express the
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fact that there is at most one particle for a given quantum state (x,p). Thus, the
physically admissible distribution f will satisfy

(1.13) 0 <_ f _< 1.

The function s is given and satisfies

(1.14)
(1.15)

> o,
m(p)s(p,p’) e L2(I 6),

and the collision frequency is assumed to be bounded:

(1.16) a(p) L3 s(p, IY)m(p’)dp’ e L(I3).

We recall the null-space of the operator C, which gives the thermal equilibrium dis-
tributions (see [9])" it consists of the Fermi-Dirac distributions

(1.17)
-1

The concentration p and the flux j depend on the particle distribution f through the
relations

The system (1.6)-(1.9) is completed with the boundary conditions

(1.19) f(x,p) go(x,p), (x,p) e E_,
(x) Co(x),

(1.21) B(x) v(x) b(x), x

In order to allow the extension of the boundary data, we assume the following.
(H1) t’/is a smooth bounded set of IRa. Its boundary 012 is compact and connected.
(H2) o E H1/2(0)CI L(Of).
(H3) b g-1/2(Ot2); (b, 1)H-1/,I_I1/ O.

Then there are two functions (I)o and Bo such that:

.4)0 e Hi(a) i’1

Bo E H(div, curl, g/),

-AOo qN, Oo/oa o,
r

Vx.Bo=0, VxABo=0, Bo-=b.
Finally, we assume that the boundary distribution go is nonnegative and bounded by
a Fermi-Dirac distribution:

(H4) 0<go < l+exp
g’(p)- a

We now state the main result of this paper.
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THEOREM 1.1. Under the assumptions (H1)-(H4), the stationary Vlasov-Max-
well system (1.7)-(1.10), (1.19)-(1.21) has at least one solution (f,,B) belonging to
L2(f x ]R3) x Hl(f) x H(div, curl, f) and verifying

0 < f < 1 4-exp
(p) (I)0(x) u q

where

Remark. There is no uniqueness of the solution of the system (1.7)-(1.10), (1.19)-
(1.21). We give the following counterexample, based on the idea of trapping particles
with a potential created by a background charge density. Let no be an arbitrary
positive real number. Define by

(1.23) --Axe qn0, /0f 0.

We let the background charge density N be equal to

-1

dp 4- no

and we define (I)1 by

q
(1.25) --ix(I)l --N, (I)I/OF 0.

r

Then fl 0, associated with (I)- (I)l, and

f2 1 + exp

associated with (I)2 , are two solutions of (1.7)-(1.10), (1.19)-(1.21).
The paper is organized as follows: in 2, a modified Vlasov-Poisson problem is

solved and a maximum principle property is stated, in order to obtain uniform bounds
on the concentrations and the fluxes of the modified problem. Then 3 is devoted to
the proof of the full stationary Vlasov-Maxwell problem. Finally, 4 details some
compactness results used throughout the paper.

2. A modified Vlasov problem. In this section, the electrostatic potential
and the magnetic field B are assumed to be known, such that

(.) e c(), B e (c(e)).

Because zero lies in the spectrum of Vlasov operators, uniqueness fails for boundary
value problems. Therefore [1], we add an absorption term and solve the following
system:

,y(z,) + v(p) v,y(x,p) + F(x,p) Vf(z,p) C(y)(x,p), x e , p e ;

(.) Y(,p) ao(x,p), (z,p) e _,
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where F is given by (1.10).
THEOREM 2.1. Under the assumption (H4) the problem (2.2) has, for every a >

O, a unique solution in the set of the square integrable functions on x ]3 that satisfies

O<f<G,.

Let us introduce the Maxwell-Boltzmann distribution

(p) + ()-(2.3) G,(x,p) 1+ exp
/9

u e [-x, +c].

This distribution solves the Vlasov equation and will be used as an upper solution in
the proof of the existence of a solution of (2.2). It will provide a priori estimates on
the density p and the flux j that will be useful in the following. In order to obtain
some maximum principle, we assumed (H4); it is then possible to bound go by G,,
where

q
(2.4) t,,-- ,- 11o11.
Next we prove the uniqueness of the solution of (2.2), using a monotonicity property
of the collision operator. A similar strategy of proof has been used in [8].

Let us prove the existence of a solution of (2.2). We need the following com-
pactness result, which is an easy variant of the mean compactness results of [4], [5],
and [6].

PROPOSITION 2.2. Let (fn), (gn), and (hn) be bounded sequences of L2( ]13)
that satisfy:

(e.5) v(p). Vxfn divpgn + h,

in the sense of distributions.
Then, for any Hilbert-Schmidt operator K defined on L2(6), the sequence

(K(f,(x, .))) is relatively compact in L2(f 3).
The proof of Proposition 2.2 is given in 4.
Proof of Theorem 2.1. The system (2.2) to be solved gives

[a+a(p)+,k(f)]f(x,p)+v(p).Vxf(x,p)+F(x,p).Vpf(x,p) tt(f)(x,p) on fxR3,

(2.6) f/E_ go,

with a defined as in (1.16) and

(e.7) ,(f)(x,p) f s(p,p’)[rn(p) rn(p’)]f(x,p’) dp’,

(.8) #(f)(x,p) f s(p,p’)m(p)f(x,p’)

Let us denote

(2.9) 7(f)(x,p) () tt)(f)(x,p) + a(p) Jf s(p,p’)m(p’)[1 f(x,p’)] dp’.
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Solving (2.6) results in determining a fixed point of the following operator T. Let us
denote

X {(L,M) e L2(txlR3)L2(tIR3)" 0 _< M _< #(G,) and L-M/o"

Clearly, X is a closed convex set of L2(t ]R3) L2(Ft ]R3). For every (L, M) in X,
let f be the unique solution in L2(gt ]R3) of

[a+a(p)+L(x,p)]f(x,p)+v(p).Vxf(x,p)+F(x,p).Vpf(x,p) M(x,p) on gtlR3,

f is well defined since a + a + L is positive and v and F belong to C1(1R3)3 and
Cl(gt IR3)3, respectively. Moreover, since M and go are nonnegative, then f _> 0.

We define the operator T on X by

T(L,M) (A(f),#(f)).

Let us now show that T maps .X in X. G, f is a solution of

(2.11) (a+o’+L)(C,.- f)+v.Vx(Cdz,.- f)+F.Vp(Cdz,.- f) aG,,+LG,.-M.

Since, thanks to (1.17),

(a..) ( + )(ao.))ao.. C(Go..) O.

we obtain

aG,+LG,,-M aG,,+[a+L-M-9/(G,,)]G,,+(#(G,,)-M)(1-G,,) >_ O.

Moreover, the boundary condition on G, f gives us

(a,,. f)/r._ a,. go,

which, from hypothesis (H4), is nonnegative. Hence G, f >_ 0, so we have

(2.14) 0 _< f _< G, on t IR3.

Since # and , are, respectively, increasing and decreasing,

(2.15) 0 <_ #(f) _< #(C,)

and

(2.16) (f) cr + A(f) #(f) >__ (a,).

Finally, #(f) belongs to L2(f ]t(3) because

(2.17) II#(f)l12 II(P,P’)m(P)IIL=()IIflI2 cllfll2.

A sinilar proof establishes that ,(f) belongs to L2(gt R3).
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Let us prove the continuity of the operator T. Let (Ln), (Mn) be convergent
sequences in L2(Ft x 3) towards L and M, respectively. Knowing that go belongs
to L2(E_;-v u(x)dvda(x)), the associated solutions fn of the system (2.10) form a
bounded sequence of L2( x 3); therefore, there is a subsequence (fnk) of (fn) which
converges to some f in L2(gt 3) weak. Passing to the limit in (2.10) as nk tends
to infinity gives

[(x+a(p)+L(x,p)]f(x,p)+v(p).Vzf(x,p)+F(x,p).X7pf(x,p) M(x,p) on f]3,

(2.18) :/E_ go,

thus f is unique and the complete sequence (fn) converges weakly to f in L2(f 3).
Moreover, A and # being linear functionals, (A(fn)) and (#(fn)), respectively,

converge weakly to A(f) and #(f) in L2(t I3).
In view of (2.14), fn satisfies

(2.19)

Thus (fn) is bounded in L(t x 3). On the other hand,

v(p) Vxfn(x,p) -Vp[F(x,p)fn(x,p)] + gn,

with (f), (Ff,), and (gn) (-(c + a Ln)fn + Mn) bounded in L2(f 3).
Then, according to Proposition 2.2, (,k(fn)) and (#(f)) belong to a compact

set of L2(f R3). So, in view of the weak convergence of (A(fn)) and (#(f)) in
L2(12 I3), the complete sequence (A(f)) and (#(fn)), respectively, converges to
A(f) and #(f) in L2(gt 13). This proves the continuity of T.

Let us show the compactness of T. If (Ln) and (Mn) are bounded in L2(f
the associated sequence (fn) is bounded in L2(gt 13), so Proposition 2.2 implies that
T(L,, M) belongs to a compact set of L2(gt 3). Therefore, the Schauder fixed point
theorem gives the existence of a solution of (2.2).

We now prove the uniqueness of the solution of (2.2). Let f and g be two solutions
of (2.2). A small computation leads to

(2.21)

C(f) C(g) Jt/s s(p, p’){ (f g) [m’(1 f’) + mg’] (f’- g’)[m(1 f) + m’g]} dp’,

where f’ denotes f(x,p’).
For any function h and with the help of the symmetry of s, we get

(2.22) /3[C(f) C(g)]hdp jf3 jf3 s(h h)(f g)[mt(1- ff + mgt] dpdlY.

For any small and positive 5, we define the odd function sg and the function abs by

{-(x-1/2x2) ifxE [0,],(2.23) sgb(x)
1 if x > -and abs (x) xsg (x).
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We choose h sg(f g). In view of (2.14), we obtain

(h h’)(f g) abs(f g) sg(f g’)(f g) > -2.

Then (2.22) implies

[c(/) c(a)]a(y ) dp< ecS,

where c is the constant given by

(2.26)

Since f and g are solutions of (2.2),

(y ) + v(p) v(y a) + F. V,(y ) C(y) C(a).

Multiplying this equation by sg(f g) and integrating it on f ]t(3 leads to

(f-g)sg(f--g)+jf v(p). abs(f-g) fR3 [c(y)-c(a)]a y-a).

But

Then

f -g=O onE_.

(2.28) a jfx (y g)sg(y g) < cS.

As 6 tends to zero, we get

(2.29) af3 If gl 0,

so f =g.

3. The Vlasov-Maxwell problem. This section is devoted to the proof of
Theorem 1.1. First let us give a sketch of this proof. We regularize the force field
and add an absorption term in order to be in the frame of 2. We solve the regu-
larized problem by means of the Schauder fixed point theorem and obtain a solution
(f,, B). Seeing that the potentials and (I)0 satisfy

--AxCa q(N-pa), Ax(I)0---- qN,
Er r bolon 0 1o,

the following inequality holds:
q _< q(I)0.

It follows that the maximum principle of 2 applies to (fa, Ca)" uniform bounds on
the flux j and the concentration pa are obtained, which gives compactness properties
for F in L2(f ]1(3).
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Finally, we pass to the limit in the modified system: we overcome the problem of
passing to the limit in the nonlinear collision operator with the help of the compactness
result given in Proposition 2.2.

We define a regularized force field in the following way. For any c > 0,

q
[VxCa() v(p) A Ha(B)],

where the modified magnetic field Ha is obtained by regularizing in the classical way:

B is the prolongation of B by zero outside , and a is a regularizing sequence:

To get a regularized potential Ca of such that Ca belongs to Cb2(2), and Ca/on 0
and qCa _< q0 as soon as /0 0 and q <_ q0, we choose

Ca 0 + (I aA)-2(0 0),

where the operator A is considered an unbounded operator on L2()) whose domain
is H2(fl)g H(fl). We remark that (I- aA)-2(o- 0) belongs to H4(fl), then to
C(fl). Thus, in order that Ca belongs to C()), we assume that

(Hh) @0 e C(2).
Then the properties of the above regularization are summarized in the following
lemma.

LEMMA 3.1. The map Fa Fa(,B) is continuous from HI() x L2() into

C( x 3). For any potential such that

CeHl(), /02-0, and q <_ qo,

the modified potential Ca a() satisfies

Furthermore, for any sequence (an, Cn, Bn) such that

On -’+ O

(n) is uniformly bounded in H2 (),
Bn -’ B in L2(),

Cn/O --0, Cn in HI(),

the regularized force field Fan (n, Bn) converges towards F (Vx- v(p) A B) in

For a proof of this lemma, we refer the reader to [8].
The modified Vlasov-Maxwell system. The regularized problem is

(3.2) afa + v(p) Vxfa+ Fa Vpfa C(fa)
f/r._ go.

on 2 3,
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The regularized force field is given by (3.1). The potential solves

(3.3)

The magnetostatic problem has to be modified because the flux of a solution of (3.2)
is no longer divergence free. Instead we obtain

cpa + Vz j 0.

But (3.3) shows that

+ 0.
q

Therefore, we define the new magnetostatic problem by

(3.4)

PROPOSITION 3.2 (existence for the modified problem). Let a > O. Under the
hypotheses (H1)-(H5), the modified Vlasov-Maxwell system (3.2)-(3.4) has at least
one solution (f,, B) e L2(ft x N3) x H2(ft) x Hl(gt), which satisfies uniformly
with respect to c"

(3.5) O_<f< l+exp
0

is uniformly bounded in H2(a); B Bo is uniformly bounded in Hi(a).
Proof of Proposition 3.2. Let S be the following nonempty convex closed set of

Hl(ft) n2(ft)

{(, B) E Hi(a) x L2(a)’/Oft 0 and q <_ qO0}.

We define a map on .=. in the following way. For every (, B) in S, let f,B be the
unique solution of the modified Vlasov-Maxwell problem (3.2). Then we define

Let (1, B1) be the solution of (3.3), (3.4) with the corresponding concentration and
flux. The map F is defined by F(, B) (1, B1). The following property and the
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Schauder fixed point theorem establish the existence of a solution (f,a, Ba) of
(3.2)-(3.4).

Property 3.3. F E --+ E is continuous and compact for the topology of Hl(ft x
a) L(ft Ia).

Let us first show the compactness of F. From (H2),and the maximum principle
established in Theorem 2.1, we know that

(3.6)

e(p) (x) ,
0

_
f,B

_
1 / exp

0

q
0(x) u

< l+exp
$(P)-K

Therefore, P,B and jck,B are uniformly bounded by a constant c depending only on
(I)0 o and u:

O <_ p,S <_ C and IJ,s <-- c.

Then the solution r/in HI (ft) of

--qP,B-Azrl r

is uniformly bounded in H2(ft) and satisfies q? <_ 0. Hence the function 1 (I)0 + r/
lies in a bounded set of H2(ft), which is a compact set Of Hl(ft) and satisfies

(/)1/Oft )0, q(/)l <__ q(I)0.

The function
j,s + C--Vx(I (I)0)

q

belongs to a bounded set of L2(gt) and satisfies

a--V(- O0 0.
q

Then the solution D of

[
Vx A D #rq Ijdp,B +
D. u O onOft

a--V(l (I)0 Vx. D 0,
q

belongs to a bounded set of HI(). Thus B1 B0 + D belongs to a compact set of
L2() and we have proved that (1, B1) lies in a compact subset of

Let us show the continuity of F. Let (n, Bn)in .. be such that en converges to in

Ul(t) and Bn converges to B in L2(Ft). Then Fa(n, Bn) converges towards Fa(, B)
in C(t R3). (3.6) implies that there is a subsequence fn f,Bn which converges
weakly in L2(gt 3) towards some f. Then, with the help of Proposition 2.2, A(fn)
and #(fn) converge towards A(f) and #(f), respectively, in L2(Ft a), so C(fn) con-
verges to C(f) in the distributional sense. It follows that f solves the Poisson equation
associated with (, B) and hence is equal to f,B. Then pn and in, respectively, con-
verge weakly to P,B and j,B in L2(t). Since the sequence F(n, Bn)
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belongs to a compact set of H1 (f)x L2 (t), the last convergences show that (n,1, Bn,)
converges to (,B) in H(t) x L2(t).

Therefore, the Schauder fixed point theorem applies, which shows the existence
of a solution (fa, Ca,Sa) of (3.2)-(3.4). Moreover, f satisfies

s(p) n 0(x)-
0<_fa<_ l+exp

0

--1

as f,B does.
We then deduce from the proof of the compactness of F that Ca belongs to a

bounded set of H2(fl) and that Ba B0 belongs to a bounded set of H(f).
We now prove the existence of a solution of the complete Vlasov-Maxwell system.

We first assume that 0 satisfies (Hb). Let (fa, Ca, Ba) be the solution of the modified
problem for any a > 0. In view of the uniform estimates (3.5), there is a subsequence
an converging to 0, such that (f,,B), denoted by (fn, Cn, Bn), satisfies

fn -- f weakly in L2(Ft
(n) is uniformly bounded in H2 (t),
Bn --* B in L2(gt).

Cn/oa 0, Cn--* in Hl(gt),

Then q
(Vie v A B) in Loc(t 3)F, (,, B,) -- F -As in the proof of the continuity ofF, C(fn) converges to C(f) in the distributional

sense. Hence f is a solution of (1.7)-(1.10). Moreover, in view of (3.5) and the choice
of the constant ,

p(x) f fn(x,p) dp and jn(x)= f v(p)fn(x,p)dp
3 y]3

are uniformly bounded, so that

pn(x) -- p(x) jf3 f(x,p)dp in L(t) weak star,

and

j(x) j(x) Jt3 v(p)f(x,p)dp in L(f) weak star.

Then it is straightforward to pass to the limit in (3.3), (3.4) and obtain a solution
of the Vlasov-Maxwell system. To get rid of the restriction (Hb), we introduce a
sequence (I)0,n such that

0,n 6 C(fl), 0,n --+ 0 in H(fl), [[011o 1

and pass to the limit of the corresponding solutions (f, Cn, Bn).
Appendix: A compactness result. This section is devoted to the proof of

Proposition 2.2, which we now restate.
PROPOSITION 2.2. Let (fn), (gn), and (hn) be bounded sequences of L2( ]3)

that satisfy

(4.1) v(p). Vxfn divpgn + hn
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in the sense of distributions. Then for any Hilbert-Schmidt operator K defined on

L2(I3), the sequence (g(fn(x, ")) is relatively compact in L2(I IR3).
Proof of Proposition 2.2. Since K is a Hilbert-Schmidt operator, there is a kernel

in L2(I6) such that

(4.2) K" f -- K(f)(x,p) L3 (p’ q)f(x, q) dq.

Let CN be a sequence converging to in L2 (1R6) and verifying

i=M

(4.3) Cg(p,p,) E iN(P)iN(P’)’
i--1

where bg and N are compactly supported and indefinitely differentiable. The
Hilbert-Schmidt operator K is the uniform limit of the integral operators KN of
kernel CN, since the norm of KN -K is the norm of CN_ in L2(I6). From classical
compactness results (see [4], [5], and [6]), the sequences

((p) h(x,’p )i (p’)dpt)k>_

belong to a compact set of L2(IR6), so finite sums of such sequences also belong to a
compact set of L2 (6). By the diagonal process we construct a subsequence (fk,) such
that the sequence (KY(fk,))p>l converges.

Let us show that (K(fkp))p> is a Cauchy sequence in L2(6)

(4.4)
IIK(A.) K(A.)I[ _< [](KN K)(.fk,, A,)[[ + [[KN(.fk,,)- Kv(A.)[I

<_ 21IKN KIIM + IlKX(fk,) KN(fk.)ll,

where M is a bound of IIAIIL=(). > 0 being given, there is an integer No such that

(4.5) 2IlKNo KIIM < -.
(KYo(fk,)) being a Cauchy sequence, there is an integer P such that for every p _> P
andq>_ P,

(4.6) IIKNo(fk,) KNo(fk)llL( <
--2

Using (4.4)-(4.6) leads to

(4.7) IlK(A,) K(A.)IIL(.) _< a,

which proves that (K(fk,))p> is a Cauchy sequence in L2(I6), and ends the proof.
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THE EQUILIBRIUM PLASMA SUBJECT TO SKIN EFFECT*

YONG LIU

Abstract. An interior free boundary problem of Bernoulli type in an annular region is consid-
ered. On the inner (unknown) boundary of the region, the solution of the Laplace equation satisfies
the zero Dirichlet condition and a Neumann-type condition. On the outer (given) boundary, the
solution assumes a constant value. Existence of solutions is established and uniqueness under some
assumption is studied. Examples of nonuniqueness are also given.

Key words, free boundary problem, equilibrium plasma, existence, uniqueness, nonuniqueness

AMS subject classifications. 35R35, 76X05

1. Introduction. The Tokamak machine is designed to contain and exploit
thermonuclear plasma. In the machine, the plasma is confined inside a perfect super-
conducting shell in which the eddy currents generate the magnetic field necessary for
ensuring plasma equilibrium.

A two-dimensional model (the superconducting shell is regarded as an infinite
cylinder) was introduced in [13] for the equilibrium plasma subject to a surface current.
This simplified model leads to the following free boundary problem.

Given a closed curve F (the cross section of the shell) and two positive parameters
(the magnetic field flux) and p0 (the surface current on the plasma), find a contour

/(the boundary of the plasma region) and a function u (the flux of the magnetic field)
such that

(1.1) /ku 0 in ft,
(1.2) u=a on F,
(1.3) u=0 on 7,

P0(1.4) IVul -- on 7,

where ft (the vacuum set) is the region in 12 bounded by F and 7; / (unknown in
advance) lies in the interior of F and l is the arc length of 7.

The Tokamak machine is actually toroidal. In this case we need to replace (1.1)
and (1.4), respectively, by

1
(1.1’) Zku -ux 0 in C R2 f3 {x

_
0}

x
and

1
iVul_ P0;

In the special case where F is a polygon, existence for (1.1)-(1.4) was proved
in [10], [13], and [14]. A related convex-constrained problem was solved in [2]. In
[17], an approximated version of (1.1)-(1.4) was studied; this problem coincides with
(1.1)-(1.4) in case F is a circle.

1994.
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The methods used in [10], [13], [14], and [171 rely on conformal mapping, and
therefore do not apply to the actual toroidal Tokamak machine.

We are not aware of any uniqueness results regarding (1.1)-(1.4).
In this paper we study the free boundary problem (1.1)-(1.4). We prove that if F

is a Lipschitz Jordan curve, then there exists a solution pair (,, u) and /is an analytic
curve. This result can be extended to the problem (1.1’), (1.2), (1.3), and (1.4.) (see
Remark 2.2).

Uniqueness for (1.1)-(1.4) is established in this paper under the following addi-
tional assumptions:

(1) F is symmetric about the coordinate axes;
(2) the portion of F lying in the first quadrant is both an x-graph and a y-graph.
Condition (2) is essential for assuring uniqueness. In fact we shall give an exam-

ple showing nonuniqueness even when F undergoes a "small" perturbation from this
condition.

The proof of existence is based on a variational approach to the following Bernoulli-
type interior free boundary problem.

Letgt C R2 be a simply connected bounded domain with Lipschitz boundary 0gt.

We seek a function u > 0 such that

(1.5) Au=0 in gtN{u>0},
(1.6) u=l on 0gt,

(1.7) IVu const, on gt N O{u > 0}.

Alt and Caffarelli [8] studied the variational problem

(1.8) minimize J),(v) =/a(IVvl2 + )2I{,>o})dx, ) > 0

over an appropriate class K, where ID is the characteristic function of the set D. They
proved that any minimizer u is Lipschitz continuous in and satisfies (1.5), (1.6) and

(1.9) IVuI-A on F=t0{u>0}.

They also proved that the free boundary F is an analytic curve. This variational
formulation was used by Alt, Caffarelli, and Friedman (see [9], [15] and the references
therein) to study jet and cavity free boundary problems.

Other variational approaches were introduced later by Acker [3] and Aguilera,
Alt, and Caffarelli [7].

Given a constant A with 0 < A < vol(t), set

(1.10) K={veH(t); v>_O, vlo=1 and vol({v>0})=A},

where vol(D) is the volume of D in the Lebesgue sense, and introduce the Dirichlet
integral

J(v)- f IVvl 2.(1.11)

We seek a function u E K such that

(1.12) J(u)= min J(v).
vEK),

If 0gt is convex, Acker [3] proved that (1.5)-(1.7) is solvable with
as a convex curve. This result was generalized later in [7], where it was shown that
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any solution u of (1.12) is also Lipschitz in D and verifies (1.5) and (1.6), and on
F.x N O{u > 0}, which is an analytic curve

(1.13) IVul- cA > 0 (cA is an unprescribed constant).

Problem (1.1)-(1.4) appears to be related to both variational problem (1.8) and
(1.12). Nevertheless, a special case shows that solutions of (1.1)-(1.4) do not always
minimize the functional in (1.8) (see Remark 1.1). We therefore wish to use the
variational approach (1.12) and try to "fit" condition (1.4). Since, however, we do not
know whether (1.12) has a unique solution, we cannot work directly with the function
A cA. Instead we shall work with the well-defined function

A min J(v).
vEK

Several properties of this function are given in 2, and existence for (1.1)-(1.4) is
established by exploiting these properties.

In 3 we derive symmetry properties of solutions and use them in 4 to prove
uniqueness.

Examples of nonuniqueness are given in 5.
Acker studied the uniqueness of solutions of problem (1.5)-(1.7) in the case where

the constant in (1.7) is prescribed (see [4]-[6]). These results have direct application
to our problem (1.1)-(1.4). In fact, under some geometric assumption on F (not
necessarily symmetric), we can prove that (1.1)-(1.4) has a unique solution if P0/a is
small.

In 6, we study an exterior problem related to (1.1)-(1.4) which arises from cryo-
genics experiments [20]. The free boundary condition is the same as (1.4) but the
free boundary , is in the exterior of F. We shall use the variational problem (1.8)
to establish existence for any given Lipschitz Jordan curve F. Uniqueness and some
properties of the solution are also derived.

It is worth mentioning that the corresponding exterior problem of (1.5)-(1.7) has
been extensively studied by many authors (see [1], [2], [11], and [23]). In [1], the
exterior version of (1.1)-(1.4) was solved when F is starlike.

Remark 1.1. In general, solutions of (1.1)-(1.4) do not solve the variational prob-
lem (1.8). In fact, in the case where F is a unit circle and a 1, a simple computation
shows that any minimizer u of (1.8) has the form

1
u (1-

where R is determined by

if 0<A<e,
or i(r>R} if A > e,logR

logR
and R if A , R >_ e-1.
3.3)

= l+-logr
it follows that, if 0 < Po < 2r, then

e oo <e-1

Since the solution of (1.1)-(1.4) is given by (see Corollary

27r

e po <r<l,

for all A > e

and u cannot be a minimizer for (1.8).
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2. Existence. Let F be a Lipschitz Jordan curve in I2 which encloses a bounded
domain . Introducing the transformation u --. u and setting I po/, we can
rewrite (1.1)-(1.4)in the form

/u=0 in tC]2,
u= 1 on F,
u=0 on /,

I

THEOREM 2.1. Given any I > 0, (2.1) has a solution (/, u) with "7 an analytic
curve contained in .

We begin by introducing the function

(2.2) re(A) min /IVvl (0 < < vol(a))
vEKx Jt

where the set K is given by (1.10). It will be useful to introduce an alternative
definition for m(A).

For any compact subset D CC gt, set

(2.3) KD {v E Hl(a); v[oa l,v =_ O

Let u be the capacitory potential of the region t\D:

(2.4) /a IVul2 vEKDmin/a IVvl2 CapaD.

Then

(2.5) re(A) min CapaD.
vol(gt\D)=A

Let u be a solution of (1.12). Since u 1 on F and u is Lipschitz continuous,
the set {x E t; u > 0} is open and has a component which is connected to F. By the
maximum principle, there are no other components of this set. Denote by F the free
boundary tNO{u > 0}. We shall write cA as IVuI(F to emphasize its dependence
on u. The following is a key lemma that makes our approach possible.

LEMMA 2.2. re(A)=
Proof. By integration by parts, using (1.5) and (1.6), we obtain

(2.6) IVu ,l IVu ,l
u>0} {u>0} On

where n is the outward normal. Since

(2.7) 0=j{ AU=o Outer Ou
u>0} a

+ On

and Oua/On =-IVul on r,

(2.8) o Ou--r Ou
a On On

by (1.13).

Combining (2.6) and (2.8), the lemma follows.
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LEMMA 2.3. re(A) is continuous for 0 < A < vol(D).
Proof. We shall show that if Aj Ao (0 < A0 < vol(gt)) and m(Aj) -- h, then

rh m(Ao).
Let uo, uj be solutions of (1.12) corresponding to A0 and Aj, respectively. Then

m(Ao) fa lVuol2 and

Since DAO{uo > 0} is analytic, the set tA{u0 0} has finitely many components.
Choose subdomain tj C D with

O C Oj and vol(j) Ay vol({u/ > 0})

in such a way that, if we parametrize 0ty, O(uo > 0},

x e z,
O{uo > 0}: x

where 2" is a union of finitely many closed intervals, then Xd - Xo in C1.
Consider the problem

/j 0 in tj,
j 1 on

fij=0 on t0y.

Extend fij by 0 into gt\tj. Then j E K.
It is easy to verify that, for a subsequence,

Since

letting j --. gives rh <_ m(Ao). This result also implies that m(Ay) is bounded.
On the other hand, for a subsequence,

(2.9) Vu - Vu* weakly in L2(),
uy - u* a.e. in t.

It follows that

I{u*>O} <_ liminf/(us>0} a.e.,
j---c

and by Fatou’s lemma,

vol({u* > 0}) <_ liminfvol({uj > 0})= lim Aj A0.

Hence vol(t) Ao _< vol(t) vol({u* > 0}) vol({u* 0}). Therefore we can
choose a closed set D C {u* 0} such that vol(D) vol()- o.

Let u be the capacitory potential of the region \D. Then
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Since u is harmonic in t\D, u > 0 in f\D by the maximum principle. Hence
u E K)‘o, so that, by (2.9),

m(Ao) <_falVul <_falVu*l < liminffn IVul < limm(%j) rh.

Also, since rh < m(A0), rh m(A0) and the proof of Lemma 2.3 is complete.
LEMMA 2.4. m(A) is monotonically decreasing.
Proof. For 0 < %1 < A2 < vol(ft), let ul, u2 be solutions of (1.12) corresponding

to A1 and %2, respectively. Denote by Di (i 1, 2) the region ft\{u > 0}. Then

vol(D1) vol(ft)- A1 > vol(ft)- A2 vol(D2).

Choose a closed set/ c D1 such that vol(/)) vol(D2); then vol(ft\/) A2.
By (2.5),

(2.10) m(A2) min CapnD < Capn/).
vol(ft\D)=)‘2

Since CapnD is monotonically increasing with respect to D,

Capft/) _< CapfD1 =/ft 17U112 --m(%).(2.11)

Combining (2.10) and (2.11), the lemma follows.
LEMMA 2.5. m(z)--+ 0 as z -- vo1(f).
Proof. Let Bp(Xo) be the largest ball contained in . By (2.3) and (2.4),

CapeD _< CapBD for any D B.
For % close to vol(f), set e (o()-.)/2. Then vol(f\B(X0)) %, therefore,

2r
re(A) <_ Cap,Be _< CapB,Be flog I"

As A -- vol(), we have e - 0. It follows that m(A) --+ 0.
LEMMA 2.6. m(A) --+ o as A --+ O+.
Proof. Let D), be the closed set where solution u)‘ vanishes. Then vol(D)‘)

vol(f)-% --+ vol(f) as % --+ 0. It follows that there exists a constant c > 0 independent
of % such that vol(D)‘) >_ c for all small %. Since cOD), is analytic, D)‘ consists of a
finite set of components {Di}. By the isoperimetric inequality (see [21]),

loD >_ V/47rvol(D),
so that

(2.12)

lr loo >_ E V/47rvl(D > V/47rvl(D)‘) >4 > 0 for all small %.

We shall prove that there exists a sequence Aj 0 such that

Once this has been proved, then by Lemma 2.2 and (2.12), m(/j) -+ o as/j --+ O.
Hence, by Lemma 2.4,

m(A)o as A0
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and the lemma follows.
It remains to prove (2.13). Let X0, X1 E 0’ be such that

d IXo X11 diam(09t) max IXX,YEO

Since vol(D) -- vol(gt) as --+ 0, there exist a sequence Aj --, 0 and a set {Xj} C

OD such that Xj --. XI.
Consider a sequence of disks Bd (Zo) containing D and satisfying

OBd V ODx :/: 0 and lim dj d.

Let
log X-Xol

d

log dd

It is easy to verify that Cj is the solution of the problem

ACj 0 in Bd(Xo)\Bd (Xo),
1 on OBd(Xo),

on OB  (Xo).
By the maximum principle, ux k Cy and, on OBd

1
c IVul >-- IVI

dllog

This completes the proof of (2.13) and, therefore, Lemma 2.6.
Proof of Theorem 2.1. By Lemmas 2.3-2.6, for any I > 0 there exists a unique

0 < o < vol(t) such that m(Ao) I. Denote by uo a solution of (1.12) corresponding
to Ao, and denote by Fo the free boundary 9t N O(uo > 0}. By Lemma 2:2,

]V ol(ro)Z o z,

I

and the proof is complete with -), F0.
Remark 2.1. Suppose that F is convex. By using the geometric variational prob-

lem in [3] or [12] instead of (1.12), our existence proof yields a solution for (2.1) with
-y convex. Now we shall give a different argument (see [15], p. 339) to prove more,
namely, the following theorem.

THEOREM 2.7. If F is convex, then for any solution (y, u), / is convex.

Proof. The function q IVul satisfies

Aq>_0 in {u>0},
Oq
Ou

q 0 along stream lines {u const},

where u is the normal to the stream line and t is the curvature of the stream line
subject to the sign convention: once u is chosen, a is taken as positive when the stream
line is convex to the region on the side of the u direction.
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Since q is subharmonic, q does not have interior maximum. Suppose q attains its
maximum at X0 E F. Take as the inward normal. Then (X0) < 0 and

Oq
-q>0 at X0,0> 0-=

I/l const,a contradiction. Therefore, max q max q. Since ql
10q[’ q Ov > 0 =inward normal),

and the assertion follows.
Remark 2.2. Theorems 2.1 and 2.7 can be extended to problem (1.1’), (1.2), (1.3),

and (1.4’). Accordingly, functional (1.11) should be replaced by

J(v) jf IVvl2x
3. Symmetry properties. To begin, we recall some definitions.
We call L a moving line if L is a straight line in R2 which moves parallel to itself.
Take a moving line L which, initially, does not intersect a set A in R2. As L

moves toward A, it will intersect A and cut off from A a cap C(A) lying behind L.
We define the folding of A (about L) as the reflection of C(A) with respect to L

and denote it by Ai. Suppose u is a function defined in A. We define the folding of
u (about L) on AL by

(3.1) uL(X) u(X’) for X’ e C(A),

where X is the reflection of X with respect to L.
DEFINITION 3.1. Suppose L is a straight line in 12. A curve F is called an L-

graph if any normal to L which intersects F intersects it in either one point or one
line segment.

THEOREM 3.1. Suppose (/,u) is a solution of (2.1). /f F is symmetric with
respect to a straight line Lo and the portion of F on either side of Lo is an Lo-graph,
then / is also symmetric about Lo and the portion of / on either side of Lo is an
Lo-graph too. Furthermore, uL u.

Proof. We shall use the "folding argument" as in [16] and [22]. Suppose that is
not symmetric with respect to L0. We want to derive a contradiction.

Denote by D the bounded domain enclosed by 7. Let L be a moving line in I2

which is parallel to L0 and tangent to initially. As L moves toward L0, the folding
FL is contained within F until L L0. Obviously, at the early stage of the process,
/L will be contained in D. Denote by Le the final position of L, where one of the
following events occurs (see Fig. 3.1):

(1) Le Lo, /Le becomes internally tangent to at some point P not on Le;
(2) Le L0, L is orthogonal to 7 at some Q and ,../Le is contained in D;
(3) L L0, /io does not touch %
Denote by Fti the folding of te with respect to L, which is the domain bounded

by Fie /i, and L. Then the folding ui of u satisfies theequation

L(3.2) /kuL 0 in Ft
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L
0

LO

(2)

FG. 3.1.

and the boundary conditions

(3.3) uL =1 on FL,
(3.4) uL u on Le
(3.5) uL 0 on

I
(3.6) IVuLI-- - on 7L’.

Consider the function v uLe -U in t N gtL’. By our construction, v _> 0 on

0(tFtL’) and/kv 0 in 2tL" Since v 0 in t L" by the strong maximum
principle,

L(3.7) v>0 in tgt
We shall prove that (3.7) is impossible.
In case (1), v has its minimum 0 at P. By the maximum principle,

Ov
On > 0 at P, n inward normal,

IIl =IVuL’[ > IVul= at P.

This contradiction shows that case (1) cannot happen.
Suppose we are in case (2). Following the proof for Theorem 1 in [22], we have

the following lemma.
LEMMA 3.2. All the first and second derivatives of v vanish at Q.
Note that v attains its minimum 0 at Q. By applying the boundary point lemma

(Lemma 1) in [22] at Q (which is a right-angled corner of t N L.) we have, for any
inward nontangential direction s,

Ov Ov
either ss >0 or >0 at Q,
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contradicting Lemma 3.2. Therefore case (2) is also impossible.
Finally, if we are in case (3), then L0 divides Dr into two parts D and D2 with

vol(D) > vol(D2). Let L L0 be a straight line parallel to L0 such that L lies on
the same side of L0 as D and L N D ). As L moves parallel to itself toward L0,
one of the events (1) or (2) will occur. However, this is impossible and must be
symmetric with respect to L0.

The portion of on either side of L0 must be an L0-graph. Otherwise, before L
reaches L0, one of the cases (1) or (2) will occur, but these ces have already been
ruled out.

Remark 3.1. By uniqueness to the Cauchy problem and unique continuation for
solutions of elliptic equations, cannot contain a line segment.

Remark 3.2. Theorem 3.1 can be extended to high dimensions without any change
of the proof.

COROLLARY 3.3. If F is an n-sphere with radius R, then (2.1) has a unique
solution (, u) with as a concentric n-sphere having radius

Re , n= 2,
(3.8) R0

where Wn- is the surface area of a unit n-sphere and

I log R0<r<R, n=2,
(3.9) u

where r denotes distance from the center.
Pro@ Suppose (7,

concentric sphere, which in urn implies that is radial. A simple computation shows
that (, ) must have the form (a.8), (a.9).

4. Uniqueness. Suppose r is a C+ (0 <
the portion of r lying in the firs quadrant. We assume that

(1) r is symmetric wit respect to he z-axis and the -axis;
(4.1

(2) r+ is both an z-graph and a -graph.

Denote by (7,u) a solution of (2.1). rom Theorem a.1 it follows that is
symmetric with respect to he wo coordinate es and 7+ is both an z-graph and a
-graph.

LgNNA 4.1. z 0 ad 0 in .
Proof. Since r {z > 0} and 7 {. > 0} are both -graphs and takes its

mimum 1 on r {z > 0} and minimum 0 on 7 { > 0}, we have

0 r > 0} {z > 0}.

By Theorem .1, is an even function with respect to z, i.e.,

Combining (4.2) and (4.3), we get

ux>_0 on 0{DA{x.>0}}.
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Since ux is harmonic in gt ;3 {x > 0}, by the maximum principle we have

ux>_0 in t ;3 {x > 0}.
Since u is even in x, ux _< 0 in gt ;3 {x < 0} and we conclude that

xux >_ 0 in

The same argument applied to Uy shows that

yuy >_ 0 in

and the proof is complete.
THEOREM 4.2. Under assumption (4.1), for any I > 0 there exists at most one

solution of the problem (2.1).
Proof. Suppose there are two solutions (3’i, ui) (i 1, 2) with 3’1 3’2. We shall

derive a contradiction.
Denote by D the bounded domain enclosed by 3’. By symmetry, DI ND2 - 0.

We shall show that neither DI C D2 nor D C D.
Suppose D C D. Then, by the strong maximum principle,

u2 < u in D.
Since ul u2 1 on F, by the maximum principle we have

(4.4) Ou2 Oul
On > On

on F (n outward normal).

On the other hand, using the boundary condition -Oui/On- IVu I/l on

r Ou Oui
On On

I.

Hence

---n dS -ffn aS I,

contradicting (4.4).
The same argument shows that D C D is also impossible. Consequently, 3’1

and 3’2 must intersect. Since 3’1 and 3’2 are analytic, they intersect only at a finite
number of points. Take such a point Q. Then, for each neighborhood N of Q, N ;3 3’

c i.e.,intersects both Dj and Dj,
N C3 3" f3 D.r O and N 3"i ;3D O (i C j; i, j l, 2).

Denote by T(3’1 3’2) the set of all points of intersection of 3’1 and .3’2. By
symmetry, T(3’1+ ;3 3’2+) 0, where 3’+ (i 1, 2) denotes the portion of 3’i lying in the
first quadrant.

We first consider the case where

(4.6) contains a single point Q.

Set w ul-u2 in t;3gt. By symmetry and (4.5), there exists a point X+ E F+
where Ow 0, i.e., IVwl 0. It follows that there exists a level curve al C {w 0}
starting at X+ and going into tl N gt. To see this, let g be the conformal mapping
which maps the domain Bp(X+) ;3 into {) > 0}, Bp(X+)F+ into { 0},
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and g(X+) 0, where Bp(X+) is a disc with the center at X+ and the radius p being
a small positive number. Since w 0 on F+, we define a harmonic function v in a
small disc Br (0) by

f e B (0) > 0},
v(: $) --w(g--I(, --)), (;, ) e Br(0)f"l { < 0}.

Since w(X+) 0, IVw(X+)l 0, we have

v(0) 0, IVv(0)l 0.

It follows that 0 is the branch point of the level curves {v 0}. Choose a branch
T C {v 0} initiating from 0 and going into { > 0}. Then al g-l(T) is a level
curve of {w 0} starting at X+ and going into 1 A te2 g) {x > 0, y > 0}.

Denote by (72, (73, and (74, respectively, the symmetric counterparts of (71 in the
second, third, and fourth quadrants.

(71 cannot exit the first quadrant on the y-axis. Suppose otherwise and denote by
Fro c the domain bounded by (71, (72, and F. Then w 0 on 0t20, which implies, by
the maximum principle, that w 0 in t0. By unique continuation, w 0 everywhere
and this is impossible by our assumption that 71 72. Similarly, (71 cannot end
either on the x-axis or F+. Hence (71 must terminate at a point P in 71+ 3 72+ with
P (xp, yp), Xp > 0, yp > 0 (P is not necessarily a point in T(71+ N 72+)).

Consider the cases P Q and P # Q separately.
(i) P Q. Denote by 7i(P) 7i N {-Xp < x < Xp, y > 0} (i 1, 2) the portion

of 7i in the upper half plane lying between (71 g)7i and (72 7i. Since one 7i(P) lies
outside the domain bounded by the other free boundary curve, we may assume that
(see Fig. 4.1)

(4.7) 71 (P) lies outside D2.

Z /

r/

FG. 4.1.

Denote by 9(P) 7 gl {x < 0,-yp < y < yp} the portion of 7 in the left half
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plane lying between (r2 gl ’i and a3 ;’i ,i. Then, by (4.6) and (4.7) (see Fig. 4.1),

(4.8) 2(P) lies outside DI.
Take a vertical line L in {x > 0} which is tangent to F initially and move it in a

parallel fashion toward the y-axis. We fold 2 with respect to L. Denote by -L FL
and 72

L the folding of ., F, and /2, respectively. By (4.7) and (4.8), L will reach
the position at {x > 0}, so that 72

L gl {x < 0} lies inside DI and is tangent to 71
at Xo (xo, Yo). We shall prove that Xo E i (P), i.e., it does not lie on /i (P).

Clearly, xo < 0. By symmetry, we may assume that Yo >_ 0. Since 72
+ is both an

x-graph and a y-graph, 72
L is contained in D; it follows by (4.7) that /2

L does not
touch 71 (P), which implies that yo < yp. Therefore

(4.9) X0 e 7 N 1(P)

and

dist (Xo, FL) >_ dist(’2L FL) >_ dist (72, F) > 0.

In order to apply the maximum principle to the function u2
i
-Ul (U2i is the

folding of u2), we shall construct a domain * C fi: N such that X0 belongs to a
smooth portion of 0f*. Since Fi ’1 1 (P) may be nonempty, "1 (P) would be cut into
several pieces by the points in Fi "l (P). However, by (4.9) and (4.10), there exists
a connected portion C "I(P)\{F/ gl l(P)} which contains X0 in its interior and
has two end points P1, P2 such that one of the following cases happens:

(a) P1, P2 FL ) 1 (P);
(b) r (P), P:
(c) P1 1 a3, P2 /1 a2.
Since Fn is contained in the domain enclosed by F, Fn ai : (i 2, 3). Define

(see Fig. 4.2)

(4.11)
the domain bounded by FL,
the domain bounded by FL, 7, and a2

the domain bounded by FL, /, 2,

if (a) occurs,
if (b) occurs,
if (c) occurs.

FIG. 4.2.

We now look at the boundary values of u2
L and ul on 0*. Since u2

L 1 on FL
and U 0 on 7, we have

(4.12) u2
i

_
ltl on Fi and /.

This inequality also holds on a2 U a3.
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For any X E 32 U 33,

 2(x) u) _>
u)

Hence

(4.13) u > Ul on

By the strong maximum principle it follows that

(by Lemma 4.1)
(by symmetry)

(by the definition of a2 and a3).

u2
L > ul in *.

Since u2
i

Ul 0 at X0, applying the maximum principle we get

IVu2LI > IVul at X0,

Il -IVu2l IVu2LI > IVu[
l,

at X0,

which implies that

(4.14) 11 > l.
Note that (4.7) and (4.8) can be interchanged by index permutation I - 2 and the

coordinate transformation (x, y) (-y,x), which preserves harmonicity and bound-
ary conditions of ui. Hence the preceding argument implies that

(4.15) l. > I1.
This, however, contradicts (4.14), and the proof for case (i) is complete.

(ii) P = Q. The point P cuts -+ (i 1, 2) into two pieces, one of which contains
Q. Denote by (P) / N (x > 0,-yp < y < yp} the portion of / in the right half
plane which lies between al N ’i and a4 /i. Then

either Q e T(’I(P)A 2(P)) or Q e T(I(P) /2(P)).
Rotating the coordinate if necessary, we may assume that (see Fig. 4.3)

(4.16) Q e T(I(P) A 2(P)).
Condition (4.16) means that i(P) intersects both Dj and Dj (i : j; i, j 1, 2).
Using the folding argument as before, we assert that there is a vertical line L in

(x > 0} such that /I(p)L (x < 0} lies inside D and is tangent to ’2 at a point
X0 (x0, y0) with x0 < 0, y0 >_ 0. We shall argue that

(4.17) Xo "2(P) /2 {x < 0,-yp < y < yp}.

Since //+ (i--1,2) are both x-graphs and y-graphs, "1 (p)L lies below the segment
T connecting P and P’ (-Xp, yp). It follows that (p)n does not touch the portion
of ’2 lying above T which is precisely /2(P). Hence Y0 < Yp and (4.17) follows.

Therefore a domain fl* can be constructed in the same way as (4.11) so that X0
is contained in a smooth portion of c0* and

uL _> u2 on 0*.
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Y

r

FIG. 4.3

By the strong maximum principle, Ul
L > u2 in t* and

]VuL] > IVu21 at X0,

which implies that

I

(4.18) l,: > 11.
Since we accomplished the above argument under assumption (4.16), which is

symmetric with respect to the indices 1 and 2, we also have

(4.19) 11 > l,
a contradiction. This completes the proof of uniqueness for case (4.6).

It remains to consider the case where

(4.20) the set T(/+ N /2+) contains at least 2 points.

Denote by a C {ul u2} a level curve which initiates at a point X+ E F+ and
terminates at a point P e + N /2+. By (4.20) there exists a point Q e T(h+ N "y2+)
such that P = Q.

We adopt the same notation i(P), /i(P), etc. Without loss of generality, we
may assume that (see Fig. 4.4)

Q T(I (P) 2(P))

(this assumption is the same as (4.16)). Recalling the arguments which follow (4.16)
and (4.17), the folding i(p)L does not touch 7j(P) no matter what happens on
j(P). Therefore we can reach the same situation as (4.17) by the folding argument
and construct a domain gt* with X0 contained in a smooth portion of OFt*. Finally,



1172 YON(:] LIU

yl(p) x

FIG. 4.4

by the maximum principle applied to ui -uj (i j), we can derive a contradiction
in the same way as before. This completes the proof for Theorem 4.2.

COROLLARY 4.3. Consider the variational problem (1.12). If Ot satisfies condi-
tions (1) and (2) of (4.1), then (1.12) has a unique solution.

Proof. By results in 2, any minimizer of (1.12) solves (2.1) for I m-l(A). It
follows from Theorem 4.2 that the solution of (1.12) is unique.

Remark 4.1. Examples in the next section will show that condition (2) is essential
for assuring the uniqueness of (2.1): any small perturbation may result in nonunique-
hess.

5. Nonuniqueness. Take a unit disc B1 centered at the origin and two discs

Be of radius << 1, one centered at (1 / 2, 0) and another centered at (-1 2, 0).
Connect the three discs by two "thin corridors" T with length e and width 5 < to
form a domain with a smooth boundary which is symmetric with respect to both
coordinate axes. We regard t as a small perturbation of B.

THEOREM 5.1. If i8 sufficiently small, then problem (2.1) has at least two
distinct solutions, one of which is symmetric with respect to the two coordinate axes
and another one which is nonsymmetric.

We first construct a nonsymmetric solution using a variational formulation with
an obstacle.

Choose a smooth function (the "obstacle") depending only on x such that

" >_ 0 in

1

(5.1)
0<__< in

>0 in {x<xo},
------0 in Ftg{x>xo},

where 1 + 1/4e < xo < 1 + 1/2, for example,

and

=a((x--xo)-)4,
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where a is a small positive constant.
For 0 < A < vol(f ;q {x > x0}), set

K,x {v e H1(); v(., y) v(.,-y), v k ,
vloa l and vol({v=0})=)}.

Consider the following problem: find u E K, such that

f
(5.3) J(u) min J(v), J(v) ] IVvl 2

vEK4,,

The reason for introducing the obstacle is to prevent free boundary gt N O{u > 0}
from appearing in f A {x < x0}.

To study problem (5.3), we introduce a related penalized problem.
For r? > 0, introduce the functional

(5.4) Jv(v) J(v) f(vol({v 0})),

where

r/(s-A) for s>_A,
(5.5) f(s) (s- A) for s < A

and the admissible class

(5.6) K {v e H(gt); v(., y) v(.,-y), v > , vlof
Consider the following problem: find u K such that

=1}.

(5.7) J(u) min Jv(v).
vEK4

By the standard argument (see [7]), there exists a solution uv of (5.7). Since its
increasing rearrangement u with respect to {y =0} is also in K and (see [21])

0})

uu is also a minimizer of (5.7). In what follows we use u to denote such a minimizer;
it satisfies Uy >_ 0 for y _> 0.

LEMMA 5.2. For every disc Br(X) C ,
IV(U- v)l < 2

(xo) (xo)
I{u=0},

Where v is the harmonic function in Br(X) taking boundary value u on OBr(X).
Proof. If either B(X) C t\{y 0} or X (x, 0), the proof follows from [15,

p. 276]. It only remains to consider the complementary case where

B,.(X) intersects {y--O} and is nonsymmetric with respect to {y- 0}.

Denote by B the union of B(X) {y >_ 0} .with its reflection about {y 0}.
Let be the function which is harmonic in B and equal to u in f\B. Since is
subharmonic, > such that K. Developing Jv(u) < Jv(O) and using the fact
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that <_ f _< , we have

/. lj.
(.s)

I{u=01.
(xo)

Suppose v is harmonic in B(X), taking he boundary value on OB(X). Extend
v by into B. Since is harmonic in B and equal to v(= ) on OB,

’V’2 ’Vv’2,

which implies that

(.9) f Iwl

Combining (5.8) and (5.9), we have

IV(- v)l = IWl:z IVvl= <
(xo)

r._o-
,(xo)

The lemma follows.
Proceeding as in [15, Chap. 3, Lems. 3.1 and 3.2], one can establish that

(5.10) u e C’().
For Ca(0 < a < 1) regularity we refer to [19].

Since u is continuous by (5.10), one can eily prove that u is harmonic in {u >
}. However, a stronger result is given by the following lemma.

LEMMA 5.3. u i8 haonic in fl {u > 0}.
Proof. For any disc B C fl {u > 0}, let v be the harmonic function in B taking

boundary value u on OB. By Lemma 5.2,

v(- v)l =0 0.

Hence u v in B and u is harmonic in B. It follows that u is harmonic in fl {u > 0}.
Denote by Fn the free boundary fl O{u > 0}; Fn may touch the set {x xo}

(x0 is given in (5.1)).
LEMMA 5.4. F {X > X0} is analytic and there exists a continuous function

f(x) O, x (an open subset of {xo < x < 1 + 3e}) such that

r, { > x0} {(x,); (x), e z} {(x,); -f(x),x e z}.

Moreover,

(.1) Wl o r, {x > x0},

where cn is an unprescribed constant.
Proof. The proof is similar to that in [7]. The only difference comes om the

presence of the obstacle in our variational formulation. However, in the region fl{x >
x0}, the obstacle vanishes. Therefore the results in [7] apply to the present situation,
i.e., Fn {x > x0} is an analytic curve and u satisfies (5.11). Since uy 0 for y 0,
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and u(x, y) u(x,-y), there exists a function f(x)
such that

{u 0} (-f(x) <_ y <_ f(x), x

By uniqueness for the Cauchy problem and unique continuation for solutions to elliptic
equations, F : {x > x0} does not contain a line segment. Therefore f is continuous
in 2? and the proof of the lemma is complete.

Remark 5.1.2? is the union of intervals in {x0 < x < 1 +3e}. By the nonoscillation
lemma in [15, p. 287], f is continuous up to the end points of the intervals.

Next we show that if r/is small, then vol({u 0}) A so that by (5.4) and (5.5),
u is a solution of (5.3).

In what follows let c and C denote any positive constants independent of
Assume that

0 < < vo( {x > 0}).

Then we can construct a function fi E K with vol({ 0}) A. Since u is a
minimizer,

<_ Jv()= /IVI2 <_ C.

It follows that

(5.13) jf IVul 2 <_ C -t- f(vol({u 0})) <_ C -+- (vol(f) A) <_ C ( small)

and

-f,(vo({ 0))) < c,

-(vo({ 0))- ) < c-(vo({ 0}) ) _< c
Combining the two cases, we have

(.14) vo({ 0)) > -C >

if vol({u 0}) _> A,
if vol((u 0))

_
A.

for all r/small.

LEMMA 5.5. Suppose is chosen so that 5 < 2v/ and vol(T) _< .
c <_ cv <_ C for all ? small (cv is the constant in (5.11)).

Proof. By (5.13), Lemma 5.3, and integration by parts,

]oC _> IVu]2 -ndS=- ndS (n outward normal)
nO.{u>0}

r ’Vu’ds r ,Vu,ds
,n(x=xo} ,n(x>o}

>_ cv/r,n{>o (by (5.11)).

Using the isoperimetric inequality (2.12), we have

r, > v/VO( { 0}) >.- by (5.14).

Then
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Since Fn N {x x0} <_ 5,

It follows that

/r,{>o} >- 5.

C

It remains to estimate c from below. Denote by B the disc lying in {x > 0}
and constituting a portion of 9t. By (5.14) and the assumption vol(T) < -4(5.15) vo(B { 0}) vo({ 0}) vo(T { 0}) >

for all small r/. Take a disc Br with r independent of such that {u 0} c Br. Since

BNF : 0 (by (5.15)), we can translate B until OB touches F{x > x0}. Denote
by Xv the center of the disc Br.

Choose a larger disc BR(X,) containing t and consider the auxiliary function

It satisfies

.(x)
log IX,X,l

log
X e BR(X,)\B,.(X,).

A 0 in BR(X,)\B,.(X,),
1 on OBR(Xrt),

Cv 0 on OB,.(X,).
By the maximum principle, u > Cn in t(BR(X,)\B,.(X,)), and on (O.Br)F,{x >
X0},

1 1
R on (OB,.)r,{x > xo},c,,--IWl > IV,,I--

log 7
and proof for the .lemma is complete.

Using Lemma 5.5 and the fact that f(s) is a step function with jump at s A,
we can show that vol({u 0}) A if r/ is sufficiently small. In fact (see [7]), if
vol({u 0}) < A, then we make a variation of {u O} with small volume change
5v > 0 by perturbating F N {x > x0} toward the region {u > 0}. Such a variation

5v and 5K c2v6v + o(Sv) < CSv (by Lemma 5.5)will induce the change 5f -where K is the functional induced by the Dirichlet integral. Then

15J=SK-Sf<_CSv--15v<O if /<--C,
a contradiction to u being a minimizer. Similarly, we can derive a contradiction if
vol({u 0}) >/. Therefore, ua u is a solution of the problem (5.3). By (5.10) and
Lemmas 5.3-5.4, ua possesses the following properties:

(1) ua e C’1("), AUa 0 in {ua > 0};
(2) Fa=tOO(ua>0}O{x>xo} is analytic and

(5.16) there exists a continuous function f such that

Da={ua=0}={(x,y); f(x) <_ y <_ f(x),
IVual cA (cA is an unprescribed constant)(3)

x

on
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LEMMA 5.6. For 0 < A < vol(B,),

log
27r

Proof. By the assumption on A, there exists a concentric disc B C Be with

radius #-- []1/2. Introduce the function

1 in

w 1 log x-,xl

og - in B\Btz,
0 in

where X is the center of B. Then vol({w 0}) A, so that w E KO,A and

log
)

271"

Let DA {x Eft; uA 0}. We shall show that ODA does not touch the obstacle
if 6 is sufficiently small. For this purpose, we first estimate cA from above.

LEMMA 5.7. Suppose 0 < A < vol(B), 0 < 6 < x/-. Then

Proof. By Lemma 5.6 and (5.16),
--1

-fo Ou --fo12 On D: On
> cA(ODA) N {x > x0} cAlr.

Using the isoperimetric inequality (2.12), we have

IODa l(oDa)n{x=xo
> V/aVo(D) e 6 > -Combining (5.17) and (5.18), the lemma follows.

LEMMA 5.8. DA O {X X0} } for all small .
Proof. Suppose the assertion is not true. Then, for 6 6j --+ 0,

D {x x0} # .
We shall derive a lower bound for cA. Since DA does not contain an isolated point,
we choose x6 > x0 close to x0 such that DA N {x xe} = . Take a disc B25(Xe)
with X (xs, ys) such that B25 lies above ODA, OB25 N ODA . Since y5 >_ 25, the
concentric disc B5 lies outside f (see Fig. 5.1).

Introduce the function

(x) 1-
log Ix-xl

log 2
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FIG. 5.1

It is the solution of the problem

/k 0 in B25\Bh,
=1 on OB,,

0 on OB2.

By the maximum principle, < uA in (B2\B)gl fl. We shall use the maximum
principle again to derive the lower bound of cA. Since the condition IVuA[ cA may
not hold on ODA N {x Xo}, we consider the cases

and

(a) OB25 NODA {x > xo} : 0

(b) OB2 gl ODA

separately.
If case (a) occurs, then on OB2 Cl ODA N {x > x0},

1 1
(5.19) 25 log2

[V[ _<

It remains to consider case. (b). Since B2 is centered at X (xh, y.5) with x > x0,

case (b)implies that ODACI{x x0} contains a line segment T (see Fig. 5.1). Near the
point X, E OB2pFIODA N {x x0}, the boundary of the domain Ft\DA consists of the
segment T and the curve FA, which is the graph of the continuous function y f(x).
Along T, OUA/Oy 0 and FA, limsuPx_x. OUA/Oy <_ CA. Since OUA/Oy is bounded
near X,, by Lemma 6.7 in Chapter 2 of [15] (Phragmn-Lindelhf-type lemma), we
have

OUA(5.20) lim sup <
XEa\D),,X----X. Oy
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Also, since

we have

near X, and =uA at X,,

OuA1 1 y5 y, 0(X,) < limsup < cA.(5.21)
2 log 2 IX. X6] 0"- Xegt\D,,X--.X. Oy

Choosing x6 so close to x0 that (Y6 -Y,)/IX, XeI >_ 1/2 (see Fig. 5.1), we have

1
(5.22) c >_

45 log 2

Combining (5.19) and (5.22), we have established a lower bound 41og2 for cA. How-
ever, this lower bound contradicts Lemma 5.7 as 6 6j O. The proof for Lemma
5.8 is complete.

Proof of Theorem 5.1. By (5.16) and Lemma 5.8, UA satisfies following equations:

AuA =0 in Ft\DA,
]VuA]=C on r=0D.

Note that ming. J(v) is continous with respect to A and 6 (see the proof for
Lemmn 2.3); proceeding as in the proof for Theorem 2.1, there exist AI, I such that
c, I/lr. Therefore (ua,,F,) is a nonsymmetric solution of (2.1).

Next we construct a symmetric solution, and this will establish nonuniqueness.
Introduce

HI(D) {v e g(fl); v(x,y) v(-x,y), v(x,y) v(x,-y)}

where KA is given by (1.5). Then the argument in [7] shows that there exists a function
uA E Ks,A, which minimizes

J(v) f ]Vv]2 for v E K,A,

and uA is Lipschitz in t satisfying

/kUA=0 in \DA,
[VuA[ cA on ODA FA,

where FA is an analytic curve.
By the argument for proving Theorem 2.1, we can show that there exists

< vol(Ft) such that cA I/lr. Hence (2.1) also has a symmetric solution.

6. An exterior problem. Given a bounded domain Ft C I2 and a positive
parameter I, consider the following problem: find a curve , c ]l(2\t and a function u
such that

/ku 0 in

u 1 on OFt,
t--O on ")’,- on
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where ft is the domain bounded by Oft and ,, and l is the arc length of /.
THEOREM 6.1. Suppose Oft is Lipschitz continuous. Then, for any I > O, prob-

lem (6.1) has a solution (/, u) with " as an analytic curve. Moreover, if Of is star
shaped with respect to a point Xo, "y is also star shaped about Xo and the solution is
unique.

Proof. Introduce the functional

(6.2) J() =/\ (IWl + v>0)x, > 0

and the admissible class

(6.3) K={veHoc(R2); v--1 on t, v>_0 in JR2}.

Consider the following problem" find u u E K such that

(6.4) J (u) min J (v).
vEK

It is known (see [15, Chap. 3]) that (6.4) has a solution u with a bounded support
such that

(6.)
(1)
()
()

u E C’1(12), r O{u > 0} is an analytic curve;

/ku 0 in {u > 0} A (]R2\t);
[Vu[ A on

If 0f is star shaped with respect to X0, Tepper in [23] showed that F is also
star shaped with respect to X0.

Set

(6.6) re(A) min J(v).
vEK

Proceeding as in 2, we can prove that

(1)
(’) (e)

re(A) Alr;
re(A) is continuous in (0, cx).

We shall prove that the range of re(A) is (0,
By the isoperimetric inequality (2.12),

lr _> V/brvol({u = 0})>_ V/4rvol(f).

By (1)in (6.7)it follows that

m() c s - c.

To evaluate lim_0 re(A), choose a disc BR(f() containing ].

consider the function
For any # :> 0,

1 for

Cu(X) I p, log IX-21 for RR

0 for IX-
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Then E K and

m(A) < JA

< (2))-rdrdO +/2voI(BRe
27r# + R2(Ae )2.

Since the function

f(#) #e-

is monotonically increasing in (0, ) and

lim f(#) 0, lim f(#)
--0+

we introduce its inverse function (A) f-(A). Clearly, p(0+) 0 and Ae/()

,().
Now replace in J by (). Then

() e,() + R,().
Letting A 0 gives re(A) 0.

Hence, for any I > 0, there exists a A > 0 such that m(A) I. By (3) in (6.5)
and (1) in (6.7), (u,F) is a solution for (6.1) with F. This accomplishes
existence.

Suppose that 0 is star shaped with respect to X0 . We shall apply the
well-known Lavrentiev principle [18] to prove uniqueness for problem (6.1).

Denote by G the bounded domain enclosed by 7. For any 0 < p < 1, consider
the similarity transformation X p(X- Xo) which was used in [15] and [23] for jet
and cavity problems. Define

; {(x- x0); x e a},

o(X) ( + X0) in G.

To prove uniqueness, suppose there are two solutions (i,Ti) (i 1,2) of (6.1).
We claim that neither G c G nor G c Gt. Otherwise, if G c G then, by
the maximum principle,

< in G,

and on 0t, where u --u2 1,

contradicting

I / IVullds jf
Ot

IVu21ds"

Hence /1 and /2 must intersect. It follows that there exists 0 < Pl < 1 such that
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Note that u _< u2 on O(GPI \(). By the maximum principle, u < u2 in G
Since u’ u 0 on OGo N OG,, it follows by the maximum principle that

1 I I
-IVuf l < IVu2l- on OGI c’l

Pl

(6.8) l < plll.

By symmetry, there exists 0 < p2 < 1 such that

(6.9) 171 < p217.

Combining (6.8) and (6.9), we get

a contradiction.
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LOWER SEMICONTINUITY CONDITIONS FOR FUNCTIONALS
ON JUMPS AND CREASES*

ANDREA BRAIDES

Abstract. A class of functionals of the form

.(u) lu"(t)12 dt + i’lu- gl2 dt +- (t,u(t_),u(t+),u(t_),uP(t+)),
tEs

defined on piecewise H2 functions is studied, where S is the union of the set of points of discontinuity
for u and the set of points of discontinuity for u’; u(t_ ), u(t+) (respectively, u’ (t_), u’ (t+)) denote the
left-hand and right-hand limits of the function u (respectively, of its derivative u) at the point t. Our
main results are Theorems 3.1 and 3.4, where we give necessary and sufficient conditions for the lower
semicontinuity of - in the LI(I) topology in the case of continuous 9a. These conditions are of two
types: subadditivity properties and a compatibility condition that takes into account the possibility of
approximating a "jump" with jumps and "creases" of increasing slope. We show with some examples
that both of these conditions are not necessary when 9 is only lower semicontinuous. The results are
obtained by using recent techniques introduced by De Giorgi and Ambrosio for functions of bounded
variation and adapted by Coscia to piecewise H2 functions. Existence for variational problems related
to a model in image segmentation proposed by Blake and Zisserman is derived.

Key words, lower semicontinuous functionals, free discontinuity problems, image segmenta-
tion, functions of bounded variation

AMS subject classifications. 49J05, 49J45, 49Q10, 26A45

1. Introduction. The fundamental problem in pattern recognition is the de-
duction of the relevant contour of one or more objects from an "input" picture. In a
variational approach proposed by Mumford and Shah [12], this contour is modeled as
the closed set K such that for some function u E Cl(t \ K) the pair (u, K) attains
the minimum value of the integral

(1.1) IVu(x)l 2 dx + 7-ll(K) + I lu(x) g(x)l 2 dx.
f

\g

The function g represents the original picture, defined on a bounded domain t c R2;
A > 0 is a suitable constant and 7-/1 is the one-dimensional Hausdorff measure. The
function u represents a good (discontinuous) approximation of the datum g.

This model presents some drawbacks when we also want to detect crease discon-
tinuities of the function u: it is easy to see that for some data g the behaviour of
the solution u differs greatly from. the input. In order to overcome the inaccuracies

*Received by the editors January 6, 1993; accepted for publication (in revised form) January
3, 1994. The problem of the structure of lower semicontinuous functionals on jumps and creases was

addressed by De Giorgi at a Centro Internazionale Ricerche Matematiche workshop on calculus of
variations and geometric measure theory, held in Trento in March 1992. This work is part of the
Consiglio Nazionale delle Ricerche project Irregular Variational ProblemsNDiscontinuous Structures
and was entirely carried out while the author was visiting the Scuola Internazionale Studi Superiori
Avanzati in Trieste.

fDipartimento di Elettronica per l’Automazione, Universit di Brescia, via Valotti 9, 1-25060
Brescia, Italy.
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of this model, Blake and Zisserman proposed to modify the functional (1.1) by intro-
ducing second-order derivatives, and indeed their numerical computations show better
qualitative approximations of the data (see [4]).

While the model .of Mumford and Shah can be included in the framework of
functionals defined on the space of special functions of bounded variation on 9t, intro-
duced by De Giorgi and Ambrosio (see [10], [1]), it is not clear whether an analogous
weak formulation is possible that takes into account higher-order derivatives (see the
appendix). In dimension one, though, it is possible to consider functionals of the form

(1.2) f, + f, + +

where Jo(u) is the number ofjump points of u and /1 (u) is the number of crease points
of u (i.e., jump points for u’ which are not jump points for u) on the space 7ff2(I) of
piecewise H2 functions. These functionals still model some problems in segmentation
theory (see [4], [8]) and represent the Blake and Zisserman one-dimensional version of
(1.1).

In a recent paper, Coscia [8] has proven a compactness result in 7-/2 (I) with respect
to the LI(I) topology on the sublevel sets {’(u) _< c}, when both coefficients a and

are strictly positive and g L2(I). Moreover, she has also shown that a necessary
and sufficient condition for the L (/)-lower semicontinuity of 9 is that

(1.3) 0< c </3 < 2c,

obtaining, in this case, the existence of a solution for the corresponding minimum
problem.

This work is devoted to the analysis of necessary and sufficient conditions on
the function p that assure the lower semicontinuity in some natural topology of the
general functional

(1.4) 9(u) lu"(t)l 2 dt + lu gl 2 dt + E (t, u(t_), u(t+), u’(t ), u’(t+)),
tS

where S is the union of the set of jump points and the set of crease points for u, and
u(t_), u(t+) (respectively, u’(t_), u’(t+)) denote the left-hand and right-hand limits of
the function u (respectively, of its derivative u/) at the point t. Our main results are
Theorems 3.1 and 3.4, where we give necessary and sufficient conditions in the case of
continuous . These conditions are of two types: subadditivity properties, that assure
that it is not convenient to "split" a jump or a crease into more jumps and creases,
and a compatibility condition that takes into account the possibility of approximating
a jump with jumps and creases of increasing slope. It is interesting to confront these
conditions with the general lower semicontinuity conditions for functionals with jumps
(see the paper by Ambrosio and Braides [3]; see also [5], [6], and [2]), and remark that,
since our functional does not control the first derivative, we cannot simply apply those
lower semicontinuity conditions to the pair (u, ul). For a general introduction to lower
semicontinuity problems in the calculus of variations, we refer to [7] and [9].

The plan of the paper is as follows. Section 2 is devoted to preliminaries; in partic-
ular we recall the compactness result by Coscia and prove the simple Lemma 2.3 that
provides some links between first and second derivatives for sequences with bounded
energy for the functional $’. In 3 we state and prove the main result and apply it
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to recover the lower semicontinuity theorems of [8]. Section 4 is devoted to the non-
continuous case. We first deal with the case of a invariant by translations and show
that necessary conditions are the lower semicontinuity of , subadditivity, and some
kind of compatibility at infinity. Finally, we show with two counterexamples that, in
the general case, these conditions (and hence also the conditions of Theorems 3.1 and
3.4) are not necessary.

2. ’Notation and preliminaries. We use standard notation for Lebesgue and
Sobolev spaces; in particular we make use of the spaces LI(I), L2(I), and H2(I), where
I is an open bounded interval of R. We denote with # the counting measure, and
with R R U {-o, +o} the extended real line.

Following the work of Coscia, we define the space Tl2(a, b) as the space of functions
u E L2(a, b) for which it is possible to find a finite number of points x a < x <

< xk < xk+ b such that u E. H2(xJ,xJ+1) for every j 0,...,k. Note that if
u e 7-/2(a, b), then u and u are bounded and absolutely continuous on each subinterval
(xJ, xJ+). In particular there exist the right-hand and left-hand limits

(e.1)

for every j 0,..., k + 1 (except at x

_
and xk++, of course), and they are finite.

We will regard the functions u’ and u" as defined almost everywhere (a.e.) on
the whole interval (a, b). Moreover, the functions x u(x+), x u’(x+) are defined
everywhere on [a, b), and the functions x u(x_), x u’(x_) are defined everywhere

We define the set Su of jump points of u as the set of those x (a, b) for which
we have. u(x+) 7 u(x_). In the same way we define the set Su, of jump points of u’
for which u’(x+) 7 u’(x_). The set of crease points of u is defined as Su, \ Su.

Note that we have Su, USu c {x,... ,xk}, and that if xJ

_
(S, US) and j 0,

j k + 1, then u H2(xJ-,x+) and, therefore, the point x can be removed from
the subdivision. Hence we can and will suppose that

We say that a sequence (Uh) C 7-/2(a,b) converges weakly in 2(a,b) to u

7-/2(a, b) if we have suPh #(Sh U Su,) < +(x, Uh u strongly in Ll(a,b), u -- u’
a.e. in (a,b), and u u" weakly in L2(a,b). This is the "right" notion of weak
convergence to consider as shown by the following compactness lemma by Coscia [8].

LEMMA 2.1 (compactness, Coscia [8]). Let us consider a bounded open interval
I C R and a sequence of functions (Uh) C 7-/2(a,b) such that

(i) the sequence (Uh) is bounded in L2(I);
(ii) the sequence (u) is bounded in L2(I);
(iii) we have suph #(Su, U Suh)< +(x.

Then there exists a subsequence (Uhk) and a function u 7-/2(I) such that Uhk u
weakly in TI2 I)

We will study the sequential lower semicontinuity of functionals of the form

(2.2) F(u)= E
SuUSu,

(t_),

with respect to the weak convergence of 7-/2(I).
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Lower semicontinuity conditions, together with the compactness result, Lemma
2.1, will lead to an existence theorem for a general class of minimum problems. We will
make the assumption that q > c > 0, which is satisfied by the model functional (1.2).
This condition is necessary for setting the problem in 7-/2; moreover, it assures the
equiboundedness of the number of crease and jump points on minimizing sequences,
and hence the applicability of Lemma 2.1. We refer the interested reader to the
appendix for a formulation of the problem under weaker coerciveness assumptions in
spaces of special functions, of bounded variation.

PROPOSITION 2.2 (an existence result). Let us consider g E L2(I). Let us suppose
that the functional F in (2.2) is sequentially lower semicontinuous with respect to the
weak convergence of 7-/2(I), and 99 >_ c > O. Then, there exists a solution u

of the segmentation problem

+ p(t,u(t_),u(t+),u’(t_),u’(t+)) u 7-t(I)}.
tE SuUSu

Proof. We can rewrite our problem as

(2.3) min{]ilu"ldt+]ilu-gldt+F(u)" u e/-/(I)},
where F is given by (2.2). Moreover, since _> c > .0, we have

F(u) >_ c #(S U S, ).

Let us consider a minimizing sequence (Uh). By (2.3) and (2.4) this sequence satisfies
hypotheses (i)-(iii) of Lemma 2.1. Hence we can suppose (up to subsequences) that
Uh u weakly in 7-/2(I). By the weak convergence in L2(I) of u to u’ we get

(2.5) I ,,I dt < lim inf f/lull 2 dr;
h

by the convergence of Uh to u in Lt(I), and the weak lower semicontinuity of the
L2-norm, we get

] u g 2 dt < lim inf ] Uh g 2 dr.
Jz h

Finally, by hypothesis F is sequentially lower semicontinuous with respect to the weak
convergence of 7-/2(I), hence F(u) < liminfh F(uh). These inequalities show that u
attains the minimum in (2.3). VI

We conclude this section by proving an elementary lemma that will be needed
in what follows. It shows that, even though the functionals considered here do not
directly weigh the first derivative, u is not allowed to have an arbitrary behaviour.

LEMMA 2.3. Let tl t2, Wl w2, 1, 2 a with tt < t2. Then we have



1’188 ANDREA BRAIDES

Proof. It suffices to remark that the Euler-Lagrange equation related to the afore-
mentioned minimum problem

u(iv) 0

has a unique solution satisfying the given boundary conditions. Then it is easy to
compute this polynomial of degree 3 and check the minimum value.

tRemark 2.4. Let us consider two sequences of points (h), (t) with t < t,
converging to the same point t, and a sequence of functions (Uh) C S2(t,t) such
that

sup [u[ dt < +oc.
h Jt

If --, th n 6 from
obtain that

(u’.(tl) 4(t)) <_ (t t) O.

Moreover, if (1 G [-o, +oc], then we must have

lim
u(t2a) u(t)

h t-t ="
In particular, if {-oc, +oc} then we must have

lin(u(t) u(tlh)) O,

and if u(t) --, ul, u(t2h) u with u > Ul (respectively, u < Ul) then
(respectively, -ec).

3. A lower semicontinulty theorem. In this section we prove necessary and
sufficient conditions for the sequential lower semicontinuity with respect to the weak
convergence in 7-t(I) of functionals of the form

(3.1) F(u) E (t, u(t_), u(t+), u’(t_), u’(t+))
tS,USu,

in the case of a continuous "integrand" p. This result will not directly include some
important cases considered in the literature, where p is supposed to be only lower
semicontinuous; in any case, we will show in Theorem 3.5 how to treat easily these
cases using our Theorem 3.1 and an approximation procedure. Our main result is the
following theorem.

THEOREM 3.1 (lower semicontinuity: the case of continuous ). Let us consider

a continuous function I x R x --, [0, +oc]. Then, necessary and sufficient
conditions for the functional F in (3.1) to be sequentially lower semicontinuous with
respect to the weak convergence of 2(i) are as follows:

(i) (subadditivity) for every t I and u, v, w, , r, R such that (u,
(v, r), we have

(3.2)

(ii) (compatibility) for every t e I and u, v, w, z, , r e R with (u, ) # (v, r)
and w z, we have

(3.3)
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where,=+00 if z > w andS=-00 if z < w.
Remark 3.2. (1) It is worth spending a few .words on the function and conditions

(3.2) and (3.3). In the definition of we also take into account the values -00

and +00. These correspond to "infinite slope" or a "vertical crease." We also have
to take into account these degenerate creases, since a "pure jump" (for which we
have to consider qz(t,u(t_),u(t+),u’(t_),u’(t+))) can be approximated using slopes
diverging to 4-00 (for which we have to consider (t, u(t_), u(t_), u’(t_),4-00) and
(t,u(t+),u(t+),4-00, u’(t+))--note that we make no assumption on the L2 norm of
the derivative uI, and hence steep slopes are allowed). Condition (3.3) accounts exactly
for this possibility, excluding the convenience of infinite slopes. Note that if u < v,
then condition (3.3) in particular yields

(and an analogous condition holds if u > v). This case corresponds to the approxima-
tion of a jump with two creases. The inequality in (3.2) instead shows that "splitting"
a jump into two jumps cannot lower the value of F.

(2) By the continuity of , (3.2) and (3.3) must also hold for , , 4 e {-00, +00}.
(3) Since we will never consider points of the form (u, u, , ), we can require q

to be defined and continuous, and satisfy (3.2) and (3.3) only outside the "diagonal"
{(t,u,u,,) t E I, u E R, R}.

(4) Functionals of the form

F(u) X: (t, (t+) (t_), ,(t+) ,(t_))
SuUSu

can be dealt with in the same way as in Theorem 3.1 (see Theorem 3.4). Note, however,
that the function qz(t, u, v, , r/) (t, v u, r/- ) will not satisfy the hypotheses of
Theorem 3.1, except for trivial cases.

Before proceeding in the proof of Theorem 3.1 we give, in the following proposition
an equivalent form for (3.2) and (3.3) that will be useful in what follows.

PROPOSITION 3.3. Conditions (3.2) and (3.3) are equivalent to the requirement
that we have

(3.4)
m

(t, , , , ) s X: (t, t, t, ’, ’+)
i--1

for every choice of real numbers u, v, , e R and every choice of (u_), (u) C R,
i-1 and((i) C R, i.= 1,...,m, m N, satisfying (i +00 if u

_
> u+ -00 if

i--1 tlu_<u+ ,(=,(=, _=u,u-v.
Proof. Clearly .(3.5) implies (3.2) and (3.3). Let us prove the converse. If m 1

the equality is trivial. If m 2 we have two possibilities: either we have u u[, in
which case we obtain (3.2) with u and w u u[, or we have u u[,
in which case (3.4) is equal to (3.3). Then the proof can proceed by induction. Let us
consider u, v, [, e R and (u), (u) C R, (i) C , 1,..., m, as above. Let us

m-=umandset (andw -=u Thenwehavefirst suppose u+ u+
m m--1

X:(t,t,t,,+l) (t,.t,i,,(+11 + (t,,,,)
i--1 i--1

> (t, , , , () + (t, , , (, ) > (t, , v, , ).
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Note that we have made use of (3.2), Remark 3.2(2) if necessary, and (3.4) for m- 1,
which also holds true for E R by the continuity of .

If u-1 < u_m, then we must have Cm +oc. We therefore obtain

Here we have used (3.3) and (3.4) for m- 1. In the same way, we deal with the case

u+ > and =-.
Proof of Theorem 3.1. Without loss of generality we suppose that I (-1, 1).
Part one: Necessity. Let us fix t E (-1, 1); we can suppose t 0. Let us consider

u, v,, 7 G R with (u,) # (v, 7) and define the function u G 2(-1, 1) by setting

(3.5) u(x)=u+x if x<0,
v+7x if x>_0.

We have Su t2 Su, {0} and F(u) (0, u, v, , 7).
(Uh) C 2(_ 1, 1) by setting

Let us define the sequence

(3.6)
u +(x +-) ifx< h

Uh(X) W / x if -1/4 < x < ,
v/7(x-) ifx_> h"

We have Uh u weakly in 2(-1, 1) and Sub U S% C {--, }, so that

(1F(u) < --,,w- ,, +
By the lower semicontinuity of F we then have

that is, we have equation (3.2). Let us remark that this inequality is trivial if (u, )
(w, ) or (v, 7) (w, ), and hence we do not really use the continuity of p on the
"diagonal" (recall Remark 3.2(3)).

The proof of (3.3) follows the same line, using a different approximating sequence
for the function u defined in (3.5). Let us choose w, z l:t with w # z, and construct
the sequence Uh as follows:

(3.7)
+( + )
’( + z) + (z )(z)
v +( )

ifx < -1
h

if- x< ,
if x>_ .

Again, Uh u weakly in 7-/2 (-1, 1), Suh U Su, {--, }, and

( )(1 )1 h(z-w) + ,z,v, (z-w),F uh - u, w, - - - 7
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By the lower semicontinuity of F and the continuity of 99, we then get

99(0, u,v,

(0, ,,, ) + (0, z, , , ),

where limh_+ (z- w), and hence we have obtained (3.3).
Part two" Su]ficiency. Let us fix a sequence (Uh) C 7/2(--1, 1) converging to u

weakly in 7-/2(-1, 1). Then we can suppose (up to subsequences) that it is (S=h t2

Su,) < N < +oo. Let us consider a point t E Su (2 Su,. We can suppose (up to a

further subsequence) that there exist exactly m sequences (x) C Sub USu converging
to t with x < x <... < x, and for every i 1,...,m we have

Note that by Remark 2.4 we have that

_
+1 for 1,..., m- 1. Let us define

i /__ for 1,...,m and ’+1 . Again, by Remark 2.4, we obtain that

u+i- u/_ whenever { E R, and also +oc (respectively, -oc) whenever
U
i-

Ui
i--

U+ < (respectively, u+ > _). Note also that

[ (t_), (t+), u,(t_), 7 ,(t+).

The quantities (u/_), (u), and (i), 1,..., m, satisfy the hypotheses of Propo-
sition 3.3 with u u(t_), v u(t+), u’(t_), and r/ u’(t+). Therefore we
have

m

(t, (t_), (t+), u,(t_), ,(t+)) <_ ,(t, L, t, eL,
i--1

lim 99(x Uh(X ),th(Xh_f_ Uh(X_)Uh(X+)).
h

Repeating this argument for every t e S= t2 S=,, we obtain

F(u) < liminf F(uh).
h

Hence the theorem is proved. [3

THEOREM 3.4. Let " I x R x R [0, +.oc] be a continuous function. Necessary
and sufficient conditions for the functional

F(u) (t, (t+) (t_ ), ,(t+) , (t_))
SUSu,

to be lower semicontinuous with respect to the weak convergence of 7{2(I) are
(i) (subadditivity) for every t e I and every u, v, , rl e R,

(t, u + v, + v) < (t, , ) + (t, , n);

(ii) (compatibility) .for every t I,

sup (t,., .) N inf (t,., +ec) + inf (t,., --oc).
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Proof. The proof of Theorem 3.1 can be followed, taking some extra care in the
proof of Proposition 3.3 and the sufficiency part, possibly extracting further subse-
quences in order to avoid

We want to apply Theorem 3.4 to re-obtain a lower semicontinuity theorem proven
by Coscia [8] for the functional defined on 7-t2(0, 1) by setting

:TZ(u) lu"l 2 dt + lu gl 2 dt + a#(S, \ S) +

This functional can be written as

(u) lu"l 2 dt + tu gl 2 dt + F(u),

where F is defined as in Theorem 3.4, and is defined by setting

(t, , ) () Z if s#0,
ifs =0.

THEOREM 3.5 (A. Coscia [8]). Let c, 1 E R satisfy

(3.9) 0 < < < 2a.

Then the functional , extended to +oo on LI(0, 1)\T/2(0, 1), is lower semicontinuous
with respect to the L (0, 1) convergence.

Proof. By Lemma 2.1 it suffices to prove that F is lower semicontinuous on

T/2(0, 1) with respect to the weak convergence of -/2(0, 1). We cannot directly apply
Theorem 3.4 since the function is not continuous, but only lower semicontinuous.
Nevertheless, we can write F as the pointwise supremum of a family of functionals Fh
for which our result applies. Let us define, for every h E N,

,,(t, , t:) ( + hll) A

Each Ch is continuous on (0, 1) R . Let us check conditions (i) and (ii) of Theorem
3.4. We have

n(t, u + v, + 7) ( + hlu + vl)// <_ (o + hlul + hlvl)/ D’
_< (( + hlul)/) + (( + hlvl)//) =h(t,u,)+h(t,v, rl)

such that (i) is satisfied. Moreover, we get

Cu(t, s, ) (a + hlsl)// <_/ <_ 2 inf Ch (t,., +oe) + inf Ch (t,., --oo),

and hence we also obtain (ii). If we define, for u 2(0, 1),

()
tESuUSu

(t, (t+) (t_), ’(t+) ’(t_)),

then Fh is lower semicontinuous in T/2 (0, 1) by Theorem 3.4. The lower semicontinuity
of F in ?-/2(0, 1) follows by observing that F(u) suPh Fh(u). Eventually, the lower
semicontinuity of $" can be proven as in Proposition 2.2.using Lemma 2.1. El
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Remark 3.6. The proof of Theorem 3.5 can be easily extended to prove the lower
semicontinuity in 2(0, 1) of functionals of the form

+

with " R --. [0, +c] subadditive and continuous, under the hypothesis

sup <_ _< (-c) +

This condition is also necessary (see Remark 4.2(2)).
4. Some counterexamples. In the previous section we proved the lower semi-

continuity theorem under the hypothesis of continuity of the function . This section
is devoted to the analysis of the functionals of the form (3.1) in the case of lower
semicontinuous a. We will see, with the aid of some examples, that it is not possible
in general to give a simple criterion of lower semicontinuity for these functionMs.

Let us first give some necessary conditions for the special class of functionals F,
which are even and invariant under the addition of C functions; i.e., F(-u) F(u)
F(u + ) for all E C1. These functionals depend only on the absolute size of jumps
and creases.

PROPOSITION 4.1. Let [0, +oo[x [0, +oc[---+ [0, +oo] be a Borel function, and
let us suppose that the functional F defined on 7-/2(I) by

is sequentially lower semicontinuous in 2(i). Then we must have
(i) a is lower semicontinuous on ([0, +[[0, +cx[)\ {(0, 0)};
(ii) (subadditivity) for every u, v, , 7, R with u v, 7,

(iii) (compatibility) for every u, s > 0 with (u, s)

T(u,s) < liminf((0, t) + (Z(0, t / s)).

Proof. (i) We can suppose 0 6 I. Let us fix (u,) # (0, 0) and (Uh,h) -- (u,)
with u, Uh, , h O. Let us consider the functions

" 0 if t < 0,
Uh + ht ift_>0,

and

Then we obtain
" 0 if t < O,
u+t ift_> O.

%v(u,) F(u) < liminf F(uh) 99(Uh,h).
h
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(ii) Let us define the functions u as in (3.5) and Uh by setting

u+(t+-) ift<--
Uh(t) 0 if-- l<t< ,v+rl(t-}) ift_> .

It is easy to check that Uh -’-+ U in 7-2(I). Then by the lower semicontinuity of F we
get

([u v[, I r/I) F(u) < liminf F(Uh) qa([u[, [1) + (]v[, ][).
h

(iii) It suffices to consider the sequence of functions

0
uh(t) ht

U+

ift <0,
ifO<t<
ift>g

that converge in 7-/2(I) to the function u in the proof of (i), and apply the lower
semicontinuity.

Remark 4.2. (1) Other necessary conditions different from (iii) can be obtained
by following the arguments used in the proof of the necessity of (3.3).

(2) From Proposition 4.1 we obtain that necessary conditions for the lower semi-
continuity of the functional $" in (3.8) are a _</3 (for the lower semicontinuity of )
and/3 < 2a (for the compatibility condition (iii)). Hence, recalling Theorem 3.5, we
have that condition (3.9) is necessary and sufficient for the lower semicontinuity of 9r.

If we do not require the continuity .of at infinity, condition (ii) of Theorem 3.1
(or condition (ii) of Theorem 3.4) is not necessary for semicontinuity as shown by the
following example.

Example 4.3. Let us consider the functions f, f2, f" R --+ {1, 2}, defined by

1 ift2Z, f2(t)= {1 ift+l2Z,
fl (t) 2 otherwise, 2 otherwise,

and f fl A f2, and let us define " a4 ---+ {1,2,3} by setting

,)

3
2

ifu=v>0,
ifu=v<0,
ifu=v=0,
if u = v, uv < 0,
if u = v, uv>_O.

The function is lower semicontinuous and we can extend it at infinity by lower
semicontinuity. For example, we set

v, lim inf
(s,t,,e)--. (,v,u,+o)

1
2
3

ifu v,
if u = v, uv > 0,
if u = v, uv < O.

Condition (i) of Theorem 3.1 is verified, while condition (ii) is not. In fact, if u v
and uv < 0, we have

(u, v, , /) 3 > 2 (u, u, , +cz) + (v, v, +c, 7).
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Nevertheless, we can show that F, given by (3.1), is lower semicontinuous on T/2(I).
In fact, let us take a sequence (Uh) converging to u weakly in 7-/2(1). We have to show
that for every x E (Su U Su,) we have

(4.1)
((x_). (x+).’(x_). ’(x+))

m

_< lim infE 99(Uh(X_), Uh(X+), Uh (Xhi Uh (X+)),h---+cx)

i-’1

where (x) are the points of Sub U Su that converge to x (we can suppose m inde-
pendent of h). If u(x_)u(x+) >_ 0 then 99(u(x_), u(x+), u’(x_), u’(x+)) <_ 2, and it is
easy to see, by the lower semicontinuity of 99 and condition (i) of Theorem 3.1, that
(4.1) is satisfied. Then the case u(x_)u(x+) < 0 remains, so that

99(u(x_), u(x+), u’(x_), u’(x+)) 3.

If m

_
3 then inequality (4.1) is trivially verified, so it is also verified by lower

semicontinuity if m 1. Then we can confine our analysis to the case m 2 and
supposex < x for every h e N. If we haveu(x_) u(x+) fori 1 ori 2
and for all h N, then the inequality is satisfied again. Then the only case left out is

Uh(X_) Uh(X+) for i= 1,2. By Remark 2.4, we must have

’(xi+) u’(x_) o

as h - +c and, in particular,

Uh(X+)- Uh(X_) 1 + 2Z.

Since we definitely have Uh(Xh)Uh(Xh) < 0, we get

.,(x_) .99(u(x_). l(x+), ut(x_), lff(x+)) 3 <_ 99(Uh(X_). lh(X+). (Xh+))l.(X_).’+ ((X_).(+). (X+)).
and hence the thesis.

We conclude the section with another example that shows that in the general case
of 99 lower semicontinuous, but depending effectively on all its arguments, not even
the subadditivity condition (i) of Theorem 3.1 is necessary.

Example 4.4. Let us consider the function 99:R4 -- {1, 3}, defined by setting

1(.v..v)
3

if (u, )- (0, 1) or (v, 7)= (0, 1),
otherwise.

The function 99 is lower semicontinuous but it does not satisfy condition (i) of Theo-
rem 3.1. In fact we have, for example,

99(2, 1, 1, 1) 3 > 2 99(2, 0, 1, 1) + (0, 1, 1, 1).

Let us consider the functional F given by (3.1). In order to prove that it is lower
semicontinuous with respect to the weak convergence of 7-/2(I), it is sufficient to take
u 7-/2(I) and consider the case of a single point x Su U Su,. Given a sequence
(Uh) converging to u, we can suppose, as in the previous example, that there exist
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exactly m sequences (x),..., (x) of points of Sub t2 S, converging to x. We must
check (4.1). If m > 3 this inequality is trivial, so it is also trivial if (u(x+), u’(x+))
(0, 1) or (u(x_), u’(x_)) (0, 1); if m 1 then it is an immediate consequence of
the lower semicontinuity of . This leaves the case m 2 and (u(x+),u’(x+)) =/=
(0, 1) (u(x_), u’(x_)). We can suppose x < x for every h e N. Since we have
(Uh(Xlh_), Uh(Xt_)) -- (U(X-), U’(X-)) and (Uh(X2h+), Uh(X2hA_) --+ (U(X+), U’(XA-))
inequality (4.1) is violated only if

=o, 1.

But then, by Lemma 2.3, we would have

fx ul2
6

dt >
xl "

Since this quantity diverges as h - +c, contradicting the convergence of (Uh) in
7-/2(I), this case is also ruled out, and the lower semicontinuity of our functional is
proven.

5. Appendix: Some remarks on functionals on special functions of
bounded variation (SBV). As noted in the introduction, functionals of the form
(1.1) can be included in the framework of the space SBV(t) of special functions of
bounded variation introduced by De Giorgi and Ambrosio. In this section, we briefly
recall the definition of this space, referring to [1] and [10] for more details. We also con-
front the formulation of minimum problems in 7-/2(a, b) and SBV(a, b) and underline
some difficulties in the extension to problems in higher dimension.

Let gt be a bounded open subset of Rn and v E BV() (a function of bounded
variation in ; see, e.g., [11] and [13]). We define Sv as the complement of the Lebesgue
points of v. We recall that we can define a measure theoretical "normal" v(X) at Hn-1

a.e. x e Sv (Hn-1 denotes the (n- 1)-dimensional Hausdorff measure), and v+, v-,
the approximate values of v on both sides of Sv (defined in such a way that . "points
towards" v+). The triplet (, v-, v+) is determined up to a change of sign of and
an interchange of v+ and v-. We denote by Vv the approximate gradient of v, which
exists a.e. on t. We say that v SBV(12) if v BV(gt) and its measure derivative
Dv satisfies

(5.1) Dv(E) /E VV dx +/E (v- v-)l]v dun-1

for all Borel subset E of . Note that if v e BV() then Vv e (Ll(t))n.
Remark 5.1 (weak formulation in dimension one). In the one-dimensional case

t (a, b) we can consider the space

SBV2(a, b) {u E SBV(a, b)" u’ SBV(a, b) }

(in dimension one we write u’ in place of Vu). Then, as in 2, we can consider
functionals of the form

(5.3) ’(u)=f(a lu[2dt+((a }u-gl2dt+ E
,b) ,b) tESuUSu

u’+ (t)),
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where u" now stands for the approximate differential of u and we choose and p,

always equal to 1.
If >_ c > 0 then the space 7-/2 (a, b) is exactly the space of functions in SBV2 (a, b)

on which 9r is finite; hence the two approaches are equivalent (as already noted in [8]).
The introduction of the space SBV2 allows the weakening of the coercivity conditions
on as in [1] by requiring only that

(5.4) co((Iv-ul  A Ac ))

for some 0 <_ al, a2 < 1, and strictly positive constants co, cl, c2. In this case the
functional may also be finite outside the space 2(a,b) and, in particular, we
may have a minimizing u with infinitely many crease or jump discontinuities. This
phenomenon does not seem to be natural in the framework of segmentation theory.
We remark that all our results continue to hold in SBV2(a, b), taking into account
Lemma 4.1 in [1] in the proofs, provided we define the weak convergence Uh u in
SBV2(a, b) as Uh --+ U strongly in Ll(a, b), u --+ u’ a.e. in (a, b), and u u" weakly
in L2(a, b) with suPh (Uh)

Remark 5.2. (weak formulation in higher dimension). We can generalize the space
SBV2 to gt bounded open subset of Rn by defining

SBV2(a) {u E SBV(a) Vu E (SBV())n}.
We will show that this space is not suitable for dealing with functionals which take
into account discontinuities of the first derivatives.

Let us consider the simple case of the functional in (1.2). The corresponding
generalization to SBV(t2) is

(5.6) 9v(u)=

(V2u denotes the approximate gradient of Vu). We will show that the sets {u
SBV2(t) .7"(u) <_ c} are not compact for the a.e. convergence, and hence no ap-
plication of the direct methods of the calculus of variations as in Proposition 2.2 is
possible.

The following example is from De Giorgi: Let us consider the sequence (Uh) of
SBVoc(R2) functions defined by

tth(X) th(Xl X2) { 0
4k--(Xl--)

if x

_
[.jh B((1/k 0),2-(k+1))k=l

if x e B((1/k,O),2-(k+l)), k e {1,...,h}

(B(x, p) denotes the ball of center x and radius p). We have, by simple calculations,

(Uh) /a luh gl2 dx +/Hl(Suh N a)

h

<- 2 jl lUhl2 dx + 2 /a lgl2 dx + E 7r2-h
k-1

h

< + 2 Igl dx + Tr <_ c < +cx.
8
k=l
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Moreover, the sequence Uh converges in Loc(R2 to the function u given by

( 0

(z,
if x U= B((1/k,O),2-(k+l)),
if x e B((1/k,O),2-(k+l)), k "1,2,

We see that by taking, for example, t B(0, 2), we have

4h 7r
IVuldx- (2-(h+))-h--1

Hence Vu is not integrable and we have u SBV(t) and Vu (SBV(t))2; in
particular, u SBV2(gt).
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GLOBAL ASYMPTOTIC DYNAMICS OF GRADIENT-LIKE
BISTABLE EQUATIONS*
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Abstract. The dynamics on the global attractors of bistable gradient-like evolution equations
are described via a semiconjugacy onto the dynamics of a simple system of ordinary differential
equations. The fact that the semiconjugacy is "onto" implies that, given any solution to the ordinary
differential equation, there exists a corresponding orbit on the attractor of the evolution equation.
It is also shown that these results apply to the damped wave equation, a viscoelastic beam equation,
the Fitz-Hugh-Nagumo equations, the Cahn-Hilliard equation, and the phase-field equations. The
proofs are based on the Conley index theory.

Key words. Conley index, Cahn-Hilliard equation, Fitz-Hugh-Nagumo equation, viscoelastic
beam, damped wave equation

AMS subject classifications. 35B40, 35K22

1. Introduction. This paper characterizes the dynamics on the global attractor
for bistable gradient-like differential equations. Although we shall purposely remain
vague about the exact meaning of bistable, the archetype is the Chafee-Infante prob-
lem

+ x e (0..).
(1) u(0, t) u(r, t) 0,

where A E [0, oc). This equation and its generalizations have been extensively studied
(see [5], [15], [11], [4]). For our purposes, however, the following result is of greatest
interest. Let j[ denote the global attractor for (1) and %a

x R x Ax Ax denote the
induced flow on the attractor; then the dynamics of are completely understood up
to topological conjugacy. To be more precise, let

DP := {z (zo,...,zp_)lllzll 1} c Rp

be the closed unit ball in Rp and Sp- ODp be the unit sphere. Let cP R
DP Dp denote the flow generated by the following system of ordinary differential
equations:

(2) Q- (Q, ), Se-,
(3) e [0.

where

1 0 0
0

0

The dynamics of cP are easily understood if one realizes that (2) is obtained by
projecting the linear system k Qz onto the unit sphere. Let e (0,..., =t=l,..., 0)
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be the unit vectors in the pth direction and [A] denote the greatest integer less than
or equal to A. Then one has the following result.

THEOREM 1.1. There exists a homeomorphism f jt ---, D[] such that the
following diagram commutes:

I{ x .,4,

.,4,

idx f R x D[1

where is a flow obtained from by an order-preserving reparameterization of
time. In other words, the dynamics on .4 are conjugate to those on D[].

The proof of this theorem relies heavily on the following four facts:
1. The semiflow (I) generated by (1) has a global compact attractor ,4. Fur-

thermore, when restricted to this attractor, h becomes a flow p.
2. The functional

i1 2 t2 t4

V(u) Ux + dx
2 2 -is a Lyapunov function for .

3. The set of equilibrium points $ are known exactly for each parameter value.
4. The flow on ,4 is Morse-Smale [1], [16].
By now it is well known that there are many systems of partial differential equa-

tions for which conditions (1) and (2) are satisfied. The third condition is problematic.
The ability to compute the set equilibrium points depends highly on the type of evo-
lution equation and the nonlinearity. Thus, if one wishes to prove a general result,
one either assumes that this information is known or proposes a weaker notion of
equilibrium set. We shall do the former in this paper, leaving the latter for another
paper. The final condition is almost surely false in general, and one may view one of
the contributions of this paper as providing a method for obtaining global dynamic
information without explicitly requiring transversality.

Since our techniques are intended to be widely applicable, i.e., to any bistable
gradient-like system, it is necessary to formulate the following assumptions abstractly.

(A1) fl. is a global compact attractor for a semiflow (I) on a Banach space. Fur-
thermore, if a denotes the restriction of to A then defines a flow on
A.

(A2) Under the flow :R A A

4(A) {M(p+) p 0,... ,P- 1} U {M(P)}

with ordering P > P- 1+ > > 1+ > 0+ being a Morse decomposition of
A.

(A3) The cohomology Conley indices of the Morse sets are

ZCHk(M(P)) 0
if k= P,
otherwise.
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and for p 0,...,P- 1,

ZCHk(M(P+)) 0
if k =p,
otherwise.

(A4) The connection matrix for AA(A) is given by

0 0 0 0

Do 0 0

D1 ". 0

0 0
0 Dp-1 0

where, up to a choice of orientation for p 0,..., P 2,

Dp CHP(M(p-))(R)CHP(M(p+)) CHP+I(M(p+I-))(R)CHP+I(M(p+I+))

is given by

Dp=I11 -11-1
and

DR-l" CHP-I(M(P 1-)) G CHP-I(M(P 1+)) -- CHP(M(P))
is given by

DR [1,-1].

The terms used in these assumptions are defined in 4. For the moment, however,
it is sufficient to accept that these assumptions parallel the crucial facts used to
understand the Chafee-Infante problem. In particular, it is obvious that (A1) replaces
condition (1). (A2) and (A3) together are generalizations of (2) and (3), and (A4) will
be used in place of the Morse-Smale condition. With these assumptions we obtain
the following theorem.

THEOREM 1.2. Given assumptions (A1)-(A4) there exist a continuous surjective
map f :,4 -- DR and a flow obtained by an order-preserving time repararneteriza-
tion of such that the following diagram commutes:

RxA idx f ,RxDP

f
A DP

where M(p+-) f-l(ep for 0 <_ p <_ P 1, and M(P) f-1 (0).
Observe that the difference between Theorems 1.1 and 1.2 is that the latter only

claims the existence of a semiconjugacy with the flow cP. The proof of Theorem 1.2
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is presented in 6 and 7. It is based on similar work by McCord and Mischaikow
[20], which described the global dynamics for scalar delay equations with negative
feedback.

It is, perhaps, appropriate to comment at this point upon the reparameterized
flow 95. It is obtained via an order-preserving time reparameterization, and hence
shares the same qualitative properties as o. We choose to make it explicit for two
reasons: it is used in our proof and it allows one to decouple the space and time
parameters for the map from R ,4 to R DR.

As was previously indicated, the assumptions of Theorem 1.2 are stated in a rather
abstract form. To be applicable it needs to be shown that (A1)-(A4) are verifiable.
Therefore, in 2 we present three hypotheses, labelled (H1)-(H3), which are meant to
be "computable" in practice and yet imply (A1)-(A4).

In 3 we present a variety of "bistable" gradient-like evolution equations. In
particular, we discuss the one-dimensional damped wave equation, a viscoelastic beam
equation, the Fitz-Hugh-Nagumo equations for special parameter values, the Cahn-
Hilliard equation, and the phase field equations, and show that hypotheses (H1)-(H3)
are satisfied in each case.

This paper was organized to emphasize the applications, rather than the abstract
results. Therefore, we have relegated the most abstract aspects of the proofs to the
end of the paper. It is hoped that this will permit the reader who is not acquainted
with the Conley index theory to become familiar with the goals of the results before
plunging into the details. The reader whose primary interest is in the index theory
techniques may wish to read the sections in the order 1, 6, 2, 5, and finish with
the applications in 3.

2. Verifying the assumptions. Given the intended applications of this paper,
i.e., bistable gradient-like equations, assumptions (A1)-(A4) are more general than
necessary. We hope to justify this excess generality in future papers; however, for the
moment we shall concern ourselves with the problem of verifying the assumptions. In
the next section we present reasonably different examples of bistable equations and
show that they all satisfy the following three hypotheses.

(H1) There exists a continuous parameterized family of semiflows on a Banach
space X,

(I,’R+xXxA--+XxA,

given by

where the parameter space A is a compact interval in [0, oo). Furthermore,
has a global compact attractor 4 and Ii generates a flow

where

and o: is a flow defined on

2. n (x {a}).



GLOBAL DYNAMICS OF BISTABLE EQUATIONS 1203

M(0% M(I+)
M(2+)

M(3

M(0) M(4) X

M(2-)
M(0-) M(r)

M(3-)

FIG. 1. Bistable Dirichlet bifurcation diagram.

M(O/)

M(1)

M(O-)

FIG. 2. Bistable Neumann bifurcation diagram.

(H2) As a function of A, the equilibrium solutions gx of are given by the
bifurcation diagrams of Figs. 1 or 2. Furthermore, at each bifurcation point
Ap the zero solution 0 undergoes a generic supercritical pitchfork bifurcation.
In the case of Fig. 2 the equilibria M(0+) are stable.

(H3) There exists a continuous Lyapunov function V" ,4 -- R such that
(i) for all A E A, if u g then V(pX(t, u)) < V(u) for all t > 0,

such that M(p+) C V-(Vp).(ii) for every p there exists Vp
The goal of this section is to show that under these hypotheses it is possible to

obtain the conclusion of Theorem 1.2. In particular, we wish to prove the following
theorem.

THEOREM 2.1. Assume hypotheses (H1)-(H3) hold and let p < < P+I.
Then, for .A .A assumptions (A1)-(A4) are satisfied.
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While it is presumed that the meaning of hypotheses (H1)-(H3) will be clarified
via the specific examples of 3, several general comments are in order at this point.

1. Most "natural" choices of parameter values give rise to continuous families
of semiflows. Also, there is a rapidly growing body of literature dedicated to
proving the existence of global attractors [12], [11], [24]. Therefore, (H1) can
be verified for a wide range of differential equations.

2. (H2) is extremely restrictive. It is highly dependent on the choice of nonlin-
earity and, even if valid, can be extremely difficult to verify rigorously. On
the other hand, if one is willing to accept numerical evidence, then the equi-
librium sets may be computable. Furthermore, implicit in the statement that
0 undergoes a generic supercritical pitchfork bifurcation at Ap is the assump-
tion that, for A close but not equal to Ap, 0 is a hyperbolic equilibrium. In
fact, in all our examples it can be shown that 0 is hyperbolic for all parameter
values except the bifurcation points.

3. Lyapunov functions occur naturally in many physical models, thus (H3)
should not be considered a very restrictive hypothesis.

The only nontrivial part of the proof of Theorem 2.1 is demonstrating that (A4)
is satisfied. This will be done in 5. The other aspects of the proof are fairly straight-
forward. In fact, restricted to a specific parameter value (H1) is identical to (A1). As
the following two lemmas show, (A2) and (A3) are verified almost as easily.

LEMMA 2.2. Given (H1)-(H3), /f A (Ap, Ap+I], then

Ad(A) {M(p+)[0 _< p < P} t2 {M(P)}
is a Morse decomposition of

Proof. By (H2), the finite set A//(Ax) contains all the critical points in A. By
(H3) the flow is gradient-like and, therefore, 3//(A) is a Morse decomposition (see
[23, Chap. 23, D.2]).

Observe that (A2) is stronger than the result of this lemma. In particular, we
still need to prove that P > P- 1+ > > 0+ is an admissible partial ordering.
Although our proof is elementary it uses some technical results from the Conley index
theory, and hence, we shall present it in 5.

LEMMA 2.3. Given (H1)-(H3), (A3) holds.
Proof. We shall only present the proof in the case where the set of equilibrium

points is given by Fig. 1. The argument in the setting of Fig. 2 is essentially the same
and is effectively given in [23].

The proof is by induction. For A0 < < At, 4a M(0); therefore, by Proposi-
tion 4.1 the cohomology Conley index of M(0) is

Z ifn 0,CH(Ma(O)) 0 otherwise.

Now, we use the fact that the bifurcation at A1 is a generic supercritical pitchfork
bifurcation to conclude that, for A close to but greater than A1, M(1) is a hyperbolic
fixed point with exactly one eigenvalue in the right half-plane. Hence

Z if n= 1,CH(Ma(1)) 0 otherwise.

Similarly, for A close to but greater than At, the two equilibrium points MX(0+)
bifurcating out of the zero solution are asymptotically stable equilibria, and hence

Z ifn 0,CH(Ma(O+)) 0 otherwise.
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Since the branches of equilibria M(0+) undergo no further bifurcations, their index
remains constant. A simple induction argument now finishes the proof.

3. Applications. Before presenting the applications, we must make a general
comment. In all the examples, the spacial domain is taken as a bounded interval in
R. It is expected that these results can be extended to the setting of thin domains
[13]. Obviously, for general multidimensional domains the bifurcation diagrams will
be considerably more complicated than Figs. 1 and 2.

Also, note that the continuity demanded by (H1) is satisfied for all these examples,
since the parameter is either the length of the spacial domain or a constant positive
nonsingular coefficient.

3.1. Damped wave equation. Consider

(4) utt+aut-u= f(u),, xe(0,r),

with Dirichlet boundary conditions

0

f(u) < O, andand a > 0. Assume f E C2(R), f(0) 0, if(O) 1, limsuPlul u

uft’(u) < 0 for all u E R \ {0}.
Then, following the discussion in [11], (H1)-(H3) are satisfied, where, as a function

of A, the bifurcation diagram is given by Fig. 1. In fact, the discussion makes it
clear that the same results hold, if, in (4), the term ant is replaced by h(ut), where
h C (R, R), h(0) --0, and 0 < a <_ h’ < b for some positive constants a and b.

3.2. One-dimensional beam with soft loading. Hattori and Mischaikow [14]
considered the following model for a one-dimensional beam with soft loading"

utt a(ux)x + puxt rlux, x e (0, 1),

wi.th boundary conditions

u(0, t) 0, a(u(1, t)) + ut(1, t) Ux(1, t) P,

ux(0, t)=Ux(1, t)=0.

The nonlinearity cr C3 given in Fig. 3 was assumed to satisfy the following growth
conditions:

(6) lim o’(q) Clqa, a >_ 1,
q-..-* (:x:)

(7) lim a(q) c2qb, b >_ 1,
q---- Cx:)

at infinity, while, locally, a’(5) < 0, a’"(5) > 0, and (a(u + )- P)/u < a’(5) for
a-5 _< u _</3-5 (except at u 0).

then [14]A natural parameter is the capillarity coefficient r/. If we let A ,
or, in particular Theorem B of [14] implies that (H1)-(H3) are satisfied where the
bifurcation points occur at A (Nr)2/-r’(5).
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o(q)

q

FIG. 3. The nonlinearity

3.3. Fitz-Hugh-Nagumo equations. Conley and Smoller [7] have considered
the following form of the Fitz-Hugh-Nagumo equations:

vt vx (v c)(v 1)v u,

ut 5v "7u, (x, t) e (-L, L) x R+,
where t and -/ are positive constants and 0 < c < 1/2. Under the assumption of
Neumann boundary conditions

vz(n, t) u(n, t) O,

they proved the following results:
1. (H1) holds because of the existence of an invariant rectangle and A L, the

length of the domain;
2. (H2) holds where the set of equilibria as a function of L takes the form of

Fig. 2.
3. (H3) is satisfied if 72 .

3.4. Cahn-Hilliard. In one space dimension the Cahn-Hilliard equation takes
the form

+
where (x,t) [-1, 1] x R+ with boundary conditions

u(l,t) uz(l,t) =0.

The nonlinearity is usually assumed to be of cubic type with three simple zeros. This
equation serves a phenomenological model for the process of phase separation of a
binary alloy at a fixed temperature. Thus, the fact that

f u(x, t)dx M,

where M is a constant independent of time is essential to the model. Let A e- be
the parameter. The reader is referred to [24, Chap. III, 4.2] for proofs that (H1) and
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(H3) are satisfied. As might be expected, (H2) has proven to be the assumption most
resistant to proof. Although considerable numerical work has been done and has led
to general agreement regarding the nature of the bifurcation diagram as a function of
,k, there are few rigorous results. The little that is known is in the case in which

f(u) u3 u

u(x, t)dx O.

In this setting the results of Zheng [25] and Bates and Fife [2] imply that (H2) holds
with Fig. 1 as the bifurcation.diagram.

3.5. Phase-field equations. In its simplest form, the phase-field equations (see
[2], [3], and [8] can be written as

(8) (T + lu)t KTxx,
(9) TUt 6-2"ltxx U

3 -" U -}- o’T,

where (x, t) E [-1, 1] x R+. One can either choose Dirichlet boundary conditions

(10) u(+l, t) T(+I, t) 0

or Neumann boundary conditions,

(11) ux(+/-l,t) T(+I, t) 0;

T, l, e, K,and a are assumed to be positive constants.
With A e-1, Bates and Zheng [3] prove that (H1) is satisfied. (It should be

noted that, in order to have a compact attractor, the space on which one considers
the global flow differs depending on whether one assumes Dirichlet or Neumann
boundary conditions (see [3, 4]).

Checking for the validity of (H2) is equivalent to solving

(12) 0 T,
(13) 0 e2uxx f(u) + aT

with appropriate boundary conditions for all e > 0. We leave it to the reader to check
that if one assumes Dirichlet boundary conditions, then the bifurcation diagram agrees
with that of Fig. 1. The only nontrivial question is whether the bifurcations about the
zero solutions are in fact generic supercritical pitchfork bifurcations. This case can
be checked by studying the dispersion relation about the zero solution (see Fife [8]).
The case of Neumann boundary conditions is more difficult. As in the Cahn-Hilliard
equation there is a conserved quantity

(T(x) + lu(x)) dx constant.
--1

If we assume that f (T(x) + lu(x))dx 0, then the work of Zheng [25] can again be
applied to show that the bifurcation diagram agrees with Fig. 2. For a general constant
the bifurcation diagram and the stability of each branch remain open questions. A
general discussion of the stability properties of the equilibria of this equation can be
found in [2].
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4. The Conley index theory. We begin with a brief review of the relevant
portions of the Conley index theory. The basic references for this material are [6],
[17], [18], [21]-[23].

The Conley index was introduced to study isolated invariant sets, i.e., invariant
sets S for which there is a compact neighborhood N of S such that S is the maximal
invariant set in N. The neighborhood N is referred to as an isolating neighborhood
for S. The Conley index of an isolated invariant set S is computed via an index pair,
i.e., a compact pair (N, L) such that

1. N \ L is an isolating neighborhood for S and S is contained in the interior of
N;

2. L is positively invariant in N, i.e., if u E L and p([0,T], u) C N, then
([0, T], u) C L;

3. L is an exit set for N, i.e., if u E N and (T,u) N, then (t,u) L for
some 0 < t < T.

An index pair is also said to be regular if, in addition, the function w N --. [0, cx)
defined by

sup{t>0[([0, t],u) CN\n} ifuN\n,w(u) 0 if u L

is continuous. Observe that this implies that, for a regular index pair, L is a neigh-
borhood deformation retract (along flow lines) in N. Index and regular index pairs
always exist and the homotopy type of the quotient space NIL is independent of the
index pair chosen. This homotopy type is the Conley index of S.

If regular index pairs are ordered by inclusion then there exists an inverse system
{H* (N, L)} of index pairs with the inclusion induced cohomology map H*(N, L)

H*(Nz, Lz) an isomorphism for every/3 < a. The inverse limit of this system,
denoted CH*(S), is the cohomology Conley index of S. Since each bonding map in
the system is an isomorphism, CH*(S) -- H*(N,L) for every a. In other words,
the cohomology of any index pair represents the cohomology Conley index.

The following proposition [14, Thm. 6.2], [20, Cor. 3.2] provides the cohomology
index for an attractor satisfying assumption (A1).

PRoPosrrIoN 4.1. If X is a Banach space and 4 is a global compact attractor
for a continuous semiflow on X, then

Z ifn=O,CH* (,4) 0 otherwise.

Another result of this nature, which arises as a direct application of the Thom
isonorphism theoren, is the following proposition.

PROPOSITION 4.2. If S is a normally hyperbolic invariant set for a flow on a man-

ifold with orientable unstable manifold of (normal) dimension u, then CHq/(S) -H(S).
In addition to the index, Conley introduced the concept of a Morse decomposition

of an isolated invariant set. To be precise, given an isolated invariant set S, a Morse
decomposition of S is a finite collection of disjoint compact invariant subsets of S,

M(S) {M(p) p e 7)},

from which one can define a Lyapunov function; i.e., there exists a continuous function
V: S--, R such that, if u Jpe M(p) and t > O, then V(u) > Y(99(t, u)). These
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individual invariant subsets M(p) are called Morse sets and the remaining portion
S\ UM(p) is referred to as the set of connecting orbits. In particular, given two Morse
sets M(p) and M(q), the set of connecting orbits from M(p) to M(q) is defined as

C(M(p),M(q)) := {u e S Iw(u a M(q), a(u) a M(p)}.

Because of the Lyapunov function, if C(M(p), M(q)) = then C(M(q), M(p)) .
This implies that one can impose a partial order on the indexing set :P by setting
p > q if C(M(p), M(q)) and taking the transitive closure. This order is called the
flow-defined order on/).

If j4 (S) {M(p) ]p e IP} is a Morse decomposition of S, then each M(p) is an
isolated invariant set. S contains other isolated invariant sets, some of which can be
produced by the partial order on P as follows. A subset I C T’ is an interval in P if
r E I whenever p < r < q and p, q E I. Disjoint intervals I and J are ordered I < J
if < j for every I, j J. They are adjacent if IJ I U J is also an interval (i.e.,
if no element of P lies "between" I and J). If I is an interval, let

The simplest nontrivial Morse decomposition is perhaps the most important one.
An attractor-repeller pair in S consists of two sets (A, R) such that

1. A is an attractor in S; i.e., there is a positively invariant neighborhood U of
A in S with w(U) A;

2. R is the dual repeller to A in S; i.e., R S \ {ulw(u c (A)}.
Note that A and R are both isolated invariant sets, and if

C(R, A) {u e s c c A},

then S R U C(R, A) U A. Observe that, given a Morse decomposition and two adja-
cent intervals I and J in the indexing set with I < J, (M(I),M(J)) is an attractor-
repeller pair for M(IJ).

In an attractor-repeller decomposition, the Conley indices of the total invariant
set, the attractor, and the repeller are naturally related by an index triple. An index
triple for an attractor-repeller pair (A, R) in S is a triple of compact spaces (N, M, L)
such that (N,L) is an index pair for S, (N, M) is an index pair for R, and (M,.L)
is an index pair for A. Such triples exist for any attractor-repeller decomposition,
as do regular index triples, i.e., triples such that L and M are both neighborhood
deformation retracts in N. In this case the cohomology exact sequence of the triple

_5 Hk(N,M Hk(N,L) Hk(M,L) 5_, Hk+I(N,M

induces an exact sequence

5_ CHk(R) --+ CHk(S) --+ CHk(A) 5_+ CHk+,(R) --+,

which is known as the cohomology attractor-repeller sequence. The boundary map 5
is called the connection map, because 5 =/: 0 implies that connections between R and
A exist.

All of these objects have generalizations to Morse decompositions. Index triples
are generalized to index filtrations and the attractor-repeller sequence is generalized
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to the construction of connection matrices. Recall that the connection matrix is a
linear map defined on the graded modules made up of the sum of the cohomology
indices of Morse sets in a Morse decomposition. In our case

A CH*(M(p)) CH*(M(p)).
pE pE7

Furthermore, connection matrices satisfy the following conditions:
1. They are lower triangular, i.e., if p q then A(q, p) 0.
2. They are coboundary operators; i.e., they are degree +1 maps

A(q,p)CH’(M(q)) C CH’+I(M(p))

and they square to zero; A o A 0.
3. If p and q are adjacent in .the flow-defined order then the connection matrix

entry A(q, p) equals the connecting homomorphism for the attractor-repeller
pair (M(q),M(p)) of M(qp).

4. The relation between the local cohomology indices, i.e., that of the Morse
sets, and the global cohomology index is

kerA
CH* (S) imageA"

The following theorem from Franzosa [9] is fundamental.
THEOREM 4.3. Given a Morse decomposition, there exists at least one connection

matrix.
A new feature of the cohomology index, introduced in [20], is a pairing of the

cohomology Conley index of an invariant set and the Cech cohomology of the invariant
set. If (N, L) is an index pair for an isoloated invariant set S, the cup product defines
a pairing

HP(N) (R) Hq(N,L) ---, HP+q(N,L).

Since the collection

{Na (N, L) is an index pair}

is cofinal with the set of neighborhoods of S, this pairing defines a pairing

[-Ip S) (R) CHq S) CHp+q S).

This pairing exists for any.invariant set in any flow. If Tx E CHn(M(I)) is a generator,
then there is a map

[P(M(I)) -- CHp+n(M(I))
defined by

z u

Another aspect of the index which we shall make use of is its behavior under
semiconjugacies (cf. [17], [18]). The essence of the matter is that the index theory is
natural with respect to semiconjugacies as long as one works with preimages rather
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than images. A technicality is that the semiconjugacy must be a proper map; i.e.,
preimages of compact sets must be compact. Thus, if f X -- Y is a proper semicon-
jugacy and S is an isolated invariant set in Y with index pair (N, L), then T f-
is an isolatedinvariant set in X with index pair (f-i(N),f-i(i)). Therefore, there
are maps f,: CH,(T) - CH,(S) and f*: CH*(S) --, CH*(T). The pairing defined
above commutes with this map; i.e., there is a commutative diagram

[-IP(S) (R) CUq(S) ---, CHP+q(S)
f*(R)f* f*

P(T) (R) CHa(T) CHP+(T).

Similarly, if {M(p)} is a Morse decomposition of S then {T(p) f-l(M(p))} is
a Morse decomposition of T, and any admissible ordering on S gives an admissible
ordering on T. Thus we can use the same ordering for both decompositions, and if I
is an interval in that ordering, there is a map CH*(M(I)) CH*(T(I)). Moreover,
the attractor-repeller sequence is natural: if I and J are adjacent intervals with I < J
then there is a commutative diagram

5--, CHP(M(J)) -- CHP(M(IJ)) -- CHP(M(J)) --,

f* lf* f*
6- CHP(T(J)) - CHP(T(IJ)) - CHP(T(J)) --,.

As was indicated in the introduction, our theorem can be stated more clearly if
we use a time-reparameterized flow rather that the actual flow . The details of
constructing the reparameterization are uninteresting but can be found in [20, 5].
Therefore, here we merely assert the existence of the following result.

PROPOSITION 4.4. Given a flow 7 R .4 ---, .A satisfying (A2) there exists:

(i) R x A -- 4, a flow obtained via an order-preserving reparameterization
of time;

+ L+/- forp 0 P (let P P+) such that(iN) sets Np+ Lp+
(a) Np+ are isolating neighborhoods ofM(p+), respectively, and Np+ nNp

+ UL+;(b) ONp+ np+
(c) Lp+ are local sections of ;
(d) (Np+,n+) is an index pair for M(p+) under ;

+(e) (Np+, Lp+ is an index pairfor M(R+) under ’, where 75’(t, u) 75(-t, u);
()

(,) N, ((), ) Y,,
where Ip+ is a closed interval;

(iii) a Lyapunov function
1,2" A [0, P]

such that
() e M(+) (L+ L;) t () ;
(b) if

P

t], N U Np+ 0
p--0
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then

t.

Since this proposition guarantees that Ip+ (u) is a closed interval, we write

Ip+/- (u) lap+/- (u), bp+ (u)]

with the understanding that if Ip+ (u) 0 then ap+ (u) and bp+ (u) are not defined,
and if Ip+ (u) is unbounded then ap+ (u) -oc and/or bp+ (u) oc. Let

then the fact that (Np:, Lp+/- are regular index pairs gives rise to the following lemma.
LEMMA 4.5 The fnctions ap+/-, bp+/- "Op+/- -- [-ec, ] are continnous.

5. Proof of Theorem 2.1. The purpose of this section is to conclude the proof
of Theorem 2.1. Recall that in 2 it was shown that hypotheses (H1)-(H3) implied
assumptions (A1), (A3), and the fact that M(,4) {M(p+) P 0, 1,... ,P- 1} U
{M(P)} was a Morse decomposition for ,4. It remains to be shown that the partial
order of (A2) is admissible and (A4) holds. Therefore, we begin with the following
lemma.

LEMMA 5.1. The partial order

P>P-1+ >...> 1+ >0+/-

is an admissible order for
Proof. We begin with the observation that the connection matrix must be of the

form

0 0 0

Do 0
(14) A

D1
0 0

Dp_ 0

where, for p 1,...,P- 1,

Dp CHP(M(p-))(R)CHP(M(p+)) --+ CHp+I(M(p+ 1-))(R)CHp+I(M(p+ 1+))

and

DR-l" CHP-I(M(P 1-)) (R) CHP-"(M(P 1+)) -+ CHP(M(P)).

Dp" Z(R)Z Z(R)Z

and

Dp-1 Z( Z -+ Z.
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By (A1) and Proposition 4.1, for n >_ 1,

kerDn0 ,. CHn(A)
imageDn_l

Therefore, the rank of Dn equals the dimension of the kernel of Dn for all p
0,..., P- 1. Now, the image of Dp+I equals 0, which implies that kerDp 0 or,
equivalently, the rank of Dp is 1. In particular, we obtain that

rank Dp 1

for all p 1,...,P. Since the connection matrix is strictly lower triangular and
V(M(p+)) V(M(p-)), an admissible order is

P>P-1+ >...>1+ >0+. [

For the remainder of this section e will denote a positive but sufficiently small
real number.

The proof that (A4) holds is effectively a proof by induction and consists of two
distinct parts:

(1) assuming that Ae is known, and, thereby, computing A+;
(2) showing that A+ A for all A (Ap, ,P+I].

Part (2) follows from [10] or [14, Lem. 5.12]. The rest of this section is devoted to the
proof of part (1) and is based on the argument of [14].

Before we can begin the induction step we need to compute A for A [A0, A3].
We start by observing that if A E [A0, 1] then .4 M(0), and hence

[0].

So let us assume that A E (A, A2]. By equation (14),

[ooo]A= 0 0 0

For A A2-e, M(1) is a hyperbolic fixed point. Thus, for this value of A, (A3) implies
that M(1) has a one-dimensional unstable manifold. Since M(0+) are attracting fixed
points, the unstable manifold of M(1) intersects transversely with the stable manifold
of M(0+). Therefore, by [19], a and 3 denote the number of connecting orbits from
M(1) to M(0+) and M(0-), respectively. Since ,4 is connected [11], (a,/3) (, ).
Now, by an appropriate choice of orientation for the generator of CH*(M(1)), we can
assume (a,/3) (1,-1). As was mentioned above, the results of [10] imply that

[o o o]A= 0 0 0
1 --1 0

for all A (A1, A2].
We now compute A2+. Again, by equation (14),

0 0 0 0 0
0 0 0 0 0
a "7 0 0 0
 6ooo
oo ;o
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By Lemma 5.1, the set {2, 1+/-} is an interval in {2, 1+, 0+/-}, and hence M(2, 1+/-) is an
isolated invariant set with Morse decomposition

{M(2),M(I+),M(1-)}.
The connection matrix for this Morse decomposition is the submatrix of A2+ given
by

0 0 O]0 0 0
v o

Since 0 < << 1, the entries and r/are determined by the pitchfork bifurcation.
In particular, we can assume transverse intersections between the stable and unstable
manifolds, and hence, as in the aforementioned argument, an appropriate choice of
orientation of the generator of CH*(M(2)) implies that (, 7) (1,-1). By definition
A2+oA+ 0. Thus a / and 7 . Again, for e small, M’X+(1+/-) are
hyperbolic fixed points, and hence, repeating the argument used to compute A-,
we can assume that a 1 and /= -1.

We are now in a position to perform the induction step. So let us assume that
(A4) holds for all A E [A0, AP]; we need to show that it holds for Ap+e. By Lemma 5.1
the set {P, P- 1+ } is an interval in P, and hence M(P, P 1+) is an isolated invariant
set with Morse decomposition

{M(P),M(P- 1+), M(P 1-)}.

The connection matrix for this Morse decomposition is the submatrix of A+ given
by

[ 0 0]Dp-1 0

As before, the assumption of a generic supercritical pitchfork bifurcation implies that

Again as before, this forces

Dp-1 "-[1,--1].

DP-=[ aa "71"
Changing our focus for a moment, by Lemma 5.1 the set {0+, 1+/-,... ,P 2+/-} is

an interval in P, and hence M(O+/-, 1+/-,..., P- 2+) i8 an isolated invariant set with
Morse decomposition

(M(0+), M(0-),... ,M(P- 2+), M(P- 2-)}.

The connection matrix for this Morse decomposition is the submatrix of A+ given
by

(5)

0 0 0

Do 0

D1 ..
0

Dp-2
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Now, observe that the structure of this invariant set cannot be affected by the pitchfork
bifurcation. The easiest way to see this is to relabel the invariant set M(P, P- 1+/-)
by M(P) and consider the connection matrix for the Morse decomposition

.M(.A) {M(p+/-)lp= 0, 1,...,P- 1} [2 {M(P)}.
The same argument that proves part (2) also guarantees that the connection matrix
for this Morse decomposition equals Axe Therefore, by the induction hypothesis

[1-1]Dp_
1 -1

At this point we have computed Dp for all p P- 1. To finish the computation
recall that a+oa+ 0. This implies that D_oD_I 0, and hence -7.

Therefore, (A4) is implied by (H1)-(Ha), and hence Theorem 2.1 is proven.
As a final remark, this also proves that P > P- 1 > > 0 is the flow-defined

order.

6. he semiconjugaey. The construction of the map f D consists of
four steps.

Ste 1. Define a function

f. 0 ([0, P] x [-1,1]).
Step 2. Define an equivalence relation on 0 ([0, P] x [-1, 1]) along with the

corresponding quotient ma
0 ([0, P] x [-1, 1])Q" 0 ([0, P] x [-1, 1] P)

and then show that ] := Q o ] is continuous.
Step 3. Show that ]" A DP.
Step 4. Show that under the image of ], induces a flow on DR, and there

exists a conjugacy g" DR DR between and . Finally, define

This function f is the semiconjugacy of Theorem 1.2, though it is left to the next
section to show that f is onto.

Before proceeding with the details we shall indicate why the above steps are
natural. To describe the dynamics on .4 in terms of the Morse decomposition, there
are several obvious parameters which should be included.

1. For each Morse set M(p*) (, + or -) one would like to know how "close"
the orbit of u E ,4 passes by M(p*). Thus we shall define a function

p- 1,...,P- 1

with the properties that ’p(U) 1 implies that w(u) or a(u) c M(p+),
Tp(U) --1 implies that w(u) or a(u) C M(p-), while Tp(U) 0 implies that
the orbit of u does not intersect the interior of Np, the isolating neighborhood
of M(p).

2. Given two points u and u’ on the same orbit, -p(U) ’p(U’). To distinguish
these points we shall make use of a Lyapunov function

V" ,4 [0, P].
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Given these functions, we define

i(,) (v(,),,-(,))
(v(,,),,-o(,),...,-,-,- (,)).

It is easily seen that ] cannot be continuous. For example, if one considers a sequence
of points whose omega limit set is in M(p+), then Tp 1 on this sequence. However,
this sequence may limit to a point whose omega limit set is in M(q*), where q > p,
in which case -p --0 for the limit point. The quotient performed in Step 2 addresses
this problem; i.e., the resulting map f is continuous.

In Step 3 it will be shown that f .4 ---. DP. This is not immediate from the
work of Steps 1 and 2 and requires a better understanding of ](A). However, it does
provide a good opportunity for further exploration of the relationship between the
model flow R DP DP and the construction of the semiconju.gacy.

Finally, it needs to be shown that, under 5 induces a flow on DP. Then
the results of Step 3 can be used to argue that is conjugate to via. a map g, and
hence f g o f is the desired semiconjugacy.

6.1. The map f" Jt --. 0([0, P] [-1,1]P). As was mentioned before, the
functions

Tp 4 -- [--1, 1]

are intended to provide information on how trajectories in ,4 pass by the Morse sets
M(p+/-). Guided by the idea that the longer the trajectory stays in the isolating
neighborhood the closer it is to the Morse set, define

(16) , (u) 0

+/- () a ()

if bp+ (u) c or ap+/- (u)
if Ip+/- (u) O,
otherwise,

using the functions bp+/-, ap+, and Ip+ defined in 4. Set

(17) ’p(u) _2 tan_l(Ap. (u)_)p-(u)),

where tan- (+) 7"
LEMMA 6.1. For p 0,..., P 1,

-p" Op -- [-1, 1]

is a continuous function. Furthermore,
(i) ()= nd o () o () s otand M(+);
(ii) Tp(U)= --1 if and only if w(u) or a(u) is contained in M(p-);
(iii) Tp(U) 0 if and only if 5(R, u) N Np+/- 0 or (R, u) A Np. C Lp+ Lp+/-.
Proof. By Lemma 4.5, ap+/- and bp+/- are continuous functions. Thus Ap+/- and Tp

are continuous.

(i) and (ii) hold since 1Tp(U)I 1 is equivalent to
Finally, as is obvious from (16), if p(R,u) Np+/-(U) then Ap+/- 0. Fur-

thermore, by Proposition 4.4, if Ap+(u) 0, then Ap-(U) 0 and vice versa.
Thus, TB(U) Ap+(U) or --Ap--(u) depending on whether (R,u) intersects Np+
or Np-.
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Turning to the definition of the Lyapunov function, we begin by defining local
Lyapunov functions

[p 1 1]Vp Np -- -, p + -by

p ifueMp,

Vp(u) Wp+((ap(U), u)) + tan- if %() > -,

1()W((bp(), )) + tan- if bp() < .
To define g from the isolating neighborhoods we make use of the Lyapunov

function. V of Proposition 4.4. Let

:= { e ?() -p} N
and define

Observe that K is a section %r the flow. Thus, if x PUp=O Np, then there exists

a unique k, K., where Pu O, 1,..., P 1, and a unique au [0, 1) such that

Now define

Pu-au ifuCUpP=0Np,V(u) Vp(u) if u e NB.
This leads to the following easily verified result.

LEMMA 6.2 The Lyagunov function V is continuous. Furthermore,
(i) if ([0, i], u) N([.J=0 Np) O, then

V((t,u))=V(u)-t;

(ii) if ([0, t], u) C Np, ([0, t], u’) C Np, Tp(U) Tp(Ut), and V(u) V(u’), then

v((t, )) v((t, ’)).
We now define

](,) (v(,), ())
(v(), 0(-), n(-),...,-(.))

By this definition it is clear that ]" .4 -- [0, P] [-1, 1] p. The following lemma implies
that, for our purposes, we can consider the range of j to be cO ([0, P] [-1, 1IF).

LEMMA 6.3. f(A) C 0 ([0, P] [-1, 1IF), and hence

]" .,4- oq ([0, P] [-1, 1IF).
Proof. Let u E Jr. Then ix(u) C M(B*) and w(u) C M(q*) for some 0 q _< p _<

P: If u M(P) then

f(u) (P, O, 0,..., 0) e 0([0, P] [-1, liP).
Therefore, assume that u M(P); then a(u) e M(p), vhere p < P, and hence
z;(u) =1.
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6.2. ] Q o ] is continuous. We shall now define the equivalence relation
on 0([0, P] [:-l,1]P). We shall consider the space 0 ([0, P] [-1,1]P) {1} for
notational convenience and denote elements of this space by

where Tp :-- 1.
For q,p E {0, 1,...,P}, w E [0, P], and q _< w _< p let

B(q,w,p) (v, -) e 0([0, P] x [-1, 11 P) x {1}

V.-.W,
Tp :-- 1,
Tp -1,
Tq il,
--1 <-r <lforq<r<p

If (v, T) e 0([0, P] [-1, 1] P) {1} then there exist q,p such that (v, T) B(q, v,p).
For (v, ’)e B(q, v,p)define

(v, (v,

where Tt* 0 if <.q or > p and T Tr for q _< r _< p.
Now let

e" 0 ([0, P] [-1, 1] P) 0 ([0, P] [-1, 1] P) /

be the quotient map induced by this equivalence relation.
PROPOSITION 6.4. f" ,4 --. DR is continuous.

Proof. Since Q and V are continuous, it is clear that any possible lack of continuity
of f must arise from the map -. As shall be shown, the discontinuities induced by

" are eliminated via the quotient map Q. Recall that Tp is continuous on Op. Thus,
when checking for discontinuities induced by -p, one need only consider uE ,4 \ Op.

With this in mind, consider u jt such that q < V(u) < p, ’q(u) 1, and
Tp(U) +/-1. This implies that w(u) C M(q+) and a(u) C M(p+). In addition, for
r < q or r > p, Tr(u) 0 and for q < r < p, -1 < T(u) < 1. Let {Un} C 4 such that
un -- u as n - oc. By continuity of the flow, for n sufficiently large and q < r < p,
I(u) is a uniformly bounded (possibly empty) set. Thus (Un) T(U) as n oc.
Obviously, if ’r(Un) --* ’(u) for all r then we are done. Therefore, without loss of
generality, it may be assumed that, for some fixed r < q or r > p, ’(Un) 1. Let
us assume that r > p. This and the continuity of Y imply that ](un) (V(u), ?),
where

(V(?.), ) (V(u), o,..., q-1, 1, q+l,..., p-1, 1, p+l, r--1, 1, r-F1,..., P-1).

But by definition this makes

(V(u), ’) (V(u), 0,..., 0, 1, 9q+l,..., 9p-1, 1, 0,..., 0) ](u).

Therefore, f is continuous. D

6.. f" .,4 -- D. It can be easily checked that 0 ([0, P] x [-1, 1] P) / is not
homeomorphic to DP. Therefore, it needs to be shown that

/(A)/ C Y C 0 ([0, P] [-1, 1] P) /,
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xo

v=0 v=l v=2

P
for P 3.FIG. 4. The shaded regions and dark lines indicate Jw=o .-.w

where Y is homeomorphic to DP. We begin by sharpening our understanding of
](,4) C cO ([0, P] [-1, llP). Let Fs {(v, T0,..., ’P-1) -s +1}.

LEMMA 6.5. /f V(u) E [q, q + 1) then, for all s > q,

int(F) N f(A) O.

Proof. Let f(u) e F, where s > q. Now V(u) e [q, q + 1)implies that w(u) C

M(r) for some r < q. Thus f(u) F Fr C OF. [3

Let w [q, q + 1) and define

q

It is easy to see that Ew is homeomorphic to Sq [-1, l] P-q-1
LEMMA 6.6. Let Aw {u 41Y(u w}. Then

c .%.

Proof. Let w e [q,q + 1). V(u) w implies that w(u) C M(r), where r < q.

Thus, f(u) C Fr C E. [3

PSince ](j()C .-., ](jr) C .. := [-J=0 "w" We shall show that Q(E) is homeo-
morphic to Dp. To do this we return to the flow defined in the introduction and
remark that it satisfies assumptions (A1)-(A4) with ,4-- Dp. In particular, we shall
let

+} U {H(P)=0}A/[ (DR, ) {II(p+) H(P+) ep

denote the Morse decomposition for DP under . Observe that the flow-defined order
is

P>P-1+/->...>1+ >0+

The point of this observation is that we can now apply the results of the previous
sections to this flow. Therefore, there exists a function t)" DR --* 0 ([0, P] [-1, 1] P)
gixien by t)(z) -(Y(z), -(z)) defined as in 5.1. By 5.2 and Lemma 6.4,

’:= Q o. DP Q(E)
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is continuous.
From the construction of t it is clear that this function is dependent upon the

choice of isolating neighborhoods Np+.
PROPOSITION 6.7. There exists a choice of isolating neighborhoods Np+, satisfy-

ing Proposition 4.4 such that . DP
_

Q(E)

is a homeornorphism.
Proof. We leave it to the reader to check that Q(F.) is Hausdorff. Obviously, DP

is compact and, by Lemma 6.4, is continuous. Thus it is sufficient to find isolating
neighborhoods Np+/- such that is a bijection.

Let

p

for some 0 < 5 << 1. Let Be(O) {z RE Ilzl[

_
}. Define

Np B (0),

and for p 0,...,P- 1 set

q>p

+ respectively.Finally, let Np denote the component of Np which contains ep,
We leave it to the reader to check that, using these neighborhoods, t) is 1-1. The

laborious part is showing that, given p, the set

zDP w(z) e for some q _< p

a(z) e for some r >_ p

is parameterized by

zED
P Iz l- Iz,,I (P- P)5}.

ip

Observe that on (DP), Q is 1-1. This implies that is 1-1.
Finally, recall that, by definition, given [(v, -)] E (9 ([0, P] [-1, 1] P) / , there

exists -* of the form - +/-1, - :t:1, -1 < -r < 1 for q < r < p, and -r 0 if
r < q or r > p such that

(v, T) (V, ’*).

But (v,-*) e y(DP). In particular, w(y-l(v,-*)) H(qS), where s sgn -q and
(-l(v,-*)) II(pS), where s sgn -p. Furthermore, for q < r < p, T denotes
how "close" the trajectory of -l((v,-*) passes by II(r*). Since we know the flow
on DR, we can check that such an orbit exists for each value of -. Therefore, is a
bijection. []
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6.4. The induced flow p. To derive the existence of the induced flow we
shall prove the existence of the following commutative diagram:

(18)

id] idQ DpRA R.=. R

LEMMA 6.8. exists.

Proof. Define

(t, f()) (v((t, )), -())

The first step is to check that this expression is well defined. Observe that -(u)
-((t, u)) for all t E R. Furthermore, recall that if u, u’ E fl, such that -(u) -(u’)
and V(u)= V(u’), then V((t, u))= V((t, u’)) for all t R.

The left square in diagram (18) commutes since

((id x 9)(t, u)) (t, ](u))
(v((t, )), ())
(y((t, )), ((t, )))
]((t, )).

At this point is defined only on ](fl,), not on all of = However, if we recall the
properties of , -, and V, then we can make the following observations:

1. The flow lines on 0 ([0, P] x [-1, 1] P) are "horizontal" lines, i.e., lines parallel
to the v axis.

<v< +},where 0 P 1 the flow2. On the sets{(v,-)lp+_ -P P=
is simply uniform translation in the -v direction.

V3. Onthesets {(v,F)p-i _p+i} the velocity of the flow depends
smoothly on Fp.

Therefore, can be extended to all of G in such a way that it respects the quotient
map. This, in turn, implies that

(t, (, ;)).- ((t, (, ;)))

is well defined, and hence the right square of (18) also commutes. [

From the remarks in this proof it is, we hope, clear that the flow on is_, in
fact, independent of the maps , 7, and V. This, in turn, implies that the flow on
DR is predet_ermined. Therefore, the conjugacy of the previous section relates the
flow with p. In other words, if we define

then f" ,4 -- DP is the semiconjugacy of Theorem 1.2.

7. Surjectivity of f. In the previous section we constructed a proper semicon-
jugacy f A ---* DP between the flow and . Now we shall show that f is, in
fact, surjective. The basis of our result is the following elementary fact from algebraic
topology.
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LEMMA 7.1. If f: X ---+ Sn is continuous and f* [In(n) ---* n(X) is nonzero,
then f is surjective.

Our strategy is to reduce the cohomology index information to an application of
this lemma.

Recall that {H(p+) P 0,...,P- 1} U {H(P)} with the flow-defined partial
order P > P- 1 +/- > > 0+/- is a Morse decomposition for DR under . Thus the
indexing set and flow-defined order for .hd(DP) and Ad(A) are identical. This implies
that I is an interval in Ad(DP) if and only if it is an interval for 3/l(.4). For an
interval I define

fx := f ]M(I)" M(I) --, DR.

This of course implies that fI (M(I)) C H(I).
Since both A and DP are attractors, [20, Prop. 7.4] implies that, for any interval

I,

f*: CH*(H(I)) --, CH*(M(I))

is an isomorphism. From now on let

I {O+/-,...,P 1+}.

I is an attracting interval, and hence M(I) and H(I) are attractors. Therefore,
the maps /:/k(H(I)) --, CH*(H(I)) and ’’ [--Ik(M(I)) --, CH*(M(I)) are
isomorphisms.

By [20, Prop. 7.4] there exists a commutative diagram

/:/k (II(I))- CHk(H(I))
tI; tf*

k(M(I)) ---, CHk(M(I)).

This now forces f to be an isomorphism. Since H(I) SP-l, Lemma 7.1 implies
that f: M(I) -- H(I) is surjective.

Since f(M(P))= H(P), it only remains to be shown that C(M(P),M(I)) maps
onto C(H(P), H(P)). To do this we use the fact that

{ 1}l/V:= u e A V(u) P- -is a local section for and

w :=

is a local section for . Since (R, W) C(M(P), M(I)) and (R, l/Y) C(H(P),
H(/)), it is sufficient to show that f" YV -- W is onto. "Observe that Q(p_1/2), and
hence W is homeomorphic to SP-1.

Define
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Then, (N, W) is an index pair for II(P). Furthermore, (Af, l/Y)"= (f-l(N), l/Y) is an
index pair for M(P). We can relate this information via the following commutative
diagram:

-+ /:/p_I(N) --+ /:/p_I(W)_+5 P(N,W) -+ [-IP(N) -+

+f* f* +f* +f*
’ /:/(’, w) - fP() -- /-() -- /:/-(w) -

Using the fact that N is homeomorphic to DP and W is homeomorphic to SP-1
using the cohomology index information, this reduces to

and

--> 0 Z Z 0

-+ [-IP-l(Af)-+ HP-I(W)-+ (Af, W) (Af)-.

Therefore, f* /s/P-I(W) --->/S/P-I(/) is injective. By Lemma 7.1 this implies that
f:l/Y W is onto.

Acknowledgments. My original interest in this problem was motivated by con-
versations with H. Hattori. The idea of using semiconjugacies to describe the global
dynamics grew out of discussions with C. McCord. Finally, I would like to thank C.
Grant for explanations concerning the Cahn-Hilliard and phase-field equations.
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THE EXISTENCE OF PERIODIC SOLUTIONS TO
REACTION-DIFFUSION SYSTEMS WITH PERIODIC DATA *

J. J. MORGAN AND S. L. HOLLIS$

Abstract. The existence of time-periodic solutions is proven for a large class of reaction-
diffusion systems in which Dirichlet boundary data, diffusivities, and reaction rates are periodic with
common period.

Key words, periodic solutions, reaction-diffusion systems
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1. Introduction. We consider reaction-diffusion systems of the form

(I.i)
di(t)Aui fi(x, t, u)

t) t)
0) (x)

in x {t > 0}, 1,...,rn,

on 0t{t > 0}, 1,...,m,

on , 1,...,m,

where u (ui)=l and is a bounded domain in Rn with smooth boundary 0;
i.e., 0 is an (n- 1)-dimensional C2+ manifold of which lies locally on one side.
We assume that the initial data u0 are bounded, measurable, and nonnegative and
each di E C(R+; [a,b]), where 0 < a <_ b < oc. (The symbol R+ denotes [0,
We also assume that the reaction functions fi are continuous on x R+xR and
locally Lipschitz in u, and f (fi)=l is quasi positive; i.e., for each 1,..., m,
we have fi(.,.,) >_ 0 for all >_ 0 with i 0. Each gi is assumed to be a
nonnegative member of C2,1(0 x R+). These standard basic assumptions guarantee
local existence of unique, nonnegative, classical solutions on a maximal time interval
0 _< t < T* <_ oc. This follows from a straightforward adaptation of results in, e.g.,
[5] and [13] to account for the t dependence of the parameters in (1.1).

In addition to the basic assumptions stated above, we assume the following:
(A1) There is a K > 0, and for each 1,..., m there are nonnegative constants

i,i, i,2, i,i with ci,i > 0 such that

m

)Eai,jfj(x,t,) <_ K( I +E
j=i j=i

for all x E t, t >_ O, and G IR.

(A2) Each Ifi(", ", )1, 1,..., m is bounded above by a polynomial in !,---, -.
The following global existence theorem follows from results in Morgan [10].
THEOREM 1.1. Let conditions (A1) and (12) be met. Then, for any bounded,

measurable, nonnegative initial data uo (uo)m T*=, we have oc; e., system
(1.1) has a unique, nonnegative, classical solution on x [0, ).
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search of this author was supported in part by National Science Foundation grant DMS-9208046.
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Remark. We refer to (A1) as a linear "intermediate sums" condition [10]. It
allows high-order nonlinearities in the individual fi but requires that fl be bounded
above by a linear polynomial in u, and cancellation of high-order positive terms in the
intermediate sums. An illustrative example is the following three-species predator-
prey system:

Ot
Ou2
Ot
Ou3
Ot

dlAUl kllUl(M- ul) kl2UlU2-kl3UlU3,

d2Au2 k12ulu2 k23u2u3 k20u2,

d3Au3 kl3UlU3 -b k23u2u3 k30u3,

where M and the kij are bounded, nonnegative, continuous functions on tl:t+. Here
one can take a2,1 02,2 1 and a3,1 03,2 3,3 1. Note that in this example we
actually have -]’=1 ai,J fY (x, t, u) _< g because of the assumption of logistic growth
of Ul when u2 u3 0. Exponential growth of one or more of the species in the
absence of the others would lead to a condition of precisely the type in (A1).

An intermediate sums condition of the form (A1) is indeed satisfied by a variety
of complex models of, e.g., population dynamics, chemical reactions, and spread of
disease [10]-[12]. We also remark that nonlinear intermediate sums are possible with
the allowable order depending upon the spatial dimension n; see [10].

Our concern here is the existence of a time-periodic solution to (1.1) in the situ-
ation where the reaction function f, the diffusivities di, and the boundary data g are
each periodic in t with common period T. Of particular interest from the point of
view of applications would be, e.g.,

population models and models of the spread of disease in which birth and death
rates, rates of diffusion, rates of infection/interaction, and environmental carrying
capacities are periodic on a seasonal scale;
chemical reaction models in which reaction rates and diffusivities are periodic on
a daily scale because of oscillations in sunlight and/or temperature.

With this issue in mind, we assume the following:
(A3) There is a T > 0 such that, for 1,..., m and t _> 0, we have

fi(.,t,.)--fi(.,tq-T,.), gi( t) gi( t q- T), and di(t) di(t -b T).

(A4) There is a continuous function " t R such that g(., 0) g(., T)

(Ah) The constants K and am,,..., am,, in (A1) may be chosen so that am,y > 0
for j 1,...,m and

m

am,jfj(x,t,) <_ K for allxe, t>_0, andeP.

Note that (Ah) is satisfied by the example system (1.2). This would also be true
of more general population models of this type provided that each species exhibits
bounded growth in the absence of all other species.

Our main result is the following theorem.
THEOREM 1.2. Under assumptions (A1)-(Ah) there exists a uo E C(; Pt) such

that the solution of (1.1) satisfies u(. ,t) u(. ,t + T) on for all t >_ O.
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Previous results along these lines can be found in Liu and Pao [9], where the
existence of a (unique) T-periodic solution is established via the contraction mapping
theorem in the case of a one-dimensional domain and under somewhat stringent condi-
tions on the diffusion coefficients and reaction rates. Our approach will use a variation
on $chauder’s theorem and will require no assumptions other than (A1)-(A5) to es-
tablish the existence of a T-periodic solution. Related work in which scalar parabolic
equations are considered includes [1]-[3] and [14].

2. Formulation of the fixed point problem. We will use the following corol-
lary to Schauder’s theorem. For the proof see, e.g., Gilbarg and Trudinger [4, Thm.

THEOREM 2.1. Let X be a Banach space and F X --, X be a compact map.
Assume that there exists a constant C > 0 such that Ilzll < C for all z satisfying
z aFz with a E (0, 1). Then there exists a fixed point z* of F satisfying IIz* <- C.

For convenience of notation, let us define the formal solution operator for (1.1)
by ,S(t)uo u(., t) for t >_ 0. Now define F" C0(t; Rm) C0(t; R") by

(2.1) Fz S(T)(z / )+ -[7,

where
Co(; Rm) (z E C(; Rm) z 0 on 0t)

and T and are as in (A3) and (A4). By parabolic regularity [8], F is a compact map.
Note also that if z* is a fixed point of F, then z* / ,S(T)(z* / )+. Consequently,
z* + _> 0, so u z* + is a (nonnegative) fixed point of S(T). So the existence
of a T-perodic solution of (1.1) will follow from the existence of a fixed point of the
operator F because of (A3) and uniqueness of solutions to (1.1).

Suppose that 0 < a < 1 and z aFz. Also, set u0 z + . Then we see that

 S(T) 0+ +

But z aFz implies that z / a >_ 0, which then implies that u0 :> 0. Thus

uo aS(T)uo + (1 a).

Let us now define the set

(2.3) AT {u0 C(;R) u0 aS(T)uo + (1 a) for some a (0, 1)}.

In light of Theorem 2.1 and the preceding observations, our goal is to show that AT is
a bounded subset of C(t; R). Note that, because of (2.2), this can be accomplished
by showing that there is a C > 0 such that 1[8(T)u01[ _< C for all u0 AT.

3. A preliminary estimate. Our first step toward showing that AT is a
bounded subset of C(f; R) is the following L estimate.

LEMMA 3.1. Suppose that (A1)-(Ah) are true. Then there is a constant CI > 0
such that

I[UilII,(O,T)

__
C1, 1,... m

for all u satisfying (1.1) with uo AT.
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Proof. Let u0 E AT and u be the corresponding solution of (1.1). Also, define

w =_ f[ km=l am,kdk(s)uk(’, s)ds. Summing the equations in (1.1), applying (Ah),
and integrating over t E [0, T] yields

(3.1) E am,k (u}(., T) uok) Aw < KT on t.
k--1

For convenience, set v F(uo ), where F is as in (2.1). Then u(., T) v + and
uo av + . So (3.1) becomes

m m

k=l k=l

on .
Hence

m m

-Aw (a-1) Ea,,kv+KT <_ (1-a) Eam,+KT
k--1 k-I

since vk >_ -k. Also, on 0 we have w f0T Ekm=l a,,dk(s)g(., s)ds. Therefore,
one can apply a comparison principle and nonnegativity to obtain a bound on
and, in turn, a bound on -]m=l ua][ 1, (0,T), where each bound is independent of uo
and a. El

Remark. This result remains true without (A1) and (A2) provided that the
interval [0, T] lies within the maximal interval of existence [0, T*).

4. The bootstrapping framework. The following lemma provides a boot-
strapping mechanism for obtaining Lp estimates for large p from an L estimate.
Although the proof is essentially the same as that of similar results in [6], [7], [10],
and [11], we include it here for the sake of completeness.

LEMMA 4.1. Suppose that (A1) is true and u satisfies (1.1) for 0 <_ t < T. Let
T E [0, T). There is a constant C independent of u and - such that the following are
valid for k 1, m

n+2 then(i) If 1 <p< - m

1,n 1,X (v,T)
i=1 i=1

n+2 and r > np(ii) /f p > -- then

A central role in the proof of Lelnma 4.1 is played by the solution of the scalar
equation

(4.1)
Ot-dAx 0 inftx (T,T),

X 0 on Oft x (z-,T),
x(’, -) 0 on ft,
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where r < T and d e C(R+; [a, b]) with 0 < a _< b < c. We now state some more or
less well-known Lq regularity results for (4.1).

LEMMA 4.2. Let 1 < q < oc and suppose that 0 E Lq( (r,T);R+), where
0 < T < T. Then (4.1) has a unique solution X e W2q’l(f (T,T);R+). /f
IlOIIq,a(,T) 1 then there exists a constant C C(q,T) independent of and T

such that IIXIIWq,I(a(r,T)) <_ C. Furthermore, C can be chosen so that

(i) ][X(’,T)[[q,a < C;
(ii) if q > --n+2 then Ilxll,x(r,T) _< C;

n+2 and 1 < s < nq then(iii) if 1 < q < -y- n-2(q-1)

IIXIIs,a(r,T) <-- C and IIX(’,T) IIs,u <- C;

(iv) II llw ,O(oa(O,T> <_ C.
For proof of these results, we refer to IV.9 and II.3 of Ladyenskaja, Solonnikov,
and Uraldeva [5] and 3 of Morgan [11]. We now proceed with the proof of Lemma
4.1.

P and 0 Lq(fx (r,T);R+) withProof of Lemma 4.1. Let p > 1, q p-l,

IIllq,a(,,T 1. Take k e {,2,...,m} and let X be the solution of (4.1) with
d dk. Now, for t (r,T] define 9(’,t) X(’,T+T--t) and 0(.,t) tg(.,T+r-t)
so that 9 satisfies

0
oq---[ -- dk Ag --0 in f x (r, T),

9 0 on oqf x (T,T),
99(’,T) 0 on f.

kWe integrate Yi=l ak,iui over f x (r, T) and obtain

T k k T

/--1 i=1 i=1

HSlder’s inequality givesNow, With 1 _< r _< oc and s- 7-:-f-,

(4.2)

n+2 then > n+2 and so by Eemma 4.2 we can takefor some C > 0. Ifl <p < q --,
r 1 and s ec and obtain by duality that

k m k-1

i=1
1,f

i=1
1,fx (r,T)

i=1
p,fx (r,T)
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for some Cp > 0. From this follows part (i) of the lemma by induction on k. Now
n+2 and r > up" n+2 and s < npsuppose that p > -4-" Then we have q < -- up--(n+2)

nq
n-2(q-1)" So, from (4.2) and Lemma 4.2 we have, by duality, that

for some Cp > 0. Part (ii) of the lemma now follows by induction on k.

5. The proof of Theorem 1.2. We begin this section with one more lemma.
LEMMA 5.1. Assume (A1)-(A5). There exist sequences {C}=i c (O, oc) and

{p}= C [1, cx) with Pk T c such that, if u satisfies (1.1) with uo E AT, then for
1,..., m and k lq we have IlUillpk,(tk,T) <_ Ck, where t (1 21-)T.
Proof. First we take pl 1 and use the C1 from Lemma 3.1.. By that same L

estimate there is a ’1 (0, 1/2T) such that

Now set p2 (n__2)3/4. By part (i) of Lemma 4.1 there exists a C2 such that

-Tand thus T) <-- 1,... ,m. Therefore, there is a T2 e (2 T) such
that

-< (T/4)l/p 1,..., m.

Now in part (ii) of Lemma 4.1 we take r p2 and p p3 -= (-)3/2 and obtain
C3 so that Iluillp3,n(v2,T) 63, i 1,...,m and, consequently, IItillp3,n(T,T)
C3, i= 1,..., m. Now we can choose T3 e (T, T) such that

_<
(TiS)lp

1,...,m,

and, similarly, obtain a C4 such that Ilu II, ,a( T,T) --< c4, 1,...,m, where

p4 (n+2 2 (n+2 k/2----) Continuing in this way, we take p ,---) for k 5, 6,... and
obtain a corresponding Ck such that IlUillpk,t((l_21-k)T,T) Ck, i: 1,...m.

The preceding lemma gives rise to the following key result.
COROLLARY 5.2. Assume (A1)-(A5). There exist C* > 0 and t* (0, T) such

that
Ilull,(t*,T) <-- C*, i 1,...,m

for all u satisfying (1.1) with uo AT.
Proof. Suppose that u satisfies (1.1) with u0 AT. By the polynomial growth

assumption (A5) we can choose k sufficiently large in Lemma 5.1 so that each
f(.,., u) is in L(n+2)/2(t ((1 2-k)T, T)) and, at the same time, each u is in

L2(gt ((1 2-k)T, T)) with each norm bounded independent of u. Consequently,
we can apply Theorem III.8.1 of Ladyenskaja, Solonnikov, and Uralcva [8] to obtain
the desired result, where t* (1 2-k)T,.
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We are now ready to complete the following proof.
Proof of Theorem 1.3. From Corollary 5.2 it follows that

for all u satisfying (1.1) with u0 E AT. Thus, by (2.2) there is a constant C such that

for all u0 E AT. That is, AT is a bounded subset of C(f; R). So, by Theorem 2.1 and
the discussion in 2, the mapping F defined by (2.1) has a fixed point z* C0(; ]Rm),
which gives rise to a fixed point u z* + e C(gt;]R) of S(T). Now, by the
periodicity of f and g and the uniqueness of solutions to (1.1), it follows that (1.1)
possesses the T-periodic solution u(., t)= ,.q(t)u)..

(}. Remarks and generalizations. Straightforward modifications of our proofs
show that Theorem 1.2 remains valid if the boundary conditions are of Robin type
with smooth, T-periodic parameters. If the boundary conditions are of Neumann type,
then (Ah) must be modified so that

m m

_< K
j--1 j--1

for some e :> 0 in order to obtain the L estimate in Lemma 3.1. Also, if boundary
conditions are of Dirichlet or Robin type, then (A5) can be replaced by

m m

j--1 j--1

where e > 0 provided that e is sufficiently small. (However, it is generally crucial
that the boundary condition type be uniform throughout the system.) For both the
Neumann and Robin cases, the operator F in 2 would be given simply by Fz
S(T)z+, mapping C(t; R") into itself, and the set AT would consist of all u0 satisfying
uo aS(T)uo with 0 < a < 1.

Certainly one would like to allow x dependence in the diffusivities; i.e., have
operators of the form V. (di(x,t)Vui) in (1.1). Assuming smoothness and uniform
ellipticity, the only obstacle to this goal is the L estimate in Lemma 3.1. If such
an estimate were available then the remainder of the argument would proceed with
only minor modification. This estimate is readily available in the case of Neumann or
Robin boundary conditions provided that f satisfies (6.1). One arrives at this estimdte

mby setting w -k=l am,kUk and integrating

mOW < V. Om,kdkVUk -[- K =W
Ot

k=l

over t x (0, T) with u0 an(., T) and 0 < a < 1. Here e min{am,1,..., a.m,m}.
We also remark that if all the diffusivities are equal, i.e., dl d2 dm,

then we need neither the intermediate sums condition (A1) nor the polynomial growth
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condition (A2) to prove Theorems 1.1 and 1.2. Indeed, in this case, global existence
follows easily from (A5). By introducing, if necessary, the additional equation

Ot

m

K
j=l

into (1.1) along with zero boundary and initial values, we can assume without loss of
mgenerality that Ej-1 m,jfj(’, ", U) K, and so w _-- ]a=l Om,kUk satisfies

(w

Ot dlAw K in t (0, T),
m

w E a,,kgk on OFt (0, T),
k--1

w(’,0) ECm’kU0k on a.
k--1

By applying Lemma 4.1 to this scalar equation and using Lemma 3.1 and .the argument
in the proof of Lemma 5.1, one finds a t* E (0, T) such that Ilwl12,n (t*,T) <_ C, where
C is independent of u0 E AT. From this fact and Theorem III.8.1 of Ladyenskaja,
Solonnikov, and Uralcdva [8], we arrive at the necessary estimate on liT(., T)ll,n.
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BOUNDEDNESS OF SOLUTIONS FOR QUASIPERIODIC
POTENTIALS*

M. LEVIt AND E. ZEHNDER*

Abstract. In this paper conservative systems are studied describing the motion of a particle on
the line in the field of a potential force with additional quasiperiodic time dependence.

It is shown that superquadratic growth of the potential at infinity results in the near-integrability
of the Hamiltonian system in question (for a large class of potentials), despite the fact that no
smallness assumptions are made on the quasiperiodic dependence of the potential on time. As a
consequence all the solutions of such systems are bounded for all time. Some specific examples are
given, together with a counterexample which shows that, without the quasiperiodicity assumption,
the boundedness breaks down.

Key words, quasiperiodicity, stability, action-angle variables, normal term, KAM theory

AMS subject classifications. 34, 58

1. Introduction and results. We shall study the boundedness of all solutions
of time-dependent equations having the form

(1) it + V(x, wt) O, x R.

This equation is the simplest yet highly nontrivial model of conservative systems
such as charged particles in periodic fields. Setting 2 y, these equations can be
rewritten in Hamiltonian form with Hamiltonian furctions

ly2 V(x, wt)H(x,y,t) - +

on the extended phase space (x, y, t) E R3.
A distinguished class of equations describe forced pendulum-like systems in which

the potential is assumed to be periodic in x such that V is a function on S
R. If, in addition, the time dependence is periodic or even quasiperiodic, then it
turns out that every solution x(t) of (1) is bounded in the phase space S R, i.e.,
sup{](t)l,t E R} < oc, provided that only the potential V is sufficiently smooth
and, in the quasiperiodic case, the frequencies meet a Diophantine condition. The
proof of this phenomenon is based on the observation that such systems are near
so-called integrable systems in the region of the phase space S R in which y is
sufficiently large. For proofs we refer to Levi [12], Moser [13], and Chierchia and
Zehnder [14]. If, however, the smoothness requirements are not met, for example, if
V merely belongs to the class C2, then unbounded solutions may be expected. Also,
if the above restrictions on the time dependence are dropped, unbounded solutions
are likely to occur even for smooth and bounded potentials V.

If the periodicity requirement in x is dropped, then the configuration space is no
longer S but R1, and the question of boundedness of all solutions for (1) is much
more subtle. It is related to the asymptotic behavior of the nonlinearity in x, the
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FIG. 1.1.

smoothness of V, and also the nature of the time dependence. For example, if

ly2 1
H(x,y,t) - +

v/x +
for a time periodic and positive function r(t), as in the case of the so-called restricted
three-body problem, then the solutions with initial conditions 5(0) y(0) sufficiently
large are clearly not bounded. Here the level lines of H(x, y, t) E for frozen t are
not closed curves if E is large. In contrast, in the example

(3) it + a(t)x3 + b(t)x2 + c(t)x p(t)

level lines for E large are closed curves; see Fig. 1.1. However, the energy is not
conserved in time and might increase, forcing a solution to be unbounded in the
phase space R2. For this class of examples the subtle question of boundedness of
solutions was already raised by Littlewood, who constructed examples [2] admitting
unbounded solutions assuming a periodic but discontinuous forcing p(t); see also Levi
[3] and Long [4]. Recently Zharnitsky [30] succeeded in constructing such an example
with p(t) discontinuous. In 1976 Morris [5] succeeded in proving that, for a continuous
time periodic forcing, all the solutions of

+
are bounded in R2. For more recent results in the time periodic case we refer to
[6]-[9], [16]. We also mention the related problem of Ulam and Fermi’s "ping-pong,"
consisting of a particle bouncing between a wall and a periodically moving "paddle"
parallel to the wall, undergoing perfectly elastic collisions with both; a basic physical
question is whether the energy of a particle stays bounded for all time in such a
periodically varying system. It should be mentioned that this problem is a limiting
case of the aforementioned problems where the walls of the potential Well become
infinitely steep. The affirmative answer to the last question for sufficiently smooth
periodic motions of the wall has been given by Moser (in an unpublished, private
communication), Douady [27], and in [6]. In what follows we shall assume that the
time dependence in (1) is quasiperiodic with frequencies w (wl,..., WN) E RN; i.e.,
we assume

(4) V(x, wt) V(x, wlt,...,wNt),

where V(x,l, ,N) is assumed to be periodic of period 1 in all the variables
1,..., N. Moreover, we shall assume that the frequencies w are not only rationally
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independent, but meet the Diophantine conditions

I{w,J}l >- /IJl-" for all j e zN\{o}

with two constants - > N and 3’ > 0. The brackets on the left-hand side denote the
scalar product.

The system considered first is of the form

2n+2

(6) V(x, wt)= E a(wt)x’
j=l

n _> 1, where all the coefficients are quasiperiodic functions in time with the same
frequencies w E ay and, in addition, the leading coefficient a a2n is positive:

(7) a(wt) >_ min a() > O.
ETN

1.1. Stability and invariant tori for polynomial potentials.
THEOREM 1. Let the polynomial potential V(x, wt) satisfy (6) and (7) together

with the Diophantine conditions (5), and assume that aj Ck(TN) for k, > 47 if-6
and 0 <_ j <_ 2n + 2. Then all solutions x(t) of + Vx(x, wt) 0 are bounded, i.e.,

sup(x(t) + <
tEl:t

Note that the smoothness requirement depends only on the number of the under-
lying frequencies w and not on the degree of the polynomial in x. Already for the time
periodic case this statement is not quite obvious. It has only recently been proved by
Laederich and Levi in [6], improving and simplifying an earlier result of Dieckerhoff
and Zehnder [7]. We should point out that all the boundedness proofs in the time
periodic case use Moser’s twist theorem [19] and its regularity improvements [10] and
[11] in a crucial way.

In order to describe the idea of the proof in the quasiperiodic case, we write the
equation as a system .in the phase space It,3,

(8) -G(x,t),

and abbreviate the vector field in R3 on the right-hand side by X. For C > 0 we
denote by Ac the region Ac {(x,y,t)lx2 + y2 > C} in R3. For every C > 0 we
shall construct an embedded cylinder w" R S R3 contained in Ac,

(9) (t, t),

satisfying

C< inf (u2+v2)< sup (u2+v2)<c
RxS RxS

and which is tangential to the vector field X in R3, so that it is invariant under the
flow of X: Now if a solution (x(t),y(t),t) of (8) satisfies x(t*)2 + y(t*) 2 G C for some



1236 M. LEVI AND E. ZEHNDER

t* E R, then it follows from the invariance of the cylinder and the uniqueness of the
solutions that this solution does exist for all times t E R and satisfies, in addition,
(x(t) 2 + y(t)2) < suprtxs(u2 + v2) < cx for all t R. Hence it is bounded.

The existence of these invariant surfaces in R3 will be concluded from the obser-
vation that the system (8) is in the region Ac near an integrable system, provided
that C is sufficiently large, so that well-known small denominator perturbation tech-
niques can be applied. These techniques require an excessive amount of smoothness;
this is, of course, well known. The near integrability is, however, not obvious a priori
and its proof is the main task. It will be apparent only after scaling the time t and
the phase space variables and only after several coordinate changes, which transform
the vector field into a suitable form.

The invariant surface found consists of quasiperiodic solutions, and we shall prove
the following existence statement.

THEOREM 2. The equation

+ y (x, o

with the potential V satisfying the assumptions of Theorem 1 possesses uncountably
many quasiperiodic solutions having 1 + N frequencies (a, w) RI+N and satisfying
the Diophantine conditions

lak + (w,j)l-> (I k] + ]J])-

for all (k,j) e zI+N\{0} with the same constants / > 0 and - > N as in (5).
Indeed, as expected, the dominant part of the phase space for x2 + 22 large is

covered by quasiperiodic solutions. The worst possible failure of the Diophantine
condition (5) corresponds to all frequencies w being rational multiples of one of them;
in this case V is time periodic and the aforementioned results for the periodic case
apply, showing boundedness under appropriate assumptions.

The intermediate (Liouville) case between the periodic one and the Diophantine
one is less clear. It seems highly likely that when w is a Liouville vector, where (5)
fails for infinitely many j, an arbitrarily small change in V would destroy an invariant
surface with fixed frequencies if there is one; see Mather [21]. On the other hand, it is
less clear whether all such tori can be destroyed at once, or perhaps the destruction
of one torus could lead to the creation of another one.

1.2. General potentials. So far we have considered a rather restricted class of
potentials. I’t turns out that the ideas of the proof of the aforementioned Theorems
can be applied to a more general class of quasiperiodic potentials introduced recently
in [15] for the time periodic case.

THEOREM 3. Ifw satisfies the Diophantine conditions (5) then there exist positive
constants a, b, #o(b), and 7(b) such that the conclusions of Theorens 1 and2 hold for
the equation

+ V (x, o

provided V(x,) with x R and e TN belongs to Cd,d 4T + 7 +/(b) and,
moreover, satisfies the following conditions:

(i)

V(x,) as [x] cx
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uniformly in E TN.
(ii) In the notation

W’-- --V and U’= V
V v’

the following estimates hold for all (x, ) e R RN and Ixl large:

1 1
(iia) - + a<0xW(x,)<--b, b<l-a,

(iib) IOk O V(x,)l <- Ck Ixl -k IV(x, )11+ for some 0 <_ # <_ #o(b)

and

IOkx O UI IOkx O W
_
Ckc Ixl 1-k

for all I1 + Il 4- + 6 + /(b).
This theorem will be proved in 4.
Examples. The above conditions (i) and (ii) with # 0 hold for polynomial

(in x) potentials. With # - 0 the class of potentials widens considerably to include
exponential growth, oscillatory growth, and much more. The simplest example is

VI (x, t) p(wt).cosh x; it satisfies all the conditions if p > 0 is smooth enough.
A more difficult potential

V2(x,t) p(wt)(coshx + q(x)),

where q is any polynomial, satisfies conditions (i) and (ii) as well, again provided
p Tn IR is smooth enough. The polynomial q(x) in the above example can be
replaced by, say, cos x or a polynomial in x and cos x without violating the conditions
of Theorem 3:

V3(x, t) p(wt)(cosh x + ql (x, cos x)).

Yet another example is

V4(x,t) cosh [(3 + cost + cos x/t)(x + sin(1 + x2))]
with u > 0 sufficiently (specifically) small.

The list can be continued indefinitely.
It should be emphasized that analogous stability results cannot be expected in

higher dimensions. Consider, for example, a time-dependent Hamiltonian system
defined by the Hamiltonian function

1
H(x,y,w,t) -xlyl 2 + V(x, wt)

on (x, y) Tn ]R for which the energy is not conserved. Here one also finds an
abundance of quasiperiodic solutions in the region of the phase space where lYl is large,
in which the system can be considered as a system near an integrable one, provided
V is sufficiently smooth; see, e.g., [14]. However, if n > 1 then the existence of these
solutions does not lead to bounds for all solutions of the systen. But there are bounds
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for all solutions not over an infinite interval of time but over an exponentially large
interval of time, provided the potential is not only smooth but real analytic. This
well-known phenomenon has been discovered hy Nekhoroshev [25]. As an illustraiion
we mention the effective bounds for the above example. Assume V(t, x) with (t, x) E
lRn Tn has a holomorphic extension to an imaginary strip IIm t _< a and IIm t _< a
for some positive number a. Then there are positive constants T* and R* depending
on V, a, and the dimension n such that, for every p >_ R* and every solution (x(t), y(t))
of the Hamiltonian equation, we have

for all t in the interval

Itl _< T* exp

The proof of these estimates with explicit constants is based on Nekhoroshev’s ideas,
and we refer to [26] (with a 2/(n2 + n)) and [28] and [29] for the recently improved

This is merely a special example of an exponential stabilityestimate with a -.
result which replaces the stronger stability results of Theorem 3 for systems .in higher
dimensions.

1.3. Unbounded solutions with nonrecurrent forcing. We shall show that,
as soon as the quasiperiodicity requirement of the time dependence is removed, even
the "nicest" equations can have unbounded solutions for forcing terms which are
smooth, small, and tend to zero as the time goes to infinity.

THEOREM 4. Given any > 0 and any r N, there exists a function p C (R)
satisfying

(o) and lim DJp(t) O forO < j < r-1,
t--*cx:)

such that the equation

(11) +x3=p(t)

possesses an unbounded solution y(t). Moreover, the rate of decay in (10) is given by

2(r-j)

(12) sup t + IDJp(t)l <
t>O

for 0 <_ j <_ r 1, and the rate of growth of the unbounded solution y(t) is given by

(13)
1 1 1
__t-4- < -9(t)2 -+- y(t)4 < Ct+c -2

for t >_ 1 with a positive constant C depending on
It should be pointed out that the first part of the theorem holds true for every

IX[-- i.e., an unboundedequation/ + Vx(x) p(t) provided that - Vx(x)solution can be produced with a forcing satisfying (10). This will follow from the
proof. As for another, more subtle phenomenon we recall that Coffman and Ullrich
[22] constructed a positive and Continuous function p(t) close to a constant, which,
however, is not of bounded variation near a point t*, such that the equation
p(t)x3 0 has a solution which is unbounded on the finite interval 0 _< t < t*.
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i V(x)
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FIG. 2.1.

2. A "squash player’s" potential and some open problems. Let M > 0
be a large integer and consider equation (1) with the special potential

n

V(x, wt) (x- 1)TM + (x/pi(wi t))TM
i--1

where 0 < pi(T) < 1 are periodic functions of period 1. Since M is large, V has
two steep "walls," one near x 0 and the other near x minl<i<n {pj(wit)}; see
Fig. 2.1. One may think of n squash players each moving his racket periodically,
holding it at the distance pi(wit) from the wall x 0. The player whose racket is in
front, i.e., closest to the wall at a given moment, "gets to hit the ball." It would make
sense to assume that minT-p(r) < maxpj(T) for all i,j 1,...,n, so that everyone

7"

gets a chance to hit. Now Theorem 1 shows that as long as the frequency vector
w is Diophantine and pi E Ck(S1) with k > 4T q-6, the game will proceed without
an escalation, i.e., both the speed and the position of any possible motion will stay
bounded for all t E It. Of course, no explicit estimate on that bound is given and no
estimate is given on how deep the potential wall is penetrated.

Open problems. 1. Modifying the "squash" example by making the walls rigid,
we obtain a problem not covered by Theorems 1 or 2. In fact, it is doubtful that the
result still holds for such a modification since the smoothness of the "potential" is
lost in taking the rigid limit.

2. As for a different modification, one could consider the Ulam-Fermi "ping-
pong" problem consisting of a particle bouncing elastically between two parallel walls
with the walls undergoing a quasiperiodic motion. The problem is to prove that the
velocity of every motion is bounded for all time provided the motion of the walls is
smooth enough and the Diophantine conditions hold by establishing the existence of
invarlant cylinders in the extended phase space of the system.

3. Proof of Theorems 1 and 2. We first transform the equation

(4) + V.(x, t) 0, e

with V satisfying assumptions (4).-(7) into a suitable form. We proceed in several
steps.

3.1. The rescaling into a slow system. As .in [6] we first rescale the time
variable t and, at the same time, the space variable x setting for small ti > 0,

(5) u=5x, t=es, where e=tin
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If x(t) is a solution of (14), then

:=

is a solution of the equation

(16) ds---su + e25Vx -,ews O, u E R.

In view of the assumptions on V we are led to the equivalent differential equation

(17)
d2

d82
--u + W(u, ews, e) O,

where W(u, ,e), TN is given by

W(’a, , ) a()u2n+2 zr- ga
2n+l

E aJ()ea(2n+l-J)uJ with

and a a2n+2; moreover, aj Ck(TN). Now, returning to the old notation by
replacing u by x and s by t we therefore arrive at the Hamiltonian system

(18) ly2H(x,y, ewt,) - + W(x, ewt, e)

in the extended phase space (x, y, t) R3. Our aim is to construct, for every > 0,
an invariant cylinder for (18) contained in (x, y, t) A R having the time axis in
its interior, where A is a fixed and bounded annular region in R2 around the origin.

3.2. The action-angle variables. At first we consider the time-independent
Hamiltonian system in (x, y) R2 given by

(19) ly2H(x,y,,e) + W(x,{,e),

which depends on the parameters E RN and e > 0. The dependence on each {i is
periodic with each period 1. If e is sufficiently small one can introduce in an annulus-
like domain in the (/, y)-plane so-called action and angle variables (p,I) (x, y),
using a generating function S(x, I) S(x,.I, , ) depending periodically on { by the
formula

u
(eo) &(x, I).

As usual [23], the action variable I is defined as the area of the level curve 7 in
R2 defined by H(x, y, , ) E:

f
(21) I

If E exceeds all critical values of W in x, then q, is a simple closed curve. Since
OI
OE > 0 for E large enough and e > 0 small enough, we can. define the inverse function
of I(E) so that E is a well-defined function of (I, {, e), which we denote by K. The
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FIG. 3.1.

generating function S is then defined as the shaded area in Fig. 3.1 or, equivalently,
as the solution of

(22) K(I,,e) H(x, Sx(x,I,,e),,e);
it is independent of the angle variable p. As in [6] one verifies that

(23) K(I,,) a()I + 0()
with 3 2n+2 and a positive fllnction a E Ca(TN) Now setting cwt, wen+2
define the time-dependent symplectic transformation (20) by means of the generating
function S S(x, I, swt, ). It transforms the Hamiltonian system (18) into the
system

0
(, I, wt, )(24) K(a,I,wt, a) K(I, ewt,) + --on the phase space (., I, t) E S R R. Here I R varies in a bounded interval

which is independent of ; a is small and x (, I, awt, ) in view of (20).
We denote the second term on the right-hand side by K(p,I, awt, a), so that

(24) becomes

K(,I,wt,) K(I,wt,) + Kl(,I,t,).
In what follows it will be crucial that

0
() K1(, , t, ) . S(, ., t, ) O()

with all its (finitely many) derivatives in (, I, t). Here S is the gradient ors with
respect to .

3.3. Choosing the symplectic angle as time. The Hamiltonian equations
associated with the function K in (24) are, on the extended phase space (a,I,t)
S x IR x IR, given by

d K(, I, ewt, e),
dt

()
d
d--i -.K(, , t, ),

dt
dt



1242 M. LEVI AND E. ZEHNDER

It is well known that if the time t and the "energy" K are chosen as the new conjugate
variables and the angle o is chosen as the new time variable, then (26) is transformed
into an equation which is again Hamiltonian and belongs to a Hamiltonian function
Q, which is the inverse of the function I K(o, I, wt, ). Indeed, from (23) we
conclude that the partial derivative KI > 0 if is small, and we can therefore define
the transformation

(27) p= K(o, I, wt, s),
8 o

from (o, I, t) E S IR ]R into (q,p, s) lit ]R S1. Denote by Q(, p, o,.) the
inverse function of I -+ K(o, I, , s), so that

(28) p K(, Q(ewt, p, , ), swt, ).

Then the flow induced in the (q, p, s)-space by (26) is Hamiltonian with Q as the
namiltonian function. This follows from Ido- Kdt -(pdq Qds) (see [23], [24])
or by a direct calculation which we now carry out. Abbreviating the vector field on
the right-hand side of (26) by X, one readily verifies, using (27) and (28), that the
transformed vector field is given by

d- P (d)-lX o _QI Qq
s Q-I

where Q Q(swq, p, s,). Multiplying this vector field by the positive function Qp
we find as claimed

(29)

dq
Qp(wq, p, s, ),ds

-Qq(wq, p,s,s),
ds

where the new time variable s o is the old angle. One verifies, moreover, that

(30) Q(wq, p, s, ) QO (swq, p, ) + eQ1 (wq, p, s, ),

where

(31) Q(wq,p,) b(wq)p" + 0()
n/2 and a positive periodic function b Ck(TN).with 9’ 2%W

3.4. Removing the time dependence in the dominant term. In order to
relate the notation of the variables q,p, s of the Hamiltonian function (30) to their
original meaning, we return to the old notation and replace the variables (q, p, s) and
the Hamiltonian function Q by (t, K, s) and I, so that the Hamiltonian (30) in this
notation is

(32) I(ewt, K, 99, ) I (ewt, K, ) + e I (ewt, K, , ),
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where I Q0 and 11 Q1 are given by (30) and (31). The Hamiltonian equations
now look as follows:

dt
(33) Ig (ewt, K, o, e),

d

dK
-h (wt, K, , ).

dT
Introducing t T, these equations become

dT
(34) e Ig (wT, K, , e),

d

dK
--eIT (wT, K, ,)

d
and belong to the Hamiltonian function

We look for a symplectic transformation of the form

(35) . T T+u(T,K),
h g+v(T,g),

which is, in particular, independent of the (time) variable and transforms the Hamil-
tonian function eI into the following form:

(36) e {I0-1 } e {(h, e) + l(wT, h,,)},
where the dominant term 0 is independent of ’. To define this transformation we
first define the leading term o by taking the inverse function of K -- I(wT, K),
then averaging it over the torus TN and taking the inverse again. Observe that

I > 0 in the view of (31) provided that e is sufficiently small. Therefore we can
solve I(, K) h for K and find a function K(, h) satisfying

(37) I(, g(, h)) h,

where K is periodic in e Tg. Next, define the mean value over the torus by

(38) [g](h) f g(, h)d.
TN

Since K (I)-1 > 0, the function [g] has an inverse 0 which thus satisfies

(39) [g] o (h) h.

In our notation we have neglected the dependence on e. Clearly, > 0. This
finishes the definition of o. Using this @o, we shall next define the required symplectic
transformation in (35) implicitly by means of a generating function F(wT, h), which
is quasiperiodic in T,

T T-bh(wT, h),
(40) : K h+ET(wT, h).
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In order to achieve our aim (36) we have to solve the following equation for E:

(41) I(wT, h + ET(wT, h)) (h),
where the dependence on the parameter e is again neglected. In view of (37) equation
(41) is equivalent to

h + ET(wT, h) g(wT, (h)).
Therefore, the function E(, h) solves the following partial differential equation on TN

having the constant coefficients (w WN) w:

N 0
(42) E wy -E (,h) K(, O(h)) h.

j=l

Since, by our assumption, the frequencies w satisfy the Diophantine conditions (5) and,
by construction, the mean value over the torus of the right-hand side of (42) vanishes in
view of (39), there is a unique solution E(, h) periodic in and having vanishing mean
value [El(h) 0. Because of the well-known small divisor phenomenon, however, this
solution loses derivatives, so that

(43) E E Ck- (TN x D)
if the right-hand side is in Ck, where the parameter T in (44) is the same as in the
Diophantine condition (5). This is well known and we refer to [10] and [16] for a
proof. In view of

1 + ETh (wT, h) K(wT, O(h)) O(h)

the relation (40) indeed defines a symplectic transformation of the form (35) It
is of class Ck--l; the extra loss of smoothness is a result of the differentiation in
(40). Moreover, by the well-known properties of quasiperiodic functions proved in the
book by Siegel and Moser on celestial mechanics [17, 36], one readily verifies that the
functions u and v in the transformation .are quasiperiodic in T still with the same
frequencies w. The same conclusion follows for the functions representing the inverse
transformation of .

Recalling that T et, we now replace T by eT and arrive, in view of the Hamil-
tonian equations corresponding to the function (36), at the equations

dT
(44) Oh (WET, h,

d
dh

d
The Hamiltonian function

(45)
is quasiperiodic in T with frequencies ew. Moreover, (, h, , e) belongs to Ck-l-r (Ty
D S R) and, by construction,

(46) (h, e) c h" + O(e)
for a constant c > 0.,
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3.5. Back to the angle and action variables. Proceeding as in step (3.3),
we next choose the variables , I, and T as the new position, momentum, and time
variables. These variables then satisfy the Hamiltonian equations whose Hamiltonian
function is the inverse function of h ---+ (WT, h, ; ) denoted by h (, I, w7", ) and
thus satisfying

( (WT, h(, I, WT, )) I.

Therefore, the Hamiltonian equations become, on the extended phase space (, I, T) E
S RR,

d_. hi (, I, SWT, )
dT

d- -h (, I, eWT, ).

The Hamiltonian function h is of class Ck-r- 1, depends quasiperiodically on the time
T, and is of the form

(47) h (, I, WT, ) h (I, ) + eh (, I, eWT, ),

where h is the inverse function of O0, which thus satisfies

h(I,) cI+0()
with constants 2n+2, a > 0, and c> 0.

3.6. ansformation into a system ne an integrable one. In order to
remove the dependence on in the 0(s)-terms of the Hamiltonian (46) we seek a
time-dependent symplectic transformation (,I) (x, y) between two annuli
given by means of a generating function S S (, y,wT, ), implicitly, via

I y+eS (,y),: x

Inserting (48) into (47) and expanding in e leads to

h (y + eS) + eh (x + eS,y +eS)
h (y) + eh (y)S + eh (x,y) + O (e2).

To kill the angle dependence in the O (e) term above we require

h(y) S + h (x,y, ewT) [h](y,

with the mean value over S defined by

(49) [h] (y, eWT) [ h (x, y, eT)dx,
0

and we find

h (y) {[hl]- h}dx’
0
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which is periodic in and quasiperiodic in ’. For the transformed Hamiltonian
function H (x, y, wr, ) h o + S we therefore conclude

(50)
H (x,y, ew’r,e) h (y,s)/ [h1]

+ 2h2 (x, y, eWT, ).

By repeating the same procedure but replacing eS by e2S, of course with a diffent
function S, the Hamiltonian (50) is transformed into a new Hamiltonian of the form

(51)
H (x, y, ewT, ) h (y, ) + e[h1] (y, ewr, )

+ 2[h2] (y, SWT, ) + 3h3 (x, y, eWT, ).

Now, in order.to remove the time dependence from the dominant part in (51) consist-
ing of the first three terms, one again carries out step (3.3), then step (3.4), and then
step (3.5) and finally arrives at the following time-dependent Hamiltonian function
H (x, y,wt,), which in action and angle variables (x, y) e S D for some open
and bounded interval D C R+, is given by

(52) H (x, y, ewt, ) Ho (y, ) + 3H1 (x, y, ewt, ),

with

H0 (U,) cu + O (")

for positive constants c, a, and 2n+2 The function H belongs to Ck-2r-4n+2
and, moreover, is quasiperiodic in time t with the frequencies ew. On the domain
(x, y, t) E S x D x R the system described by (52) turns out to be sufficiently near
the integrable system, which is described by the Hamiltonian H0 (y,e) provided e is
small. This is the content of the next and last step in the proof of Theorem 1.

3.7. Existence of an invariant cylinder, proof of Theorems 1 and 2. We
consider the Hamiltonian system (52) in S D, where D is a bounded interval of
the positive real axis, H is periodic in x, and (1,..., g):

(53) H (x,y,,e) Ho (y,e) + 3H1 (x,y,,-c).

We are looking for quasiperiodic solutions having the frequencies (a, ew) R+N,
where w are the prescribed frequencies of Theorem 1. In more geometric terms we
look for a differentiable mapping

(54) w :TI+N ---, S D,

(, ) (u (, ), v (, )), where u (, )- and v (, ) are periodic functions in
and , which maps the constant vector field V on Tl+g, given by

into the given Hamiltonian vector field belonging to (53), thus satisfying

(56)
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for all (,) E TI+N. Here V stands for the gradient with respect to the variables
(x, y) and

C N C
Dy a- + eEwJ oj

j--1

(01)(57) J
-1 0

From (56)it then follows that a solution (O(t) ,(t)) (at, ewt) of V in (55) is
mapped into the quasiperiodic solution z (t) w (at, ewt) of the Hamiltonian system

(58) (t)= JVH (z (t),ewt, e).

One concludes, in particular, that the cylinder

(59) ’t)" S X R ---+ S X D x R,

defined by b (0, t)- (w (O, ewt), t), is tangential to (JVH (x, y, ewt), 1), the Hamil-
tonian vector field in the phase space S D R. The solutions on this cylinder are,
moreover, quasiperiodic. The required map w is, in view of (56), a solution of the
nonlinear partial differential equation

(60) Dv w JVH (w, , e).

In the special case of the integrable system defined by H0 (y,e), which does not
depend on the torus variables (0, ) E Tt+N, the solutions w of (60) are simply the
injection mappings

(61) W: TI+N S D, w (0,)= (0, y),

where y is determined by the vector field V (a, w) via

OH0

If s > 0 and small, then the system H is a perturbation of this integrable system and
we shall apply a well-known existence statement of Moser [18] in order to guarantee
solutions w of (60) nearby.

First we observe that, by construction, the function H in (52) satisfies

02Ho(63) C < (y, e) < C- y D
dy2

for a positive constant C > 0, which is independent of e for small e. This is the twist
condition. Consequently, if the prescribed frequencies w Rg satisfy the Diophantine
conditions (5) of the theorem, then we find, for every given e > 0, a point y D such
that a (OHo/Oy) (y,e) satisfies

(64) la. k + <w,j> _> e3’ (ll + [J[)-
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for all (k,j) e zl+N\{0} with the constants 3’ > 0 and - > N as in (5). Indeed, one
readily verifies, using T > N, that in every finite interval I the complement of those
real numbers c in I which fail the estimates (64) are a set of Lebesgue measure O ().
Secondly, the Hamiltonian function H is sufficiently smooth: H E C for > 2T -t- 2.
Indeed, from step (3.6) we have, by construction, H Ck-2’-4 and, by assumption,
k > 4- + 6. Thirdly, the perturbation is sufficiently small in the sense that

(1) IIH Hollc, - IIHI llc’ 0 ().

In view of (63), (64), and (65) we can apply Moser’s theorem in [18] together with its
improvements from Salamon in [20] and Salamon and Zehnder in [16], which remove
the analycity requirement for the unperturbed system. We conclude that, for 0 < _<

* small and c (OHo/Oy) (y,) satisfying (64), there exists a solution w w of
(60). Moreover, this solution w (u, v)satisfies

(66)

so that w is indeed close to the map w w0 in (61) for the integrable system. It
belongs to the same c.

Summarizing, for every > 0 sufficiently small we have constructed an invariant
cylinder (59). Going back to the original coordinates we conclude, in view of the
scaling in step 1, that to every initial condition (x (0), ? (0)) 6 R2 there is an invari-
ant cylinder as described in the introduction containing the corresponding solution
(x (t), (t)) of equation (1) in its interior, so that sup{ x(t)2 + J(t)2 t
This finishes the proof of Theorem 1.

We remark that, in order to apply the above small denominator techniques to
our problem at hand, one simply extends the Hamiltonian system by considering the
function

/2/(x,,y,u) e<w, r> + H (x,y,,e)

on the extended phase space Tl+y x Rl+N with its standard symplectic structure.
The integrable part of/:/is then given by

/2/o (Y, r], s) <w, r]> + Ho (y, s).

The distinguished invariant torus of this integrable system, defined by TI+N {y, r}
for c (OHo/Oy) (y,e) and r/= 0, which has the frequencies (c, ew), is then contin-
ued under the perturbation. For the existence proof of this continuation one simply
applies the standard transformation technique, restricting, however, the symplectic
transformations used to the subgroup of those transformations leaving the variables
fixed.

4. Proof of Theorem 3 (on general potentials). In this section we shall
sketch the proof of Theorem 3. The many tedious technical details are the same
as in [15] and the proof of Theorem. 1 and will be omitted. We first carry out the
formal steps which put 5 + V,(x, cot) 0 into a suitable normal fc)rm in the region
x2 + .:2 C in R for C > 0 large. Afterwards we .follow up with the estimates.
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4.1. The formal normal form. In contrast to the polynomial case of Theorem
1 we do not rescale until later.

Step 1. We first introduce the action and angle variables (x, 2, t) -. (0, I, t) by
freezing a value t and assigning to (x, y, t) the triple (0, I, t) as follows:

0 S (x, I,
(6) S (x,,t),

where
x

S (x,I, wt) / ydx
0

y2is the integral taken along the level curve + V (x, wt) const, which encloses
the area I in the (x, y)-plane. The resulting Hamiltonian in the (0, I, t) variables is
then

(68) H (0, , t) H0 (, t) + H (0, , t)
with

0
HI St w. _-S (O,I, wt)..

Step 2. Now, proceeding as in (3.3) we choose t,H,O and I I (wt, H,O) as
the new position, momentum, time, and Hamiltonian function, respectively. Here
I (wt, H, O) is the inverse function of I -. H (0, I, wt). Defining I0 (wt, H) as the
inverse of I H Ho (I, wt) we rewrite the Hamiltonian describing the system in the
form

(69) (t, H, 0) 0 (t, H) + (t, H, ),

thus defining I with 0 playing the role of the time.
Step 3. Removing the t-dependence in the "leading" term H0, following 3.4 we

arrive at the equivalent Hamiltonian system defined by

(70) J (wT, h, 0) Jo (h) + J (wT, h, 0).

Step 4. Proceeding as in 3.5, we go back to the variables (0, J, T) as the new

position, momentum, and time and arrive at the new system with the Hamiltonian

(71) h (, J, w-) ho (J) + hi (, J, w-),

where h is the inverse function of h H J (WT, h, O) and h0 is the inverse of h -, J0 (h).
Step 5. In order to work on a bounded interval for the action variable we rescale

(, J) into (x, y) by setting

(72) x O, y eJ,

where e > 0 is small and y varies in a bounded interval D C R+. The new variables
satisfy the Hamiltonian system corresponding to the Hamiltonian function

(73)
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Rescaling the time by

(74)

and introducing the abbreviation T (e) h0 (), we set

a a
T

and arrive at the new Hamiltonian system given by

(76) t (x,y,t,) ]0 (Y,) -- 3]1 (x,y,t,e)

with the functions/0 and//1 defined by

1 y

1/1 (x,y, ftt,)= Zh0()l hi x,,ftt

The constant > 0 will be chosen later such that /, together with all its finitely
many derivatives, is bounded independently of > 0.

Step 6. After K further symplectic transformations as in 3.6, we find the fol-
lowing normal form for the Hamiltonian function on an annulus A with coordinates
x and y:

(77) H (x,y, gtt,) Ho (y,e) + gz HK (x,y, ftt,),

where H is periodic in x and quasiperiodic in t with the frequencies t t (s) as
defined in (75). All the transformations result in the loss of 27 + 3 + K derivatives.

4.2. Estimates. In order to apply the theorems of existence of quasiperiodic
solutions as in 3.7 for the flow of the Hamiltonian system given by H in (77), we
need the following conditions (i)-(iii) to be satisfied:

(i) There exist constants 0 < C < C2 independent of > 0 such that

for all y E D, where D is a bounded interval in R+.
0(ii) For every e > 0 there is a y E D such that a - H0 (y,) satisfies the

Diophantine conditions

(79)

for all (k, j) e Z x ZN \ {0}, where ft ft (e) is given by (75).
(iii) The perturbation satisfies

(80) (@[)
2

[[eKCHK[[ cI O (ea)
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for some > 2T 4- 2 and all s > 0 with a constant a > 0.
The following two propositions will allow the verification of (78)-(80). The first

proposition is a restatement of Theorems 3 and 4 in [15, p. 47].
PROPOSITION 1. If the potential V(x, ) satisfies the assumptions of Theorem 3

with I1 + Ikl <_ d then the Hamiltonian function (68) satisfies for I large the following
estimates: There are positive constants Ck,a and 5 5(#, b, d) such that

(811 I0 O Hi(O, I, )1 <- Ck, I-k- Ho(I, ), lal + Ikl _< d 1.

Moreover, the function Io(G H) in (69) satisfies for large H,

(82) 10 0/I0(, H)I <_ Ck,a H- I0(, H), lal + Ik] _< d- 1

and for 0 <_ k <_ 2,

(83) H-k I0(, H) _< C IO z0(5, H)I

for a constant C > O.
The next proposition is a restatement of Theorem 5.1 in [15].
PROPOSITION 2. If estimates (811-(831 hold true then the Hamiltonian function

(711 denoted by J(, h, ) Jo(h) + J1 (, h, ) satisfies the following estimates for
h large: There are positive constants C, Ck, Ck,a, a, al, and a, such that

1
(84/

0- Jo(h)
1

and - ha‘ <_ J0(h),

1
h_ Jo(h) <_c for 0_<k_<2,

(86) <_ Ck h-k IJ0(h)l, Ikl _< d- 2,

(87) 10 O J1 (, h, 0)1 <_ Ck,a h-k Jo(h)1-, I1 + Ikl _< d- 2.

By using the techniques developed in [15], one can follow these estimates through
all our coordiante transformations in order to verify (78) and (80). In particular,
estimates (84)-(87) imply the existence of constants fl fl(b, #, d) and #0 #0(b)
such that

Furthermore, there exists c a(b) > 0 such that

1ho() O(-).

To verify (80) we combine the last two estimates
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and it remains to show that K(b, #, d) 2c > 0 and d- 2- 3- K > 2"/- + 2 hold
for some K > 0 or, equivalently,

2
a(b)

<K<d-4T-5.
/(b, #, d)

For such K to exist it suffices to verify that

(88) d--4T-- 5lb,#,d,( >_ 1 and /(b,#,d) > O.

First,/(b, 0, d) --/(.b) > 0 is d-independent, according to the arguments in [15], and
/(b, #, d) can be chosen as continuous in # for # >_ 0. Thus, choosing

d 4-+7+2fl(b)
guarantees that (88) holds for all # E [0,#0(b)], where #o(b) > 0 can be estimated
explicitly. With this choice of d there exists K with which the smallness condition
(80) is satisfied. This finishes the sketch of the proof of Theorem 3.

5. Proof of Theorem 4 (unbounded solutions). The idea is to create p(t),
giving a particular solution y(t) of (11) a "helping kick" to the right each time the
solution passes through the interval -1 <_ x _< 1 from -1 to /1, and make p(t) 0
at all other times. With such a p(t) the energy along the solution will increase during
each passage from -1 to +1 while remaining constant between consecutive passages.
If the "kicks". do not weaken too much with the number of passages, the errors will
grow without bound. The precise construction is as follows: We first consider an
auxiliary nonconservative system

(89) + y3 f(y, fl)

for a smooth function f E C(R2) defined by

(90) f(Y, fl) h(Y)

where r N is as it was in the statement of the theorem and h and g Ca(R)
satisfy

=0 if lYl >-1,h(y) >0 if lYI<I,

(91)
=0 if $_<0,

g(9) >0 if 0<9<1,
=1 if >_1.

Now, if y(t) is a fixed unbounded solution of (89), we can define p (t) f (y (t), 9 (t))
and consider equation (11) with this forcing term p. The function y (t) then solves
both the conservative equation (11) and the nonconservative equation (89). It turns
out that all. nontrivial solutions of the latter are unbounded.
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FG. 5.1.

The energy

1
(92) E (t)"= (t) 2 + -y (t)4

along a given solution y (t) of (89) satisfies

d
(93) E (t) f

which is > 0 if $ > 0 and lYl < 1 and 0 otherwise.
To be specific, in the following we consider the solution y(t) with initial values

y (0) (0) 1. Referring to Fig. 5.1, the motion of (y, $) in the R2-plane follows
12 4the energy curve in R2 given by + y in the clockwise direction until the

point (-1, 1) is reached at some time t > to 0. At some later moment t2 > tt the
point (y, $) will cross the right boundary {y 1, > 1} of the strip. Indeed, this
follows by comparison with the equation ) + y3 0 from the fact that f(y, ) > 0 in
the strip. Furthermore, E (t2) > E (ti) by (93), so that the point will start moving
along a larger energy curve after having crossed the strip.

Denoting the sequence of consecutive crossings of the vertical boundaries {y
+1, > 0} by 0 to < tt < t2 < ..., and the sequence of corresponding energy values
between consecutive crossings by

En E (t), t2n

_
t

_
t2n+l,

n 0, 1, 2,..., we claim that

(94)

Indeed, integration of (93) gives

En+l En ft2n,2
J t2n-b

lim E= lim E(t)=

]f (y, $)dt

h (y)l._--idt =/
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The inequalities

En < E (t) < En+l for t2n+l < t < t2n/2

result, in view of lY (t)l < 1 and En > 1/2, in

(96) n ] (t) v[Enh_l for t2nq-1 t2nh-2.

From (95) and (96) we conclude

a b
(97) r/2

( En+l En < E/2
n O, 1, 2,...

a-n+

for two constants 0 < a < b. Consequently, En is a strictly monotone increasing
sequence; moreover, lim En . Indeed, if lim En Eo < cx then taking the limit

in (97) leads to the contradiction 0 < a/E2 0. We have proved claim (94) and
conclude, in view of (92), that the solution y (t) of (89) is unbounded.

In order to prove claim (10) in Theorem 4 for p (t) f (y (t), (t)), we note first
that, for t2n+l <_ t <_ t2n+2, we have (t) > 0 and thus

p (t) h (y)-r,

while p (t) 0 otherwise. Since lim En c, estimate (96) implies limt__. p (t) 0.
Similarly, differentiating p and observing that y (t) satisfies equation (89), one

readily verifies the estimate

(98) IDYp (t)l <_ C(h) if t2n+l t t2n+2,

while Dip (t) 0 otherwise, so that limt_ Dip (t) 0 if 1 < j < r 1. Here, the
constant C (h) depends only on h and its derivatives and, moreover, C (h) < C1 (h)
for small. Replacing h (y) by eh (y), we get the required estimate (10) for the forcing
p(t).

Finally, we prove estimates (12) and (13). Since, by (94) and (97), C1 < En+l/En <
c2 for two positive constants c < c2, we have

a b
(99)

E/2 < En+l- En < E--/2
for two constants 0 < a < b, which are different from the previous constants.
estimate En we define the continuous function (t) by linearly interpolating En"

r/(t):= (t-n)En+l+ (1-t+n)En

if n < t < n + 1, so that En / (n). Thus r/ (t) is a strictly monotone increasing
function whose right derivative Dr satisfies, in view of (99),

a b
( 00) (t)r/2

< Dr (t) <

for all t _> 0; this is the differential inequality which interpolates (99). Comparison
with the solutions a (t) and b (t) of the two equations

with a a and a b,
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with initial conditions a (0) ? (0) b (0), leads to a (t)

_
? (t)

_
b (t) for

t >_ 0. Consequently, there are constants 0 < A < B such that

(101) A nl/2 <_ En <_ B n +-
for n 0, 1, 2, In order to relate n with tn we note that

(102) T (Enw1) < t2nW2 t2n < T (En)

where T (E) denotes the period of the solutions of 5 / x3 0 with energy E
k2 + lx4 A simple calculation gives T (E) TE-1/4 for some constant " > 0.

Using this in (102), we conclude from (101) that

a b
(103) < t2n+2 t2n <

n 2r-/4 n 2r/4

for two constants 0 < a < b, which are different from the ones in previous formulas.
Adding up inequalities (103), we obtain the estimate

2r/3 2r/3

(104) c n+4 < t < C n2+4

for two constants 0 < c < C. Recalling the definition of E (t), we conclude from (101)
and (104) that

4

(105) a t-+ < E (t) < b t-4-, t _> 1

for two constants 0 < a < b. Finally, in view of (96) and (98) we now conclude

1IDJp (tll <_ c
v/E (t)-j

t

as claimed in the theorem. This finishes the proof of Theorem 4.
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PERIODIC SOLUTIONS OF A SYSTEM OF COUPLED
OSCILLATORS NEAR RESONANCE*

CARMEN CHICONEt

Abstract. A system of autonomous ordinary differential equations depending on a small param-
eter is considered such that the unperturbed system has an invariant manifold of periodic solutions
that is not normally hyperbolic but is normally nondegenerate. The bifurcation function whose zeros
are the bifurcation points for families of perturbed periodic solutions is determined. This result is
applied to find the periodic solutions near resonance for a two-degrees-of-freedom mechanical system
modeling a rotor interacting with an elastic support.

Key words, coupled oscillator, resonance, normal nondegeneracy
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1. Introduction. In this paper we describe an application of the results in [6]
to the bifurcation of periodic solutions in a smooth system of coupled oscillators E
given by

&l fl(xl) / g(x,, x2, 2),
+

where xi E I2, 1, 2, and E when the unperturbed system E0 satisfies the
following conditions:

1. The plane autonomous system fl(xl) has an invariant annulus A con-
sisting of periodic solutions (a period annulus) and every periodic solution in
A has the same period ?]1 > 0. Such a period annulus is called isochronous
with period ?].

2. The plane autonomous system f2(x2) has a periodic trajectory F with
period ?]2 > 0 such that either F is a hyperbolic limit cycle or F belongs to a
period annulus and the derivative of an associated period function at F does
not vanish.

3. There are relatively prime positive integers K1 and K such that K?]
/(2?]2. In this case we say that the periodic trajectory F is in resonance with
the period annulus A.

A few comments are in order on the conditions just stated. The prime example
of an isochronous period annulus is a period annulus of a linear system. However,
given any period annulus and any Poincard section at a point in the period annulus,
there is an associated period function that assigns to each point on the section the
time of first eturn to the section. It is easy to see that the requirement of a nonzero
derivative of a period function as in (2) above is independent of the choice of section
and the point chosen on the periodic trajectory. The hypotheses ensure that A F is
an invariant submanifold of the state space for the unperturbed system E0 of a spe-
cial type we call a normally nondegenerate period manifold. The condition of normal
nondegeneracy defined precisely in 2 ensures that the first-order bifurcation theory
in [6] can be applied and the existence of periodic solutions for the perturbed sys-
tem near the period manifold can be generically determined by computing the simple
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zeros of a certain bifurcation function also defined in 2. Of particular interest here
is the fact that the period manifold for E0 is not normally hyperbolic. Thus, while
the period manifold usually does not persist after perturbation, some of the periodic
solutions on the period manifold can persist. The bifurcation function determines the
number and the position of these persistent periodic solutions. In this way entrain-
ment phenomena can be studied for perturbations of systems which do not already
contain stable periodic solutions. For background material on bifurcation problems
of this type in addition to [5], [6], the following references and their bibliographies are
suggested: [1]-[3], [7],. [9]-[19].

While higher-dimensional systems can be studied by the same methods, the four-
dimensional system E illustrates the important features of the general theory and is
sufficiently general to have many interesting specializations to physical applications.
In 3 we apply the theory to an ubiquitous system of differential equations which we
interpret, as in .[16], as a model for a rotor interacting with an elastic support. We
show the existence of a normally nondegenerate period manifold in the case in which
the unperturbed system is weakly nonlinear and also in the fully nonlinear case which
corresponds to the rotor strongly influenced by a gravitational field. In both cases
the bifurcation function is computed explicitly and the existence of periodic solutions
relative to the choice of parameters is determined. These results are augmented by
some numerical evidence suggesting the role of these bifurcating families of periodic
solutions in determining the global behavior of the perturbed system.

The plan of the paper is as follows: In 2 we review the general theory of [6].
In 3 we specialize the general theory to the case represented by E and identify
the bifurcation function. These results are applied in 4 to the mechanical system
modeling the rotor with elastic support. There, the bifurcation function is computed
explicitly in terms of elliptic functions and its zeros are computed. This determines
the perturbed periodic solutions of the coupled mechanical oscillators near resonance.
In addition, 4 contains a discussion of some numerical experiments that suggest the
coexistence, for certain choices of the parameters, of perturbed periodic attractors, as
predicted by the bifurcation analysis, and more complicated nonperiodic attractors.

2. Bifurcation theory. In this section, we outline for completeness a result in
[6] which will be used in the analysis of the system E defined in the introduction.
The analysis begins with a smooth system of differential equations F given by

f(x) + eg(x, 5c, e), x e n+l, e e ,
where the unperturbed system F0 contains a normally nondegenerate period manifold.
Here, a period manifold .4 is a smooth invariant connected (k / 1)-dimensional sub-
manifold of Rn+l consisting entirely of periodic solutions of the unperturbed system
with the additional property that the Poincar6 map P associated with any Poincar6
section E is the identity on ,4tE. Of course, period manifolds generalize the concept of
a period annulus to many dimensions. To define the concept of normal nondegeneracy
we need a few more definitions. On a fixed Poincar6 section E0, which has nonempty
intersection with ,4, there is some e0 > 0 and some subsection E C_ E0 such that
the parametrized Poincar map P" E (-e0, e0) -- E0 is given by (, e) P(, e),
where P(,e) denotes the first return to E0 of the perturbed solution starting at
E E. After choosing coordinates on E given by s IRn --. E, the parameterized

Poincar map is identified with its local representation p" ]R’ (-e0, e0) -- lRn given
by p(y, )"= s-IP(s(y), ). This, in turn, allows us to define the parametrized dis-
placement function 5" ]Rn (-e0, e0) --* In by 5(y, ) := p(y, ) y. Now, for y. E ]R
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such that s(y,) E E V Jr, it is clear that the derivative of the map y - 5(y, 0), which
we denote by Dh(y, 0), when evaluated at y,, will have a nontrivial kernel containing
the tangent space of A. More precisely, if v E ]Rn and Ds(y,)v Ts(y.)E N
then Dh(y,, 0)v 0. Since E fA is k-dimensional, the kernel of Dh(y,, 0) has dimen-
sion at least k. If this kernel has dimension k for each y such that s(y) .4, we say
that A is normally nondegenerate. Perhaps a remark is in order on the definition of
displacement. One must exercise caution when defining displacement on the manifold
E. We have avoided the differential geometry necessary to give an intrinsic definition
by introducing local coordinates. However, it should be clear that the zero set of the
displacement function, the set corresponding to periodic solutions of F, is. invariant
under change of coordinates.

A goal of the theory in [6] is the identification of a bifurcation function/3 defined
on E g .4 whose simple zeros correspond to the initial values of persistent periodic
solutions of the unperturbed system. To construct the bifurcation function, we start
with a splitting of the tangent bundle over IR’+1 into three subbundles: $ generated
by the unperturbed vector field, stan tangent to A but complementary to ’, and
normal to jr. In particular, for y .4 we have ]n+l 8(y) (R) 8tan(y) ( nor(y). Such
a splitting always exists, but the last two summands are not unique. Next, we define
special coordinates on IR+1 near each point y E x .4 which respect the splitting.
For this, we choose A :JR ]Rk In-k -* n+l given by (s, 0, ) -+ A(s, 0, ) such
that (using subscripted variables to denote partial derivatives)

ZX (0, O, 0): - ((0, O, 0)),
A9(0,8,0) ]k tan(A(0,8,0)),

A.(O, , 0)" ]ln-k -- nr(A(0, {, 0)).

Such coordinates are called adapted to the splitting over .4. An associated Poincar
section, again denoted by E, is given by the image of the map (8, i) -* A(0, 8, ). In
these coordinates the kernel of Oh(A(0, 0, 0),0) corresponds to tan(A(0, ,.0)) and
there is a k-dimensional complement to the range of this derivative in ]Rn+l. After
choosing coordinates on the range, the linear projection H(0) from the tangent space
of IR+1 to this range can be represented as a linear map of the form

H(0): $ (R) tan ( nor(/k(0, , 0)) ]k.

Next, let t -, x(t, ) denote the solution of F0 with initial condition x(0, 0) A(0, 0, 0)
and consider the variational equation along this solution, namely,

IiV Df(x(t, O))W.

This variational equation has a fundamental matrix solution t - (I)(t, ) with initial
value (I)(0, 0) = I. There are parametrized linear maps

a(t,) nr(x(0, )) --+ tan(x(t, )), b(t,): nr(x(0, )) nr(x(t, )),
((t, 0) tan(x(0,0)) tan(x(t, 0)), d(t,O): nr(x(0,0)) --+

((t, O): tan(x(0, O)) ---+ (x(t,

such that the block form of (t, 0) with respect to the splitting is

(1 e(t, O) d(t, O) )b(t, O) 0 c(t, O) a(t, O)
o o
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and

e(0, O)=0, d(0, O)=0, c(0, O)=I, a(0, O)=0, b(0, O)=I.

Also, the vector field along the unperturbed solution defined by the perturbation,
namely, G(t, 0) := g(x(t, 0), 2(t, 0), 0), has a representation relative to the splitting
given by

)G(t, 0) Gtan(t, 0)
Gnr(t, 0)

Here, G(t, ) is the derivative of f(x)/ eg(x, 2, e) with respect to evaluated at 0.
The bifurcation function for the system F adapted to the period manifold Jt is the
function B k 1 defined by

(0)B(O) H(O) Af(O)

where

b-l(s, tg)Gnr(s, 0) ds,

C
-1 (8, 0)Gtan (s, 0) C

-1 (8, O)a(8, lg)b-1 (8, 0)Gnr (8, {9)

and T(O) denotes the time of first return to the Poincar section for the unperturbed
solution t x(t, 0). The following theorem is proved in [6].

THEOREM 2.1. Suppose F given by

2 f(x)+ eg(x, 2, e), x e ]In-l-l, 5 e ]1,

has a normally nondegenerate period manifold 4 with an adapted coordinate system
given by (s, , ) A(s, , ). /f 80 is a simple zero of the bifurcation function
B(0) adapted to ,4, then there is an , > 0 and a smooth function
Ik In-a with (0) (o, O) such that A(0,/(e)) is the initial value for a periodic
solution of F.

3. Persistent periodic solutions of the coupled oscillator. In this section
we apply the results outlined in 2 to the system E defined in the introduction. To
do this we must identify the bifurcation function Other, perhaps simpler examples
of the identification procedure are given in [6]. In any case, there are several steps.

Step 1 [definition of the period manifold]. Under assumptions 1-3 listed in the
int..roduction, the unperturbed system E0 has a three-dimensional period manifold
given by 4 := A F. In fact, every solution of the unperturbed system starting on
,4 has the same period TA := K1/]1.

Step 2 [adapted coordinates]. For vectors v (v, v) and w (Wl, w2) in
I2, let (v,w) denote the usual inner product, Iv[I 2 := (v,v), v+/- := (-v2,v), and
v A w := (w, v+/-). Using these definitions and the unperturbed vector fields fl and f2
on 2, we define two smooth vector fields f and f on I2. Also, we let denote
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the flow of ci fi(x) and denote the flow of c f(x) for 1, 2. For each
x (xl,x2) in A F, we define a splitting over jt by

(x)= I(f(x)
tan(x)-" ( llfl(Xl)ll-2f(Xl) ) (0 )0 i(x)

enr(X) I[f2(x2)II-2f(x2)
where the square brackets here and hereafter denote the subspace spanned by the
enclosed vectors. This gives

Tx (x) tan(x) nor (X).

Next, fix A and 2 F, and define adapted coordinates A : a by

(,v,q,) (((,)),(+a()))
If

Eo:={A(0,p,q,) (P,q,)eR3},
then there is some open subset E C_ E0 that is a three-dimensional Poincar( section
for Eo at (1, 2).

Step 3 [fundamental matrix of variational equation in adapted coordinates]. We
consider the fundamental matrix solution (I)(t) with initial condition (I)(0) I for the
variational equation

(v2 0 Df2 ((:)t2Wq (2)) W2

and recall Diliberto’s theorem [5], [6], [8].
THEOREM 3.1 (Diliberto’s theorem [5], [8]). If f(x), x e ]R2, f() # 0, and

t - x(t,p) is the solution of the differential equation such that x(O,p) p, then the
homogeneous variational equation

IiV Df(x(t,))W

has a fundamental matrix solution t (t),

(t) o (t, )

with respect to the movin9 frame

{l(t, ), IIf(t,)ll-fz(t,)},
where

f(t, ) "= f(x(t, )),

/3(t, ) exp div f(s, ) ds,

for{ 1 (2llfll-curlf)fl} (s,)ds,(t, )
ilfll=
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and denotes the signed scalar curvature

(t, ) :=
1

IIf(t, c)ll f(t, ) A Df(t, )f(t, ).

Also, to compress the notation, we define

Cel(8,p :-- 01(8 ff)pl(l)),
fl(s,p) := fl((pl())),
(,) (,()),
f( ). (+()),

where the subscripts on c and fl refer to the functions as defined in Diliberto’s theorem
for the unperturbed equations i fi(x), 1,2. Now, the fundamental matrix
solution relative to the basis S for our splitting

{F(t, p, q), Fan (t, p), Fan (t, q), Fnr(t, q)}

:= {(fl(t,p)) ( llfl(t,p)ll-2f+/-(t,p) ( o ) ( o
fe(t, q) 0 f2(t, q) t[f2(t, q)l[- f2(t,q) ) }

is given by

1 Cl(t,p) 0 0
0 fll(t,p) 0 0(I)(t) 0 0 1 c2(t, q)
o o o (t, q)

This means the associated maps a, b, and c defined in 2 reduce as follows:
2(2) --+ gtan(q0tl()pl(l)),q0tl(q2(2)))is given by the 2 x 1a nor((l),q

matrix

2(2) nr(tl ()pl (1)), tl (q2(2))) is given by the lxl matrixb" nor()pl (1), qOq
(Z2(t, q)); and

2(2) tanC tan()pl(l),q --> (qt(p(l)),qt(qq2(2))) is given by the 2 x 2
matrix

Step 4 [normal nondegeneracy]. Define the transit time map T :R3 I given
by (p, q, ) T(p, q, ), where T(p, q, ) denotes the time of first return of the point
A(0, p, q, ) E to E0, and note T(p, q, O) =- TA. To show the normal nondegeneracy,
we must show that the kernel of the derivative of the displacement at each point on

E f’l 4 is two-dimensional. In the present case, since we already know the kernel
contains the subspace gtn((), it suffices to show that the derivative of the Poincar
map at is not the identity. To prove this we show

(0)(0)DR ()pl (1), qOq (2), 0 f(O,q) 7 f(O,q)
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The vector in the last formula is tangent to the curve

at --0. So, we must compute the tangent to the curve

at 0. The computation is just an application of Diliberto’s theorem. In fact, we
obtain

DP ((), f(0, q) D(p,a,o)((2))f(O,q)

_( 0 )115(0, q)ll ((r(p, q, o), q)5(o, q) + (T(p, q, 0), q)ll(0, q)ll-(0, q))
The infinitesimal displacement of our vector is given by

(%()’ f(0, 0) f(0, 0)

_( 0 )If(0, q)ll(Z, q)f(O, q) + ((r, q) 1)f(0, q)

To see that (q) 0, we use the following facts: N(T,q) is the characteris-
tic multiplier of r and the derivative of the transit time function at r is given by
-IlI(0,0)ll(r,q); [al or [a for more explanation. Since,.by the hypotheses
stated in 1, either F is hyperbolic or r belongs to a period annulus such that the
derivative of a period function does not vanish at r, it Nllows that N is normally
nondegenerate.

Step a [projection to complement of the range of D(p, q, 0, 0)]. It is clear from
Step 4 that a twdimensional complement for the range of D(p, q, 0, 0), expressed
with respect to the basis for the splitting over , is given by

{F(O, p), RZ(q) }
where

( 0Z(q) :=
(1- N(T(p,q,O),q))f(O,q) + lf(O,q)ll(r,q)f(O,q)

Moreover, since

{ F(0, p, q),F(0, p), (q), Rz (q) }
is a basis T for R4, the projection from the original splitting to the chosen complement
for the range is ey to compute. In Net, there are four Nncions, each mapping N
to N, given by q (q), q k(q), q B(q), and q C(q) such that

F(O, q) 1 (q)R(q) + B(q)Ra (q),
F (0, q) k(q)(q) + C(q)Ra (q).

Thus, the matrix of the required projection

H(p, q) (e et e) ((0’ p, q, o)) a
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with respect to the (ordered) basis S on its domain and the (ordered) basis T on its
range is given by the linear map

T2 B(q)T2 + C(q)

where

1 32(TA, q)
B(q)

[]f2(O,q)l[4a2(TA,2) 2 + (1 fl2(TA, q))2’

:= a2 (TA, q)
IIf (o, + (T.a,

Step 6 [adapted components for perturbation]. The derivative with respect to
at e 0 of the vector field associated with E along the unperturbed solution is given
by

g2(t,p,q) g2(x,.(t,p),cl(t,p),x2(t,q),2(t,q),O)

where t H (xl(t,p),x2(t,q))is the unperturbed solution starting at A(O, p, q, O). The
vector G(t, p, q) has a unique expression as a linear combination of the vectors in the
basis S. In fact, we suppose that

G(t, p, q) F(t, p, q) -t- T1Fan(t, P) 4- m2Fan(t, q) 4- rIFnr (t, q)

and compute inner products with respect to fl, f, f, and f- to obtain

Gtan(t,p,q) T2(t,p,q)
Gnr (t, p, q) :-- Tl(t, p, q),

where- (t, p, q) fl (t, p) A g (t, p, q),
1 1

’2(t,p,q)
ilfe(t,q)ll2

(g2(t,p,q),f2(t,q))-
iif(t,p)[lU

(gl(t,p,q),f(t,p)),

r/(t, p, q) f2(t, q) A g2(t, p, q).

Step 7 [bifurcation function]. Using the definitions of 2 and the results of Steps
3 and 4 we now have

T

A//(p, q) b-l (s, q)Gnr (s, p, q) ds

given by

f2(t, q) A g2(t, p, q) ds,
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Tt
jV’(p, q) c-l(t,p)Gtan(s,p,q)-c-l(t,p)a(t,q)b-l(t,q)Gnr(s,p,q)ds

((P’q)f(p,q) )
given by

T 1
./V’I (p, q)

1 (s, p) fl (t, p) A gl (t, p, q) ds,

Af2(p,q)
][f2(t,q)[l

(g2(t,p,q),f(t,q)}

1

-[[fl(t,p)][2 (gl(t, p,q), fl(t,p)) a2(t,q)2(t, q)
Thus, the bifurcation function is given by

f2(t, q) A g2(t, p, q) ds.

0
All (p, q) ( JV’l(p,q) )/(p, q) H(p, q) ./V’9.(p, q) B(q)./2(p, q) + C(q).A4(p, q)
.Ad (p, q

In practice, it is more convenient to clear the nonzero denominator of the second
component and use the normalized bifurcation function given by

C(p, q) := (1 (TA, q)) N’2(p, q) + a(TA, q).Ad(p, q)

Of course, C and B have the same set of simple zeros.

4. Applications. We consider an application of our results to the model of a
flywheel attached to an elastic support as described in [16]. The model equations are
typical for resonance phenomena and are given by

+ -I() + qO oO + o(),

(1=e 00Ml()+qgsin0-qwzsin0 +O(e),

where z denotes the displacement of the flywheel relative to its support, 0 denotes
the angular position of the rotating flywheel relative to the (upward) vertical, g is the
gravitational constant, and M1 is the motor characteristic. The remaining parameters
are all constant with, of course, e being a small parameter. To apply the results of
a, we write the model equation as a first-order system using the transformation
x )cos 0, y 0 sin 0, and assuming 0 > 0 to obtain

--W,

wz eg(z, w, x, y),
x-ux + + h(z, , x, ) + 0(),
+ y2

x + +, x, +
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where

+ q2 g
v/x2 -{- y2 V/X2 y2"n(z , x, ) M /z: + z

+
The transformation to (x, y) variables is geometrically a coordinate chart on the tan-
gent bundle of the circle

The chart does not contain the zero section ( 0), but this set is not near the
resonance. In fact, the first oscillator is linear with its period annulus A having
period 2/w, while the second oscillator has a period annulus at the origin whose
period function is given by r 2/r, where r := xe + y2. The primary resonance
is given by r w. In other words, the resonant periodic solution F in the second
oscillator lies on the invariam circle of radius . With

0’
1 := (1, 0), and 2 := (w, 0), we find that the solution of the unperturbed system

2()) is given bywith initial value ((,), q

(t,) e- cos(t), (t,) e-"
x(t,q) wcos(w(t+q)), y(t,q) wsin(w(t+q)).

om the results of 3, the bifurcation function is

(p, q) (,, z, ) at, (z + )h(,,,) et
0 0

e-2P(Z qw ep sin(wq)), -The bifurcation function has either 0, 1, or 2 zeros depending on the values of the
parameters. The zeros are obtained when the following two equations can be solved
for both p and q:

ZwJoq2
sinwq Ze2P:2M1(1/)q1’ ql V gg);;

If we choose J0 q q2 1 and M (1) 1/4, then these equations reduce
to

1
ep=, sinq= .

In this case p In, q /4, 3/4 are zeros of the bifurcation function. Since the
bifurcation function can be normalized to

(p, q) (fl qi ep sin(q), 2M1 (1/) 4q:: e-" sin(q)),
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a map whose Jacobian is

2qlq2Jow2 sin(wq)cos(wq)

has the zeros of the bifurcation function that are simple except when sin(wq) +1.
In particular, the zeros of the numerical example are simple and, by the results of 3,
there are two bifurcating families of periodic solutions in the model equations for the
flywheel with elastic support. We emphasize that although the analysis uses only the
O(e) terms of the model, our result is valid for small e for the full model equations;
compare to [16].

The analysis just given is prototypical. However, there are other resonances to
consider. Using the notation defined above, the general resonance relation is given by

27rK12r K2-

or r K2w/K1. On the resonant orbit,

K2 W(t + q) y(t, q) K2 sin (:W(t + q)x t, q) -1 w cos 11 K--[w

Thus, the first component of the bifurcation function is given by

cos-l t+q) dt

where

sin wt cos w (t + q) dt.

As Io(q) is nonzero only when K1 K2, nondegenerate bifurcation to periodic orbits
occurs only for the primary resonance.

Up to this point we have assumed that several forces are small. To illustrate the
possibility of rela:ing this hypothesis, consider the rotor to be influenced strongly by
a "gravitational" force. It is convenient to measure the inclination of the rotor by .the
angle of displacement from the direction of the gravitational force, downward vertical,
i.e., we use the angle -0-7r. The model equations (up to first order in e) become
(to first order)

(-f(z)- -Jr-q12(- cos1/)))2. +w2z
m

4; To
To study the strong gravitational effect we assume g := G/e and transform the inde-
pendent variable by - ty/ to obtain

)q2Gz" +w2z f(z) + z’v/2G + qlq2C(g/)2 cosm

qG" + qc; sin -e ooM1 (- a) qwz sin
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which we rewrite in the form

tz g(z, , 0, 0),
sin eh(z, , 0, ),

where

(z, , , ):= ((z)+ + A0 cosO),
h(z, , 0, )) := (M(0) Bz sin

and the new parameters and functions have obvious meaning. In particular,

ql co2, :-- (q2G) -1/2, a d(q2G) -1/2, A := --, B "=
m rn G

The first oscillator corresponding to the elastic support has the entire punctured
phase plane as an isochronous period annulus with period 2/. In fact, if we view
the system in the phase plane as

)-ftw, (v ftz -g(z, , O,

then the solution of the unperturbed oscillator with initial value (e-p, 0) is given by

z(t, p) e-p cos ft, w(t, p) e-p sin ftt.

The second oscillator models the rotor influenced by a gravitational field. The un-
perturbed second oscillator is a mathematical pendulum. It has a period annulus
(with strictly monotone period function) surrounding the origin of the phase plane.
This period annulus corresponds to the nonrotational oscillations of the pendulum.
Also, there is a period annulus in the phase cylinder (with strictly monotone period
function) corresponding to the rotational oscillations. Thus we have the hypotheses
required to apply the theoretical results of 3. The analysis to follow uses elliptic
functions. Perhaps this can be avoided.

To compute the bifurcation function we require the time-dependent solutions of
the mathematical pendulum given in the phase plane by the first-order system

t) v, / sin O.

For the convenience of the reader and to fix notation, we will outline the usual deriva-
tion.

Consider the period annulus in the phase plane. The mathematical pendulum
has the first integral I := v2/2- cos0. For a periodic trajectory F, let (a, 0) denote
the coordinates of its intersection with the 0-axis. On F the energy is I -cos a
and t)2 2(cos0- cos a). By integration and the change of variables sin(0/2)
sin(a/2) sin , we find

o(t) 1
t __ ds,

JO /1 -sin2 (a/2)sin2 s
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where O(t) is the solution of the mathematical pendulum with the initial value

(9(0), (0)) (0, 2sin (a/2)).

Or, in terms of Jacobian elliptic functions (cf. [4], [20]) where the elliptic modulus is
k := sin (a/2), we find

sin (t) =sn[t, k]

and, using the trigonometric double angle formulas,

cos 0(t) 1 2k2 sn2[t, k].

Also, the period of F is given by

12 1
4 ds=4K(k),
0 V/1 k2 sin2 s

where K(k) is the complete elliptic integral of the first kind. Since t -. sn(t) has
real period 4K (here and hereafter if the elliptic modulus is not given explicitly it
is understood to be k sin (a/2)), the periodic orbit F is resonant when there are
relatively prime positive integers K and K2 such that

K1--27c K24K(k).

Under this assumption and in view of the first-order system

(v fz -g,

’V

) sin 0 + eh,

the bifurcation function for a nonrotational resonance is given by

B(p, q) w9 dr, vh dt

where q is the coordinate on F introduced by using the solution t O(t + q) for
0 <_ q < 4K(k). The components of the bifurcation function are computed as follows"

:/a
wg dt A e-PIl (q),Klr) e-p

t/avhdt B e-Ph(q) Ia(q),

where

11 (q) := jo
Kl:/zt

I2(q) := fo
tc’2/

I3(q) := c2/

((t + q))2 cos 0(t + q)singttdt,

(t + q) sin O(t + q) cos 9tt dt,

O(t + q)M(O(t + q)) dt.
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The integral I3 depends on the static characteristic of the motor and the damping
associated with the rotational motion as encoded in the function M. As a typical
example and for definiteness in the computation, we take M to be linear,

M() ml + m2;

more general model functions can be handled in a similar manner. For the linear case,
we have the following proposition:

K12r/
I3(q) ml + m22 dt

K2r/
2m2 cos O(t + q) cos a dt

Jo

7 fK24K
-4mK cosa + 2m cos O(t) dt

o
K4K

-2mK4Kcosa + 2m 1 2k sn(t)dr.
o

Formula 310.02 in [4] can be used to evaluate the integral with integrand sn2(t) to
obtain

I3(q) -8m2K2(1 + cosa)K(k) + 4m2E(am [K24K(k), k], k)
-16m2K2(1 k2)K(k) + 4m2E(am [K24K(k), k], k),.

where E(o, k) denotes the normal elliptic integral of the second kind and am [u, k] is
the amplitude; see [4]. Using [4, formulas 113.02 and 122.06], we obtain

E(am [K24K(k), k], k) 4K2E(k),

where E(k) is the complete elliptic integral of the second kind. Thus

I3(q) 16m2K2(E(k)- (1 k2)K(k)).

Note that for the linear static motor characteristic, q -+ I3(q) is constant.. Moreover,

K 2r/121
13(q) 2dt > O.I :=

m2

For the integrals I1 and I2 we have the following identity.
IDENTITY 4.1.

3I1(q) (cosa- 9t2)I2(q)
2

Proof. Define r] :- K2r/t and compute the following:

i (q) 2(cos 0 cos a) cos 0 sin gtt dt

2 cos 0 sin ft dt 2 cos a cos a sin ft dr,
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1 in 2 O) sin ftt dtI2(q) - (sin + cos

fl n __isin0sintdt- I(q)

sin2 sin Dt dt I (q)

1 n 1
cos 0 sint dt I (q)

h I (q) + cos a cos 0 sint dt I, (q)

3
I (q) (- sin O) cos at ata

3 cos a

Also, with the definition

we have a second identity.
IDENTITY 4.2.

cos (t) cos ft dt

I2(q) tIc sin gtq.

Proof. Define r := K127r/ft and compute the following:

n d
(cos(t -+- q))cosfttdtI2(q)

-f cos O(t + q) sin ft dt

-a cos O(t) sin f(t q) at

-f cos fq cos o(t) sin ft dt + f sin fq cos o(t) cos at at.

Since t cos O(t) is an even function,

n
O(t) sin ftt dt O.COS

Using the identities just obtained, we have

( 2AIc e-P(cos a- 2) sin Dq,-I3-}-BIce-p sin fq)B(p, q) KIrA e-2p

Thus, (p, q) is a zero of the bifurcation function if and only if this ordered pair is a
solution of the bifurcation equations

2
K17rA AI(cos a ft2) ep sin tq --.0,

I3 BIcfte-p sin ftq 0.
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Such a zero is simple provided that

4_ ABI2 (cos a f2) sin tq cos fq 0
3

To show that the bifurcation is nondegenerate, we must show that Ic = 0. It turns
out that the validity of this condition depends on the resonance. This is the content
of the following proposition.

PROPOSITION 4.3. If K1 and K2 are relatively prime positive integers such that
K2r/f K24K(k), then for Ic to be nonvanishing it is necessary and su]rficient that
K2 1 and K1 2n for some positive integer n. In case this condition holds,

r2K1 / qK1/2 qK/2
I 4

K(k) 1 qK, 87rK2(1 qK)’

where q := e-rK’/K is Jacobi’s home, [4, p. 315].
Proof. The proposition follows from the Fourier series representation of u -sn2 (u) given by

(kK)2 sn2(u) K2 KE 2r2 E nqn
n=l

1 q2n
cos 2nx,

where x := ru/(2K). (This formula is stated without proof in [20, p. 520]. A
second Fourier series expansion in [4, formula 911.01] seems to be incorrect. Thus,
even though a reference for the formula exists, we will verify this series representation
below.) Define r/:= K2r/f. To prove the proposition, compute

nl
nqn

1 q2n
cos

nl
nqn

1 q2n
COS

( nru) fu duCOS

2ntu cos fu du.

After the substitution v := tu/K1, we obtain

2 oo

02nl
nqn K1

1 qn f
cos 2nKv cos Kv dr.

Thus, I vanishes unless 2nK2 K. In particular, K must be even and K2 must
be a factor of K1. Since K1 and K2 are relatively prime, K2 1. If I : 0, then

I=4 - - -5- -q
r2K qK/2

--4--
K 1 qK

as required.
To verify the Fourier series expansion we conpute the value of

J sn2 x eirax dx, m 0
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by contour integration around the parallelogram in the complex plane with vertices
-77, 77, 77T, and r7- 2t, where T := iK’/K; cf. [20, p. 510]. Using the fact that
u -. sn(u) is doubly periodic with periods 4K and 2iKt, and x eimx is periodic
with period 2r, the path integrals along the edges of the parallelogram given by [r, 77-]
and [77-- 2r,-77] cancel. Also, an easy computation shows that the integral along
the edge [77T, rT- 277] is --eimr emrJ. Thus,

(1 emrr emr) J 277i E(residues).
The poles of u sn(u) reside at the points in the complex plane congruent to iK’
and 2K + iK’ modulo the periods of sn. It follows that sn2(2Kx/77) ei’x has exactly
two poles in the parallelogram. These poles are at the points r-/2 and r-/2- zv. To
compute the residues, start with the Maclaurin series for u - sn(u) given by

and the identity

to obtain

Set u + iK 2Kx/77 to get

and compute

sn(u) u + O(u3)

SH

1
sn( + 5’)

k sn(u)

1
sn(u + iK’) -u + O(u)o

2K I 77
X
r 2kK(x 7rT/2)

2K "sn2 (----x)emx:(2k.)
Thus, the residue at rT/2 is

Use the identity

2 eimr-/2 ( zc )2imeimr/2(x rT/2)2 + kK (x r7/2) + 0(1).

77 2 77 2(2--) imemrr/2= (2kK) imqm/2"

sn(u 2K + iK’) -sn(u + iK’)

and a similar computation to compute the residue at -r + r-/2. We find that this
residue is

J

From this it follows that

77
im e-imrqm/2

7C3 mqm/2
(1 + e-imp)2(kK)2 1 q’ eim
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Thus, the Fourier coefficient corresponding to J vanishes unless m 2n, in which
case

7r3 nqn

(kK)2 1 q2,"

Since x sn2(2Kx/r) is even, its Fourier series is a cosine series. In fact, the Fourier
coefficient of cos 2nx is the real part of J/r. Since J is real,

sn2 --x ao 2
r 1--q2n

cos 2nx.

The constant term a0 can be shown to agree with the stated formula, but, since we
do not require its value here, the proof is left to the reader.

By the proposition we see that there are (under appropriate choices of the constant
parameters) bifurcating families of periodic solutions for the full model equations
at each nonrotational periodic motion of the gravitationally influenced rotor, whose
period is an even multiple of the natural period of the support oscillator. In fact, if
we impose the nondegeneracy conditions K1 2n and K2 1, then, by eliminating
sin tq from the bifurcation equations, we find

ne2p
A m2I (cos

Thus, we can solve for p provided m2(cosa- [22) > 0. Assuming this condition is
satisfied and inserting ep into the second bifurcation equation, we find that there are
two solutions for q provided -1 < A < 1 for

/3nTr,l/2 ( I )1/2 ()m2A :=
\ABUt ] m2(cos a gt2) c

The question arises as to how many resonant periodic solutions of the unper-
turbed mathematical pendulum correspond to nondegenerate bifurcation points. It is
clearly possible to obtain any preassigned finite number of simultaneous bifurcatidns.
However, it is not possible to have infinitely many. To have infinitely many bifurca-
tion points for a fixed set of parameter values it is necessary that A remain bounded
in the unit interval for infinitely many integers n such that n tK(k)/zr. To show
that this is not the case, note that k 1 as n oc, and use the computations made
above for I and Ic, together with the fact that cos a 1 2k2, to compute

A -v/m2k2 ( 1 q2n  i(k) )m2(1 2k2 f2)

1/2

We claim that A grows without bound as k 1. First note that as k 1,

qn e-ftK(i-:) ___+ e-fr/2,

SO the term (1- q2,)/(q) remains bounded. Also, as k --. 1 we have K(k)-
ln(4/v/1- k2) -+ 0. Using these facts and the expression for I(k), it follows that

I (k) remains bounded as k 1. Thus, all terms except the x/ term remain bounded.
It follows that A c as k 1 and n ec. However, the fact that infinitely
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many different resonances can lead to nondegenerate first-order bifurcation to periodic
solutions is in marked contrast to the case when the gravitational forces are considered
small and the only nondegenerate bifurcation occurs for the primary resonance.

To analyze the rotational motion of the rotor, recall that the mathematical pen-
dulum system defined on the phase plane is given by

) v, ) sin 0 + eh.

The rotational motions are naturally defined on the phase cylinder that is obtained
from the phase plane by viewing the variable 0 modulo 2r. There are two families of
periodic solutions corresponding to ) < 0 and > 0. For definiteness we will treat
the case ) < 0; the other case is similar. In particular, since we have changed the
coordinates of the model equation by 0 -- -0- r, a positive rotation in the original
model equations corresponds to a negative rotation here. It is convenient to choose the
(symplectic) coordinate chart on the phase cylinder given by the transformations x

cos 0, y sin 0. The chart for the second case would be x v/ sin 0, y
vcos 0. This choice of coordinates ensures that the divergence of the transformed
vector field vanishes and the function 2(t,p) defined in 3 is zero. In the (x, y) plane,
the phase plane system becomes

1 2 y2 -3/2(x +) + -x(x +
1 y2(x2 + y2 -3/2-( +) +

X

2 x2 + y2

where

h=-(M(O)-BzsinO) M(-(x2+y2))-BV/x2+y2
We study the above system coupled as before to the support oscillator given by

-ftw, tb gtz- g,
where

g=-(F(z)+A+AO2cosO)
+ +

Since the rotational motions correspond to curves in the phase plane which do
not intersect the 0 axis, it is convenient to consider the v axis as a section for the
flow. On the trajectory passing through the point in the phase plane with coordinates
(0, b), Ib] > 2, the first integral I := v2/2- cos0 has the constant value I =_ b2/2- 1.
The ce < 0 corresponds to b < 2 and we have

lb212 cos0 + 1.

Define := 0/2 and k := 2/Ibl to obtain equivalently

2=2 (1-k2sin2
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so that

(t) 1

V/1 k2 sin2 s

t
ds sgn(b).

In terms of Jacobian elliptic functions, we have

o(t) sgn(b)am[t/k, k], (t) sgn(b)dn[t/k, k]/k,
coso(t) cn[t/k,k], sin(t) sgn(b)sn[t/k,k],

or, using the trigonometric double angle formulas,

O(t) 2sgn(b) am[t/k,k], (t) 2sgn(b) dn[t/k,k]/k,
cos0(t) 1 2 sn2[t/k, k], sin0(t) 2sgn(b) sn[t/k, k] cn[t/k, k].

Using these formulas, the definition of the phase cylinder, and b < 0, we have

x(t) dn[t/k, k] (1 2 sn2[t/k, k]),

y(t) dn[t/k, k] 2 sn[t/k, k] an[t/k, k].

Also, observe that the period T of the periodic solution on the phase cylinder with
initial value (0, b)is given by 0(T/2)= sgn(b). Thus,

T 2kam-[/2, k] 2kK(k)

and the resonance relation is given by

2
K22kK(k)

Using the results of 3,

(x2+y2)hdtB wg dr,
JO

Initially, it is preferable to express the components of B in phase plane coordinates:

.N2/a wg dt KA A e-PI’(q),e-2p

-. (x + )hd --} (q) + } e-;(q),

where

I[(q) := (O(t + q))2 cos O(t + q)singttdt,

’O

K127r/

I(q) := }(t + q) sin O(t + q) cos at dr,

I,(q) := (t + q)M((t + q)) dr.
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Also, we define

cos 0(t) cost dr.

As in the case of the nonrotational motions, we have the following identities.
IDENTITY 4.4.

3I.(q) (2 gt2)-1+ I(q),

I(q) 9tI sin 9tq.

Using these identities, we find

B(p,q) :--(Bl(p,q),B2(p,q)),

where

2
k2 rBI(p, q) KIAe-2p + -de-p (2 + (2 1)) / sin Ftq,

1 1
B2(p, q) ---I + -B e-PI sin tq.

PROPOSITION 4.5. If KI and K2 are relatively prime positive integers such that
K2r/ K22kK(k), then for I to be nonvanishing it is necessary and sufficient
that K2 1. In case this condition holds,

71 2K1 ) qK1 qK1
I2 4 kK(k) 1 q2K1

4rft
1 q2Kl’

where q := e-K’/K is Jacobi’s home.

Proof. The integral I is computed as in Proposition 4.3 using the Fourier series
for sn2(u). In fact,

cos t cost dt.

After the change of variables v := t/K1 and substitution from the resonance relation,
we obtain

2 kKK2 nqn 02n 1 q2n
COS nK2v cos K1v dv.

Thus, I vanishes unless nK2 K. Since K and K2 are relatively prime, this means
that .[ 0 exactly when/(2 1 and K1 is arbitrary. In this case we obtain

I=4 (-] l_q2K.
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Finally, we compute I under the assumption M() ml + m2. For this we
have

00K12r/Ft ooK12/ O2 (t T q) dtI rnl (t + q) dt + m2

In the present, case we find, using the resonance relation and the periodicity,

K2v/Ft
O(t + q) dt -2rK2.

Also, as before,
K 2r/

Thus, we have

1 2sn2[t/k, k] dt

1
--I.(q) mlrK2 m24K2

E(k)

By the proposition, we see that there are (under appropriate choices of thecon-
stant parameters) bifurcating families of periodic solutions for the full model equations
at each rotational periodic motion of the gravitationally influenced rotor, whose pe-
riod is an integer multiple of the natural period of the support oscillator. The fact
that the resonances are not restricted to even multiples of the period of the support
oscillator, as in the case of nonrotational motions, is perhaps expected, since near the
separatrix between rotational and nonrotational motions the nonrotational periods
are twice as long as the rotational periods. More precisely, if we impose the nonde-
generacy condition K2 1, then the bifurcation points are the simple solutions of the
equations

qKt2A
(2 + kKTre-2p + - E(k) qK

mr m24 k + 27rBQ2
1 q2Kt

e-p sin tq 0,

e-p sin gtq 0.

By eliminating sin tq from these equations, we find

e2p A :--
3r,BKlk3

4A(mlk m24E(k))(2 + k2(gt2 1))"

Thus, we can solve for p provided (rnrk- rn24E(k))(2 + k2(t2 1)) > 0. Assuming
this condition is satisfied and inserting ep into the second bifurcation equation, we
find sin Qq := A, where

37rABK1k3 )A
4A(mrk- m24E(k))(2 + k2(t2 1))

m17rk m24E(k) 1 q2K
2Bfl2k qK
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Thus, there are two solutions for q provided -1 < A < 1. In addition, it is easy to
compute the Jacobian of the two bifurcation equations and deduce that the solutions
of the bifurcation equations will both be simple provided cos fq 0. This is as it
should be, since the solutions are simple when there are two values of q and not simple
at the bifurcation points given by sin g/q-- +/-1.

As in the case of the nonrotational motions, if the parameters are fixed, then there
are only finitely many resonant motions of the rotor for which the condition -1 <
A < 1 is satisfied. This follows as before by showing that A is unbounded as k --, 1
and K1 -- c. Thus, again for rotational motions under a strong gravitational force,
infinitely many resonant solutions can lead to nondegenerate first-order bifurcation,
but only a finite number of these are excited for a fixed set of parameter values.

We end this section with a useful observation. The divergence of the perturbed
vector field, computed in (z, w,x, y)-coordinates, is constant. In fact, the divergence
is simply -e(A / m2). This is reasonable since A and m2 are coefficients of damping
in the system. Abel’s formula applied to the linear variational equations as in [19,
p. 156] implies that the determinant of the linearized Poincar map is given by

det DP(, e) e-e(+m2)g12r/.

Thus, the linearized Poincar map contracts volume and the perturbed periodic so-
lutions found by our bifurcation method are all saddles and sinks. In particular, this
shows entrainment (capture) is possible.

4.1. Remarks experiments and speculation. We have just shown that
there exist choices of the parameters in our model equations such that several periodic
solutions, corresponding to rotational motions of the rotor, can coexist. Moreover,
these periodic solutions in the four-dimensional phase space are all saddles or sinks. In
order to determine the dynamics of the system, we would like further stability informa-
tion about these periodic solutions. Rigorous stability information may be obtained
from a second-order bifurcation analysis. However, we mention that the bifurcating
families occur in pairs corresponding to the solutions of the equation sinq A.
Generically, one bifurcating family consists of sinks and the other consists of saddles..
The basin of attraction of a periodic solution corresponding to a sink is the region
in phase space "captured into resonance" or, in other words, it is the entrainment
domain. Of course, there is no obvious reason why such a periodic solution will be
globally attracting; thus solutions starting outside of the basin of attraction have a
different fate. On the other hand, a saddle periodic solution may have a one-, two-, or
three-dimensional stable manifold. Solutions starting near the stable manifold may
remain near the saddle periodic solution on a very long time scale, appearing to be
captured only to leave eventually the vicinity of the saddle periodic solution along
its unstable manifold to pass near a second saddle, or perhaps become entrained to a
stable periodic solution. If there are several such saddles, this behavior may be very
complex.

At the end of the last section we showed that the linearized Poincar map contracts
volume. This fact was used to prove that the perturbed periodic solutions are saddles
and sinks. In contrast to the similar analysis of a single forced oscillator, e.g., [19,
p. 157] or [9, p. 207], we cannot conclude that there are no invariant closed curves
for the three-dimensional perturbed Poincar map. In other words, periodic sinks
may coexist with more complicated attractors. Before discussing this possibility more
fully, we mention that the analysis completed above only considers the bifurcation of
periodic solutions from periodic solutions of the unperturbed oscillators at resonance.
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In the example with a strong gravitational force, the mathematical pendulum
has, in the phase cylinder, a hyperbolic saddle point corresponding to its unstable
equilibrium state, and this rest point has a pair of associated homoclinic trajectories.
The dynamics of the perturbed system near the corresponding trajectories in the four-
dimensional phase space of the coupled system can perhaps be determined to some
extent by analyzing an appropriate "Melnikov" integral. Such an analysis might
show the presence of horseshoes. In any case, the existence of complicated attractors
remains to be established.

As an excursion in this direction, we have considered a decoupled specialization
of our model equations in order to obtain a two-dimensional Poincar map and the
possibility of visual representations of some aspects of the dynamics. To do this, we
consider the system

+2z =0,

+ sin 0 -e(ml + m2) Bz sin 0).

It may be viewed as a single parametrically excited mathematical pendulum.
To study the rotational motions as before, we consider (symplectic) polar coordi-

nates on the phase cylinder to obtain

1 y2 -3/2+ +
1 y2 (x2 + y2 -3/2+ v +

where

x
2 x2 + y2

h,

e y
x2 +y2

h,

h -ml + m2(x2 + y2) + B V/X?+ y2
e p cos ft.

A comparison of the analysis for the coupled system with the analysis for the single
"forced" oscillator as presented in [5], [6] shows that we have already computed the
bifurcation function for this system. Here, p is just a parameter, and the scalar
bifurcation function is just B2(q) as computed above. In fact, for the (K1 K2)
resonance, the bifurcation equation is

m171- m24E(@ + 2rBt2
E(k)U2(q)

K2(mlTr-m24--K-)

qK1 e-p sin ftq 01--q2K1 ifK 1,
if K2 # 1.

In .case K2 1, the bifurcation equation B2(q) 0 is equivalent to sin ftq := A,
where

A=-eP(mlrk-m24E(k))2rBft2k 1 q2KqK
Thus, there are two solutions for q provided -1 < A < 1. Here, the linearized Poincar
map is still area contracting (the divergence is -cm2), so the periodic solutions are
again saddles and sinks. However, even in this case we cannot conclude that there are
no invariant curves in the Poincar section. This is a result of the fact that, for the
rotational motions, the system is defined on an annulus in the phase cylinder whose
inner boundary is the separatrix of the unperturbed mathematical pendulum. This
fact is reflected in the singularity of the (x, y)-coordinates at x2 + y2 -t) 0. In
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FIG. 1. Schematic representation of basin boundaries for attractors in the perturbed Poincard
map for the rotational motions of the parametrically excited mathematical pendulum. Shaded region
is in the basin of attraction of the invariant torus.

other words, in the (x, y) section, the region corresponding to rotational motion is
an annular region surrounding the origin. More precisely, the unperturbed rotational
solutions correspond to solutions (outside the separatrices) with energies

E 2 + 1- cosO

1 y2 2=(x2+ +1-
V/X2 + y2

When the system is perturbed, solutions can cross into the region with E < 1 and
then eventually cross the curve } 0, where the vector field is singular. Thus, the
area of the region corresponding to rotational motions is not preserved. Of course,
the fact that the linearized Poincare! map is area contracting does imply that there
is at most one invariant curve. If there were two invariant curves, the annular region
bounded by these curves would be invariant. Numerical experiments suggest, in fact,
that invariant curves exit. This suggests that a similar phenomenon is possible for
the coupled system, but at present we do not know how to examine this possibility
rigorously.

We have investigated the dynamics of the uncoupled system in the region of
parameter space corresponding to parameter values where the coupled system has pe-
riodic solutions arising from the bifurcation theory given previously. A useful example
is provided by the following choice of parameters:

KI=I, ft=4, A=4,,k=O, B=4, m=lO

with m2 and p variable.
Let F denote the (K K2) (1 1) resonant periodic solution of the mathe-

matical pendulum. This solution is given by the elliptic modulus k. ,, 0.47. In the
original coordinates, it is the solution starting at (0, J) (0,-2/k.). Recall that a



1282 CARMEN CHICONE

necessary condition for the bifurcation equations obtained for the coupled system to
have solutions in this case is mlrk, -m24E(k,) > 0. Thus, for the given parameters,
we must have 0 < m2 < 5rk,/(2E(k,)) 2.495. If this condition is satisfied, p is
determined by the previously given formula e2p A.

The unperturbed Poincard map for the uncoupled system giving the return to the
(x, y) plane after time 2r/f has F as an invariant curve. In fact, the unperturbed
Poincard map is the identity on F. In addition, for small positive e, we have proved that
there are two fixed points for the perturbed Poincard map near the zeros of B2(q), and
these fixed points correspond to the persistent periodic solutions. For the resonances
with K2 1, the bifurcation function reduces to b(k):- K2(mTr- m24E(k)/k) and
is independent of q. It is easy to see that the dense set of resonant orbits such that
K/K2 < 1 lies "outside" F in the Poincard section, while the dense set of resonant
orbits such that K2 1 and K/K2 > 1 lies "inside" F. Moreover, the reduced
bifurcation function b is positive inside and on F. That is, there is an unperturbed
periodic solution F0 of the mathematical pendulum corresponding to some k0(m2) <
k, such that b(ko) O. In particular, F0 surrounds F, b(k) < 0 for all k < k0, and
the resonant orbits outside F0 correspond to resonances such that K/K2 < 1. Thus,
for these resonant orbits K2 1 and B2 b.

In general, some of the resonant orbits corresponding to K2 t and K > 1
can be excited and additional periodic solutions can occur. But for our choice of
parameters this does not happen. Thus, in a manner similar to the discussion in [19,
pp. 161-175], we observe that perturbed trajectories of the Poincard map tend to drift
outward toward F0 from the region inside F0, except for the resonance layer near F,
and they tend to drift inward toward F0 from the outside. In particular, there are no
periodic solutions excited by the perturbation except for those on F.

The existence of a periodic sink and a periodic saddle for the perturbed Poincard
map corresponding to the perturbed periodic solutions is consistent with these facts.
This is exactly the situation observed in numerical simulation. In addition, the posi-
tions of the bifurcation points as predicted independently by solving the bifurcation
equations e2p /k and sinq A are also confirmed. However, the facts about the
sign of b and the implied drift directions for the perturbed solutions indicate that
there is also the possibility of a nonperiodic attractor F near F0 coexistent with the
periodic sink. Our numerical experiments confirm the existence of such an invariant
attracting set. It appears to be a smooth curve for 0 < m2 < 2.459 and all sufficiently
small e > 0.

From the discussion above, the periodic sink lies inside the region bounded by
this invariant curve. Because there are two attractors, the entrainment domain (the
basin of attraction of the periodic sink) shares a common boundary with the basinof
attraction of the invariant curve. Figure 1 schematically shows the basins of attraction
for the two attractors. Aside from the fact that the spiral basin of attraction of the
periodic sink is very thin for small e, we also see that solutions with initial values
"outside" F are never entrained to the periodic sink. We expect the entrainment
domain for the coupled system to be at least as complex.
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ON THE BIFURCATION STRUCTURE OF NONLINEAR
PERTURBATIONS OF HILL’S EQUATIONS AT BOUNDARY

POINTS OF THE CONTINUOUS SPECTRUM*

TASSILO KOPPER AND THOMAS MRZIGLODt

Abstract. Nonlinear perturbations of Hill’s equations have been studied as a first application of
a general operator-theoretic approach for treating bifurcation at boundary points of the continuous
spectrum. It has been established that there is bifurcation into the gap at distinguished boundary
points of the spectrum; moreover, for fixed parameters in the gap there are m distinct solutions where
m can be characterized by the number of negative eigenvalues of an associated linear eigenvalue
problem. For a class of nonlinear Hill equations with a nonlinearity concentrated on a finite inverval
[-N,N], we are able to reduce the problem to an auxiliary nonlinear Sturm-Liouville problem
with parameter dependent boundary conditions. The reduction is based on the knowledge of the
stable/unstable spaces of the linearized problem. Although the reduced problem is of a complicated
nature, we can analyze its bifurcation structure by a modified Lyapunov-Schmidt procedure. In
that way we provide a detailed analysis of both the reduced and the original problem and we can
explain various phenomena which occur in connection with bifurcation from the continuous spectrum.
In particular, we detect global effects of the presence of continuous spectrum and we provide a
mechanism to understand results on the various numbers of solutions.

Key words, bifurcation from continuous spectrum, gap bifurcation, nonlinear Hill equation
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1. Introduction. In this paper we study in detail the bifurcation behavior of a
special class of nonlinear Hill equations

(i.I) (p(x)u’(x))’ / q(x)u(x) / f (x, u(x))u(x) ,ks(x)u(x) (x e IR),

(1.2) u

where p, q, s, and f statisfy the following conditions:

(H0) p, pP, q, s IR -. lit are bounded, piecewise continuous, and two-periodic on
IR; in addition,

0<p0_<p(x), O<so<_s(x) (xE]It).

(H1) f" ]R I-Y0, Y0] --* ]R (Y0 > 0) is such that
(i) f(x, y) 0 if x I-N, N] for some N e IN,
(ii) f (., y)" ]R --. IR is piecewise continuous and bounded,
(iii) f(x, .): I-Y0, y0] - IR is continuous, f(x, O) O.

(n2) f(x,.) e Vii-Y0, ofy0], 0y I-N, Y] x. I-Y0, y0]--* IR is bounded.

According to the hypotheses on the coefficients, we are looking for solutions u
(IR) N LP(]R) with a piecewise continuous second derivative.
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Nonlinear Hill equations have been studied as a first application [13] of a general
functional analytical approach [12] for treating bifurcation at boundary points of the
continuous spectrum for operator equations of the form

Lu + A/’(u) Au;

here L denotes a linear self-adjoint operator with spectrum a(L), and the nonlinearity
Af is taken as a gradient operator Af- ’ such that Af(0) 0, ALP(0) 0. Using
variational methods [4]-[15], [24] it has been shown that there is indeed bifurcation at
distinguished boundary points of a(L) into the gaps under additional monotonicity
hypotheses on Af. On the other hand, the existence of a specific number of different
solutions for each a(L) has been established as well [1], [2], [8]; here the number
of solutions depends on the number of negative eigenvalues of an auxiliary linear
eigenvalue problem. In addition, both bifurcation from 0 and asymptotic bifurcation
from x have been found.

For the special class of differential operators with a nonlinearity concentrated on
a finite interval [-N,N], we are able to reduce the problem to an auxiliary Sturm-
Liouville problem on the interval I-N, N], where the boundary conditions depend in a
complicated way on the parameter . The reduction is based on the knowledge of the
unstable (resp., stable) spaces of the linearized problem; since the problem is linear
outside I-N, N] these "manifolds" are explicitly available in terms of a fundamental
system. Although the reduced problem is of a complicated nature, it can nevertheless
be analysed by classical methods. In this way we are able to provide a detailed
analysis of the bifurcation behavior of both the reduced and the original problem,
and we can explain various phenomena which occur in connection with bifurcation
from the continuous spectrum by properties of the underlying reduced problem. In
particular, we understand the

(i) background of bifurcation at boundary points of a(L);
(ii) coexistence of bifurcation from 0 and asymptotic bifurcation from
(iii) results by Alama and Li [2] and Heinz [8] on the number of "branches"

over the gaps, in the context of bifurcation from possibly different endpoints of the
spectrum which disappear over the spectrum and return over the gaps;

(iv) global effects of the presence of a continuous spectrum on the existence of
nontrivial solutions. We recall that global effects of the continuous spectrum have
already been addressed by Stuart [19], [20] in an extension of the classical bifurcation
result by Rabinowitz [17]. A detailed study of the global bifurcation behavior for this
kind of problem is in preparation (Mrziglod [16]).

Since our approach is not based on variational methods, we are also able to drop
the usual monotonicity requirements on Af; instead we can work out explicit criteria
for bifurcation, even for nonlinearities which are not covered by the results obtained so
far. For example, we can treat nonlinearities which are even or change sign. Through
a thorough analysis of these problems, a series of so far hidden relations is uncovered
which play an important role in the understanding of bifurcation from the continuous
spectrum. Although the concentration of the nonlinearity on a finite interval appears
as a severe restriction, we guess that our results are of a general nature and are able to
shed a new light onto the phenomenon of bifurcation from the continuous spectrum.
We expect that this approach can be extended to general nonlinearities by replacing
the stable/unstable spaces of the lilear problem outside I-N, N] by the corresponding
manifolds. Since its performance will involve a lot of technical details, we consider it
as an interesting project for future research.
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The paper is organized in the following way: In 2 basic facts for the linear Hill
equation are collected; 3 contains the derivation of the reduced problem, which is
analyzed in 4. In ’5 we return to the original problem and discuss the results in
terms of the original problem.

2. Properties of the linearized equation. To understand the local bifurca-
tions from the trivial solution we recollect some properties of the linear equation

(2.1) (ph’)’ + (q As)h O.

According to Floquet’s theory (Eastham [3]) we choose a fundamental system of
solutions ol (x, A) and o2(x, A) determined by the initial conditions

(2.2) qol (-N, A) 1, o (-N, A) 0,
o2(-N, A) 0, o(-N, A) 1.

For D(A) := ol (N, A) + qo(N, A) there are two roots 01, 02 of the characteristic
equation

2 D(A) + 1 0

satisfying co1"2 1. Furthermore, there are corresponding solutions wl, w2 of (2.1)
satisfying wi(x + 2N) &wi(x). Recall that ol (N, A), o2(N, A), D(A) are analytic in
A. To simplify the notation, throughout the rest of the paper we set

oi(A) oi(N, ), o(A) := qo(N, A) (i 1, 2).

If the differential equation (2.1) is associated with
1. periodic boundary conditions

(2.3) h(g) h(-Y), h’(N) h’(-N),

there are infinitely many eigenvalues 0 < A1 < A2 < A3 <_ ";
2. semiperiodic boundary conditions

(2.4) h(N) -h(-g), h’(g) -h’(-N),

there are infinitely many eigenvalues #0 < #1 < ".

They satisfy the relation

These eigenvalues, the range of D(A),. and the spectrum a(L) of the differential equa-
tion (2.1) on L2(IR) are related in the following way:

j=0 j=0

{A e lit/[D(A)I <_ 2}.

The boundary points of a are precisely the simple eigenvalues of (2.1) with (2.3) or
(2.4); in each boundary point A0 of a the condition either qo2(Ao) 0 or qo (A0) 0,
and. D’(Ao) 0 holds.

For fixed A in each of the intervals

(--00, 0), [’0, 0], (0, 1),
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there is a specific fundamental system characterized by its behavior for x cx. For
A in a gap of the spectrum (i.e., ID(A)I > 2) there is a special fundamental system
u-l, ul such that ui(x) O(x icx) and ui(x)is unbounded for x --* -ioc (i
-1,1).

For ID(A)] _> 2 set B(A)--- sgn(D(A))v/D2(A)- 4. Then the functions u_,u
are explicitly given in the following cases:

(i) 2(A) # 0,

(,) :=()(, ) [(() ()) + B()] (x, );

(2.6)

(ii) 2(A) 0 and (A) # 0,

u,(x, A) [-i ((:) (:)) + B(A)1 (x, A) 2i(A)=(x, A);

(iii) 2(A) ] (A) 0 and sgnD(A) sgn(t (A) (A)),

(.7) _,(x, ) := ,(x, ), u, (x, ) := (x, );

(:.8)

(iv) 2(A) 99] (A) 0 and sgnD(A) # sgn(l (A) (A)),_
(, ) := (x, ), (,) := (, ).

For all x E IR the functions u_, U satisfy

(2.9) U-l(X 2N, A) O(A) u_ (x, A),
Ul (x + 2N, A) O(A) u (x, A),

where

1
(A) := [D(A) sgn (D(A)) v/D2(A) 4]

is the characteristic root determined by I()1 <- 1.
LEMMA 2.1. Suppose (H0) holds and assume that w_ LP(-cx,-N), wl e

Lp(N, cx) are solutions of the differential equation (2.1).
(i) IrA a then w_ =_ O, w =- O.
(ii) If A a then, for some constants c_, Cl IR,

(2.11) w_ C-lU-1](-,-N), Wl ClUl[(N,o).

Proof. Part (ii) follows immediately from property (2.9). Part (i) can be derived
from the existence of two linearly independent (complex-valued) solutions u_l, Ul of
(2.1) satisfying lu(x + 2N)I- lu(x)l for all x e IR. v1

3. The reduced problem. If u(x, A) is a solution of the differential equation
(1.1) we can split it as follows:

v_(x,A) (x <_ -N),
(3.1) u(x, ) v(x, A) (-g <_ x <_ N),

v (x, A) (x >_ N).

Because of the restrictions on the support of f, the functions v_ and v solve the
linear differential equation (2.1); hence, if u e LP(lR) and ID(A)I > 2, there are
constants c_1, cl such that
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The function v(x, A) is a solution of the nonlinear differential equation on [-N,N];
for smoothness it satisfies the boundary conditions

(3.) v(-N, ) v-1 (-N, A) c-in-1 (-N, ),
v’(-N,A)=V_l(-N,A)=C_lU’. (-N, A)

(3.3) v(N, ) Vl (N, ) ClUl (N, A),
v’(N, ) =v (N, A) =Cliti (N, A).

If u 0 then In1 (-N, A)I + u’ (-N, )1 > 0, In1 (N, )1 + lul (N, A)I > 0, and the-1
unknown parameters c-1 and cl can be eliminated, leading to the following Sturm-
Liouville boundary conditions for v"

U_l (-N, A)v(-N, A) U_l (-N, A)v’(-N, A) O,

Ul (N, A)v(N, ) u (N, A)v’ (N, ) O.

Set

(3.4) ci(A) "= -iu(-N, A), i(A) := ui(-N, A) (i -1,1).

Using (2.9) in the coefficients of the second boundary condition leads to the Sturm-
Liouville problem on I-N, N]"

(3.5) (p’)’ + q, + f (x, ,()) ,

(3.6) c_l(A)v(-N) _I(A)v’(-N)=0,
Ol(A)v(N) q- fll(A)v’(N)=0.

The relation between solutions of the problem (1.1), (1.2) and the reduced system
(3.5), (3.6) is precisely described in the following theorem.

THEOREM 3.1. Let (H0) and (H1) hold.
(i) Nontrivial Lp solutions of equation (1.1) exist only if a, i.e., ID(A)l > 2.
(ii) Suppose t[a.

(a) If u(x,A) e LP(IR) is a nontrivial solution of (1.1) then v := u(.,A)l[_g,N] is
a nontrivial solution of the Sturm-Liouville problem (3.5), (3.6).

(b) If v is a nontrivial solution of the Sturm-Liouville problem (3.5), (3.6) then
the function

(3.7)
_,()_(x, )

u(x, ) := v(x)
cl (A)ul (x 2N, )

(x <-N),
(-N<_x<N),
(x > N)

is a nontrivial solution of (1.1) in LP(]R); here the coefficients ci(A) are given by

v(iN)/ui(-N,A) if ui(-N,A) O,(3.8) ci(A) :=
v(iN)/u(-N,A) otherwise.

Proof. By the Gronwall inequality and f(x, 0) 0, every solution v of (3.5) which
has a double zero is v =_ 0. Hence part (i) follows by Lemma 2.1. To prove (ii(b)) one
has to show the continuity of u and u’ defined by (3.7) at x =t=N. [:l
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Using the multiplier property (2.9) for solutions of the linear problem, we can set
up a relation between the norms ofu and v which will be useful for the interpretation
of our results in later sections.

LEMMA 3.2. Suppose that (H0) and (H1) hold and let (v,A)(A a) be a so-
lution of (3.5), (3.6) with ai(), /i() as defined in (3.4). Then the norm of the
corresponding solution (u, ) given by (3.7) can be expressed in the following way:

N

IlullPp / v(x)lpdx +
-N

N

-N

N

-Icl(A)IP /
-N

where o(A) is given by (2.10) and I(;)1 < 1.
Proof. By Theorem 3.1 we have

Using (2.9) we obtain

c x N

/ lUl(X’)lPdx- / I?I(X--2kN, A)lPdx
-N k=0 -N

N

lao(A)l kp j lUl (X, A)IPdx
k=0 -N

N

1-- I()1 lu(x,A)lPdx
-N

and, similarly,

N N

lU_I (X, A)]Pdx
1 [0(A)[P ]?-1 (x, A)]Pdx.

4. Bifurcation analysis of the reduced problem. Here we will study the
reduced problem as a bifurcation problem. We assume that 0 is a boundary point
of a, i.e., 0 E Oa or D2(,k0) 4 and D’(A0) 0. We will continue the coefficients
ci(,), / (/k) (i -1, 1) up to ,0 in such a way that ,0 becomes a bifurcation point for
a suitably modified problem, and we will also see that no value of , with [D(A)I > 2
can be a bifurcation point.

Firstly we consider the linear boundary value problem

(4.1) (ph’)’ + qh Ash,
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(4.2) a_l(A)h(-N) D_l(A)h’(-N)=0,

LEMMA 4.1. Suppose that (H0) holds and the coe]ficients ai, are defined as in

(i) If A a (i.e., D2(A) > 4) then h 0 is the only solution of (4.1), (4.2).
(ii) Assume that A Ao E Oa.

(a) If 2(Ao) = 0, there exists > 0 such that 2(A) 0 for A e (Ao-5, Ao /5)\a;
the coefficients ai(A), i() (i---1, 1) can be continued up to o such that

ai(Ao) := lim ai(,k) i(l(,ko) P(Ao)),

(b) If 2(Ao) 0, there exists 5 > 0 such that i (A) # 0 for A e (Ao-5, Ao +5)\a;
the coejficients ai(A),/3i(A)(i -1, 1) can be continued up to Ao such that

ai(Ao) lim a,(A) 2p (Ao),

i(Ao) := lim i(A) -i (91 (,o) 9(,’0))
,g,o

The function

:= (x, +

is a nontrivial solution of (4.1), (4.2)for o. If D()o) 2, has period
2N; if D()o) -2, has period 4N. Furthermore, either (o , o) V a or
o, o + ) a O.

Proof. (i) Suppose h is a solution of (4.1), (4.2) for A a. By Theorem 3.1 there
exists a solution u LP() of (1.1) for f 0 with U_N.N h, hence u is a
solution of (2.1) too. Since the spectrum of (2.1) is purely continous, u 0 and

(ii) Since 2(A) is a continuous function of A, there exists a > 0 such that
2(A) 0 for A e (Ao , Ao + 5)a in case (a). If T2(Ao) 0, then (Ao) 0 since
o Oa, and, similarly, one obtains T () 0 for A e (Ao -6, Ao + 6)a for some
6>0.

Now consider the function defined in (4.3). In both cases we have fl (o)+
al(0) # 0, so is a nontrivial solution of (4.1) and

(-N) f-I (’0)1 (-N, Ao) + a-1 (Ao)2 (-N, Ao) -1 (Ao),
’(-Y) _1(Ao)i (-N, Ao) + or-1 (Ao)(p (-Y, Ao) o/-1 ()io),

hence satisfies the boundary condition (4.2) at -N.
At Ao we have D(Ao) 2j with j 1 or j -1. In case (a) it follows that

(-N) -l(Ao) 22(Ao) and



THE BIFURCATION STRUCTURE OF NONLINEAR HILL EQUATIONS 1291

and using 1(Ao)(Ao) T] (o)2(Ao) 1 we get

//(N) -1(o)i (o) + -1(o)(o)
2V2(o)Vl (o) (1 (o) V(o))(o)- + (o)w(o)- (v(o)- v(o))(o)
-n(Ao)+ (v(Ao)+ vi(Ao))V(Ao)
-(w (Ao) + V(Ao)) +-(V (Ao) + V(Ao))V(Ao)2

-(v (Ao) + v(Ao))(vi (Ao) v(Ao))
-i(vi (Ao) v(Ao)) i’(-N).

Hence, is 2N-periodic (j 1) (resp., 2N-antiperiodic (j 1)) and, by

_
(Ao)

/l(AO) and -(Ao)--(Ao), a solution of (4.1), (4.2).
Case (b) follows similarly.
For a standard investigation of the bifurcation problem using the implicit function

theorem, the functions ai(A), fi(A) need to be differentiated with respect to A. Since
lim,x-,Ao [ai(A)[-- oc in case (a) and lim),_,Ao [/(A)[ oc in case (b), the linearization
in Ao does not exist. To avoid this difficulty we introduce the transformation

A ),() Ao + so,
so :-- sgn[D(Ao). D’(Ao)] 0.

Note that so is chosen in such a way that (#) r for # 0 and I/z] < v ( as in
Lemma 4.1).

The transformation leads to the modified problem

(4.5) (pvt) + v + f(x, v)v #2v,

(4.6) -1 (#)v(-N) _(#)v’(-N) =0,
&x(#)v(N) + l(#)vt(N)--O

with # as a new bifurcation parameter and coefficients

4(x) := q() Ao(z),
(x) := o(),

,(#) := -,((u)), /():= ((z)) (u >_ 0).

To extend &i and i in a differentiable way for # _< 0, we choose the appropriate sign
in front of the square root and set

(i) in case (P2 (Ao) O,

(4.8)

5i(#) := i[ol (A(#)) o(A(#))] + sgn [#D(A(#))] v/D2(A(#)) 4,
(u) := (());

(ii) in case 2(Ao) 0,

a,(,) := 2I ((,)),
/3i(#) := -i [ox (A(#)) o(A(#))] + sgn [#D(A(#))] v/D2(A(#)) 4.
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Accordingly, we have to change the corresponding multiplier 0 to

1
(4.9) (#)-= {D((#)) sgn [#D((#))] v/D2((#)) 4}.
Note that [(#)[ > 1 for -v/ </z < 0 and I(/z)l < 1 for 0 < # < x/ by this choice.

Remark. Suppose (H0) and (H1) hold. If vu 0 (1#] < v) is a solution of
(4.5), (4.6), then there exists unique solution uu of (1.1) for x IR such that

Vtt --Uttl[_N,N]. Since the functions

t--l (t) :’-- U#,(_cx),_N) Ul (t) :--

satisfy

(4.10) u_l (x 2N, #) (#)u_ (x, #) (x < -N),
u (x + 2N, #) (#)Ul (x, #) (x > N),

we can draw the following conclusions: if # < 0, then I(#)1 > 1 and ut, LP(IR) and
if # > 0, then I(#)1 < 1 and ut, e LP(IR).

We collect the required_differentiability properties of the transformed coefficients:
LEMMA 4.2. (i) , &i,/3i are analytic (i --1, 1).
(ii) ’(0) -D(o)v/ID’(Ao)l/2 O.
(iii) (a) If o2(A0) = 0, then

((0) -2’(0), /(0) 0 (i -1, 1),
(--1(0) --(1 (0), --1 (0) 1 (0) 22(,0) 0.

(b) If 2(Ao) O, then

ai(0) 0, 3(0) -25’(0) (i -1, 1),
(--1(0) (1 (0) 2 (A0) 0, --1 (0) --1 (0).

Proof. D(A) is an analytic function of A, hence r(A):= D2(A)- 4 is analytic and
r(Ao) 0, r’(Ao) 2D(Ao)D’(Ao) 0. Hence there exists an analytic function d such
that r(A) (A Ao)d(A), d(Ao) r’(Ao) - 0, and d(A) 0 (A (Ao 5, Ao + 5)\a).
The function V/sod(A(#)) is analytic for [#[ < v and

g(#) sgn(#) v/D2 (A(#)) 4

sgn(#)V/So#2d (A(#))
#V/sod (A(#))

is analytic for I#1 < v,

g’(O) V/sod(Ao) 2v/ID’(A0)I.
Since D(A(#)), o (A(#)), q2(A(#)) are analytic and D(A(#))
are analytic and the formulae in (ii) and (iii) are straightforward. [:]

We now solve equation (4.5), (4.6) by a shooting method. Let v(x) v(x, , #)
denote the maximal solution of equation (4.5) satisfying the initial conditions

v(-N) e/3_t (#),(4.11) v’(-Y) -1 (#),
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and denote by I(, ) the maximal interval of existence of v; by this choice v fulfills the
boundary condition (4.6) at -N. We will show that for small there is a # M()
such that v(x,,M()) exists on [-N,N] and satisfies the boundary condition at
N; furthermore, close to the bifurcation point, the dominant part of the bifurcating
solution is given (as usual) by , the solution of the linearized equation.

THEOREM 4.3. /f (H0), (H1), and (H2) hold there exists a (local) branch of
solutions (v,M()) of (4.5), (4.6) bifurcating at (0,0). More precisely, there exist

o > O, #o e (0, V/-), and a continuous function M" [-o, o] [-#o, #o] such that
(i) M(0) 0;
(ii) I-N, N] C_ 1(, M());
(iii) ve(x) v(x,,M()) is a nontrivial solution of (4.5), (4.6) for # M(),

0;
(iv) v(x) ( + /())(x) where is defined as in (4.3) and [-o,o]

(CI[-N,N],II II) is a continuous function satisfying I1(0)11 0 for IlYll

(v) any solution (v, #) in a neighbourhood of (0, O) is of the form # M(),
V Ve

(vi) there exists a continuous function c" [-o, o]-- IR with c(O)= 0 such that
in case a2()o) : 0,

(4.12)

and in case 2 (.ko O,

v(N) =je(1 / c())fl(M()),
v(N) =-j(1 +

(4.13) re(N)--j(1
v(N) -j(1 - c())01(M())

with j D(Ao)/2.
Proof. To get global existence of the solution v(x, , #) of the initial value, problem

(4.5), (4.11), we modify the nonlinearity outside the strip IR [-Yo, Yo]:

f(x, y) "= f(x, Yo), Y > Yo,
f(x,-yo), Y < -Yo.

Then f(x, y).y is continuous with respect to y and satisfies a global Lipschitz ondition.
It is sufficient to prove Theorem 4.3 for equation (4.5) with f replaced by f since the
continuous dependence of v on implies that [v]] Yo (] 0) for o sufficiently
small.

Let v (-,e,) be the solution of the initial value problem (4.5), (4.11) with f
replaced by f. Then v has the following properties:

(i)
(ii) v(x, O,
(iii) We define V: (-,) as the solution of the initial value

problem

(a.la) +
with initial conditions

(4.15) v(-N)

_
(#), v’(-N) 5-1 (#).

Note that U(x, , #) v(x, , #)/ for 0 and U(x, O, O) (x).
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(iv) V(x,e, #) is continuously differentiable with respect to # and W(x,e, #) :=
Y(x, , #) solves the initial value problem

(4.16)
i.w + 2#V(x, e, I),

(4.17) w(-N) 1(#) w’(-N) &’_(,).
In particular, for # 0 we get

W(x, 0, 0) Y ’ (0)(, o).--I(0)I(X,)k0) -!- --1

Now we can set up the defining condition for the shooting procedure which will
be solved by the implicit function theorem. Define g" IR x (-v, vf) --* IR by

g(, )"- 51(#)V(/, , #) +/I(#)V’(/, e, ).
If (v, #) is a nontrivial solution of the boundary value problem (4.5), (4.6), then there
exists : 0 (namely, v(-N)/_i(#) if 02(Ao) : 0 and v’(-N)/5_(t_t) if
02(AO)- 0)such that v(x)- V(x,e, it) and

9(,#) 5.(#)V(N,,#) + (#)eV’(N,,#)
1(I)V(N, , ) -t- tl (I)V (N, e, #)
&(#)v(N) + 31 (#)v’(N)

-0.

On the other hand, if 9(, #) 0 for some e 0, [#1 < V, then by construction
v(x, e, #) is a nontrivial solution of (4.5), (4.6).

Then by Lemma 4.1,

g(0, 0) a(0)V(N, 0, 0) + 3(0)V’(N, 0, 0)
/1 (0)(N) +/1 (0)’(N)= 0.

The function g is continuous with respect to , and by Lemma 4.2.and property
(iv) it is continuously differentiable with respect to #.

dg
(, I.t) -’ ~’=oI()V(N,,)+fll(I.t)Vt(N,e p,) +I(p,)W(N,g’ t.t)+l()Wt(N,,l.t),

d#
hence

dg
(0, 0) ~’ [/ (0)991(,o) - - (0)992(o)]d#

al(0) -1

+3(o) [3-(o)I (o)+ a_(o);(o)]
+1(0) [1(0)1 (0) + t_l(0)2(0)]
+1 (o) [&(o)i (o) +,(o)(o)].

In case 2(Ao) 0, by Lemma 4.2 we obtain

dg(o, 0) -2’(0) [22(o)1 (o) + -1(0)2(o)]
d#

+(0) [-2’(0)(o)] + 22(o)[-2’(0)(o)]
-4’(0)2(o)[(o) + (o)1
+8VID’(&o)l(o) o.
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Similarly, we obtain dd- (0, 0) 8v/]D’(Ao)]qa (Ao) y 0 in case q2(Ao) 0.
Applying the implicit function theorem, we obtain that there is o > 0 and a

continuous function M: [-eo, eo] [-#o, #o] such that for each E [-o, o] there is
a unique # M() such that g(e, M()) 0 (-0 <_ _< o); in addition, M(0) 0.
By construction, ve :- v(x, , M()) is a solution of the boundary value problem (4.5),
(4.6).

To prove (iv) define by

"()(x) := V(x, e, M()) (x).

Clearly, - is continuous and because of V(x, 0, 0) (x) we obtain

II (o)ll-o,

and by definition of 7,

ve(x) v(x,e,M()) V(x,e,M(e)) e( + -(e))(x).

To prove (v) assume that (v, #) is a nontrivial solution of (4.5), (4.6) such that
]#[ _< #o and max {[[v[]oo,
0. Then ]v(-N)[ _< g and e := v(-Y)/(2e(A(,)))satisfies [e[ <_ eo; moreover,
v(-Y) 2eq2(A(#)) e}-l(#). Since v satisfies the boundary condition at -g, we
obtain v’(-Y) ea_ (,). By definition of v, v v(.,,,) and g(e,,) 0, hence

M(e) by the uniqueness of . The ce 2(Ao) 0 is treated similarly with the
choice

Since the solution v satisfies the boundary condition at N, there exists a contin-
uous function T" I-co, eo] such that for all e e I-co, eo],

v,(N) T()3I (M(e)), vte (N) --T(e)&I (M()).

In case 2(Ao) : 0 we define the continuous function c" [-o, o] --* IR by

c(e) := /(e)(N) (t)dt /(M(e)),
0

where j D(Ao)/2 (j +1), hence c(0) j’(O)(N)/(O) 0 and, by Lemmas 4.1
and 4.2,

D (M(s)) j(1 + c(e)).

Consequently, T(e) (1 +c(e))ej and v’(N) -t}l(M(e))(1 +c(e))j. The assertion
in the case qa(o) 0 follows in the same way.
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Theorem 4.3 states that A0 (i.e., # 0) is always a bifurcation point for the
reduced problem. The function # M() determines the kind and the direction of
bifurcation. We will see later that there are important consequences for the original
problem since the multiplier (#) is contracting (resp., expanding) if # > 0 (resp.,

THEOREM 4.4. Suppose that (H0), (H1), and (H2) hold and choose eo,#o,M,
and t as in Theorem 4.3 and as in (4.3).

Then there exists IR, 0 <

_
o, and a continuous function R [-1,] -+

IR with R(O) 0 such that, for

(4.18)

where

N

M(e) f(x,( + "y(z))(x))( + /())(x)(x)dx(1 + R()),
-N

-4p(N)D(Ao)vilD’(;ko)lo2(;ko) ifT 4p(N)D(Ao)v/iD,(Ao)loi(Ao if

Remark. If A0 E Ora then T > 0; if A0 E Oa then T < 0. Here
denotes the set of right (resp., left) end points of a.

Proof. For e [-0, e0] let (ve, M()) be the solution of (4.5), (4.6) given by
Theorem 4.3. Multiplying equation (4.5) with and integrating over I-N, N] gives

N N N

i S
-N -N -N

N

M2(e) [ (x)v(x)(x)dx.
-N

Using the fact that is a solution of the linear equation for 0, after integration
by parts we get

N N

(4.19) B() + / f(x,v(x))ve(x)(x)dx M2() / (x)v(x)(x)dx,

where the boundary terms are collected in

B() =-p(Y) [v(N)(g) v(N)’(g)]
+p(-N) [v(-g)(-N) ve(-N)’(-N)]

By (4.12) and the 2N-periodicity of p,

with j sgnD(Ao) and SB 1 if 2(0) 0, and SB --1 if 2(0) 0. Using the
Taylor expansions

U()

-’ fa(M(e)) a(O) + (O)M(e) + (M(e) t)i
0



THE BIFURCATION STRUCTURE OF NONLINEAR HILL EQUATIONS 1297

M()

i(M(e)) i(0) + (0)M()+ / (M() t)’(t)dt
o

and the equation 5i(0)(iN) + i(O)’(iY) O, we-obtain

+ [1(O)(-N) 1(O)t(-N)]) M(E) + eM(e)C(e),

where C" [-e0, e0] is the continuous function satisfying C(0) 0 given by

C(e) p(N)jssc(e)[5i (0)(N) + 31 (0)’(N)]
(1 + c(e)) f (M(e) t)(t)dt(N)+ p(N)js M(e)

0

M(e)

+ (M(e) t)f(t)dt’(N)
o

where

E" [-0, 0] IR,
N

E(e) "= C(e) M(e) J g(x)((x) + /(e)(x))(x)dx
-N

is a continuous function with E(0) 0.
Choose el E (0, e0) such that E(e) T (le <_ ); then

N
1

(1 + R()) / f(x, ve(x))( + (e))(x)dx,M()-
-N

where R [-’1,1] -"+ JR, R() :-- E()/(T- E()) is continuous and satisfies
R(0) 0.

For general f it is not yet possible to work out the dominant part of M(s) in
terms of by (4.18) since the right-hand side depends on M() in form of ().

To evaluate formula (4.18) determining M() explicitly, we need more specific
assumptions on the nonlinearity f. As a typical application we treat the case

p(N)
(M() )("+ 2tl(e)

o
(t)(-N)

o
(M(e) t)(t)dt’(-N)

Hence, by Lemmas 4.1 and 4.2,

B() -TeM() / eM()C().

Dividing (4.19) by e gives

N

TM() E()M() f f(x, v(x)) ( / /(e))(x)(x)dx,
-N
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(H3) f(x, y) g(x, y) + h(x, y),
[, 1()11 ( >_ o),Y) _()11 ( < o),

where rj [-N,N] is piecewise continuous, r 0 or r_ O, and
a>0.
rthermore, there exists w > 0, 7 > 0 such that

Ih(z,) 1+ (l o).
For the function in (4.3) we use the decomposition (x) 1(x)- _l(x) into a
positive () and negative (_1) part, and we define (j -1, 1)

N

T := ] ry (x) ]j (x) ]+dx,
-N

N

rj (x)-j(x) la+2dx.
-N

COROLLARY 4.5. Suppose (H0), (H1), (H2), and (H3) hold and let , M, T be as
in Theorem 4.4.

(i) g Ti + T_ 0 then there exists a continuous function R+ [0,1]
with R+ (0) 0 such that

M(z) T + T_,
1(1 + R+()) (0 < < z).T

(ii) ff S + S_i # 0 then there exists a continuous function R_ [-, 0]
with R_ (0) 0 such that

M() ’ + -’ 1(1 + R_()) (-z, < < 0).T
Remark. Since solutions of the original problem only exist if M(s) > 0, we

mention two special situations where M() > 0 is guaranteed by Corollary 4.5.
Example 4.6. r r_ (i.e., g(x, y)y odd). Then M() > 0 for # 0 if
(a) o Ova and rl 0 or
(b) o Oa and r 0.
Example 4.7. r -r_ (i.e., g(x,y)y even). Then T -S_ and T_ -S

and
N N

T1 +T-l-- /rl(X)]l(X)la+2dx /
N

/ rl (x) []1 (x)]a+2 I-1 (x)l+2] dx

-N

N

-N

N

f r
-N
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If T1 + T_I 0 then either T / T_ > 0 or S + S_ -(T1 / T_) > 0; hence
M() > 0 either for > 0 or < 0.

Corollary 4.5 is a direct consequence of the following estimates collected in the
following lemma.

LEMMA 4.8. Suppose (H0), (H1), (H2), and (n3) hold.
There exists f > 0 and a continuous function C [-0, 0] IR with C(O) 0

such that, for E [-0, 0],
(i)

[f(x,( + "y())(x)) g(x,( + "())(x))] [ + T(e)] (x)(x)dx

(ii)

j
-N

4- "y() (X)))((X) 4- "r()(X)) g(X,(X))(X)] dx C()]]a,

(iii)

N

g(x’(x))2(x)dx (S, + S_)II
-N

(e > 0),
< o).

5. Conclusions for the original problem. Theorem 4.3 guarantees that every
A0 E Oa is a bifurcation point for the reduced problem (4.5), (4.6) and that there is
a local branch (v, M()). The direction of bifurcation is determined by the sign
of # M(e); moreover, if # _< 0 then I(#)1 >- 1 and the solution of the reduced
problem does not lead to a solution of the original problem since (#) acts as an
expanding multiplier. For # > 0, however, solutions in LP(]R) can be constructed out
of solutions of the reduced problem. Precisely, if (v, M(e)) is a solution of (4.5), (4.6)
and M() > 0, we can extend v in the spirit of (3.7) to a solution u LP(IR) of
(1.1) by using

(5.1) A A0 + s0M2()

and

U--I(X,,)
u (x)

(1 + c())ut (x 2N, )

(x <_ -N),
(-N<_x<_N),
(x >_ N),

where e {, 1, 1} must be chosen appropriately since the coefficients c_1 (A), ct (A)
turn out to be (in case 2()0) 0)

c_ (ik) ve(-N)/u_ (-N, ))

_
(M())/_I (M()) ,

c(,) ve(N)/u(-Y,) e(1 + c(e))l(M(e))/l(M(e))= e(1 +c(e)),

where c is given in Theorem 4.3 (vi).
The main results of this paper are collected in Theorems 5.1 and 5.2. Although

they involve the existence of the solutions ve of the reduced problem, we do not need
these explicitly. Their existence is guaranteed by 4; the only quantity needed is
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the direction of the bifurcation given by the sign of M(s). In many cases, such as
under the hypothesis of Corollary 4.5, this can be worked out a priori by using the
eigenfunction of the linear problem; in those cases sgnM() can be read off from the
expressions in Corollary 4.5, for example.

We first treat the case M() _< 0 (11 _< s0) and show that there is no bifurcation
from 0 at A0 for the original problem. If solutions u E LP(IR) nevertheless exist
for IA0 AI < # and A a, then asymptotic bifurcation at A0 is the only possible
situation.

THEOREM 5.1. Suppose (n0), (nl), and (H2) hold and let so, #o, and (v,M())
be defined as in Theorem 4.3. Assume, in addition, that M() < 0 (11 < Co) for
some Co e (0, s0]. Then every nontrivial solution u LP(IR) of (1.1) with A a,
-ol < # satisfies the estimate

(5.3) ]lullpp _> C

where C is a positive constant independent of , u. In particular, there is no bifur-
cation from 0 at o for (1.1).

Proof. If (u,A) is a nontrivial solution of (1.1) then, by Theorem 3.1, (v,A)
with v ul[_N,g] is a nontrivial solution of (3.5), (3.6). Defining
we also obtain a nontrivial solution of (4.5), (4.6) satisfying g(, #) 0, where s
u(-N)/_l(#) in case 992(0) 0 or u(-N)/(_l(#) in case q2(A0) 0.
If Isl <_ s0 then, by uniqueness of # through the implicit function theorem, 0
# M(e); then I1 > C0 since M(e) < 0(1] < C0); hence lel > C0 always holds.
Furthermore, I(#)1 < 1 and by Lemma 4.2 there exists a continuous function
[-#0, #o] IR such that

I(#)[v ](0)[p + pl5(0)lP-lsgn(5(0))’(0)# + 0(#)#2.

Hence, using sgn((0))D(A0) 2,

1 -I()1 -p sgn((0))5’(0)# v(#)#2

+Psgn((O))D(Ao) V/l’(Ao)]# 9(#)#2,

1 1 1 > 7/,u,: -I(z)lr’
>

pv/ID’(Ao)I + 0o#

where 0o max0_<_<o and ( is some positive constant.
The assertion of the theorem now follows by the relation of the norms in Lemma

3.2:

IlullpP Iv’(x)lPdx + 1 I(z)lp Ic-x (A)o(A)Ip lu- (x, A)lPdx

+lo (A)[p f lUl(X, A)lPdx
-N
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where r/- minll<o f_NN lu_l (x, A(#))lPdxl(#)lp.
Since c_1 () e and ]el > -o because of M(e) < 0 (le < -0), we obtain

Remark. Suppose, in addition, that (H3) holds. If T(T1 + T_) < 0 and T(S +
S_) < 0 (i.e., T + T_I > 0 and S + S_ > 0 in case Ao E Ota or T + T_ < 0 and
$1 + S_ < 0 in case Ao E Ora) then, by Corollary 4.5, M(e) < 0 (lel _< -o) for some
-o (0, e0). With respect to Example 4.6, M(e) < 0 (lel < -o) is realized if either
o Ora and r _< O or o Oa and rl >_0.

A typical situation for Theorem 5.1 is illustrated in Fig. 5.1.
Finally, we treat the case in which M(e) :> 0 (e2 < e < e3) for some e2,e3

[-eo, eo]. We obtain solutions of the original problem and we are able to discuss their
bifurcation. In particular, for even nonlinearities, for example, we can get bifurcation
from 0 at both ends of a gap by use of Example 4.7--a result which could not be
obtained by variational methods so far.

THEOREM 5.2. Suppose that (H0), (nl), and (H2) hold. Assume that (v,M(e))
are solutions of (4.5), (4.6) as in Theorem 4.3, satisfying 0 < M(e) (e e (.2, e3) C
[-eo, eo]). Then (u,)), given by (5.1), (5.2), forms a continuous branch of nontrivial
solutions of (1.1) such that

(5.4) Ilu, I1 ,

where [e2, e3] lR is a continuous function.
Remarks. (i) Suppose e2 0 or e3 0.
(a)When u is continuous in 0 with u 0 if and only if Ilul]pp --+ 0 for

ko + soM2 (e), e -- 0.
(b) If there are C > 0 and T > 0 such that M(e) > Clel (e [2, e3]), then, for

e -- 0,

(5.5) I1  ,11 , <_
N

Cpx/ID’(),o)l
-N

hence there is bifurcation from 0 at 0 if T < p.
(C) If there are C > 0 and T > 0 such that 0 < M(e).< Clelr (e [e2, 3]), then,

for e O,

(5.6) I1  ,11 >-
N

Cpx/ID’(Ao)l
-N

hence there is asymptotic bifurcation from infinity if T > p.
(ii) Suppose e2 : 0 e3 and M(e2) 0 or M(e3) 0. Then there exists C > 0

such that, for e (e2, e3),

Ilu. ll >_ C/M(e).

(iii) Suppose, in addition, that (H3) holds.
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rt=M(e)

/

FIG. 5.1. In the case of a subcritical bifurcation for v there is (locally) no branch for u; if the v
branch, however, turns back as above, this leads to a new u branch bifurcating from infinity. (Note
that only the solid lines in the (1, v) diagram lead to solutions in the (A, u) diagram.)

(a) If T(T1 + T_I) > 0 (i.e., T / T_ > 0 and Ao E Ora or T + T-1 < 0 and
Ao E Oea) then, by Corollary 4.5,

where

2T

Pv/ID’(Ao)l(T1 + T_,)

and + "[0, s3] IR is continuous and +(0) 0.
(b) If T(S + S-l) > 0 (i.e., $1 + S-1 > 0 and A0 Ora or S 4- S_ < 0 and

Ao Oea) then, by Corollary 4.5,

where

2T

pv/ID’(Ao)I(Sx + S_l)

and - "[2, 0] ---, lR is continuous and -(0) 0.
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=M(E)

O<p
tl tl

O>p

FIG. 5.2. According to the growth of the nonlinearity, pitchfork bifurcation for v is transformed
into a kind of pitchfork "bifurcation" for u either from O, a finite number, or infinity.

Hence, in both cases we obtain a bifurcation behavior which has previously been
observed for bifurcation at the lowest point of the continuous spectrum [18], [22], [23]:

(c) There is bifurcation from 0 at ,k ,k0 if a < p.

() There is bifurcation from To-I or So-I at ,k ,k0 if a p, I fN_N I.(x)IPdx.
(-y) There is bifurcation from infinity at A 0 if a > p.
Typical forms of bifurcation are illustrated in Figs. 5.1-5.3; special situations can

be realized by choosing coefficients and exponents appropriately in Examples 4.6 and
4.7.

Proof. Using (5.1), (5.2), and Lemma 3.2, we calculate

1
i l (x,A)ldxllu ll lv(x)lpdx + 1 -I()Ip lC-I () I()

-N

-N -N

+ ]ul (x, A)lPdx
-N

By the analyticity of u_ (x, ), u (x, ) with respect to A and using u_ (x, Ao)
Ul(X, o) (x), there exist continuous functions t-i, tl "[0, ,] such that, for
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lt=M(O

SS

O<p
U

O=p O>p
U

FIG. 5.3. Transcritical bifurcation for v leads to a single branch for u bifurcating either from
O, a finite number, or infinity.

N N

f lug(x, ),)ldx / I(x)ldx + t(lX Xo[)IX Xol (i -1,1).

Hence

P

M(e) pv/ID’()o)l
I(x)lPdx(1 + I1 + c()lp) + M(e)c()

where

where v is as in the proof of Theorem 5.1.
The continuity of u with respect to A (resp., ) is a direct consequence of the

continuous dependence of A, v, c(e) of .
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STABILITY CRITERIA FOR SECOND-ORDER DYNAMICAL
SYSTEMS INVOLVING SEVERAL TIME DELAYS*

F. G. BOESEf

Abstract. Characteristic functions F(z) for second-order difference-differential equations with
constant parameters of the form

F(z) z2 + zA(z) + B(z), z E C,

A(z) E Ake--zTk’ Ak R,
k-0

B(z) E Bke-zTk’ Bk R,
k--O

To := 0, T R+, k l(1)n,

are studied. When studying delay-independent stability, the class of F(z) is enlarged;

FT(Z) z2 + Alz + Ao + B(z),

B(z) B b,()-r,
k=I

T :-" T1,...,Tn) >_ O,

where the bk,pk (Z) real monic polynomials of degree Pk _< 2 are considered. For such FT(Z), an

explicit subset S0 of the set of all FT(Z) that are stable for all delay vectors T _> 0 is derived.

Key words, delay systems, time delays, characteristic functions, asymptotic stability

AMS subject classifications. Primary, 34K20; Secondary, 92A17

1. Problem and motivation. There are several ways to investigate the lo-
cal asymptotical stability of equilibria of dynamical systems. When only stability
against small and time-limited perturbations of the system are considered, the way
via characteristic functions is the method of choice. Within this method, one looks for
elementary solutions of the form Xz(t) := ezt, t :> 0. A function F(z), z E C, whose
zero set E, also called spectrum, determines the solution set {xz(t)}ze, is called a
characteristic function. To be more specific, we consider the dynamical systems

(1.1) 2(t)=f[x(t--To),X(t--T),...,x(t--,)], tER+, mEN

with vector state x E Rd and constant delays TO := 0, Tk E R+, k 1(1)m. Here and
in what follows, the overdot stands for differentiation with respect to t. The function

f E C (amd+d, Rd) is assumed to have equilibria x. E Rd, i.e., zeros on the diagonal
f(x.,... ,x.) O. If x. is the equilibrium under consideration then the variational
system for (1.1) is

(1.2) Joy(t TO) + Jly(t T1) +’’’ + Jmy(t- 7m),

*Received by the editors August 23, 1991; accepted for publication (in revised form) January
31, 1994.

Ganghoferstrate 81, D-81373 Miinchen, Germany (gubmpe-gaxchag.mpg. de).
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where Jk is the Jacobian of f with respect to the kth vector argument of f evaluated
at x.. A perturbation y(t) := Yezt, Y E Rd, t >_ O, solves (1.2) if and only if z is a
zero of

(1.3) F(z) :- det [zI Joe-Zo Jle-zrl Jme-zrr ].

Here, I is the identity matrix. The function F(z) has the form

F(z) zd + zd-IA (z) + + Ad(z),
n(1.4) Ak(z) E Ak,Je-zTJ’ Ak,j e R, Tk e R+ t2 {0},
j=o

where the Tk are linear combinations of the Tk. In dimension d 2, to which we
restrict ourselves exclusively from now on, we prefer the simpler notation

F(z) z2 + zA(z)+ B(z),
n

A(z) E Ake--zTk’ Ak R, To := 0, Tk e It+,

n

B(z) E Bke-zTk’ Bk R, n N.
k--O

We name yet another instance which arises to consider the class of exponential poly-
nomials F(z)defined by (1.5).

Consider the one-dimensionM forced harmonic oscillator with (positive or nega-
tive) damping

!t(t)+A2(t)+Sx(t)=u(t), x(O):=xo, 2(0):=20, A,B, x0,20eR, teR+.
Evidently, x. :- 0 is the sole rest position of the free oscillator u " 0. So, x(t) is,
directly, the deviation from the equilibrium. We wish to select a control u(t) from
the class (1.7) such that the initial perturbation x0, 20 dies out fast and with no
oscillation. To achieve this goal, linear proportional-derivative state feedback may be
implemented;

n n

(1.7) u(t) := E Ak2(t- Tk) E Bkz(t Tk).
k--0 k=-O

The characteristic function F(z) for the closed loop system which results when sub-
stituting (1.7) in (1.6) is F(z) from (1.5). Also, if retarded derivatives of second order
are allowed in u(t), then we have to add the term

n

(1.8) u2(t) E Cit(t Tk)
k--O

to the right-hand side of (1.7), which gives, with A(z), S(z) from (1.5),

F(z) z2C(z)+ zA(z) + B(z),
(1.9)

C(z) 1 + Cke-T, C e R.
k=0
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The last F(z) is neutral for ICll + IC21 +"" + ICnl > 0. The finite-dimensional version
of (1.6) is written as follows:

(1.1o)
it(t) + Bx(t) Cu(t), B Rdxd C Rdx’

n

u(t) E {Akic(t Tk) + Bk(t Tk)},
k=O

Ak Bk E RTM

The characteristic function F(z) belonging to (1.10) is

(1.11)

F(z) det[ zA(z) + B(z) ],

A(z) I + C. Ake-zTk
k--0

B(z)’= B + C. Bke-zTk
k--0

We observe that F(z) from (1.11)is, for d 2, again of the form (1.5)or (1.9).
Consider (1.10) for Ak := 0, k 1(1)n, and with vanishing delays. Then the pole
shifting theorem, the backbone of linear control theory, applies under the generic
condition of controllability and says that the control goal from above can be reached.
For positive delays, however, such a theorem is not at our disposal. So, the treatment
of F(z) from (1.5) also has a bearing on linear control systems in dimesion d 2.

We may parameterize the class (1.5) by introducing the real (3n + 2) vector

(1.12) p "= Ao, A Bo, Bn, T1, Tn

and consider p in the coefficient parameter space

(1.13) P E P := Po x T, Po := R2n+2, T := R_,

where P0 is spanned by the coefficients A0 to Bn and T is spanned by the delays T1
to Tn. We are faced with two problems: the determination of the stability chart

(1.14) ,9"={peP" F(z) 7 O in Re(z)>_0}

and the development of stability criteria. While a stability chart lists all stable F(z),
a stability criterion decides whether or not a single F(z) is stable. Extreme robustness
against variation of the delays is embodied in the notion of stability independent of de-
lays. We split the full parameter vector p into two direct summands p0 := (A0,..., Bn)
and T := (T1,...,T) so that p := (po, T) with po Po and T T. The stability
chart So, independent of the delays T is defined by

(1.15) So:={poePo" F(z) 7 O in Re(z)>_0forallTET}.

In 2, we derive a stability criterion which covers the whole class (1.5). Section 3
contains an example. Section 4 is devoted to the stability independent of delays. The
concluding section, 5, contains a discussion.

The letter is exclusively reserved for the imaginary unit, 2 -1. The expression
k a(b)c means variable k runs from a to c in steps of b. A := B or B =: A redefines
A by B. hrg(z) denotes the general argument function and arg(z) is its principal
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branch with values in (-r, r], where arg(z) zr on the negative real axis, which is
the branch cut.

2. A stability criterion for a special class of holomorphic functions. As
already mentioned in 1, it is widely known that necessary and sufficient stability
criteria for holomorphic functions F(z) for one complex variable z are, in general, not
simple.

A more general version, in several respects, of our criterion can be established;
see [3] or the recent book of Stpn [16]. We disregard greatest generality and tailor
the theorem for the application we envisage.

In preparation of the statement and proof of the theorem, we introduce two
definitions and some notation used in what follows.

Let s := { sl, s2,..., Sm }, m E No, be a finite sequence of nonvanishing numbers
sk E R \ {0}. Then we define the set S(s) of sign changing indices in s or, in short,
the sign changes of s, by

(2.1) S(s) := ( k e { 1, 2,..., m 1 }" 8kSk+1 < 0 ).

By definition, m- 1 is the largest possible sign change in s. There is a continuous
counterpart. Let f C(R, R) be continuous. Then y R is a sign change of f
if f(y- e)f(y + e) < 0 for all e > 0 sufficiently small. We turn to some notation.
The imaginary axis in C, viewed as an oriented curve, is denoted by I when upwards
oriented and -I when downwards oriented. The parts of I falling in Im(z) _> 0 or
Im(z) _< 0 are I+ or I_, respectively. The part of I belonging to the horizontal strip
-R <_ Im(z) _< R, R :> 0, is designated by IR. By [a, b], we denote the oriented line
segment from a to b, a, b C. The semicircle of Izl R lying in Re(z) :> 0 with
initial point z -iR and terminal point z iR is denoted by S.R. Finally, consider
the oriented Jordan arc Cz,z2 with initial point z zl and terminal point z z2 such
that 0 t Cz,z2. Then

(2.2) A(Czl,z2) := Arg(z2)- arg(zl)

denotes the argument variation, i.e., the variation of arg(z) when z traces C,z2 in
its orientation. The branch of Arg(z) is chosen so that it varies continuously with z
along the curve. We shall see that the evaluation of A, i.e., the choice of the correct
branch of Arg(z2), is the most difficult step.

THEOREM 2.1. Let F(z) be a real, holomorphic function defined in an open set
0 containing the closed right half-plane Re(z) > 0 having the following properties

(1) F(0) > 0,

(2.3) (2) F(iy) O, y a,
(3) F(z)=z2n[l+o(1)], Izl-oc, Re(z)_>0, neN.

Let

(2.4) ul < u2 ( < ltm, m 1 + 2N

be the sequence of sign changes of U(y) := Re[F(iy)], y > O. Denote by a the sign
sequence

0"" {O’l,0"2,...,tim},
O’k" sgn { Im[F(iuk)] }.
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Then F(z) # 0 in Re(z) >_ 0 if and only if

0"I -- O’m(2.6) n---
2 E(--1)kak’

where S := S(a) is the sequence of sign changes in a.

Proof. Consider the closed, simple; positively oriented family of curves

(2.7) CR "= -IRUSR

for all R > 0. Given a point zo in Re(z) > 0, one can always choose R such that z0 is
inside Ct. Besides the preimage z plane, we introduce a w plane as image plane and
consider C :- F(C) there. Here, and in what follows, the prime stands for objects
in the image plane. The argument principle of the theory of functions tells us that the
number N of zeros of F(z) in CR equals the winding number W of C with respect
to the origin w 0 of the image plane. The winding number (see Ahlfors [1, p. 114])
is proportional tothe the argument variation W := A(C)/(277), and we may express
N in terms of A as

zx(ci,)(2.8) N := 277
The obvious additivity of the argument variation A with respect to the curve arc and
the fact that A(-I’) -A(I’) allow us to write (2.8) after the passage to the limit
R--. oc as

(2.9)
N -A(IL) A(I_)/ lim{A(S) R oc}

--n

277

Condition (3) of (2.3) tells us that N and all quantities on the right-hand side of (2.9)
have limits for R --* oc. The representation of F(z) in (3) of (2.3) directly allows us
to read off the last limit in (2.9) as 2n77. From the reality of F(z), A(I) A(I)
follows so that the last line of (2.9) results. So, the only nontrivial part of the proof
is the finding of a representation for A(I_)/77 in finitely many terms. To this end, we
decompose F(iy), y >_ O, in real and imaginary parts

(2.10) +

By (1) and (3) from (2.3), we are informed that U(0) > 0 and (-1)U(y) --. +oc for
y --* +oc. Hence, U(y) has an odd number of sign changes m E 1 + 2N0 for odd n
and an even number m E 2N0 for even n,

(2.11) UO :--" 0 < Ul < U2 < <Um < --[--00 :: Um+l.

The outer members on (2.11) are not sign changes but this notation is useful as we
shall see in a moment. We take the sign changes of (2.12) as partition points for I+
and decompose

I+’-- IoU/1 U U Ira,
], k 0(
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The intervals Ik inherit their orientation from I+..Inserting (2.12) in the last line of
(2.9) gives

+(2.13) N-n-
k--1

The determination of the A in (2.13) now poses no problem. We first observe that

(2.14) sgn[U(y)] (-1)k, Uk < y < Uk+l, U(y) O.

Note well that U(y) may have zeros in the interior of [uk, uk+l] but no sign changes.
Condition (2) of (2.3) guarantees that no arc I contains the origin w 0. According
to (2.14) it lies entirely in Re(z) >_ 0 for even k and Re(z) <_ 0 for odd k. The initial
point of Ik is w iVk, Vt: := V(uk), and w iVk+l is the terminal point. Since
Vk 0 for k l(1)m, no sign ak := sgn[Vk] vanishes. In terms of the signs (Tk, by
an elementary case distinction with respect to the parity of k and the signs (Tk, (7+1,
one finds

The argument variation along the first and last image arc is found as

(2.16) A(I)
.--’-- (7_ A(Fm) (Tin

r 2’ r 2

Inserting (2.15), (2.16) in (2.13) results in

m--1
(71 -- (Tin (Tk (7k+l(2 17) N n-

2 + E (--1)k
2

k=l

Only the sign-changing indices k in (7 { (71, (7,..., (7 } contribute to the sum in
(2.17). Hence,

(71 +(2.18) N n-
2 + --’(--1)ak"

Finally, solving N 0 for n gives the necessary and sufficient condition

0"1(2.19) n
2

which is the assertion of the theorem. []

At the expense of introducing new quantities, (2.6) may be written in a simpler
form. Let S :- ISI be the number of sign changes in (7, So be the number of sign
changes on odd indices, and S, those on even indices. Then clearly,

(2.20) S So + S.

In terms of these quantities, (2.6) gains the shape

(71 "" O’m

/0o1
[’’) (71 -F- (Tm

-So+S,

+ S- 2So.
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Given n, there must be enough sign changes in a to satisfy (2.6). The right-hand side
of (2.6) attains its maximum m at the alternating sequence gra { 1,--1, 1,..., 1 }
with an odd number m of elements. Therefore

(2.22) m >_ n, S _> n- 1

are necessary conditions for 2.6 to hold.
Consider the real polynomials

(2.23) F(z) :--- z2n 21_ a2n_lz2n-1 .... "JT" co.

Here, (2.6) and (2.22) lead to the stronger condition a ha, which means, geomet-
rically, that the zeros of U(y) and Y(y) are interlaced and U(y) and V(y) have no
nonreal zeros. The Hermite-Biehler theorem (see Obreschkoff [13, p. 13] or Lewin
[10, p. 305]) tells us that polynomials F(z) of odd degree also share this property. It
can even be formulated in classes of entire transcendental functions; cf. Lewin [10,
pp. 311-327]. We shall come back to that point in 5.

The F(z) in (5.1) belong to the case n 1 in Theorem 2.1. We may rewrite
(2.21) as

(2.24) am -o"1
w + S So.

2

Denote by " the exact class of functions F(z) from (1.5) for which w 0 holds true.
Are there F(z) which do not belong to 9r? Trivially, the case m 1, i.e., functions
F(z) for which U(y) possesses only one zero, belongs to ’. In the next, less simple
case, U(y) has exactly m 3 zeros. Now (2.6), viewed as a Diophantine equation for
Cr :-- { al, r2, or3 }(may be rewritten as

(2.25) 1 ffl -[- a3 / 0, S O,

2 - O’1, . {1},
-, s= {2}.

So, the sign sequences solving (2.6) for n 1 and m 3 are

(2.26) a e { (1, 1, 1), (1,-1,-1), (-1,-1, 1) } =: E3.

These are the sequences which have up to one sign change. The sign sequence r :=
{ 1, 1,-1 } does not belong to E3. But it is not clear that an F(z) can be found
yielding that r. Next we shall consider a nontrivial example for m 7 for which
w#0.

3. An example. The example serves two purposes: (a) it illustrates the appli-
cation of Theorem 2.1 and (b) it disproves a claim of Freedman and Rao [5, eq. (3.4)].
These authors consider F(z) of the form

F(z) z2 + zA(z) + B(z),
3

A(z) E Ake-zT,, Ak E R, T0:=0, T1,T2,T3 E R+,
(3.1) k=O

3

B(z)’= EBke-zT’ Bk R,
k=0
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under the restrictions

(3.2) T3 := T1 + T2, A(0) > 0, B(0) > 0, A3 0.

We decompose F(iy) and the coefficients into real and imaginary parts and write
F(iy) =: U(y) + iV(y), A(iy) =: A’(y) iA"(y), B(iy) =: B’(y) iB"(y) and find

(3.3)
U(y) _y2 + yA"(y) + B’(y),
V(y) yA’(y) B"(y).

Any zero y > 0 of U(y) fulfills

(3.4)

y2 yA" (y) + B’(y)
<_ yA" + B,

v/-E+A’’ D > 0,Y’- 2
0, D < 0,

D-= A"2 + 4B,
when A" _> A’(y), B’ >_ B’(y) for all y _> 0. Such constants are

(3.5)
A"’= IAol + IAxl + IA21 + IA31,
B’’: Bo + IBxl + IB2[ + IB31.

We consider the class of functions F(z), :- (1, 2) e R_, defined by

(3.6)
A0 3 + el, A1 -6, A2 3, A3 0,
B0 17/2 + e2, B1 3, Be 3/2 2e2, B3 3,
T0 0, T1 r/2, T2 r, T3 3r/2

for el > 0, 0 < e2 < 16, so that A(0) > 0 and B(0) > 0, and F belongs to the class
defined by (3.1), (3.2). In the next lemma, we choose

(3.7) el := 10-6, e2 := 10-3.

Under this choice, zeros of U(y) are only possible for 0 < y < Y. As Table 3.1 reveals,
the bound Y overestimates the largest zero by about a factor of 2.

LEMMA 3.1. The function F(z) defined by (3.1), (3.6), and (3.7) belongs to the
class (3.2) and has the following properties:

(3.8)
(a) Im[Fe(iyl)] > O, where yl is the smallest positive zero of Re[F(iy)];
(b) the number N of zeros of F in Re(z) :> 0 is i "= 2.

Proof. Evidently, F belongs under the choice (3.7) to the subclass (3.2). Next,
we have to determine the zeros of U(y) Re[F(iy)]. This is done numerically.
Table 3.1 exhibits the (rounded)values of all seven positive zeros y Yk, k 1(1)7,
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TABLE 3.1

Table of the positive zeros Yk, k 1(1)7, of U(y) :-- Re[F(iy)] along with the values W(yk)
Im[Fe(iyk)] and the signs ak :--sgn[V(yk)] for Fe from Fig. 3.1.

k y V a

1 1.000375 0.005300 1

2 2.000030 24.000778 1

3 3.579722 2.478063 1

4 3.726218 3.418344

5 3.999875 0.002950 1

6 6.310892 66.119148 1

7 7.000036 -0.002197 -1

of U(y) along with the values V(yk) and the sign sequence a with elements a} :--
sgn[Y(yk)], k 1(1)7.

The reader, equipped with a pocket calculator, may easily verify the correctness
of the table entries. It is more cumbersome to show that the table comprises all zeros
lying in the interval 0 < y < 13.2. Figures 3.1 and 3.2 clarify this point. The curve
disappearing on the left margin of Fig. 3.1 remains in Re(W) < 0. Knowing this, we
count that F(iy) intersects F(W) 0 seven times. Figure 3.2 resolves the tiny loop in
Fig. 3.1 near the imaginary axis and let us observe that it has two intersection points.
Given the correctness of Table 3.1, property (a) of (3.8) is obvious. To see (b) of (3.8),
we consider the sequence a :- { al,..., a7 } with elements from the last column of
Table 3.1. The set S of sign changes in a is S := {6}. Application of formula (2.19)
yields

(3.9) N 1- +

which proves the lemma.
Iron BO

0<y<9

ReN

FIG. 3.1. The arc Fe(iy), 0

_
y

_
9, in the square -70

_
Re(W)

_
30, -20

_
Im(W)

_
80 in

the W plane for the counterexample F(z) :-- z2+z[et+3(1-e-Zr/2}2]+lT/2+6 [1/4 + cosh(zr/2)] e

+e2[1 2e-zr] with el :-- 10-6, e2 10-3.

Property (b) of (3.8) means that F(z) is unstable, so (a) in (3.8) cannot be a
correct stability condition in the class considered by Freedman and Rao.
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ImN

4

FI(. 3.2. The part of the arc Fe(iy), 0

_
y

_
9, falling into the square IRe(W)l Im(z)l < 4

of the W plane for Fe(z) from Fig. 3.1.

Lemma 3.1 does not tell the full truth. The claim of Freedman and Rao is,
in a sense, genuinely false. We shall make this clear by showing that the previous
counterexample does not hinge on the special choice (3.7).

The function Fo(z) is designed so that z :- iya, k 1, 5, 7, with yl :-- 1, y5 :-
4, y7 :- 7 are zeros of this function. We consider the parameter dependence

(3.10) ya :-- yk(el, e2), k 1, 5, 7.

Clearly, A(z), B(z) are analytical functions of e, e2. Hence, Yk(e,e2) are piecewise
analytical functions and we may expand around the origin (el, e2) 0;

(3.11) yc(e, ) y + y, (0, 0) + y,=(0, 0) + o(IIlI), - 0.

The second indices j, j 1,2, on the right-hand side of (3.11) stand for partial
derivatives with respect to the jth variable of ya(el, e2); I1" II is a norm in 1;t_. Let
the overdot stand for derivation with respect to y; then

(3 12) (y)Y(el e2) / Uj(y) O, yj(O, O) Uj
j 1 2

(U)’

follows from U(y) 0. The right-hand side of the last line is to be evaluated at
e e2 0. From the definition of A"(y), yl(0, 0) 0 readily follows. We may write

(3.13) B’(y) := B(y) + e2 [1 2 cos(yr)],

where B(y) is independent of e2. So,

(3.14) yk,e(O,O)
2 COS(ykr) 1

Evaluating the last right-hand side after some elementary calculations with positive
constants Ca gives

(3.15) Yk,2(0, 0) --Ck. + o(lll]), Ck > 0, k 1, 5, 7, - 0.
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Next, we expand V(y) at y Yk and, with ml 1, m5 :- m7 :-- 0, and other
positive constants Mk, find

+ +
(- 1)k+mkMk + O(u2), Mk >0, u0.

Inserting (3.14) in (3.15) gives the final asymptotical result for el --* 0, e2 --* 0:

(3.17) ak :=sgn[V{yk(e,e2)}] (--1) k+’k, k= 1,5,7.

In the scaling of Fig. 3.1, the zeros y3 and y4 cannot safely be identified. Therefore,
the parts of F(iy), 0 _< y _< 9, falling in the square Iae(W)l ,lIm(W)l _< 4 are
shown in Fig. 3.2. The ordinates of the third and fourth intersection points are in
accordance with Table 3.1. Also in this magnification, one cannot read off the ordinates
of the first, fifth, and seventh intersection points. A further magnification is necessary.
Fig. 3.3 shows the parts of F(iy) in the square ae(W)l, Im(W)l <_ 0.01. Now, one
clearly sees that the first and fourth ordinates are positive and the seventh is negative.
The plot also confirms the first four decimal places behind the decimal point of the
ordinate values of Table 3.1 for the intersection points under consideration. When
reading Figs. 3.1-3.3, keep in mind that the interior of the images ofRe(z) >_ 0 under
F(z) lies on the right side of F(iy) when tracing F(iy) in its orientation. This is a
trivial consequence of the conformality of the mapping F and, properly, not worth
mentioning. In our context, however, it is indispensable for a thorough understanding
of the plots of F(iy) in terms of coverings of the origin of the image plane. From
the foregoing asymptotical analysis, it becomes clear that the pair of zeros of F(z) in
Re(z) >_ 0 has the form z +/-7i + , where 5 is a complex number with small modulus
and Re(i) > 0.

O<y<S IOl

-0.01

FIG. 3.3. The part of the arc Fe(iy), 0 <_ y <_ 9, falling into the square Re(W)l, Im(z)l _< 0.01

of the W-plane for Fe(z) from Fig. 3.1.

4. Delay-independent stability. The largest real parameter space for F(z)
from (1.5) is P := Po T with Po "= R2n+2 and T :-- R_. Po, the coefficients space,
is spanned by the coefficient vector p of A(z), B(z), and T is spanned by the delay
vector T :- (T1,..., Tn) :> O. The set 0 of stability, independent of the delay vector
T, is

$0 := {p e P0" Fp(Z) 0 in Re(z) :> 0 for all T >_ 0}
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when we write Fp(z) instead of F(z). This form of stability may be conceived as an
extreme instance of system robustness. Our present aim is to find an explicit subset
of 80.

F(z) from (1.5) is, formally, a monic polynomial (with exponential polynomial
coefficients), i.e., the coefficient of z2 is a unity and so it is independent of T. This has
the important consequence that each right half-plane Re(z) _> x0, x0 E R, contains
only finitely many zeros of F(z). One says that F(z) is a retarded characteristic
function. In the second part of this section, we shall consider the enlarged class of
F(z) given by

F(z) z2C(z) + zA(z) + B(z),
n

C(z) .= e
k--0

The coefficients A(z), B(z) are defined as in (1.5). F(z) from (4.2) is said to be neutral
if ICll + IC21 +...+ ICnl > 0. For our present purposes, it is appropriate to decompose
F(z) from (4.2) into the delay-dependent part and the delay-independent one. So,
henceforth we write for the F(z) from the class (4.2),

(4.3)

F(z) A(z)+ B(z),
A(z): z2 + Az + Ao =: (z- al)(Z- a2), A,Ao R,

n

B(z) E Bk bk,pk (z)e-zTk, Pk {0, 1, 2},
k--1

bk,j(z) (z bk)J, j O, 1, bk e R,

If bk, R then bk,2 := b,, so that bk,2(z) is a real polynomial. One notices that the
bk,j(z) are monic polynomials.

We focus our interest on the stability behaviour of F(z) with varying delay vector
T and also write FT(Z) := F(z) when stressing the delay dependence of F(z). It is
known that an unstable Fo(z) can become a stable FT(Z) for T > 0 in some subsets of
T. When dealing with delay-independent stability as defined in (4.1), the polynomial
Fo(z) must be stable. For Bk 0, k 1(1)n, A(z) must be stable. So, we restrict
the class of F(z) from (4.3) to the subclass from (4.3) with

(4.4) A1 > 0, A0 > 0.

It is generally known (and also a consequence of Theorem 2.1) that (4.4) is equivalent
to

(4.5) Re(a) < 0, Re(a2) < 0.

A(z) is the characteristic function of a damped harmonic oscillator. Therefore, F(z)
from (4.3) may be viewed as a characteristic function of such a perturbed oscillator.
So, the expectation is that F(z) remains stable as long as the stability reserve of A(z)
is not yet exhausted by the perturbation B(z). The magnitude B of the perturbation
may be measured by a certain positive function of the moduli IBkl, k l(1)n. We
shall use notation from 2 in what follows.
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THEOREM 4.1. The function F(z) from (4.3), (4.4) with Pk < 2, k l(1)n, is

zero-free in Re(z) _> 0 for all nonnegative delay vectors T >_ 0 if

(4.6) IBI + IBeI +-." + IBnl < B,

where

(4.7)

B2"=min{Mk2" k=l(1)n},
M’= max{ (1- pk)M3,pkM, },

2A0 <_ A,M3": !(A-A/4), 2A0 > A,
( A]/b, r < bt,
(A+b-f-C-i)2+A(-b)-

rk > b
r (Ao + b) Albk.

Proof. We consider F(z) from (4.3), (4.4) on the family of simple closed curves

(4.8) CR :-- --IR U SR, R > Ro

for sufficiently large R0 > 0. Rouch6’s theorem of the theory of functions tells us that
F(z) has as many zeros as A(z) inside CR if

(4.9)

on Cn. By hypothesis (4.5), A(z) 0 in Re(z) >_ 0 and so is F(z) if (4.9) holds for
all R > R0. Now, (4.9) holds on SR since
under the restriction that Pk < 2, k l(1)n. So, if (4.9) is fulfilled on the entire axis
I then it holds on CR for R > R0. We shall show the validity of (4.9) along I under
(4.6). For z := iy, y E R, one has

(4.10)
IA(z)l2 (Ao -y2)2 + A2y2,

IBI2_<M2max{(y2+b2k)pk" k=l(1)n},
M ISll + IB21 +... + IBnl.

Therefore, if

(4.11) (A0 y2)2 + Ay2 > M2 max { (y2 + b)pk, k l(1)n }

then (4.9) holds on I. The right-hand side of (4.11) becomes arbitrarily small for y in
any compact set when M is made small enough. So, there are M2 solving (4.11). In
.order to solve (4.11) for M2, we write it in system form as

(4.12) (A0 y2)2 + A2y2 > M2(y2 + b)pk, k l(1)n.

M2 solves the system (4:12) if all system equations are solved. Consider the kth
system equation of (4.12). If Pk 0 then the system equation reduces to

(4.13) (Ao- y2)2+ A2y2 > M2,
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so that all

2A0 <_ A2,(4.14) M2 < M AI(A_ A/4), 2A0 >_ A
solve (4.13). In the remaining case pk 1, we put (4.12) in the shape

(4.15)

(Ao y2)2 + A21y2
> M2,

y2 + b
rk M2y2 + b + Ck + y2 + b >

rk (Ao + b)2 2 2Albk.

The expression for c E R is not of interest for us. The left-hand sides of the inequal-
ities in (4.15) attain their common minimum either at y2 .= 0 or y2 yrr-_ b. The
latter takes place only for rk

_
b. Inserting the location of the minimum in the first

line of (4.15) yieldsthe solution set

2 2Ao/bk, rk < b,
(4.16) M2 < M, := (Ao-x/V-+bk) +A (vr--b)

v rk

_
b.

We may unify both cases Pk 0, 1 by defining the solution set of the kth system
equation as

(4.17) M2 < M := max{ (1 pk)M, pM2k,I }"

Finally, the full system (4.12) is solved by

(4.18) M2 < B2 := min{M" k l(1)n},

and this is the assertion of the theorem.
For moderate n, it poses no problem to reduce estimation losses by determining

better bounds B numerically.
We turn to the neutral case. Let a, 5 be a pair of complex conjugate, not purely

imaginary points if a R and a pair of unrelated real points, different from the origin,
if a E R. The same notation applies for b. We consider for z :- iy, y R,

(4.19) F(y) := (z-a)(z-5)
(z-b)(z-b)

and need an explicit representation for

(4.20) M2(a, 5, b, b) := inf{ F(y) y e R }.

With the notation

a2 4- 52 b2 4- 2(4.21) A:=------, BI:-----, R2a’=a252, R’=b22,

the function F(y) is written as a function of Y :- y2 as

(4.22)
y2 + 2AIY + Ra2F(Y) y2 + 2BY + R"
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LEMMA 4.2. The quantity M2, defined in (4.20), with the notation (4.21) has the
value

(4.23)

BI <_ A, Rb < Ra,
B < rA, Rb > Ra,
rA <_ BI < A, Rb > Ra,
(max{A, rA} < B) or (BI > A, Rb < R),

A proof of the foregoing lemma can be found in the appendix. It is elementary
but rather tedious.

THEOREM 4.3. F(z) from (4.3), (4.4) is zero-free in Re(z) > 0 for all nonnegative
delay vectors T >_ 0 if

(4.24)

where

(4.25)

B2-=min{M" k=l(1)n},
M3, p =o,

M’= M,, pk= X,
M,2 Pk 2.

The quantities M, M, are to be taken from (4.7) and

(4.26) M,2 := M2 (al, a2, bk,, bk,2),

formed with M(a, , b, b) from Lemma 4.2.
Proof. In the retarded case, i.e., all Pk < 2, the proof is that of Theorem 4.1.

So, it suffices to add here only the reasoning for the indices k in the sum B(z) with

Pk 2. If k is such an index, the corresponding system equation of the system (4.12)
with z := iy, y E R, is written as

(4.27)

I(z al)(Z a2)l > Ml(z bk,1)(z bk,)l,
(z-- a)(z-- a2) ]2(z bk,)(z b,2),

> M2,

M2(al, a2, bk,1, bk,2) > M2,

which completes the proof.
Observe that B < 1 when F(z) is neutral.
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Next we shall give yet another subset of q0. For our present purposes, it is
convenient to write the retarded functions of the class (1.5) as

(4.28)

FT(Z) A(z) + B(z), T "= (T1, T2,..., Tn) >_ O,
A(z) z2 + Az + 1, A > 0,

n

B(z) + G e e
k--1

There is no loss of generality in assuming A(0) 1 in the class of stable A(z) of
degree two. In preparing the next theorem, we consider the two parameter family of
real rational functions

y+a
(4.29) f(Y) :=

y2 + 2cy + 1’
a >_ 0, c > -1.

LEMMA 4.4. The maximum

(4.30) M:=max{f(y)" y >_ O }

formed with f(y) from (4.29) has the value

(4.31) M M(a,c) := 2(-a+)’ 2ac < 1,

a, 2ac >_ 1.

Proof. For c > -1, f(y) possesses no poles in y :> 0 and f(y) is continuous there.
As a real function, f(y) has a pair of complex-conjugated critical points (i.e., zeros of
f’(y)) which solve

(4.32)
(y + a) 2 a2 2ac+ 1 (a- c)2 + 1 c2,

yj -a + (-1)J. v/a2 2ac + 1, j- 1,2.

For c _< (a + l/a)/2, the pair y yl, y2 is real and y2 may not lie in y _> 0. In terms
of the parameters, the requirement y2 > 0 means 1 > 2ac. We observe that f(y) > 0
for y > -a and f(y) < 0 for y < -a. The cases y2 <_ 0 and y2 > 0 shall be considered
separately.

Case 1. y2 <_ 0. In this case, [0, +c) is free of critical points and f(y) decreases
in [0, +c). This means

(4.33) M := f(O) a, 2ac >_ 1.

Case 2. y2 > 0. In this case, y y2 necessarily locates a maximum on [0, +c)
and we have M "= f(y2). After an elementary calculation we find

1
(4.34) M := 2ac < 1.

2 (c- a + x,/a2 2ac 1)

Unifying the definitions (4.33), (4.34) gives the expression (4.31).
Later we will need the inverse function A(m, c) of M(a, c) with respect to the first

argument a.
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LEMMA 4.5. The solution set of

(4.35) m > M(a, c), c>-I

with M(a,c) from (4.31) is the set

(4.36) 0 _< a < A(m, c),
1

c> -m 1,

where

(4.37)
1<c<A(m, c) a(m, c), 2m 2---’

a(m,c) m 1- -m C

Proof. We consider inequality (4.35) in 2ac < 1 and 2ac >_ 1 separately. In the
second case, (4.35) reads m > a so that

1 1<_a<m, c>(4.38)
2c 2m

in the part of the searched solution set lying in 2ac >_ 1. In 2ac < 1, we have

(4.39)
2m [c-a + v/a2 2ac+ l] >1,

a < m 1- --m -C =" a(c,m).

The function a(c, m) is nonnegative in the interval 1/(2m) 1 <_ c <_ 1/(2m) + 1 and
[1/(2m) 1, 1/(2m)] is a subinterval thereof. So, the solution set in 2ac < 1 is

1 1
(4.40) 0 <_ a < a(m, c),

2m
1 <_ c <

2m

The union of both sets (4.38) and (4.40) is (4.36) with (4.37), which completes the
proof. 13

The boundary curve A(m, c) of the solution set is C and consists of a half-line
parallel to the c axis and a parabolic arc joining the points (0, 1 1) and (m, -)
in the (a, c) plane.

In the next proof we shall refer to the inequality for ak >_ 0, k l(1)n,

(4.41) (d- + yra- +... + v/)2 _< n(a +... + a,).

This special case of the Schwartz inequality can be shown using the identity

(4.42) (v/-d- V)2 a + b- 2-.

While (4.41) becomes an equality for ak a all equal, the estimation losses grow with n
and the degree of straying of the points ak. So, for a a2 an-1 O, an a,
(4.41) estimates a <_ ha.
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THEOREM 4.6. FT(Z) from (4.28) is zero-free in Re(z) >_ 0 for all delay vectors
T>_O I

(4.43) C + + C2 < (B2 + + B2) A ( 1 A2 )n. (B2 +:.. + B2) 2
1

with A(m, c) from (4.37).
Proof. We follow the argumentation in the proof of Theorem 4.1 up to formula

(4.10). The result is that FT(Z) is zero-free in Re(z) >_ 0 if

(4.44) IA(z)l

holds on Re(z) 0. We set z iy, y. e R, and may rewrite (4.44) as

(4.45)
l>max{QT(y)" YER, T_>0}=:M,

B(z)QT(Y)’= A(z)

We compute M iteratively; first we maximize over T >_ 0 and then over y E R. The
bound M2(y) in

(4.46) IB(z)l2 <_ (/B2y2 + C2 +... + v/B2ny2 + C2)2 M2(y)

is best possible if the components of T are independent. We have

(4.47)
M2(y) "= B2y2 + C2 + 2

+ +

We use (4.41) in (4.46) and afterwards apply Lemma 4.4. In the notation Y := y2, we
have, for B2 > 0,

(4.48)
B(z)[

2 n(B2y + c2)
A(z) -< y2 +2 (- 1)y+ 1

<_nBM B, 2
1

Using (4.48) in (4.45) yields the sufficient condition for delay-independent stability

(4.49)
1 [C2 A2 ]> B2M B2’ 2

1

The right-hand side of the first line in (4.48) vanishes for C2 4- B2 --* 0. So, (4.49)
specifies a nonempty set in parameter space for all n N and all A > 0. In order
to obtain an explicit representation of’this set, we solve (4.49) for the first argument
C2/B2 of M and have, by Lemma 4.5,

(4.50) C2<B2A[ 1 A2 ]nB 2
1
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Do not confound the function A(m, c) and the constant A from (4.28) in (4.50)! The
expanded form of (4.50) is (4.43).

5. Discussion. Given a representation for N, the number of zeros of F(z) in
Re(z) :> 0, N 0 is a stability criterion. Let F(z) :- Fp(z) be a member of a
parametric family p E P of functions F(z). Then N 0 solved for p is a stability chart.
From this point of view, the selection of an appropriate representation is decisive for
what it is built upon. In 2, N was represented in terms of the pair of real functions
U(y) ae[F(iy)], V(y) := Im[F(iy)]. As already mentioned, Theorem 2.1 is a
specialization of a theorem that is valid for a class of meromorphic functions with
polynomial growth for Izl c in Re(z) _> 0. The asymmetric use of U(y) and V(y)
can be avoided. This possibility and normalizations are based on the simple fact that
F(z) and G(z)"= F(z). M(z), where M(z) 0 in Re(z) >_ 0 have the same number
of zeros in Re(z) >_ 0.

The representation of N in terms of U(y), Y(y) was selected because numerical
computation of N was the main goal. In this representation, the determination of N
comprises the following steps (we assume F(z) adheres to the class (2.3))"

(5.1)

1o Determine a bound Y for all positive zeros of U(y).
2. Determine all sign changes Yk, k l(1)m, of U(y) in [0, Y].
3. Compute the sign sequence a with elements ak := sgn[Y(yk)], k l(1)m.
4. Compute N via formula (2.18).

Procedure (5.1) is straightforward and the numerical effort seems reasonable for the
yield. In the presence of rounding errors, only zeros of F(z) in a close neighbourhood
of the origin can lead to false signs ak. Critical signs in that respect can be detected
and handled differently. (In our counterexample we took the analytical approach.)

Other representations of N are known. Hermite [7] represented N as signature of
a certain quadratic form. Hurwitz [8] used this representation as point of departure for
his famous determinantal criterion for a polynomial F(z) to be zero-free in Re(z) >_ 0.

In the Cauchy index theorem (see Gantmacher [6, pp. 524-528], Marden [11, p.
169], or Cauchy [4]) N is defined in terms of N_, N+. The latter and the index are
defined as I+_Q := N+ -N_, where

N-’= E 1, N+’= E 1
Qk<0 Qk>0

:=

where yk runs through the real simple roots of U(y). For simplicity, all real roots are
assumed to be simple. For the general case, cf. Gantmacher [6]. Consequently, the
remainder term R(y) comprises all further members in the partial fraction expansion
of the quotient Q(y) of the polynomials U(y), V(y). In 2, we have shown how N can
be represented in terms of the pair {U(y), V(y)} instead of the quotient Q(y). Our
division-free formulation avoids unnecessary numerical computations.

A class of stability criteria is formulated in terms of geometrical or topological
features of the curve F(iy), y E R. The Nyquist criterion (cf. [12]) reposes on the
winding number. One has to plot (a sufficiently long arc of) F(iy) in C and then the
winding number is to be read off. The Hermite-Biehler theorem allows one to decide
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about the stability of the generating polynomial on the basis of the relative positions
of the sequence of real zeros of the pair {U(y), Y(y)}. This theorem has been extended
to the largest class of entire transcendental functions; see Postnikov [15] or Lewin [10,
Chap. 9]. The class of exponential polynomials F(z) with real exponential points
T1 < T2 < < Tn, positive defect D := (TI + T,)/2 > 0, and real polynomial
coefficients Ak(z) belongs (see [10, Ex. 1, p. 324,] to this class;

n

(5.3) FT(Z) := E Ak(z)e--zTk"
k--1

The Hermite-Biehler property is one of the stability characterizing features which
could be carried over from polynomials to entire transcendental functions. To mention
further versions of stability criteria is beyond the scope of this section.

We consider the retarded exponential polynomial with nonnegative exponential
points Tk and real polynomial coefficients Ak e R[z];

n

FT(Z) Ak(z)e-zTk,
k=O

Ak(z) "= Akzd +... + A,o,

0 =: T0 < T < < T, n>l,

k O(1)n, do > dk Ak O.

All but the leading coefficients are doubly indexed. The zeros of FT(Z) of large modulus
r := Izl are accessible to asymptotical analysis. In what follows it suffices to consider
only the asymptotical Izl cx relevant part F(z) of FT(Z). We write the coefficients

(5.5) Ak(z) Akzd[ 1 + O(1)], IZl --*

and define

n

:=
k--O

We look for an appropriate enclosure for all zeros of F(z). Let z be a zero of F(z);
then, with z := x + iy, x, y R, we have

n

--Azd E Akzde-zT’
k=l

IA01 < (A- [A01)max { r-(do-dk)e-xT" k 1(1)n },
A- IA01 < max { r-(do-d)e-xT*" k 1(1)n }

A’--[A0l +"" /

In order to solve the last inequality of (5.7) for lYl, we rewrite it in system form as

r < Ce-,
T

do dk’
Ck Bo

o-

k !(1)n,
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The solution of the kth system equation is

If y(x) < 0 then no zeros of the kth system equation are possible on the vertical line
Re(z) x. From (5.9), for the solution of the full system (5.8), follows

< { k } =: x<_xo :=max{xk" k=l(1)n}

with the understanding that F(z) is zero-free on Re(z) x if y(x) < 0 The xk are
the unique positive roots of y(x). We call the set

(5.11) L’={.zeC" Re(z)_<x, Im(z)=yo(x), x<_xo}

a left logarithmic half-plane. It is bounded by a Co spline yo(x) along which Re(z)
decreases logarithmically with Im(z)l for Im(z)l oo. The enclosure of all zeros of
F(z) in a logarithmic left half-plane L implies that this is also true for FT(Z) itself
(for another L). For T -+ 0, L becomes doubly connected. The rightmost component
of L becomes a disk for T 0 centered about the origin z 0, and the second
component lies in the left hMf-plane Re(z) < x0, where xo -+ -oo for T -+ 0.

Appendix. We shall consider the function

y2 + 2A1Y + Ra R2 >_ A2 > 0, R _> B12 > 0(A.1) F(Y) "= r + 2BY + R’
and determine the infimum

(A.2) M2:=M2(A1,B1,Ra,Rb):=inf{F(Y)" Y>O}.

Since M2 is a Co spline on its four-dimensional domain of definition, no simple rep-
resentation can be expected. An explicit piecewise representation in the following
lemma corresponds to the spline character of M2.

LEMMA A. 1. The function M2 defined by (A.2) and (A. 1) allows the representa-
tion

(A.3)
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Proof. In the first step we compile properties of F(Y) used in a later case dis-
tinction. In our approach, it is appropriate to consider F(Y) on the whole real line R
and not only for Y > 0 as demanded by (A.2). Asymptotics for Y - 0 and IYI --. oc
yield

(A.4)

2A Y1+ R +O(Y2)
F(Y) R2aR[2. Rb : 0,2B1Y1+ R +O(Y2)

y+o(Y )

I++O(Y-)
iyIoe,

1 + + O(y-2)
1 + 2(A B)Y + O(Y-).

YO,

Hence, with r "= R/R2a,

(A.5)
sgn[F’(0)] sgn(rA1 B1),

sgn[F(Y) 1] sgn(Y) sgn(A B),

Now, we determine the solutions Y0 of F(Y) 1. These are the solutions of

(A.6) 2(A1 B1)Y R R2a.

Clearly, for A = B there is exactly one solution Y Y0,

(A.7) Y0 :=
2A1 2B"

For A B1 and Ra Rb there is no solution of (A.6) or, more precisely,

F(Y) > 1, A B, Ra > Rb,
(A.8)

F(Y) < 1, AI B1, Ra < Rb.

In the degenerate case, A1 B1, Ra Rb, we have F(Y) 1. In the nondegenerate
case, the extrema of F(Y) are located at the solutions Y of

F’ 2(Y + A1) 2(Y + B)(A.9) - y2 + 2AY + R2 y2 + 2BY + R
Evidently, for A1 B, there is exactly one solution Y -A1 which, in the first
case of (A.8), locates the maximum and in the second case the minimum F(-A1)
(R2 A21)/(R A21). For A = B1, (A.9) may be rewritten as

(A.10)

(Y Yo)2 D + Yo2 =: A,

Y Y’= Yo + (-1)J v/D + Yo2,
Y1 :-- -A, A1 B1,

BR ARD’-
B A

R2a(B1 -tAx)
B -A1

j 1, 2,
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Y.1 Yp Y. y Y.1 Yp Y. y

BI=FII, Rb>Ra BI=I, Rb4Ra

-R1
Y Y

Y -k2A Y-bR2FG. A.I. The mare cases B1 < At, B1 A, B > A of F(Y) := Y+2B,g+h; dashed

asymptote F(Y) :=_ 1.

The definition of Y1 for A1 B is possible because the singularity in the general
expression for Y is removable. According to (A.10), the roots Y, Y2 lie symmetrically
about Y Y0 irrespective of the sign of the discriminant A. In fact, A > 0. In order
to see this, we observe that F’/F 2(A1 -B1) 0 for Y Y0 in the case cormidered.
This means that F(Y)- 1 has a sign change at Y Y0. Rolle’s theorem, applied to the
intervals (-x, Y0) and (Y0, +c) tells us that each of them contains exactly one root
of F’(Y). So, there is no double root of F’(Y), whence A > 0. For B > At, F(Y)
is the maximum of F(Y) and F(Y2) is the minimum. For B < Ax, the roles of Y, Y2
are reversed; F(Yx) is the minimum and F(Y2) is the maximum. If Y is a root of
F’/F then

y2 + 2AY + R2a A1 + Y =.(A.11) F(Y) :--
y2

_
2BY + R B + Y

2 m2(), j 1,2.We shall use the notation mj :--
The above knowledge enables us to determine M2. In higher-dimensional param-

eter spaces there is a virtual propensity to overlook some regions. The countermeasure
used here involves painstaking bookkeeping (not enjoining the readership) in complete
case distinctions.

We shall treat A, Ra as independent parameters and B, Rb as the dependent
ones. At the first level, we discern the three cases A < B, A1 B, A > B1. In
the first and last cases, subcases defined by the position of the origin Y 0 relative
to the three points Y < Yo < Y2 will be considered. It is helpful to consult Fig. A.1
during the subsequent case distinction.

Case 1. B > A. Recall that Y Y locates the maximum and Y Y2 locates
the minimum in the present case. We shall consider the subcases Y2 _< 0, Y2 > 0,
which is a complete case distinction. These conditions are expressed in terms of the
four parameters of F(Y).

Subcase 1.1. B > A, Y2 _< 0. Since F(Y) increases in Y _> 0 for Y2 _< 0, we
have M2 .= F(0). Furthermore, Y2 _< 0 implies Yo < 0 and D _< 0. According to
(A.7), (A.10), this means

(A.12) M2 := l/r, AI < B <_ rA, Rb > Ra.

Clearly, (A. 12) is vacuous for A <_ 0.
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Subcase 1.2. Bt > At, Y2 > 0. The minimum of F(Y) is located to the right of
Y 0 so that M2 "= F(Y2). We shall consider the subcases F’(0) < 0 and F(0) > 1.
The second case defines the interval (-oc, Y0) and the first defines (Yt, Y2); so both
cases overlap on (Yt, Y0). The second subcase entails Rb < Ra.

Subcase 1.2.1. Bt > At, Yt < 0 < Y2. We have rAt < Bt for Yt < 0 <_ Y2 so
that

(A.13) M2 := m22, max{At, rAt }

Subcase 1.2.2. Bt > At, Rb Ra. Here, trivially,

(A.14) M2 := m22, Bt > At, Rb < Ra.

Case 2. Bt At. We partition the present case into the subcases Rb

_
Ra and

Rb > Ra.
Subcase 2.1. At Bt, Rb <_ Ra. Uniting the degenerate case F(Y) 1 and the

first case of (A.8) gives

(A.15) M2 := 1, At Bt, Rb <_ Ra.

Subcase 2.2. At Bt, Rb > R. F(Y) has a nondecreasing and a nonincreasing
part. We therefore consider the tertiary subcases F’(0) >_ 0 and F’(0) _< 0.

Subcase 2.2.1. At Bt, Rb > R, F’(0) >_ 0. From M2 := F(0) in the
nondecreasing part follows

(A.16) M2 I/r, At Bt <_ rAt, Rb > R.

Subcase 2.2.2. At =.Bt, Rb > Ra, F’(O) <_ O. Since the minimum of F(Y) lies
to the right of Y 0, we obtain M2 := F(Yt), where Yt := -At,

(A.17) M2 := m, At Bt >_ rAt, Rb > Ra.

Case 3. Bt < At. The monotonicity behaviour of F(Y) directs us to consider
the subcases Y0 <_ 0, Yt < 0 < Y0, Yt >_ 0.

Subcase 3.1. Bt < At, Y0 _< 0. From F(Y) >_ 1 in Y >_ 0 follows

(A.18) M2 "= 1, Bt < At, Rb <_ Ra.

Subcase 3.2. Bt < At, Yt < 0 < Y0. In the present case, F(Y) < 1 increases in
0 <_ Y < Y0 so that M2 := F(0). The.condition Yt < 0 < Y0 implies Rb > Re and
D > 0. This leads us to

(A.19) M2 := l/r, Bt < min{At, rAt }, Rb > Ra.

Subcase 3.3. Bt < At, Yt _> 0. The minimum of F(Y) is assumed at Y Yt
and lies at Y 0 or to the right of the origin Y 0. Therefore M2 :- F(Yt). From
Yt _> 0 follows Y0 > 0 and D <_ 0. This means

(A.20) M2 m2, rAt <_ Bt < At, Rb > R.

We now unite the sets in parameter space for which M2 has the same values and obtain
the representation in (A.3). Verify that (A.12), (A.16), (A.19) allow the representation
of the second case in (A.3).
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It should be mentioned that the representation of M2 by (A.3) is not based on
a partition of the parameter space spanned by (A1, BI, Ra, Rb) but on a covering. A
less concise representation of M2 can be found in [2].

Acknowledgment. In a private communication to the author in 1990, Dr. G.
Stpn from the Department of Mechanics of the Technical University of Budapest
expressed doubts about the correctness of the stability criterion invoked in [5]. This
was the starting point for this paper.
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ON THE INVERSION OF THE LAPLACE TRANSFORM OF Co
SEMIGROUPS AND ITS APPLICATIONS*

PENGoFEI YAO

Abstract. The main results are as follows: (a) The inversion of the Laplace transform of Co
semigroup representation in a Hilbert space H is generalized to all x E H. (b) A full characterization
is given in terms of the resolvent R(A; A) of the infinitesimal generator A of a Co semigroup T(t) in
a Hilbert space, which assures the continuity of T(t) for > 0 in the uniform operator topology.

Key words. C0 semigroup, Laplace transform, Fourier transform

AMS subject classification. 47D06

1. Introduction. First, we recall some basic concepts concerning abstract in-
tegration. Let H be a Hilbert space (the inner product and the induced norm in H
are denoted by (., .) and I1" II, respectively), t (-oc, oc), I c t. Suppose that
f t t --. H is an H-valued function. We say that the H-valued Bochner integral

f f(t, s)ds converges uniformly in t e I if the Lebesgue integral f Ill(t, s)llds con-
verges uniformly in t E I, and the H-valued improper Riemann integral f f(t,s)ds
converges uniformly in t E I if, for each e > 0, there is N > 0 independent of t I
such that, when b > a > N or a < b < -N,

bf(t,s)ds

It is.trivially checked that the H-valued improper integral f f(t,s)ds exists if the
H-valued Bochner integral f f(t, s)ds exists, and the two integrals are equal when
f -- H is a continuous H-valued function.

Now we consider the inversion of the Laplace transform representing a Co semi-
group. A related classical theorem (see [1, Chap. 1, Thm. 1.7], for example) may be
described as follows.

Let A be the infinitesimal generator of a Co semigroup T(t) on H. Denote by
D(A) the domain of A and by R(A; A) the resolvent of A. Let

ao > lim
t-*+oo t

log liT(t)II

If x D(A2) then

eat f(1.1) T(t)x
2r

eit’R(ao + iT; A)xdT.

The right-hand side integral of (1.1) is a Bochner integral and it converges uniformly
in t e [5, ](5 > 0).

In this paper, we shall prove that formula (1.1) holds for all x E H with the
proviso that the right-hand side integral of (1.1) is an H-valued improper Riemann
integral. This is expressed in the following theorem.

Received by the editors November 9, 1992; accepted for publication (in revised form) January
27, 1994. This research was supported by the National Natural Science Foundation of China.

Institute of Systems Science, Academia Sinica, Beijing 100080, People’s Republic of China.

1331



1332 PENG-FEI YAO

THEOREM 1.1. Let A be the infinitesimal generator of a Co semigroup T(t) on a
Hilbert space H and

Thn

c0 > lim
t--,+c t

log liT(t)

n!eaO f
(1.2) T(t)x= ]eitR’+l(ao +iT;A)xd’, t > 0, x H,n=0,1 2,

27rtn

The integrals f eitRn+l(ao + iT; A)xdT are H-valued improper Riemann integrals.
Moreover, the integral f eitrR(ao + iT; A)xdT converges unifoly in t [5, ](5 >
O) and the integrals f etn+(ao + iT; A)xdT converge unifoly in t e when
n>l.

Finally, we consider characteristic conditions of a C0 semigroup T(t), which assure
the continuity of T(t) for t > 0 in the uniform operator topology. Pazy has twice
pointed out (see [1, pp. 50 and 256]) that %0 far, there are no known necessary
and sufficient conditions, in terms of A or the resolvent R(A; A), which assure the
continuity for t > 0 of T(t) in the uniform operator topology." As an application of
Theorem 1.1, we have the following theorem.

THEOREM 1.2. Let A be the infinitesimal generator of a Co semigroup T(t) on a
Hilbert space H and

ao> lim log]]T(t).
t+ t

Then T(t) is continuous for t > 0 in the uniform operator topology if and only if

(1.a) sup IlR(o + ir;A)lldr 0 (as a +).

Frtheore, if T(t) is continuous for t > 0 in the niform operator topology, then

r(t + 0,
2tn

The integrals f eitrRn+l (o + it; A)dr are operator-wled improper Riemann inte-

grals. The integral f eU’R(o +it; A)d converges ueiforml in t [, ]( > 0) and
,trthe integrals f e" R (o + it; A)d coeverge niforml in t when n 1.

From the above theorem, together with [1, Chap. 2, Thm. 2.a], Corollary 1.a
immediately follows.

CoaoAa 1.a. et A be the infinitesimal 9enerator of a Co semigrop T(t) on
a Hilbe space H ad

o > lim
t+

Then T(t) is compact semigrop if and onl if
(a) R(I; A) is compact for p(A), the resolvent set 4 A;
(b)

sup f IIR(ao + iT;A)x]]2dT 0 (as a +).

Moreover, if T(t) is a compact semigroup, formulae (1.4) hold.
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2. Proof of Theorem 1.1. To begin with, we build several lemmas.
For any p >_ 1, set

LP(;H) {f f t----* H such that

Then L2(; H) is a Hilbert space with the inner product (f, g)L2(;g f (f(t), g(t)}dt
and the induced norm I1" IIL(;H), while LI(; H) is a Banach space.

Let f e L2(;H)LI(;H). Denote by

1 / e_itf(t)dt

the Fourier transform of f. We have the following lemma.
LEMMA 2.1. The mapping F, defined by (2.1), can be extended to the whole

L2(/;H) to become a unitary operator from L2(/;H) to itself. This extension is
still denoted by F.

Proof. By emulating the proofs of [2, Chap. I, Thms. 2.1 and 2.3], we get the
above lemma. A point for attention is the replacement of the convolution of functions
with f (f(t + s), g(s)lds, where f, g e L2(; H).

LEMMA 2.2. Let A be the infinitesimal generator of a Co semigroup T(t) and

a0 > lim
t--*+oc t

log liT(t)

For simplicity, denote Rao (T)=R(a0 + i’; A) and F-1 inversion of F. Then
(a) Rno+l(’) e L2(; H) for all x e H, n 0, 1, 2,...
(b) F-l(R+o lx)(t (t’/n!)F-l(Rox)(t),t e ,x e H,n 0,1,2,...;
(c)

eaot
(2.2) T(t)x F-l(Rox)(t) a.e. t > O, x e H.

x/ zr

Proof. Take al such that

ao > a > lim
log IIT(t)ll

Then there is a constant M > 0 such that

IIT(t)ll <_ Me"1 V t > O.

(a) For every x E H set

(2.4) e-OtT(t)x,(t) o t < o.

Since limt_0+ T(t)x x together with (2.3), we have

G,o (.)x E L2(; H).
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By the inversion of the Laplace transform, we have

(2.6)

From Lemma 2.1, F is a unitary mapping from L2(;H) to itself. From (2.6), we
have

or

Ro(.)x e L2(/l; H)

(2.7) IIRo(T)XlI2dT < +.

In addition, from the,Hille-Yosida theorem there is a constant K > 0 such that

(2.8) IIRo(T)II _< K V- e .
Thus, from (2.7) and (2.8)we obtain

f IIR(T)xll2dT Ilno(T)Xll2dT < +

or, equivalently,

R+ol(.)xeL2(;H), xeH, n=0,1,2,...

(b) From the well-known resolvent identity it follows that

R(no)(T)x (--i)nnRn+(T)X, X e H, n 0, 1 2,.00

Using the properties of the Fourier transform, we have

i’
F_F-I(R:lx) (R)x)(t)

tn

=F-l(Rox)(t), te, xeH, n=0,1,2,

(c) From (2.4) together with (2.6) we obtain

eaot
T(t)x eatGo(t)x F-(Rox)(t) a.e. t > 0, x e H.

LEMMA 2.3. Denote by (H) the Banach space of all bounded linear operators
from H to itself with the uniform operator topology. Let f and g (H) be
continuous in the uniform operator topology. Moreover, suppose that f satisfies

sup IIf(t)ll < +
t
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and g satisfies the following inequalities:

Vx6H

and

Vx 6 H,

where g*(’) is the adjoint of g(T). Then
(a) there are constants > 0 and # > 0 such that

and

(.9) llg*(T)Xll2d" <_ #211xll 2 Vx6H;

(b) for any a < b we have

(e.10) I1b

g(’)f(T)g(T)xdT sup ]lf()ll I]g(T)X]] 2dT

for all x 6 H.
Proof. (a) Define a linear operator B: g L2(i; H) by

(Bx)(-) g(T)X x e H VT e J.

It is easily checked that B is a closed mapping with D(B) H. Thus the closed
graph theorem leads us to the conclusion that B is a bounded linear operator from
H to L2(/R; H). Hence

[[g(T)x[[2dT <_ IIBIl[Ix[[ VxEH.

Then, taking IIB]I yields the desired inequality. A similar argument shows that
there is a constant # > 0 such that the inequality of (2.9) holds.

(b) From (a), for any x, y e H we have

(/ab

g(T)f(T)g(T)xdT, y

<f(’)g(7)x, g* (7)y)d’r

<_

_< sup IIf(t)ll IIg(-)xlld IIg*(T)YlldT
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The proof is then complete.
Proof of Theorem 1.1. Let n _> 1 and take K > 0 such that

(2.11) IIRo(T)lI<_K VTe/R.

Note that the adjoint semigroup T* (t) of T(t) is still a Co semigroup which is generated
by the adjoint operator A* of A, and

lim
log liT(t)II

lim
log liT* (t)II

t--,+c t t--.+c t

Then, applying Lemma 2.2 (a) to T(t) and T*(t), respectively, we have

(2.12) / IIRo(T)XlI2dT < +cx Vx e H

and

/n[[Ro (T)XlI2dT / IIR(ao iT; A*)xll2dT

(2.13) =/ IIR(ao + iT; A*)xll2dT < +c Vx e H.

Set g(T) Rao(T) and ft(T) eitrR-l(’) for t,T e 1R. From (2.11)-(2.13) it
is clear that g and ft satisfy the conditions of Lemma 2.3. Thus we have that, for
arbitrary a < b,

(2.14) x E H,

where # is a constant independent of a, b. Since the Lebesgue integral

lIRao (T)xll2dT

exists, the improper Riemann integral

(2.15) Pn(t)x =/ eUR’+l(T) n _> 1

converges uniformly in t E . Thus Pn(.)x .H is an H-valued continuous
function.

For each a > 0 set

-CQ(T, a)x O, ll > a, n > 1.
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It is easily checked that Qaa (.)x converges to Rno+l(.)x as a ---, +oo in the topology
of L2(;H). Since F-1 is a bounded linear operator from L2(; H) to itself, we
have

1 "itrDn+l(T)xdT
a

F-(2+o X)(t) lim F-(Q(.,a)x)(t) lim
a--,+oo a---,-4-o %/:ZTI" a

(2.16) / 1 its- ,+e Ro (T)xdT a.e. tlR, xH

(the above limits are taken in L2(7i; H)). From Lemma 2.2 (b) and (c) we have

eCt F-*(Raox)(t n!eat
T(t)X -(2 17)

n!et /II ..itr Dn+l
2tn o (’)(t)xd"

F-l(Rn+lx)(t)\0l0

a.e. t>0, xEH, n=1,2,3,

From (2.15) the two sides of equality (2.16) are continuous H-valued functions for
t > 0 in the topology of H. Therefore we conclude that equality (2.16) holds for all
t>0.

Finally, we prove (1.2) for the case n 0.
Setting n 1 and t 0 in (2.15), we see that the improper integral fn R2o (7")xdT

is convergent in the topology of H. Since

the limits

b

R,o (b)x R,o (O)x R2o (T)xd’,

lim Rao (b)x and lim Ro (b)x
b---+oo

exist in the topology of H. Using this fact together with (2.12), we have

(2.18) lim Ro(T)z=0 VxEH.

Since

d
(eit R, (-)x) ireit’Ro (T)X ieit’R2o (T)XdT

for any a, b ii, we have

etRo(b)x eitaRo(a)x it eit’Ro(T)xdr _it.,2 (r)xdr

or, equivalently

" ["R.o(b)x- "R.o()z],(.) "’R.o()xd t R.o ()xd

t>0, x6H, a, b6/R.

Then from (2.15), (2.17), and (2.18) it follows that the improper aiemann integral

eitrRo (T)xdT

converges uniformly in t e [, 1/i](i > 0) in the topology of H. Finally, as in (2.16),
we get the desired formula for the case n 0.
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3. Proof of Theorem 1.2. The following lemma will play a key role in proving
Theorem 1.2.

LEMMA 3.1. Let A be the infinitesimal generator of a Co semigroup T(t) and

c0>cl > lim
log

t+ t

Then there is a consrant M > 0 satisfying

(3.1) IlT(t)l <_ Mea’t Vt >_ O.

Lt ao (t)x be dnd b (2.4), z e H, and dnot T (t) -oT(t), t

h(t) [ (Go (t + s)x, Go (s)x}ds Vte Vx e H

and
cx)

Z(t) IlT(t + s) T(s)llds Vt >_ O.

If T(t) is continuous in the uniform operator topology for t > O, then we have
(a) 0_<Z(t)<M(M+l)/(a0-al) Vt>_0;
(b) limt__,0+ Z(t) 0;
(c) Ih(t) hx(O)l <_ Z(Itl)MIIxll Vt Vx H;
(d) the ezistence of a constant > 0 such that

Pro@ (a) From (3.1) we have

f0
<_ M(M + 1) e-(-’)Sds

M(M+ 1)Vt>0.
S0

(b) The continuity of T (t) in the uniform operator topology for t > 0 is a direct
result of the continuity of T(t). Hence

IITl(t+s)-Tl(t)ll0 as t--0+ Vs>0

and

IIT (t + s) r (s)ll < (M + 1)lIT1 (s)ll

Using the dominated convergence theorem, we get (b).
(c) For t < 0 we have

h(t) (Go (t + s)x, Go (s)x}ds

.i_ {T (t + s)x T(-t)T (t + s)x}ds

]’o (T, (w)x, T1 (-t + w)x)dw.

Vs>0.
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Hence
+x

Ih(t) hx(O)l (T1 (w)x, IT1 (-t + w) TI (w)]xldw

<_ ]]T (-t + w) T (w)]]dwM]]xl] 2

Z(Itl)MIIxll Vx e H.

Similarly, we can obtain the desired conclusion for the case t > 0.
(d) From (3.1) we have

llao(t)xll=dt
< + Vx e H.

By Lemma 2.3(a) there is a constant > 0 such that

Zllxll Vx H.

Thus we have

Ih(t)l _< Z(Itl)MIIxll + Ih(O)l

[M2(M+I) ]< + Z I111
0 1

/x E H.

Therefore, to obtain the conclusion of (d), we only need to take/- M2(M 4- 1)/(a0 al)
+2. The proof is then finished.

Proof of Theorem 1.2. We first prove sufficiency. Take n 1 in formula (1.2); we
have

where

eco
T(t)x P (t)x Vt > 0 Vx E H,

(3.2) P (t)x I eitR2--so (T)xdT Vt

Since the improper Riemann integral

eitR2 (T)xdTrot0

VxH.

converges uniformly in t J in the topology of H, the linear operator P1 (t) H H
defined by (3.2) is bounded for each t J. For the sufficiency it remains to prove
that Pl(t) is continuous in the uniform operator topology for t

For t, to E/R, and x H, from the inequality (2.14), for any fixed a > 0, we have

IIRo (T)XIIedT)
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or

IIP:(t)-P:(to)ll <_ leitr--eitlllR2o(T)lldT+#
a

sup IIRo O-)xll&
xH, Ilxll--1 I>a

Using the dominated convergence theorem together with hypothesis (1.3), the desired
continuity of P: (t) is deduced.

Now we prove necessity. We use the notation of Lemma 3.1. Denote by (T)
the Fourier transform of the complex function hx(t), where x E H. By elementary
calculations we obtain

(3.3) () x/ilRo()xll W e Vx H.

Thus, to prove the. necessity it suffices only to prove

(3.4) sup I x(T)d3- ---, 0 (as a --xeg,llll= Jl

For each R > 0 we have

/- I1- --) 1 foRdw /w_
4sin2 R__2t

9. Vt E ,Rt2

Hence for any fixed .R > 0,

Ih’om (3.5) and the nonnegativity of (-), by using Lemma 3.1 (a), (c), and (d) it
follows that, for any r > a > O,



INVERSION OF LAPLACE TRANSFORM OF Co SEMIGROUPS 1341

for any b > 0, where the following inequality is used:

sin2 w
<1 VwE/R, w=0.

W2

Hence

1
sup ] tx,(T)dT0 <_ eH,IIII=I >11>

<-Mvf b [Z (IWl)r +Z (2___w])]a dw+21flw[_>b

sin2 w

w2
dw

for any b > 0 and r > a > 0. From Lemma 3.1 and the dominated convergence
theorem, together with the fact that the Lebesgue integral

sin
2 w

w2. ..dw

converges, we get assertion (3.4).
Finally, let T(t) be continuous in the uniform operator topology for t > 0. From

the above proof assertion (3.4) holds. Using this fact together with the inequality
(2.14), we conclude that the operator-valued improper Riemann integral

itR.n+l(7)dT, n 1 2,3,--c0

converges uniformly in t E in the uniform operator topology. Following the proof
of Theorem 1.1, we know that the operator-valued improper Riemann integral

eitR (T)d"

converges uniformly in t [5, }]( > 0) in the uniform operator topology. Thus
formulae (1.4) hold. The proof is then complete.

Acknowledgment. I would like to express my thanks to Professor De Xing Feng
for his valuable advice.
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HIGHER SINGULARITIES AND FORCED SECONDARY
BIFURCATION*

BERNHARD RUFf

Abstract. Singularity theory is used to study the solution structure of nonlinear differential
equations. First, a characterization of the fold, cusp, swallowtail, and butterfly singularities is given
in terms of derivatives of the zero eigenvalue of the linearization of the correspondi.ng nonlinear
operator. As an application a forced elliptic boundary value problem with cubic nonlinearity is
considered: --Au Au q- u3 f in f, Ou/On 0 on 0n It has been previously shown that, for
A1 0 < A < A2/7, the corresponding nonlinear operator has only fold and cusp singularities, and
for 0 < A < A2/12 the above equation has at most three solutions. Here we show that for /-- (0, 1)
higher singularities develop for A above and near A2.2/7r2. These singularities can be identified
as swallowtail and butterfly singularities. This can be interpreted as the appearance of a forced
secondary bifurcation, since for certain forcing terms f there now exist at least five solutions.

Key words, singularity theory, bifurcation
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1. Introduction. In recent years methods of singularity theory have been suc-
cessfully applied to the study of bifurcation phenomena in nonlinear differential equa-
tions. We refer, e.g., to Cafagna and Donati [5], [6], McKean and Scovel [15], and to
the books of Golubitsky and Guillemin [11], Golubitsky and Schaeffer [12], and Gol-
ubitsky, Stewart, and Schaeffer [13]. Consider a given nonlinear differential equation
as an operator equation between suitable Banach spaces E and F, say

(I)(u)=f, whereuEE andfEFisgiven;

here it is assumed that the nonlinear mapping (I) E - F is of class Ck(E, F) and
Fredholm index zero (see 2 below). We are interested in obtaining information on
the number of solutions of (1) in dependence on the forcing term f. Hence, f can be
viewed as a bifurcation parameter. In order to obtain a characterization of possible
bifurcation points, one determines, in a first step, the set S of singular points of , that
is, the points u E in which is not invertible: S (u E; v E\(0} such that
(I)’(u)[v] 0}. Then, to obtain a local characterization of the mapping (I) in a singular
point, one needs to determine its singularity type (in the Banach space analogue of
the classifications of Whitney, Thom, and Arnold). For the simplest singularities--
fold and cusp--the local structure of smooth Fredholm mappings has recently been
characterized by Berger and Church [3] and Berger, Church, and Timourian [4] (see
also Lazzeri and Micheletti [14], Cafagna and Donati [6]).

In this paper we will give the classification of the two subsequent singularities of
so-called Morin type, the swallowtail and butterfly singularities.

As an application we will consider the elliptic boundary value problem

--A?A- .U -[-U3 h in D,
(2) Ou

=0
On

on 0.
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Here ft C Rn is a bounded and smooth domain, A E R is a parameter, and h E C, (t)
with a (0, 1) fixed is a given forcing term. We then consider (I, E F with

o 0} and F C,a(ft), and O(u) -Au Au -]- U3 It isE {u C2,(t); --1o
well known that the mapping -Au+u is an isomorphism between E and F. In the case
of ft (0, 1) we may choose E {u e C2(0, 1); u’(0) u’(1) 0} and F C(0, 1).
The mapping I, is in Ck(E,F) for every k > 0; in fact we have ’(u)[v] -Av+3u2v,
O"(u)[v,w] 6uvw, O(3)(u)[v,w,z] 6vwz, and O(k)(u)= 0 for k > 4.

Equation (2) has been studied in detail in [18] and [19]. To describe these results
let A1 0 < A2 <_ .3 _< denote the eigenvalues of the Laplacian on f/with Neumann
boundary conditions. It was shown in [18] that, for 0 A1 < A < A2, the set S is
a star-shaped smooth manifold of codimension one in the Banach space E {u

lo 0} (see also Church and Wimourian [8]) and, for 0 < < -2, thec,(a); n
singular set S consists entirely of fold points and cusp points, the first two singularities
in the classification of Whitney and Thom (see also Church, Dancer, and Timourian
[9] for the Dirichlet case). Based on this it was shown that, for 0 < A < 2A2, there
exists an open set F3 (containing 0) in the space F such that, if the forcing term f
lies in F3, then equation (2) has exactly three solutions, while if f E F1 := F\F3 then
(2) has exactly one solution.

In [19] it was shown (for certain domains) that there exists some number A* 6

(A,, A2) such that there occurs a forced secondary bifurcation for A* < A < A2 in the
sense that there are forcing terms for which there exist at least five solutions. Here
we will show that in certain cases these singularities can be identified as swallowtail
and butterfly singularities.

The paper is organized as follows: In 1 we give the infinite-dimensional charac-
terization of the fold, cusp, swallowtail, and butterfly singularities. For the character-
izations of the fold and cusp, see also [1]-[4], [6], [13]. Here we follow the approach of
Cafagna and Donati in [6].

In 2 we prove the appearence of swallowtail and butterfly singularities for equa-
tion (2) on the interval and the rectangle. Since some of the calculations rely on [19],
we recommend that the reader have a copy of this paper at hand.

2. Classification of singularities. In this section we classify the four singu-
larities that will occur later on, namely, fold, cusp, swallowtail, and butterfly. They
are the first four singularities that appear in the (finite-dimensional) classification of
Thom [20], and also the first four of the so-called Morin singularities, which were
classified in the finite-dimensional context by Morin [17]. For illustrations of these
singularities, cf. [19].

We make the following general assumptions: Let E and F be Banach spaces such
that the inclusions E c F C H are dense, where H is a suitable Hilbert space. Assume
that the nonlinear mapping E --+ F is smooth and such that its Fr4chet derivative
O’(u)" E --+ F is a Fredholm operator of index zero, with dim KerO’(u) < 1,Vu 6 E.
Furthermore, assume that I,’(u) is symmetric with respect to the inner product in H,
that is, denoting this inner product by (., .), we have (O’(u)x, y) (x, O’(u)y), Vx, y e
E.

For nonsymmetric operators the results hold as well; however, some changes will
occur in the formulas.

In [6] Cafagna and Donati have given a characterization of the fold and cusp in
Banach space, based on the infinite-dimensional version of the Malgrange preparation
theorem. Here we use the same approach to characterize the swallowtail and butterfly
singularities as well.
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Let u E S be a singular point of (I). Since Ker(IV(u) <1 by assumption, this
is equivalent to saying that zero is a simple eigenvalue of O’(u), say 0 #(u), with
corresponding (normalized) eigenfunction v E E; note that #-- #(u) and v v(u)
depend smoothly on u E (cf. [10]). We will see that the singular points can be
classified completely in terms of. (suitable) derivatives of the function #(u). We start
with the following local representation lemma (for the general situation, see [6]).

LEMMA 1. Let E be a singular point of as previously specified. Then
there exist neighbourhoods U() c E, V((I)()) C F, a Banach space X, and smooth
diffeomorphisms a: U - a(U) C R x X, Y -. (V) C R x Z such that

II/ o (I)o O/-1 :a(U) ERxX(v)EnxX

has the form

(3) @(t, x) (f(t, x); x)

Proof. Denote by v v() the first eigenfunction of (I)’() with ]lvll 1. Let
F Iv] Fi, where F1 is the orthogonal complement with respect to the inner product
in H, and let P0 F --. Iv], P1 F -- F1 denote the respective projections. Let X Fi
and write u tv + y E Iv] (R) PiE. We perform a Lyapunov-Schmidt reduction: For
fixed, the operator Pl(I)(v + .) PiE - X has a nonvanishing derivative, and hence
is locally invertible. Let Pl(I)(v + ) P1 (I)(), and denote by y(t, x) the unique
solution of

P1 (tv + y) x U(-) C X,

given by the implicit function theorem; y(t, x) depends smoothly on x and t (for (t; x)
near (;N)). Now set

O/-1 U(,5) R X X [v] (PIE,
(t; x) + v(t,

This mapping is clearly a local diffeomorphism and

o (Po (tv + v(t,x));x).

Finally, let Iv] (R) X - R X denote the natural identification tv + x - (t; x).
Then

/I-/ 0 (I)00-1 :RxXRxX

has the desired form with

f (t, x) (O(tv + y(t, x)), v).

The basic tool for the classification of the singularities is an infinite-dimensional
version of the Malgrange preparation theorem.

THEOREM 2 (see [16] and [6]). Let X be a Ba’nach space, U be art open neigh-
bourhood of the origin (0, 0) of R X, and f U -- R be a smooth function such
that

(0 (k--1 Ok
f(0, 0) f(0, 0) cgtk_l f(0, 0) 0, -f(0, 0) 0.
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Then there exist smooth functions aj U R, j 0,..., k- 1, vanishing at (0, 0)
such that

k-1

tk E aj(f(t, z), z) tY.
j=0

Proof. See [16], where the division theorem is proved for Banach spaces, and [11]
for the proof of the preparation theorem from the division theorem (this proof carries
over to the infinite-dimensional situation). We refer also to [6]. [:]

We now begin with the classification.
DEFINITION 3. A point u E S is 1-transverse if there exists a w E such that

#’(u)[w] :/: 0. We set S {u e S; u is 1-transverse}.
Clearly, by the implicit function theorem this definition implies that if u

then S is locally near u a smooth codimension 1 manifold in E.
DEFINITION 4. Let u St. Then u is a fold point if

(4) #’(u)[v(u)] O.

This is equivalent to saying that v(u)

_
TuS, where TuS denotes the tangent space to

Satu.
We point out that here v v(u) denotes the eigenfunction of (I)’ (u) corresponding

to the eigenvalue # #(u). Later, the dependence of v(u) and #(u) on the point
u E will be important and derivatives with respect to u will be taken. To simplify
the notation the argument u will sometimes be suppressed.

PROPOSITION 5. Normal form for folds. If is a fold point for then there exist
neighbourhoods U() C E, V(O()) C F, a Banach space X, and diffeomorphisms

U a(U) c R X, V (V) c R X such that the following diagram
commutes:

UCE VCF

(U) a R x (U) a R x X

where R X R X, (t;x) (t2;x).
Proof. By Lemma 1 we may consider (t, x) (f(t,x); x) with f(t,x) -(q(tv +

y(t, x)), v). Note that the singular set of is given by

s {(t; x) e R x; f(t, x) 0},

where ft := f. Let (; ,) be such that iv + y(l, 5). We then have

f(,) (,()u(,), ) 0,

where fx f’ (l, ) [(0; x)] and yx y’(l, 5)[(0; x)], and

f(,) (,()( + u), ) () 0.

Note that yt := y’ (l, ) [(1; 0)] 0 since, by definition (see Lemma 1), 0 PlO’(lv +
y(l,-))(v + yt) PlO’(lv + y)yt For ftt we obtain

f(,) (,,()v + ,(), v) (,,()v, v).



1346 BERNHARD RUF

On the other hand,

#v() 2(’()v, vv) + ("()v2, v) ("()v2, v),

and hence

(5) I,() () # 0

by assumption (here #():- #’()[v]) Finally, by translation we may assume that
(;) (0;0) and f(,)= O.

Now, applying the preparation Theorem 2 we can write

(6) t2 al (f(t, z), z)t + ao(f(t, z), z)

with a0(0, 0) al (0, 0) 0 Clearly oa(f(O, 0), 0) 0, and hence the coordinate
change (t; z) -- (t a/2; z) is a local diffeomorphism. Finally, setting b ao + a/4,
equation (6) becomes

(7) t2 b(f(t, z), z).

Differentiating (7) twice with respect to t we see that b(s,z)I(s,z)=(o,o) # 0. Hence
the coordinate change in the range (s; z) - (b(s, z); z) is also a local diffeomorphism
and we obtain, in these coordinates,

(t, z) (t; z).

REMARK 6. For the particular mapping related to equation (2), conditon (4)
is equivalent to

(s) F)(u) := 6 f uv3(u)dw #v(u) # O.

This follows from

(/o )’,,(u)[(u)]- IVv(u)l 2 Av(u)2 + 3u2v2(u)dw [v(u)]

=2 (-Av(u) iv(u) + 3u2v(u)) v’(u)[v(u)]dw + 6 uv3(u)dw

6 / uv3(u)dw.

DEFINITON 7. Suppose that u E S is a 1-transverse singularity which is not a

fold, i.e., such that

(9) ,,()[()] 0.

We say that u is 1-1-transverse if there exists a w TuS such that

(10) (,,()[(u)]),[] # 0.

Let SI,1 {U S1; U is 1-1-transverse}. By the implicit function theorem it
follows that $1,1 is locally a smooth submanifold of $1 of codimension 1.
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In what follows we use the notation

#v(u) := (#’(u)[v(u)])’[w], #v,o(u) "= ((#’(u)[v(u)])’[v(u)])’[w],etc.;

note that (albeit the somewhat abusive notation) the function v v(u) depends on u
and has to be differentiated also.

DEFINITION 8. A point u E $1,1 is a cusp point if

(11) ,,() := (,().[()]),[()1 # 0.

REMARK 9. Geometrically, condition (9) says that v(u) is tangent to $1, while
(11) says that v(u) is not in the tangent space of S, (considered as a submanifold of

PROPOSITION 10 (normal form for cusps). If u S is a cusp point for then
there exist neighbourhoods U(u) C E, Y(O(u)) C F, a Banach space X, and diffeo-
morphisms a: U --. a(U) C R2 X, Y -- (Y) C R2 X such that the following
diagram commutes:

;(u) c E

a(U) c R x x ---, Z(V) c R x x

where (t, s, x):= (t3 + st; s; x).
Proof. By Lemma 1 and the proof of Proposition 5 we may consider (t,x)

(f(t,x);x) with
(,) f(,) 0,

and by (5) and assumption we see that ftt(,3) 0 also. We show that fttt(,3) O.
In fact

,(,) (()() + 3,,(), + ’(), v).

On the other hand, using the fact that O’(g) is symmetric and hence (O"()v2, v.)
(P"(g)vv, v), we have

]2vv(’) (I)(3)()V3, V) " 3(@"(g)VV,, V) + 2("(g)V2, V,)
+ 2(’()V,, Vv)+ 2(’()V, V,.).

Here Vv := v’(g)[v] and vw (v’(g)[v(g)])’[v]. Since It(g) #v(g) 0 by assumption,
we have

(12) ,,() + ,(g) () + ()v 0.

Taking the t-derivative of PO’(tv + y(t,3))(v + yt) 0 in t and recalling that
yt 0 in t t, we get

P1"(v + y(, 3))v2 + P6’(v + y(, 3))ytt 0,

and since (I)"(g)v2 _L v, P F --+ Iv] -L and g v + y(, 3), we conclude that ytt vv.
Hence

(13),
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We also need to verify the 1-transversality condition for , that is, ftx(, 5) O. In
fact we have

ftx(,5) (O"()vyx + ’()Ytx, v).
By (10) there exists z E P1E such that

0 # ,() (,,()z, ) + (+’()z, ).

Set x Pl(I)’()z; then y(,5) z, since PO’()y w for all w PE. Hence we
conclude

(14) ,(, ) ,() # 0.

Again, by translation we assume that (; 5) (0; 0) and f(, 5) 0.
By the preparation theorem we find smooth functions aj RxX R, j 0, 1, 2,

vanishing in (0; 0) and such that

(15) t3 a2(f(t, z), z)t2 + a (f(t, z), z)t + ao(f(t, z), z).

Since o a2(f(0, 0), 0) 0, the coordinate change (t; z) (t- 1/2a2; z) is a local diffeo-
morphism, and setting b -5 .a-el and bo .a + 5 .ala2 /co, equation (15)
is transformed into

(6) t3 + bl (f(t, z), z)t bo(f(t, z), z).

Let L be a one-dimensional subspace of X and let X L (R) Y. Furthermore, let
P X --+ Y denote the canonical projection onto Y. Define the local coordinate
changes

RxX ----+ RX

RxLxY RLY

where
q(t,x) (t;(t,x);Px), with [(t,x) bl(f(t,x),x),
(, x) (b0(, x); (, x); Px).

Clearly, n q2 o o q- then has the form

(7) (t,,x) (t +

It remains to verify that q and q2 are local diffeomorphisms. For this it suffices to
show that

0
bo(O O): O,

0
/)- xb (0, O) O.

Calculating the third derivative of (16) with respect to t in (0,0) yields 6 b0(0, 0).
(03/Ot3)f(O, 0). Calculating the mixed second derivative of (16) with respect to t and x
in (0,0) yields b-0- b (0, 0) sb0(0, 0). (02/OtOx)f(O, 0). The second mixed derivative
of f in (0,0) is different from zero by the 1-transversality of .

Remark 11. For equation (2), condition (11) is equivalent to

(18) C)(t) 6/t v4(t)dd - 18/f uv2(t)vvdd ]Zvv() O.
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This is obtained by differentiating FA (u) as given by (8) in direction v. The expression
vv v’(u)[v(u)] can be calculated by taking the derivative of (-A- A + 3u2)v(u)
#(u)v(u) 0 in direction v v(u). We obtain

(19) (-A A + 3u2)vv + 6uv2 #(u)v + #(u)v 0

by (9), since u e S. By (8) condition (9) implies that uv2 is normal to v, and hence
we get

(20) vv (-A - 3u2)-l(-6uv2).

Using the spectral representation of (I)’(u) and (20), CA (u) can be alternatively written
as

(21) CA(u) 6 v4(u)dw 108E #i(u)
uv2(u)v’(u)dw

where the sum is extended over all eigenvalues #i(u) #(u) of O’(u) (vi(u) are the
eigenfunctions corresponding to %i(u)).

We continue with the clsification in the (by now) obvious way.
DEFINITION 12. Suppose that u G $1,1 is a 1-1-transverse singularity which is

not a cusp, i.e., such that

(22) ,() := (,,()[()]),[()] 0.

We say that u is i-I-I-transverse if there exists a w E TuSI,1 such that

(23) ,w() := ((,,()[v()]),[()]),[] -o.
Let $1,1,1 {u E $1,1; u is I-I-I-transverse}.
By the implicit function theorem it follows that $1,1,1 is a locally smooth sub-

manifold of codimension 1 of $1,1.
DEFINITION 13. A point u S1,1,1 i8 a swallowtail singularity if

(24) ,.() := ((,,()[v()]),[v()]),[(u)] # o.

PROPOSITION 14 (normal form for swallowtails). If u S is a swallowtail singu-
larity for then there exist neighbourhoods U(u) C E, V(((u)) C F, a Banach space
X, and local diffeomorphisms a U -- R3 X, V -, R3 X such that

O" :: O (I) O O/-1 o(U) C R3 x X --,r (V) C R3 x X

has the form
a(r, s, t, x) (t4 + st2 + rt; s; r; x).

Proof. We can consider (t,x) (f(t,x); x) with

and by (13) and assumption fttt (, 5) 0 also. We show that ftttt (, 5) O. In fact,
from the expression for fttt we deduce

ftttt (,-) ((I)(4) ()V4 -- 6(I)(3) ()v2ytt -- 3(,, ()Y?t+ 4"() + ’()U, V).
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On the other hand,

() (()(),) + 9(()(),) + z(,,(), .)
+ 12((I),,()Vv2, v) + 6((I)’()vv, Vvv) + 2((’()Vvvv, v).

One verifies as before that yttt v,, and ytttt V,w. Using (12),

,,()v + ,(). ,()v + ,()v 0,

and its derivative in direction v,

(25) ()() + 3,,()v. + ,()v.. ,()v. + ,(). + ..() 0,

we conclude that

(26)

The 1-transversality holds as in Proposition 10. For the 1-1-transversality of
we have to show that fttx(,5) 0 for some x E T(,)S (:=v ftx(,5) 0). We have

and
() (()()v, v) + (,,(), v)+ (,,()v, v)

+ (,(),v)+ (,(),).

For w e TS we have #() #() 0, and hence

(27) ,,() + ,(), ,()v + ,()v 0.

Choosing 5 such that y(, 5) w, i.e. 5 (I)’()w, we find yt(, 5) vw() by
equations (27) and PlO"()vy + O’()yt 0. This, together with (12) and (27),
implies

(es) f,,(,)= ,.()

with ftx(,5) 0 #() 0 by (14).
By the preparation theorem we can now write

(29)
t4 a3(f(t, x), x). t3 + a2(f(t, x), x). t2

+ al (f(t, x), x). t + ao(f(t, x), x),

where ai R X - R, 0, 1, 2, 3, are smooth functions vanishing in (0,0). The coor-
0 adinate change (t; x) - (t- a3/4; x) is a local diffeomorphism, since 3(f(0, 0), 0)

0. Now, setting
3 1 1

52 --a]_ a2, bl --av -a2a3 hi,

13 4 la2a]+ a a3+ao,no -a3 + ]-
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equation (29) is transformed into

(30) t4 + b2(f(t, x), x). t2 + b (f(t, x), x). t bo(f(t, x), x).

Let L1 and L2 be linearly independent, one-dimensional subspaces of X, and let
X L1 (R) L2 Y; furthermore, let P X Y denote the canonical projection.
Define the local coordinate changes

RxL2 xL Y ---+

RxX
I q2

RxL2xLxY

where

q (t, x) (t; 2(t, x); 1 (t, x); Px) with i(t, x) bi(f(t, x), x), 1, 2,
q2(s, x) (bo(s, x); b2(s, x); b (s, x); Px).

Then a has the form

a(t,s,r,y) (t4+s.t2+r.t;s;r;y).

It remains to show that q and q2 are local diffeomorphisms. For this it suffices to
show that

0-bo(0, 0) 0, bl (0, 0) i 0, --z b2(0, 0) 0.

Taking the fourth derivative of (30) with respect to t in (0,0) yields 24 b0(0, 0).
(O4/Ot)f(O, 0), and hence bo(0, 0) 7 0 by assumption. Taking the mixed second-
order derivative with respect to t and z of (30)in (0,0) gives -0- bl (.0, 0) b0(0,0)-
(O/OtOx)f(O, 0), and since (O/OtOx)f(O, 0) 7 0 by the 1-transversality assumption,
we conclude that 80-b (0, 0) 7 0. Finally, taking the mixed third-order derivative
Oq3/Ot20x of (30) in (0,0) yields 2b2,x(0, 0)-+- 2bl,s(0, 0). ftx(O, O) bo,(O, 0). fttx(O, 0).
By the l-l-transversality we find an x such that ft 0 and ftt 0; hence b2,. (0, 0)
0.

Remark 15. For equation (2) condition (24) is equivalent to

(31) Sw(u) := 60. jf v3vv + 90./nu. vv2 #v,v(U) = 0,

where v is given by (20). In fact, this follows from calculating the derivative of
CA(u) #(u) (given by (18))in direction v;

C’(u)[v] #,v,(u) 42 /av3v + 36. jfuvv2 +18 jfuv2vv.
The term vv is obtained by differentiating (19) in direction v and noting that #.(u)
#(u) --0 by assumption:

(32) (-A- A + 3u2)vv -6(v3 + 3uvvv).
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With (32), and using (20), the last term in the previous expression can be written as

18 f3 uv2vvv 18 f Vv(V3 + 3uvvv), hence (31) holds.
DEFINITION 16. Suppose that u E $1,1,1 is a l-l-l-transverse singularity which

is not a swallowtail, i.e., assume that

(33) () ((,,(u)[v()]),[()]),[v()] o.

We say that u is I-I-I-i-transverse if there exists a w TuSI,I, such that

(34) ,..() (((,,()[()]),[v()]),[()]),[] # o.

Let S,,,1 {u S,,; u is i-i-i-I-transverse}. The implicit function theorem
implies that S,1,, is a smooth submanifold of codimension 1 of S,,1.

DEFINITION 17. A point u S,,, is a butterfly singularity if

(35) ,() (((,,()[()]),[()]),[()]),[()] 0.

PROPOSITION 18 (normal form for butterflies). If - S is a butterfly singularity
then there exist neighbourhoods U() C E, Y((I)()) C F, a Banach space X, and local
diffeomorphisms U -- c(U) C_ R4 X, 7 V --. 7(V) C_ R4 X such that

:--7dPO-1 o(U)

_
R4 X 7(V)

_
R4 X

has the form
/3(r, s, t, q, x) (t5 + st3 + rt2 + qt; s; r; q; x).

Proof. We can consider (t,x) (f(t,x);x) with

f, (,) f,, (,) f,,, (, ) 0,

and by (26) and assumption,

We show that

(36)

In fact
f,,,(, )--(0(5)()v5 + lO((4)()v3ytt + 15((3)()vY2tt

+ 0()(), + 10"()U,,
+"(), + ’(),,. v).

For #vvv() we calculate

#v() =((I)(5)()v5, v) + 14((a)()va, vv) + 39((I)(3)()v2, v2)
+ 6((a)(U)va, v.) + 44(O"()vv, v.) + 9(O"()v, v...)
+ 12((I)"()v2, v) + 6((I)’()Vw, v) + 8((I)’()vv, Vw) + 2((I)’()vv., v).

Taking the v-derivative of (25) we have

(37)
(I)(4) ()V4 -- 6((3) ()V2V + 4(I)" ()VVv. + 3("()V2 + (’()V.v
,().. + a,.().. + a,..() +.() 0.
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Using (37), (25), (12), and the assumption that is a butterfly singlarity, we infer
(36).

Observe that x e T(,)I and x e T(,5)I,1, since

u() 0 ,(,) 0,

u.() 0 .=. **(, ) 0.

Finally, we can asssume that (;5) (0; 0) and f(,5) 0.
By the preparation theorem we can now write

(38)
t5 a4(f(t,x),x), t4 + a3(f(t,x),x), t3-- a2(f(t,x),x) t2 - al(f(t,x),x) t -- ao(f(t,x),x),

where a R X R, 0, 1,..., 4, are smooth functions vanishing in (0, 0). The co-
ordinate change (t; x) --. (t-hal5; x) is a local diffeomorphism, since a4(/(0, 0), 0)
0. Setting

2 4 3
b3 --a24 a3, b2 -,--a -a3a4 a2,

3 3 2
bl --gga4 aaa a2a4 -hi,

bo a a3a + a2a + gala4 + co,

equation (38) is transformed into

(39) t5 + b3(f(t,x),x), t3 + b2(f(t,x),x), t2 + bl(f(t,x),x), t bo(f(t,x),x).

Let L1, L, and L3 be linearly independent, one-dimensional subspaces of X, and
X L1 (R) L2 (R) L3 (R) Y, and denote the canonical projection from X onto Y by
P: X --. Y. Define the local coordinate changes

UCRxX VCRxX
ql q2

ql(U) C R L3 x L2 x L1 Y - q2(V) C R x L3 x L2 x L1 x Y

where

ql(t, x) (t; D3(t, x); )2(t, x);/1 (t, x); Px), with )i(t, x) bi(f(t, x), x), 1, 2, 3,

q2(s, x) (bo(s, x); b3(s, x); b2(s, x); bl (8, X); Px).

Then has the form

/3(t, s, r, q, y) (t5 + s-t3 + r- t2 + q. t; s; r; q; y).

To establish that ql and q2 are local diffeomorphisms, we show that

0
obo(O, O) 7 O, ---bi(O, O) O, i=1,2,3.

In fact, taking the fifth derivative of (39) with respect to t in (0; 0) yields 120
--bo(O,os 0). (05/Oth)f(O, 0), and hence b0(0, 0) 0 by hypothesis. The second and



1354 BERNHARD RUF

third inequalities then follow as they do for the swallowtail by taking the mixed second
and third derivatives of (39) with respect to t and x in (0, 0); the fourth inequality
follows by taking the mixed fourth derivative 04/OxOt3 of (39)"

6b3,x(O, O) + 6b2,s(O, O)ftx(O, O) + 3bl,s(O, O) fttz(O, O) bo,s(O, O)fttt(O, 0).

By the 1-1-1.-transversality we find an x E X with ftx(O, O) fttx(O, 0) 0 and
fmz(O, 0) # 0; hence bs,z(O, O) # O.

Remark 19. For equation (2) condition (35) is equivalent to

(40)
B(u) := 270] v2v2dv + 60 v3vvvdw + 180 / uvvvvdw + 90 /n uv3dw

,,()# o.

This follows from differentiating (31) in direction v.
For easier reference, we recall here all the conditions that must hold so that a

given point u E E is a butterfly singularity for the mapping (I) E -- F, (I)(u)
--Au-- u-}-U3.

(bl) u is singular point (i.e., u e S):
,l) f’ fv+ fuv o.

(b2) u is 1-transverse (i.e., u e $1):
z e E such that ,(u) 6 f uv2zdw O.

(b3) u is not a fold singularity:

#v(U) 6 f uv3dw O.
(54) u is 1-1-transverse (i.e., u S,):
w e E with ,(u) 6 f uv2wdw 0 (i.e., w e TS) such that

#(u) 6f wv3dw + 18 f uv2vdw O.
(b5) u is not a cusp singularity:

,w(u) 6 f vad + 18 f uvvd O.
(56) u is I-i-I-transverse (i.e., u S,,):

2y E with f uv2yd 0 and f yva + 3uvvud 0 (i.e., y TuSI,)
such that
() 4 v+ vv+: vv.+8 o
(this is obtained by differentiating (u) in direction y and using

vvu -6(u)-l(uyvv + yv + 2uvvu) and Vv -6’(u)-luv2).
(b) u is not a swallowtail singularity:

() oydv+oyv o.
() vv() :o +o v+8oy+oy;#

0; this implies in particular that u is I-I-I-I-transverse (i.e., u S,,,I).
3. The elliptic boundary value problem (2). Here we prove that for prob-

lem (2) with (0,1) and for parameter values ,k > A* and near * (where
A* :- A2" 2/r2, cf. [19, Prop. 12]), the singular set S contains butterfly singulari-
ties.

THEOREM 20. Assume that (0, 1) and let ( E -- F be given by @(u)
-u’- Au + u3 with E {u e C2(0, 1),u’(0) u’(1) O} and F C(0, 1). Let
,* 22/71"2. Then there exists an > 0 such that, for * < ) < ,k* + , the singular
set contains a butterfly singularity.
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Proof. As in [19, p. 797], let

z(x) { 1 if x E (0, 1/21,
-1 ifx E (1/2,1).

Note that z Lp(0, 1), gp :> 1 but not in F; however, the operator

d2 d2
(’(tz) -dx--- A + 3(tz)2

dx2
A + at2" E -- F

with t R+ is well defined with corresponding eigenvalues #i(tz) Ai + 3t2

(Ai, N, denotes the Neumann eigenvalues of-d2/dx2).
The proof of the theorem proceeds by approximation. It follows from the previous

section that the property that u is a butterfly singularity of (I) is definable purely in
terms of (’(u) and is given by integral conditions. We set * and (/*/3)1/2
and verify that (I)’(z) satisfies these conditions. Then we show that there are z E
with z z in Lp(O, 1), Vp >_ 1, and t - such that the integral conditions are also
satisfied in u tz. Thus (I) has a butterfly singularity at u tz

First note that for * and (*/3)1/2 we have (’(z)[v(-z)] #(-z)v(z)
0 (hence (bl)), and since #’(z)[z] 6 f3 z2v2(z)dx > 0, the 1-transversality condi-
tion (b2) is satisfied in z.

Next, note that #’(z)[v(-z)] 6 f3 zv3(z)dx 0, since v(tz) =_ 1; hence the
condition b3 is satisfied.

We claim that in z the 1-1-transversality condition (b4) is satisfied. In fact, let

)1, xE(O, 1/4]u(,
w=

-1, xe (1/4,-341.

Then we have #w(-z)= f }zv2(-z)wdx f zwdx 0. Furthermore, writing v
v(-z) and vw v’ (z)[w],

f01 f016 vawdx + 18 -zv2v 18 zvdx.

Note that from -v Av +3(z)2v + 6-zwv #(z)vw + #(-z)v 0, we get (using
3(z)2 and v 1) v 6-zw with vw (0) v(1) 0. This yields

Vw

X2 1_
8

3tz"
(1/2 x)2,
-(1 x) 2 + },

x e (0,1/4),
xe

x e (-34,1).

With this representation for v we clearly obtain f zvdx -fo [vwldx 7 O, and
hence the l-l-transversality condition (b4) is verified in z.

Next we note that in the point tz the cusp condition is not verified; that is, we
have (bh)"

/o /oCA. (z) 6 v4dx + 18 zv2vvdx O.
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In fact, from vP(x) 6z, v(0) v(1) 0, we get

3(x2- ), 0 <X < ,(41) vv(x)= 3(-(1-x)2+1/4), (1/2)<x<l,

from which the claim follows by calculation (cf. [19, Prop. 12]). We remark that the
special choice of * enters here.

We show that the l-l-l-transversality condition (b6) holds in z. For this we set

y z.w. Then f zv2ydx -f wdx 0 and f3 yv3 + 3-zv2vydx 0, since Vy is
From " 6-zvy 6w we infer thatsymmetric with respect to x- 5" Vy

Vy
161

x E ),
=3. -(x- 2

(l-x)2
+6, xE(,a),
16, x (, 1).

It is now easy to check that the third integral in the expression #vy(z) (see (b6))
is different from zero, while all the other integrals vanish. Hence, in the point z
condition (b6) holds.

Next, by symmetry arguments it follows easily that

/o60 v3vvdx + 90 zvv2dx 0,

and hence the point z is not a swallowtail singularity; i.e., (bT) holds. Finally, we
show that in z condition (bs) is verified; in particular, this implies that (I) is I-i-i-i-
transverse in tz. First, note that

" --6(v3 + 3zv,v)--Vvv

and hence (bs) can be written as

270 v2v2dx- 10 (-vv’v)vvvdx + 90 zv3dx

270 v2dx- 10 (v)2dx + 90 -zv3dx.

By (41) we calculate

v2dx zv3dx
35

Furthermore, from

,, { -3 + 36x2,
Vv= -3+36(1-x)2,

O<x<5,
<x<l

we get

Vvv { ---32X2 + 3X4 - 60’
7-(1 x) 2 + 3(1 x) 4 -[ 80’

O<x < ,
i<x<l,2

and then f (v’)2dx . A calculation now yields (40).
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The proof of the theorem is now completed by approximation" Let

(COS 7X) 1/n,
:=

_(_
0<_x_< ,
1/2_<x<_l, hEN.

Then Zn E and Zn -’ Z in LP(0, 1) for all p >_ 1.
We claim that, for each 0 < A < A2, there exists a unique tn(/) > 0 such that

tn()Zn is a singular point; i.e., tn(A)Zn S S(A). Indeed, using the variational
characterization of #(tzn),

#(tzn) inf (w’2 Aw2 + 3t2z2nw2)dx,
{wE,f w2=l}

we see that/z(0) -A, #(tzn) increases in t > 0, and #(tzn) -+ +x as t -- +cx for
any fixed n N. Hence, there is a unique t,(A) such that #(tn(A)z) 0, and hence
(bl), Vn N.

Denoting by t(A) (A/3)1/2 the unique t such that #(tz) 0, we show that
(tn(A)zn) 2 --+ (t(,)Z) 2 --,/3 in LP(O, 1),Vp >_ 1. Indeed, since z(x) > Zn+I(X) >
Zn(X), VX e (0,1),Vn e N, we obtain tn(A) > tn+(A) > t(A), Vn e g. Hence,
tn(A) - to(A) >_ t(A) and then (tn(A)zn)2 t(A) in LP(O, 1),Vp >_ 1. Denoting
Vn V(tn(A)Zn), this implies

0-- (Vn2 AV2n + 3(tn(A)Zn)2V2n)dx

>_ (v AV2n + 3t(A)V2n)dx- 3 I(t(A)z)2 tg(A)lv2ndx

/o>_ tt(to($)z) 3 It($)z tg($)ldx]vln;

i.e., #(to(A)z) <_ O. Since, on the other hand, #(to(A)z) >_ #(t(A)z) 0, we conclude
that #(to(A)z) 0, which yields t0(A) t(A) by the monotonicity in t of #(tz).

Now, denoting tn tn(A), note that by

-v Av, + 3(tnz,)2v 0 -v" Av + 3(t(A)z)2v

we get

--(V Vn)" )(V Vn) -- 3(t(A)Z)2(V Vn) 3((tnZn)2 (t()Z)2)Vn.

Since the right-hand side converges to 0 in L2(0, 1), one concludes that v, --. v in

C(0, 1).
Furthermore, suppose that p L(0, 1) and (Pn) C E with p --* p in LP(O, 1),

’p >_ 1. Denote Vn,pn v(t,z)[p,] and Vp := v’(t(A)z)[p]; we show that V,pn Vp
in C(0, 1); in fact, taking the derivative of -v-/kVn + 3(tz,)2Vn 0 in direction

Pn we get
-v" AVn,pn + 3(tnZn)2Vn,p --6tZnV,pnn,pn

and, similarly,
+
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Subtracting the two equations yields

(Vn,pn Up)it-- (Vn,pn Up) -- 3(t(/)Z)2(Vn,pn Up)
--6tnZnVnPn -" 6t()zvp - 3(t()Z)2Vn,pn 3(tnZn)2Vn,pn

the right-hand side tends to 0 in L2(0, 1), which yields that Vn,p - Vp in C1(0, 1).
We next prove (bh); i.e., we show that for each n E N we can choose a with

n * such that

v4dx + 3 tn 2()n)ZnVnVn,vndx O.

d2 3(tnZn)2)Vn,v we getIn fact, using tnZnV2n ---(-- /dx2 +

with en(A) continuous in A and e, --, 0 uniformly in A as n -- +c; here we have used
the specific form of vv given in (41). From this we see that, for every sufficiently large
n, there is a A as claimed, i.e., such that (bh) is verified.

In what follows we assume that A A. We then conclude that tn tn(A) -*

t(A*). Using the fact that tnzn --* z in Lp(0, 1) and Vn - v in C(0, 1), one now
concludes that tnZn is 1-transverse; i.e., (b2) holds for n sufficiently large.

Furthermore, since tz is odd and Vn V(tnZ) even, we find that.tzn is not a

fold; i.e., (b3) is satisfied.
To verify the 1-1-transversality choose

1/2)),
0<x<
1/2<x<l.

By symmetry arguments one sees that f tnZnV2nWndX 0, i.e., Wn TtnznS1. Fur-
thermore, since w - w in Lp(O, 1),Up _> 1, and Vn - v in C(0, 1), tnZn -- Z in

LP(0, 1), and vn,, --, v in C(0, 1) (by taking p On in the formula above), we
have that

#vw (tnZn) 6 WnV3ndx + 18 tnZnV2nV2n,w dx = 0

for n sufficently large; hence (b4).
To verify the 1-1-1-transversality set y, (x) Zn(x)w(x) 5nS(X), where

0,
s(x) sin.3 (4rx)

and 5n R is such that f3 tznv2yndx 0 (i.e., y TtS); clearly, (n
0 and yn - Y (in Lp) as n - c. Furthermore, since Yn is odd and Vn is even,
and tnZn is odd and Vn,y is even (with respect to x 1/2), we have f3 ynv3ndx +
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3f ztn nv,v.n,ydx 0, i.e., yn e TtzSI,1. And since ttvvy(t,z,) -- pvy(z)
(using the integral expressions), we have that (b6) is verified for n sufficiently large.

Again by symmetry arguments, one sees that tnZn is not a swallowtail singularity
for n sufficiently large; i.e., (bT) is satisfied.

Finally, verifying that v,. --. vv in C1(0, 1) as well, we see that, for n suffi-
ciently large, the butterfly condition (bs) is satisfied.

We mention that this result yields (locally) the following structure.
COROLLARY 21. Under the conditions of Theorem 20 we have the following:
(a) Set El S NU(tnZn), where U C E is a suitable neighbourhood Of tnZn (with

n fixed suJficiently large); then
E contains a smooth submanifold E2 of codimension 2 (with respect to E) such

that E\E2 has exactly two components which consist offold singularities;
E2 contains a smooth submanifold E3 of codimension 3 (with respect to E) such

that 2\3 has exactly two components which consist of cusp singularities;
E3 contains a smooth submanifold E4 of codimension 4 (with respect to E) such

that -]3\4 has exactly two components which consist of swallowtail singularities;
E4 consists of butterfly singularities.
(b) There exists an open region F5 C F such that, for h E Fh, equation (1) has

(locally) exactly five solutions.

Proof. Statement (a) follows by Theorem 20 and the "stratified" structure of the
sets $1,,1,1 c $1,, C S, c S. Indeed, by the 1-transversality the set $1 is locally a
codimension 1 manifold E1 in E containing (by the 1-1-transversality) a codimension
2 (with respect to E) submanifold E2 of higher singularities. This means that E1 \E2
consists of fold singularities. By (bh) and (b6), E2 contains a codimension 3 (with
respect to E) submanifold 3 of singularities higher than cusps, and -]3\2 consists
of cusp singularities. By (bT) and (bs), E3 contains a codimension 4 submanifold E4
consisting of butterfly singularities and 3\4 consists of swallowtail singularities.

(b) follows from the structure of butterfly singularities; in fact, let denote the
normal form mapping for the butterfly singularity given by (t, s, r, q, x) (t5 + st3 +
rt2 - qt, s, r, q, x), and suppose that the diffeomorphism
R4 X maps t,zn into the origin in R X (cf. Prop. 18). Choose < 0 and
> 0 sufficiently close to zero such that (t5 +t3 + t, , 0, , 0) (0, , 0, , 0) has five

solutions in a(U). Then, for h- /-(0,,0,, 0) equation (2) has five solutions, and
the same holds for all h in the same component of h in V\O(S), where V V(O())
F; see Proposition 18.

For a rectangle Ft [0, a] [0, b], one obtains the existence of butterfly singularities
with the same arguments and for the same range of parameter values A as for the
interval, taking into account the results in [19].
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•
CONSTRUCTION ET RÉGULARITÉ DES FONCTIONS DÉ'CHELLE*

LOÏC HERVEt

Résumé. Utilisant les propriétés spectrales d'opérateurs de la forme Pwf(x) = w( 2) f( ) +

w(2 + 2 )f( 2 + 2 ), nous étudions les fonctions d'échelle associées aux filtres d'échelle de longueur
infinie . Nous calculons le coefficient de Sobolev de et plus généralement le plus grand coefficient
s tel que f+~ k (ÀW'(1 + (ÀIp s )dÀ < +oo, où 1 < p < + 00 . Nous appliquons les résultats aux
interpolations dyadiques continues .

Abstract . Using spectral properties of the operators Pu, f (x) = w (`2 )f ( 2) + w( 2 + 2 )f( 2 + 2 )'
we study the scaling functions associated to filters with infinite length . We compute the Sobolev
coefficient of / and more generally the larger coefficient s such that f+oc ( ( À)I(1 +IÀ(ps)da < + oo,
where 1 < p < + 00 . We apply the results to dyadic interpolations .

Mots-clé. ondelette, analyse multirésolution, fonction d'échelle, opérateur de transfert, inter-
polation dyadique.

Key words . wavelet, multiresolution approximation, scaling function, transfer operator, dyadic
interpolation .

AMS subject classifications . 39B32, 42C15, 47B07, 41A05 .

1 . Introduction: Analyses multirésolutions et filtres d'échelle . Une anal-
yse multirésolution [25], [23] est par définition une famille (V,)j€Z de sous-espaces
fermés de L2 (R) tels que	

(a) nj€ZV3 = {0} et UiEZVj = L2 (R) .
(b) V~ C V~-}-1 •
(c) f E V3 est équivalent à f(2i . ) E Vo ) .
(d) Il existe une fonction g E Vo, appelée fonction d'échelle, telle que la famille

{g( . -+- k), k E Z} forme une base de Riesz de Vo .
La condition (d) exprime que l'ensemble des combinaisons linéaires finies des

fonctions g( • + k) est dense dans Vo, et qu'il existe une constante c > 0 telle que l'on
ait, pour toute suite (Ck)kEZ E £2(Z),

(1)

	

1

	

kl2 <_ II

	

cks(•+ k)IILZ(R) <_ C~ 1Ck1 2 .
C HEZ

	

kEZ

	

FEZ

Toute fonction f de Vo s'écrit de manière unique sous la forme f = k E Z ckg ( • + k),
où (Ck)kEZ E £ 2 (Z) . D'autre part, en vertu de (c), la famille {2i / 2g(2i • +k), k E Z}
forme une base de Riesz de Vj, pour tout j E Z . En particulier, puisque g E V1
(condition (b)), il existe une unique suite (ak)kEz E £2 (Z) telle que

g(x) =

	

akg(2x + k) •
FEZ

Par passage à la transformée de Fourier définie par
+00

J(À) =

	

f(x)e-2x dx,

* Received by the editors November 9, 1992 ; accepted for publication (in revised form) January
4, 1994 .

t I .R.M.A.R ., Université de Rennes 1, Laboratoire de probabilités, Campus de Beaulieu, 35042
Rennes cedex, France.
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l'équation ci-dessus devient g (À) = H(2) g (2) , où H est la série trigonométrique de
coefficients ()kEz,2 appelée filtre d'échelle associé à g . Dans les exemples d'analyses
multirésolutions utilisées en pratique, H est toujours de classe CO°, souvent polyno-
miale, et telle que H(0) = 1, H(2) = 0 .

Réciproquement, considérons une suite (hk)kEz e £2 (Z) quelconque telle que la
série trigonométrique

soit de classe C°° et telle que mo (0) = 1, mo ( â ) = 0. On pose, pour tout À E R,

(z)

La fonction est définie, continue sur R [25], [8], et vérifie «O) = 1 et l'équation

(3)

L'objet de ce travail est de déterminer des conditions nécessaires et suffisantes sur
mo e C°° pour que l'on ait (successivement) les deux propriétés suivantes .

(Pi) La fonction çz5, et donc sa transformée de Fourier inverse q5, sont de carré
intégrable sur R ;

(P2) la famille {çb( . + k), k E Z} forme un système de Riesz (i .e ., vérifie (1)) .
Le lien avec les analyses multirésolutions est donné par la propriété suivante .

Sous les conditions (P1), (P2), la famille (V3 )jEz, où V~ est le sous-espace de L 2 (R)
engendré par le système {22 q5(2i . +k), k e Z}, forme une analyse multirésolution
(avec g=c~etH=mo) .

En effet, les points (c) et (d) de la définition sont évidents . En outre, par passage à
la transformée de Fourier inverse dans (3), la fonction satisfait à l'équation d'échelle

(4)

ce qui prouve (b) . Pour établir les conditions asymptotiques (a), on pourra utiliser
les résultats de [8, pp . 141-142] . En accord avec la terminologie usuelle rappelée plus
haut, toute fonction mo satisfaisant à (P1) et (P2) sera appelée filtre d'échelle, étant
alors la fonction d'échelle associée .

L'étude de la régularité de tient une place importante dans la théorie des anal-
yses multirésolutions et ses applications . A cet effet, il existe deux approches bien
distinctes: l'une où l'on calcule par une méthode directe (n'utilisant pas la trans-
formée de Fourier) le coefficient d'H6lder optimal de (voir [9], [26], [28]) ; la seconde
(fréquentielle) où l'on estime le coefficient de Sobolev de çb . Nous nous proposons ici
de généraliser la méthode fréquentielle, et plus précisément de résoudre le problème
suivant .

(P3) Trouver des conditions pour que E Lp (R), où p est un réel quelconque tel
que 1 < p < +oo, et de calculer dans ce cas le coefficient

+00f

	

(~(À)((ip+ (À(P8)dÀ < +oos p =sup
l
(s>0

mo(À) = 2
kEZ

~(À) _ flmo (2k ) .

«x) =
kEZ

hke 2iirkÀ

(2)

hkç(2x + k),
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Les cas p = 1 et 2 sont particulièrement intéressants pour estimer la régularité de ~ .
En effet, si E L 1 (R) et s1 > 0 (respectivement, si s2 > 2 ), alors ç est hdlderienne
d'ordre s1 - e (respectivement, s2 - 2 - e) pour tout e > 0 .

Dans le cas particulier des filtres polynomiaux (la suite (hk)kE z est à support fini),
une solution simple de (P1), (P2) a été donnée indépendamment dans [27], [20], et on
trouvera le calcul de s2 dans [27], [131, [20], et celui de s i pour les filtres polynomiaux
positifs dans [5] (si est alors le coefficient d'Hêlder optimal de çb) . Dans les articles
précédemment cités, d'une part seul le cas polynomial est traité, et d'autre part, les
études (directes ou fréquentielles) de la régularité de font appel à des calculs dont
la complexité augmente avec la longueur du filtre m0 (nombre de hk non nuls) .

Comme l'illustre l'énoncé ci-dessous (démontré dans le §4), l'intérêt de ce travail
est de fournir une solution de (P1)-(P3) applicable aux filtres non polynomiaux, et
telle que la complexité des calculs mis en jeu ne dépende pas, ou très peu, de la taille
des filtres (dans le cas polynomial) .

Supposons que m0 admette un nombre fini q + 1 de zéros, et que

1 + e2i ' ~\
mo(À) = C	2	 v(À),

avec r E N* et v(2) 0 (la factorisation ci-dessus est naturelle puisque m0 s'annule
en 2) . On pose, pour tout n > 1,

k o
(2)1 2 . . . v (2 )

Pour simplifier, commençons par supposer que q < 1 . Alors,
(i) La suite (Sn+1/Sn)n>1 converge avec une vitesse exponentielle vers un réel

noté ,Q2 .
(ii) Une condition nécessaire et suffisante pour que m0 soit un filtre d'échelle est

que I m0 (2) I + Im0 ( 2 -I- 2 ) I > 0 pour tout À E R, et que /32 <22 v' . Dans ce cas, on a

1
s2 = r - 2 log e /32 .

Si q > 2, il faut ajouter, des conditions très simples sur les zéros de mo (par
exemple, si q = 2, Imo ()I 6-I- Imo (6) I 0). D'autre part, le calcul de s p pour p
quelconque est identique (remplacer (v I2 par ivV' dans la définition de Sn ; voir §6) .
On montre dans [14] que s2 = r - 1 log e pa , où pa est le rayon spectral de l'opérateur
Pw (défini ci-dessous) avec w = v I . Sous les hypothèses précédentes, on a Pa = / 32I
voir §4 .

Dans le §2, nous présentons une première caractérisation des filtres d'échelle de
classe C°° . Cette partie permet d'introduire les deux principaux outils de ce travail :
les compacts invariants et les opérateurs de tranfert P te, de la forme

x

	

x 1

	

x 1\
Pw,f(x)=w

/X\
2 f( 2 )+w 2+2 f 2+2',

	

xE[0,1]

OÙ w est une fonction 1-périodique donnée, et f une fonction quelconque définie sur
[0,1] . Ces deux dernières notions, classiques en théorie ergodique, ont été introduites
dans le cadre des orthogonales par Conze et Raugi [7] . L'étude spectale de Pw (voir
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§3), est basée sur un résultat récent de Hennion [15] qui complète le théorème clas-
sique de Ionescu-Tulcea et Marinescu [21] . Nous présentons ensuite une deuxième
solution pour (P1), (P2), tout d'abord sous l'hypothèse m0 E C°° (§4), puis dans le
cas particulier des filtres polynomiaux (§5) . Dans le §6, nous étudions (P3), et nous
présentons un calcul numérique des coefficients s 1 et s2 pour les filtres de Butterworth
(non polynomiaux) . Enfin nous appliquons les résultats précédents aux interpolations
dyadiques continues (§7) . Signalons enfin que les principaux résultats de ce papier
(caractérisation des filtres d'échelle et calcul des sp ) ont été énoncés dans [17], et
démontrés dans [20] dans le cas plus général où m0 est hêlderienne .

2. Filtres d'échelle : premiers critères. Dans ce paragraphe, m0 est une fonc-
tion 1-périodique, à valeurs dans C, de classe C°°, telle que m0(0) = 1. Cependant
la plupart des résultats restent vérifiés si m0 est seulement hôlderienne. On note
u = ~mo l 2 , et on considère la fonction définie par (2) . Rappelons que est continue
sur R. Si E L 2 (R), on note sa transformée de Fourier inverse, qui est alors elle-
même de carré intégrable . Dans toute la suite, nous désignerons par 0 75 la fonction
1-périodique, a priori à valeurs dans [0, +oo], donnée par

(s)

(6)

	

do(=) _ mo ( 2 )

0(x)_

	

I(x+k)l 2 .
kEZ

La fonction 0~s est serai-continue inférieurement sur R, comme limite croissante de
fonctions continues . Si ç E L 2(R), alors 0~ E L 1([0,1] ), et plus précisément, 0s est
indéfiniment dérivable [25] . La propriété importante ici est la continuité de 0~ .

2.1. Première résolution de (P1) . Nous obtenons, grâce à (3),

kl
2~

m0

2

x
2

0
x
2

11
2~

2

k
)2

2

soit encore, en séparant cette dernière somme selon les indices pairs et impairs,

B~C2+21

L'identité (6) exprime que 0~ est invariante sous l'action de l'opérateur de transfert
Pu défini par

(7)

	

P x=u x

	

x +u x+1

	

x-~-1

	

xE [01uf()

	

2 f 2

	

2

	

2 f 2

	

2

	

' ]'

où u = 1mo I 2 , et où f est une fonction quelconque définie sur [0,1], à valeurs dans C .
THÉORÈME 2 .1 . Soit m0 une fonction 1-périodique, de classe C°°, telle que

mo (0) = 1, et soit définie par (2) . Alors E L 2 (R) si, et seulement si, il ex-
iste une fonction 'y Pu -invariante, 1-périodique, positive ou nulle, de classe C°°, et
enfin non nulle en 0 .

Remarque. Si mo est seulement hêlderienne, la formule (2) définit encore une
fonction continue sur R, ce qui asssure la serai-continuité de 0 75 . Dans ce cas,

E L2 (R) si, et seulement si, il existe une fonction •y Pu-invariante, 1-périodique,
positive ou nulle, intégrable et serai-continue inférieurement sur [0,1] , et enfin non
nulle en 0 (voir [20]) .
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En particulier, pour tout réel p tel que 1 < p < + 00, la fonction ~mo~p'2 est
h6lderienne, et

+00

(2 ) 2 •

Appliquant la remarque précédente avec 1m0 (PI2 à la place de m0, nous obtenons le
corollaire suivant .

COROLLAIRE 2.2 . Soit m0 une fonction 1-périodique, de classe C°°, telle que
m0(0) = 1, et soit 4 définie par (2) . Soient en outre p un réel tel que 1 < p < +00,
u(x) _ m0(x)l, et enfin Pup l'opérateur défini comme dans (7), mais avec up à
la place de u . Alors une condition nécessaire et suffisante pour que E Lp (R) est
qu'il existe une fonction -y P,,, -invariante, 1-périodique, positive ou nulle, intégrable
et semi-continue inférieurement sur [0,1], et enfin non nulle en D .

Démonstration du théorème 92.1. Si ç E L 2 (R), alors 'y = 9~ convient . Récipro-
quement, soit 'y une fonction satisfaisant aux hypothèses de l'énoncé . Nous utiliserons
le lemme suivant .

LEMME 2 .3 . Soit w une fonction continue, 1-périodique quelconque . On a, pour
toute fonction f continue, 1-périodique, et tout entier n > 1,

2n-1 f ()
n fi w k dÀ =

0
Pw f (a)dÀ .

_2n-1

	

2

	

k-1

	

2

Preuve du lemme . On a
1

0
P2„f(a)da = f0 1 w 2 f

	

da +
01

	

-I-w 2 2 f 2 + 2 da .

La formule du lemme, pour n = 1, découle du changement de variables À' _ À -I- 1

dans la dernière intégrale, et de la périodicité de w et f .

Pour n > 2, on procède par récurrence : supposons le lemme vérifié pour un entier
n > 1 donné. On a

1

	

2n-1

Pw+l .f(À)dÀ =

	

Pw .f
0

	

_2n-1
()dÀ
2

1

	

n

2n
2
Pf(À) 11 w(2n-kÀ)dÀ

1
2

	

k=1
1

	

n2
= 2n [ w - f () - fi w (2n--kÀ)dÀ

~

	

2

	

2
2

	

k=1
1
2 .

2

w
1\

	

~C

	

1\
"
~

2 + 2 ) f C 2 + 2 '
k-1

Utilisant les changements de variables À' = 2 et a' = 2 -I- 2 , respectivement, dans la
première et la dernière des deux intégrales ci-dessus, on obtient, grâce à la périodicité
de w et f,

1

	

1

	

n+1

Pf(n+1 À)dÀ = 2n+1 J
2

f(À) f w(2À) dÀw
0

	

1 k=1
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�t l'on conclut grâc� au chang�m�nt �� variabl�s a' = 2 1+ 1 a . L� l�mm� �st ainsi
�émontré .

L� l�mm� appliqué av�c f = •y �t w = u �onn�

2'

	

À
f()flu()�À

2n-1 ~2n

	

2k
k=1

�'où, grâc� au l�mm� �� Fatou, 'y(0) f±Oo ~ç(À), Z�À < fo 'y(a)�À, c� qui prouv� bi�n
qu� �st �� carré intégrabl� sur R .

	

D

2.2. Pr�mièr� caractérisation ��s filtr�s �'éch�ll� �� class� C°° . Rap-
p�lons qu� mo �st un filtr� �'éch�ll� si l�s con�itions (P1) �t (P2) �u §1 sont satisfait�s .
Supposons �ans un pr�mi�r t�mps qu� ç E L2 (R) . On sait qu� o~ �st continu�, �t il
�st prouvé �ans [25], [8] qu� la famill� {q( . + k), k E Z } form� un systèm� �� Ri�sz
si, �t s�ul�m�nt si, il �xist� un� constant� c > 0 t�ll� qu� l'on ait, pour tout x E R,

($)

(9)

w ( 2 )
w C2 + 2)J

1 < B~ (x) <�.
c

Autr�m�nt �it, (P2) �st équival�nt à (8) . On �é�uit facil�m�nt �� (6) �t (8) qu'un�
con�ition néc�ssair� pour qu� mo soit un filtr� �'éch�ll� �st qu�

fmo()I 22 +Imo(2 + 2)f2 > 0, pour tout x E R .

D'autr� part, comm� ç(0) = 1, on a �~(0) > 1 . L�s con�itions (8) �t (6) (av�c x = 0)
�ntraîn�nt qu� mo ( 2) = 0. C�tt� ��rnièr� con�ition �st �onc néc�ssair� pour (Pi) �t
(P2) .

Pour la résolution �� (P2), nous utilis�rons la notion �� compact invariant [7] .
Dans l� ca�r� ��s filtr�s QMF �t biorthogonaux, on trouv�ra un� autr� solution ��
(P2) �ans [3] �t [4] .

Définition ��s compacts invariants . Soi�nt So �t S1 l�s applications �� [0,1]
�ans lui-mêm�, �éfini�s par

x=x �t S 1 x= -I-x 1 ~S0

	

xE[0,1] .2

	

2 2

Soit w un� fonction 1-pério�iqu�, continu�, t�ll� qu�

1

	

1

f P~ 7(À)�À = f y(À)�À,
0

	

0

> 0, pour tout x E R.

Un compact K �� [0,1] �st �it invariant pour w si, pont tout x E K �t tout o E
{So, S1 } t�ls qu� w(cTx) 0, on a o-x E K . L� li�n av�c l� problèm� (P2) �st �onné
par la proposition suivant� .

PROPOSITION 2 .4 . Soit mo un� fonction 1-pério�iqu�, �� class� C°°, vérifiant
mo (0) = 1 �t (9) . Alors l'�ns�mbl� Z(9) ��s zéros �� 9~ sur [0,1] �st un compact
invariant pour mo, n� cont�nant ni 0 ni 1 . En outr�, si K �st un compact invariant
pour )mol, �isjoint �� {0,1}, alors o~ �st i��ntiqu�m�nt null� sur K .

Démonstration �� la proposition 2 .4 . L� fait qu� Z(9) soit un compact invariant
pour mo �st évi��nt �'après (6) . On a �n outr� o~(0) = o~(1) > q(0) 2 = 1, c� qui
prouv� la pr�mièr� ass�rtion �� la proposition .



Soient K un compact invariant pour m°, disjoint de {0,1 }, x un élément de K,
et enfin k E Z quelconque . Pour tout y E R, nous notons [y] sa partie entière, et
{y} = y - [y] sa partie fractionnaire. Nous devons prouver que çb (x -I- k) = 0, ou
encore, puisque m° est 1-périodique, que

m

	

. . .m

	

. . . = 0 .°

	

2 Dmo

	

4

	

°

	

2n

Or, pour tout y E R, on a { 2 } _ { 2 } ou {2} = 2 + 2 . Il existe donc une suite
(°n)n>1 d'éléments de {S°, S1} tels que {(x -f- k)/2n} = or z . . . a1(x) pour chaque
n > 1 . Comme K est invariant, si l'on avait m°({ (x + k)/2'}) L 0, pour tout n > 1,
alors ({(x + k)/2'})>in serait une suite d'éléments de K convergeant vers 0, ce qui est
impossible par hypothèse . Il existe donc un entier n > 1 tel que m° ({ (x + k) /2n }) = 0,
d'où O(x + k) = 0 .

	

D
Remarque . La proposition précédente est encore valable si m° est uniformément

h6lderienne . En effet, il suffit de vérifier que Z(9~) est un compact, l'invariance étant
à nouveau assurée par (6) . Soit (x)>n n1 une suite d'éléments de Z(9~) convergeant
vers x E [0,1] . Comme 9, est serai-continue inférieurement, nous avons 9, (x) <
lira inf n 9~ (xn ), d'où 9~ (x) = 0 . Ainsi, Z (O,) est un fermé de [0,1], et donc un
compact .

Donnons maintenant une première caractérisation des filtres d'échelle de classe
C°°

THÉORÈME 2 .5 . Soit mo une fonction 1-périodique, de classe CO° , telle que
m°(0) = 1, et soit u = (m° 2 . Une condition nécessaire et suffisante pour que m°
soit un filtre d'échelle est que m° vérifie (9), m°() = 0, puis que Pu possède une
fonction 'y invariante, 1-périodique, de classe C°°, stictement positive, et enfin que
tout compact invariant pour m° contienne 0 ou 1 .

Dans ce cas, 9~ est l'unique fonction Pu -invariante, continue et 1-périodique (à
un scalaire multiplicatif près) .

Remarque . La condition m°() = 0 entraîne que ç(k) = 0 pour tout k E Z,
k 0, d'où 9~ (0) = 1 . En particulier, si m° est un filtre d'échelle, toute fonction h
Pu-invariante, continue et 1-périodique, s'écrit h = h(0)9~ .

Démonstration du théorème 2 .5 . Grâce à (6) et (8), si m° est un filtre d'échelle,
la fonction 9~, qui est de classe C00 , est Pu-invariante, 1-périodique, et strictement
positive, ce qui implique (9) et m°() = 0. La propriété sur les compacts invariants
résulte de la proposition précédente .

Réciproquement, supposons l'existence de la fonction 'y de l'énoncé, et que tout
compact invariant pour m° contienne 0 ou 1 . En vertu du théorème précédent, çb, et
donc q, appartiennent à L 2 (R) . On sait que 9~ est alors de classe C°°, et, d'après
la proposition 2.4, que l'ensemble Z(9~) des zéros de 9~ sur [0,1] est un compact
invariant pour m°, ne contenant ni 0 ni 1 . On en déduit que Z(9~) est vide, et donc
que 9~ vérifie (8), ce qui prouve que m° est un filtre d'échelle .

Pour prouver la dernière propriété du théorème, on considère la fonction 'û(x) _
(O(2x))~ 19~ (x)u(x) . Désignant par Pu l'opérateur défini par (7) avec û à la place
de u, on obtient P~ f = Ç'Pu (Of), ~ d'où P~ 1 = 1, ou encore û( 2) -+- û( 2 + 2) _
1 pour tout x E R. La fonction û possède les mêmes compacts invariants que u° . En
outre, si g est une fonction Pu-invariante, continue et 1-périodique, alors Pû (9 1g) _
Ç 1g. Il reste donc à prouver que, si g est une fonction Pi-invariante, continue et
1-périodique, alors g est identiquement constante . Soient K° _ {x E [0,1] : g(x) _
inf g} et K1 = {x E [0,1] : g(x) = sup g} . On montre facilement que K° et K1 sont
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des compactas invariants pour û . Ils contiennent donc 0 ou 1, d'où inf g = sup g =
g(0) = g(1) . Le théorème est finalement démontré .

	

D

2.3. Cas où mo a un nombre fini de zéros : Description des compacts in-
variants. La condition du théorème 2.5 sur les compacts invariants, difficile à vérifier
dans la pratique, peut être simplifiée si mo possède un nombre fini de zéros sur [0,11 .
A cet effet, nous utiliserons les définitions suivantes .

Soit m E N* . Nous dirons que x E [0,1] est un point périodique d'ordre m s'il
existe m éléments 0 i , • . . , crm de {So, Si } tels que CT,-,-L oi x = x, et si m est le plus
petit entier pour lequel on a une telle relation . La famille {a i , . . . , a,r12} vérifiant la
relation ci-dessus est unique, et l'on pose

Cx

	

{o-k . . . aix, k = 1 , . . .,m} .

Nous appelons cycle périodique d'ordre m tout sous-ensemble fini C de [0,1] de
la forme Ces , où x est un point périodique d'ordre m. Notons qu'un cycle périodique
C est invariant pour une fonction w si l'on a w(y + 2) = 0 pour chaque élément y de
C. Les propriétés ci-dessous sont démontrées dans [18] .

•

	

Les points périodiques d'ordre inférieur ou égal à q, q E N*, sont de la forme
k/(2p - 1), où p E {1, . . .,q} et k E {0,1, . . . , 2p - 1} .

• Soit w une fonction 1-périodique, continue, positive ou nulle, vérifiant (10) et
possédant un nombre fini de zéros . En outre soit P,, l'opérateur défini par (7) avec
w au lieu de u. Si -y est une fonction continue sur [0,1], positive ou nulle, telle que
Pw y = ,3'y, où /3> 0, alors l'ensemble Z('y) des zéros de •y est, ou bien vide, ou bien
une réunion finie de cycles périodiques invariants pour w .

•

	

Soit mo une fonction 1-périodique, continue, vérifiant (9), mo (0) = 1, mo ( 2) _
0, et admettant q + 1 zéros . Les trois propriétés suivantes sont équivalentes .

(i) Tout compact invariant pour mo contient 0 ou 1 .
(ii) Il n'existe pas de cycles périodiques invariants pour mo autres que {0} et {1} .
(iii) Les points périodiques x, différents de o et 1, d'ordre inférieur ou égal à q,

vérifient la condition suivante :

(11)

	

~y E C~ tel que ma(y-I- 2) ~ 0 .

Notons que (11) nécessite un nombre fini de vérifications élémentaires . La con-
dition (11) est toujours satisfaite si q < 1 . Pour q > 2, il suffit de vérifier que mo
n'est pas identiquement nulle sur un certain nombre de sous-ensembles finis de [0,1]
(dépendants uniquement de q), par exemple { s , s } si q = 2, ou encore sur { s , 6 } et

1 11 9

	

S.

	

3 .{14' 14' 14}

	

q =

3. Description spectrale des opérateurs de transfert . Soit (E, J JJ)
l'espace des fonctions continues sur [0,1], à valeurs dans C, muni de la norme uniforme .
Soit w une fonction de E à valeurs positives ou nulles . Nous désignerons par. Pw
l'opérateur défini sur E par

(12)

	

P.,,,f(x)-w(2)f(2)+wC2+2Jf

	

-I-C221,

	

xE[0,1] .

Il est clair que l'opérateur P u, est borné sur E, et qu'il est positif (il conserve le
sous-ensemble de E formé des fonctions positives) . Une première conséquence de la
positivité de Pw est que JJPfJJw

	

< JJPw 1 J Î "f J J pour tout n> 1 et tout f E E .
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Soit pw le rayon spectral de Pw sur E. On a

(13)

	

pw = lim ( IP1H .w ~n

L'étude spectrale de Pw , faite ci-dessous pour, w hdlderienne, s'appuie sur la propriété
de quasi-compacité [15] dont nous rappelons la définition .

DÉFINITION . Soit (L, II IHL) un espace de Banach complexe. Un opérateur T
borné sur L, de rayon spectral p(T), est dit quasi-compact s'il existe un réel r tel que
0 < r < p(T ), et deux sous-espaces N et F supplémentaires dans L, stables par T,
tels que

1 < dim N < -I-oo et T1 N n'a que des valeurs propres de module > r,
F est fermé et le rayon spectral de TIF est strictement inférieur à r .
Pour tout réel a, 0 < a < 1, nous notons Ea le sous-espace de E constitué des

fonctions vérifiant

m(f) = sup
{ f(x)-f()I

x yE
[O,1],x

#y
1
} <+oo

Nous munissons Ea de la norme

	

la définie par

HIfamc(f)+UfHoo .ll I=

Il est clair que Pw est un opérateur borné sur Ea . Soit À une valeur propre quelconque
de Pw sur Ea. Si, pour un entier i > 1, les espaces Ker(Pw - À)' et Ker(Pw - ~) i+ 1

coïncident, nous noterons

v(À) = inf {i e N* : Ker(Pw --- À)' = Ker(Pw -

l'ordre, ou encore l'indice (cf. [12]), de À pour Pw sur Ea . Le théorème suivant est
démontré dans [15], [18] .

THÉORÈME 3.1 . Soit w une fonction de Et', positive ou nulle sur [0,1] . Sur
l'espace E', Pw est quasi-compact, admet pw comme rayon spectral et valeur propre,
et enfin possède une fonction propre associée 'y positive ou nulle . Les valeurs spectrales
de module pw sont en nombre fini et constituent des valeurs propres de P w . Toute
valeur propre À de module pw est telle que v(À) < -f-oo, dim Ker(Pw - À)"(') < +oo,
et l'on a plus précisément

v(À) < v(p,,,) <+00 .

On dispose en outre de la décomposition suivante

Ea -- (c=pW Ker(Pw - À)v(\) ® F,

où F est un sous-espace de Ea, stable par Pw , tel que le rayon spectral de PwiF soit
strictement inférieur à P u' .

Remarques. (a) Si 'w(0) = w(1), il existe une fonction propre y de Ea associée â
pw, , positive ou nulle, telle que 'y (O) = 'y(1).

(b) Si la fonction y du théorème 3.1 est strictement positive, il existe c > 0 telle
que 1 < c'y, d'où pw nPw 1 Ç cy .. Il en résulte que v (pw) = 1 .

(c) Si v(pw) = 1, les valeurs propres de module égal à pw sont également d'indice
1 . La décomposition du théorème 3 .1 entraîne que sup n>1 pwn II1w 111 00 <+00 .
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(d) S'il existe une fonction Pw-invariante, continue et strictement positive, on a

sup ~(Pw1((~ <+00.
n>1

On a donc nécessairement pw = 1 et v(pw) = 1 . C'est par exemple le cas si w vérifie
w(2) + w( 2 + â ) = 1, pour tout x E [0,1], car alors 1 est Pw-invariante .

Cas polynomial. Dans la suite, pour tout entier £ > 0, nous désignerons par T
l'espace engendré par la famille {e2 ',i~ k _ -e, . . . , } . Supposons que w E T , avec
£ > 1 . Tout polynôme trigonométrique f (x) _ >kEZ ake2i~k~ s'écrit de la manière
suivante

f (x) --

	

a2ke22k~ +

	

a2k+le2i~(2k± »

kEZ

	

kEZ

= fo (2x) + e2" f 1(2x) .

En particulier, on a w(x) = wo(2x) + e 2" wl(2x), et un calcul évident montre que

Pw f (x) = 2[u0(x)fo(x) + e2u1 ul (x) f l (x)] .

On déduit aisément de cette dernière formule que Pw laisse invariant L'opérateur
P = Pw T_ 1 s'identifie, par exemple dans la base {e2", k _ -~ + 1,	}, à
une matrice carrée d'ordre 2 ? - 1 que nous expliciterons dans le §5 .

4. Caractérisation des filtres d'échelle de classe C°° . Dans ce paragraphe,
m0 est une fonction 1-périodique, de classe C°°, telle que m0(0) = 1 . Rappelons qu'on
a noté ç(a) = flk>1 mo(2_ka), et que est continue sur R. Si ç E L 2 (R), on note
q sa transformée dë Fourier inverse. Les espaces E et Ea, et la notion d'indice d'une
valeur propre, ont été définis dans le paragraphe précédent . Pour w E E donnée,
on note Pw l'opérateur défini par (12) . Rappelons que la condition mo(2) = 0 est
nécessaire pour (P1), (P2) . L'objet de cette partie est de simplifier les solutions de
(P1) et (P2) données dans le §2 .

THÉORÉME 4 .1 . Soit m0 une fonction 1-périodique, de classe C °° , telle que
mo(0) = 1 . En outre, soient u(x) _ tm o (x) 2 ,(pu le rayon spectral de Pu sur E,
et v(pu ) l'indice de pu pour Pu sur E 1 .

Une condition suffisante pour que E L 2 (R) est que mo( 2) = 0, pu = 1 et
v(pu) = 1 . En outre, une condition nécessaire et suffisante pour que m0 soit un filtre
d'échelle est que m0 vérifie mo ( 2) = 0, (9), que pu = 1 et v(pu ) = 1, et enfin que
tout compact invariant pour m0 contienne 0 ou 1 .

Remarques . Rappelons que, si m0 n'a qu'un nombre fini q+ 1 de zéros, la condition
sur les compacts invariants est équivalente à (11) .

Si les conditions du théorème 4 .1 sont vérifiées, la fonction 8c (x) _ Ek€z k(x +
k) ( 2 est l'unique fonction Pu-invariante, continue et 1-périodique (à un scalaire mul-
tiplicatif près), voir le théorème 2 .5 .

Démonstration du théorème 4.1. D'après la remarque (c) consécutive au théorème
3.1, si pu = 1 et "(Pu ) = 1, alors supn> 1 ( IP1I(û oo <+00. On montre que q E L2(R)
grâce au lemme 2 .3, appliqué avec w = u, f = 1, et au lemme de Fatou .

Supposons maintenant que m0 soit un filtre d'échelle . Alors mo s'annule en 2 ,
satisfait (9), et o~ est une fonction 1-périodique, de classe C °° , Pu-invariante, à valeurs
strictement positives (voir §2) . En vertu de la remarque d) consécutive au théorème
3.1, il vient que pu = 1 et v(pu) = 1 . La propriété sur les compacts invariants résulte
de la proposition 2 .4 .



Réciproquement, si mo (2) = 0, pu = 1,= v(pu ) = 1, alors E L2(R), et d'après
l'hypothèse sur les compacts invariants et la proposition 2 .4, & est stictement positive,
donc vérifie (8) .

	

D
La condition mo (2) = 0 assure en général une factorisation de la forme mo (x) _

((1 + e2)/2)r'v(x), avec r E N* et v régulière telle que v(2) 0 . Sous cette dernière
hypothèse, nous nous proposons de simplifier les critères du théorème précédent .

THÉORÈME 4 .2 . Soit mo une fonction 1-périodique, de classe C°°, telle que
mo (0) = 1 . On suppose en outre que mo admet un nombre fini q + 1 de zéros, et
que
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où r E N*, et où v est une fonction lipschitzienne, non nulle en 2 . Soit en outre,
pour tout n > 1,

V

1 -}- e2i~~ r
2

k o

(i) Si mo vérifie (9) et (11), alors la suite ( ssn l' )n>1 converge avec une vitesse
exponentielle vers un réel noté /32 .

(ii) Une condition nécessaire et suffisante pour que mo soit un filtre d'échelle est
que mo vérifie (9), (11), et que /32 <22 r .

Remarques . Soit a(x) _ Iv(x) 2 .IOn montre facilement par récurrence que, pour
tout f E E,

k 2

	

k
Iv(_)12()I

	

2'

v(x), dx E [0,1],

v

.

f
(x+k

2n

	

'

d'où Sn = P1(0). On peut d'ailleurs utiliser S(x) = P1(x) à la place de S(O) _
Sn dans l'assertion i), mais le calcul de Sn a l'avantage de n'utiliser que les valeurs de
v sur les points dyadiques .

Si mo admet un nombre infini de zéros, l'assertion (ii) reste valable à condition de
remplacer (11) par l'hypothèse générale sur les compacts invariants (cf. le théorème
4.1), et /32 par le rayon spectral Pa de Pa sur E (voir [14], [20]) . Nous montrerons
ci-dessous que, sous les hypothèses du théorème 4 .2, Pa = /32 .

Démonstration du théorème 4.2 . On note u(x) _ ~mo(x)1 2 , a(x) _ Iv(x)1 2 , Pu
et Pa les opérateurs associés respectivement à u et a selon (12), et enfin Pa le rayon
spectral de Pa sur E .

(i) On a vu que Sn = PQ 1(0) . Nous allons en fait prouver que, pour tout x E
[0,1], la suite (P'~+1(x)/Pa 1(x))n>1 converge avec une vitesse exponentielle vers pa .
D'après le théorème 3.1, il existe une fonction •y de E1 , positive ou nulle sur [0,1], telle
que Pay = pay . En vertu de (11), la fonction a ne possède pas de cycle périodique
invariant. D'après une des propriétés rappelées dans le §2, on obtient y > 0 .

Soit T l'opérateur relativisé de Pa , défini sur E par T f (x) = pâ 1(y(x)) _ 1Pa (y f) (x) .
Notons que T = Pu,, où w(x) = p;'(y(2x))-1y(x)a(x) est telle que w(x) +w(x+ 2) _
1. Un résultat prouvé dans [7, p . 309] (voir également [22]) nous assure que, pour tout
f E E, la suite de fonctions {T'2f, n > 1 } converge dans E (vers une constante) . Donc
1 est l'unique valeur propre de module 1 pour T sur E 1 . Si f est telle que Pa f = af ,
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À E C, alors Tg = p;Àg, où g = . Ainsi, P a est l'unique valeur propre de module
Pa pour Pa sur E'. Utilisant la quasi-compacité de Pa sur E', il vient que 1 = b'y + h,
avec b E R, et où h E E' est telle que (pâIfPhI( 00)>, converge vers O avec une
vitesse exponentielle . En outre, il existe une constante c > O telle que c'y 1, d'où
cp'y P$1 pour tout n > 1 . Donc b O. On obtient

P1(x) = p(b'y(x) + vn (x)),

où la suite (IIvn I) 00 ) n>, converge vers O quand n - +00 avec une vitesse exponentielle,
ce qui prouve la propriété annoncée . En particulier, /32 = Pa .

(ii) Soit m 0 un filtre d'échelle . Nous devons prouver que /32 <2 2r . On a p = 1
et v(pu ) = 1, grâce au théorème précédent. Or, d'après la remarque (a) consécutive
au théorème 3 .1 (appliquée ici avec w = a), la fonction 'y ci-dessus est 1-périodique .
La fonction h(x) = (sin irx) 25(x), qui appartient à E', vérifie, grâce à la formule
classique sin 2x = 2 sin x cos x,

Ph(x) = 2_ 2 n1 sini .x 2 r.p0'y(x)

On a donc 2_ 2 32 < Pu 1, d'où /32 < 22r . En outre, si on avait /32 = 2 2r , la fonction
1-périodique h serait Pu-invariante avec h(O) = h(1) = O, d'où d'après le théorème
2.5, h = h(O)9

	

O, ce qui est absurde.
La preuve de la réciproque utilise la formule classique

11fl cos
k>1

ainsi que le résultat suivant .
LEMME 4.3 . Soit w une fonction de E, où O < a < 1, 1 -périodique, positive ou

nulle . Soit en outre Pw le rayon spectral de P 0 sur E. On a, pour tout réel b tel que
b> log2p,

+00L 1 +~~~~b ilwdÀ <k>1

Preuve du lemme. Il suffit de vérifier que

1

	

À

J9n* 2<JÀI<2n 1

	

fiw()dÀ < +00.'~~ k .>1

Or, on a

1

	

Àf
fl2<À<2fl1

	

k~b fi w()dÀ1

sin À
À

< c2f
2

= 2 2r$2h(x) .

fi w()dÀ.
2 <JÀj<2' k>1

Posons g(À) = flk>1 w(2) = g( 2 ) fl, w( 2 ). Comme g est continue, nous avons,
pour tout réel À tel que 2 2 <IÀI 2', g(À) C f=1 w ( ) . Nous en déduisons



que

I < C2

< C2'

d'où, d'après le lemme 2 .3,
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n_2 <lÀI<2 n_1

	

1 w()

11
w()dx,

I <_ C2n b L P1()dÀ

<Cf2_(p + )fl ,

où l'on choisit f > O tel que Pw + <

	

On en déduit bien la propriété annoncée, et
finalement le lemme .

Comme /32 <2 2r , le lemme appliqué avec w = a et b = 2r donne

+00

f

	

I(À)IdÀ =
-00

mo(x) =

+00

	

f

	

12r
flcos

	

fla()dÀf
00 k>1

	

k>1

ç+00 sinir\ (2r

I

	

À 2 fl a( )dÀj_00

	

k>1

<+0O .

u(x) = Imo(=)I2 =

k=m

1+e2 ) r
2

où r E N* et v( 2 ) O. Posant N = n - m, nous définissons

+00

	

1
<CJ 1-_-fja()dÀ

k>1
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On a montré que E L 2 (R) . On déduit de la proposition 2.4 que m0 est un filtre
d'échelle .

	

D

5. Caractérisation des filtres d'échelle polynomiaux . Si mo est un poly-
nôme trigonométrique, les deux théorèmes précédents fournissent des conditions néces-
saires et suffisantes pour que m 0 soit un filtre d'échelle . En particulier, une condition
nécessaire est que mo() = O . Cependant, dans le cas polynomial, nous allons voir
que les valeurs pu , Z"(Pu ), et /32 se calculent à l'aide de matrices .

Plus précisément, considérons un polynôme trigonométrique m0 possédant q + 1
zéros, et tel que m 0 (O) = 1, mo(2 ) = O. Posons, pour fixer les notations,

2iirkxke
k= -N

= (cos irx) 2 'a(x)
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N-r

a(x) = Iv(x)12 =

	

ake 2iirkxx

k=-N+r

Nous savons, d'après le §3, que Pu opère sur l'espace de dimension finie TN_ 1 . En
fait, un calcul explicite montre que P = PuITN _ 1 admet, dans la base {e_2('1)x, . . .,

i~--e2i~(N-1)x},la matrice carrée d'ordre 2N - 1 suivante :

Po = [2u2ij JjjN+1_,=
-,. ..,N-1 '

De la même façon, Pa laisse invariant TN _r_ 1i et Pa ITN _ T _ 1 admet, dans la base
{e

-2izr(N-r-1)x . . . , e2i~r(N-r-1)x}, la matrice carrée d'ordre 2N - 2r - 1 suivante :

P1 = [2a2ij]jj .N+r+l-,=

	

, . . ,N-r-1 '

Rappelons que l'indice d'une valeur propre ) de Po est le plus petit entier n tel que
Ker(Po - ÀId)n = Ker(Po -

THÉORÈME 5.1 . Les trois propriétés suivantes sont équivalentes .
1 . mo est un filtre d'échelle .
2 . mo vérifie (9), (11), et la plus grande valeur propre positive de Po est égale à

1, son indice valant 1 .
3 . mo vérifie (9), (11), et la plus grande valeur propre positive de P 1 est stricte-

ment inférieure à 2 2r .
Si ces dernières conditions sont vérifiées, la fonction d'échelle est à support

compact inclus dans [m, n], et 04,(x) _ ~ kEZ k(x + k)1 2 , qui appartient à TN, est
l'unique fonction Pu-invariante continue et 1-périodique (à un scalaire multiplicatif
près) .

Démonstration du théorème. L'équivalence des trois conditions résulte des théorèmes
4.1 et 4.2, et des propriétés suivantes .

(a) La plus grande valeur propre positive po de Po est égale au rayon spectral pu
de Pu sur E .

(b) L'indice de po pour Po est égal à 1 si, et seulement si, tel est le cas pour
l'indice V (Pu ) de pu pour Pu sur E 1 .

(c) La plus grande valeur propre positive de P1 est égale au rayon spectral p a = /32
de Pa sur E .

Soit p(Po) le rayon spectral de la matrice Po (ou encore celui de PuITN _ 1 ) . Comme
la fonction 1 appartient à TN_ 1 , on déduit de (13) que p(Po) = P u • En outre, Pu étant
un opérateur positif sur TN_1, on sait, d'après la théorie classique des opérateurs
positifs en dimension finie [1], que p(Po) est la plus grande valeur propre positive de
PuITN_ 1 , donc de la matrice Po . La propriété (a) est prouvée, et le (c) s'établit de la
même façon .

Le (b) découle des remarques consécutives au théorème 3 .1, et des résultats clas-
siques sur les opérateurs positifs en dimension finie : pour simplifier, supposons que
pu = 1, et par conséquent que po = 1 . S i v (Pu) = 1, alors sup ra > 1 II 1 1100 =
supra> 1 11(PUITN_ l )'2(1)11 00 <+00 . Donc l'indice de po pour Po est égal à 1 .

Réciproquement, si cette dernière propriété est satisfaite, on sait que toutes les
valeurs propres de module 1 pour PuITN_ 1 , donc pour Po , sont d'indice 1 . D'où

sup II(PuITN_l)'(1)ll00 = sup Ii[) lII00 < +oo,
n>1

	

n>1
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et finalement V (PU ) = 1 .
Le fait que ç soit à support compact inclus dans [m, n] est une propriété classique

des filtres d'échelle polynomiaux démontrée dans [25], [8] . On a 8~ E TN d'après la
formule sommatoire de Poisson . Enfin le résultat d'unicité résulte du théorème 2.5 .
D

Remarque . Si les coefficients de fourier uk de u sont réels, les opérateurs P u et
Pa opèrent respectivement sur les espaces TN` 1 = vect { 1, . . . ,cos 2rr (N - 1)x} et
TN _ r_ 1 = vect { 1, . . . , cos 27r(N - r - 1)x} . Le théorème ci-dessus reste alors valable
quand on remplace Po et P1 respectivement par Qo = Pu I7-N-1 et Q 1 = Pa I TN -r- r

6. Résolution de (P3) et exemples . Les différentes méthodes (directes ou
fréquentielles) et les travaux antérieurs, relatifs à la régularité de ~, ont été indiqués
dans le §1 .

Soit un réel b > 0 . Une fonction f est de classe C b sur R si f est [b]-fois continue-
ment dérivable, et s'il existe une constante c > 0 telle que l'on ait, pour tout couple
(x, y) de réels,

y - x Ib- ~b]

Soit p un réel tel que p > 1. Si ç E LP(R), nous posons

f
+00

sp = sup{s > 0 :

	

I(À)I(1

	

~p+ jÀ(ps)dÀ < +oo} .

Rappelons les inclusions classiques entre les espaces de Sobolev et les espaces d'Hdlder
si s2 > 2 , q est de classe Cs2 _ â ~ E pour tout e > 0 . En général s2 n'est pas le coefficient
d'hôlder optimal co de rb . En revanche ao est inférieur à s2 + 2 . Par ailleurs, si est
intégrable et si s1 > 0, alors est de classe C s l !~ pour tout e > 0 .

Nous nous proposons ici de calculer st , 82, et plus généralement sp, dans le cas
général où m 0 est de classe C°° . Mais commençons par donner une première condition
pour que E Lp (R), laquelle sera simplifiée dans le théorème 6 .2 .

THÉORÈME 6 .1 . Soit mo une fonction 1-périodique, de classe C°°, telle que
mo (0) = 1 . Soient en outre p un réel tel que p ? 1, w = lmol, pp p le rayon spectral de
Pw , et enfin v(p p) l'indice de pp pour Pu, sur Eap, où ap est la partie fractionnaire
de p si p n'est pas entier, et a p = 1 sinon. Alors une condition suffisante pour que
E Lp (R) est que mo ( 2) = 0, pp = 1 et v(pp) = 1 . C'est une condition nécessaire et

suffisante sous l'hypothèse (9) et si tout compact invariant pour mo contient 0 ou 1 .
Démonstration. La première propriété s'établit comme dans le théorème 4 .1 avec

w et Eap à la place de 1mo 12 et E 1 .
Réciproquement, supposons que E L"(R), et que tout compact invariant pour

mo contient 0 ou 1 . Soit 8p(x) _ IkEZ kb(x + k) l° . La fonction Bp est serai-continue
inférieurement, Pw-invariante (utiliser (3) et considérer ici Pw sur V ([0,1] ), et stricte-
ment positive d'après la remarque consécutive à la proposition 2 .4. Si en outre op est
continue, ou plus généralement bornée, on a nécessairement pu = 1 et v(pu) = 1,
voir remarque (d) consécutive au théorème 3 .1. Cependant, dans le cas général, la
continuité de op n'est pas assurée a priori . On peut alors procéder de la manière
suivante : considérons la fonction -y de Eap, positive ou nulle, vérifiant P çf = pp-y,
dont l'existence est assurée par le théorème 3 .1 . Comme mo ( 2) = 0, on a P1(O) = 1,
pour tout entier n > 1, et donc pp > 1 en vertu de (13) . Par ailleurs, il existe une
constante c > 0 telle que 'y < cOp , d'où, pour tout entier n > 1, pp'y < Bp . Comme op
est intégrable sur [0,1], on a nécessairement pp = 1 .
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Pour prouver que v (pp ) = 1, procédons par l'absurde : si v (pp ) > 2, il existe
deux fonctions f et g de Eap , non identiquement nulles, telles que Pw f = f -I- g et
P~,g = g . Là encore, nous avons f I < c0p , où c > 0, d'où, pour tout entier n > 1,
iPfw I = f + ng I < P,~

I
f I < cep. Du fait que 9p E L 1 ([0,1] ), la contradiction s'établit

là encore en faisant tendre n vers +00 .

	

D
L'objet du théorème suivant est de simplifier les conditions précédentes, et de

calculer les coefficients s p définis au début de ce paragraphe . A cet effet, on supposera
que le nombre de zéros de mo est fini, un énoncé plus général étant donné dans [20] .

THÉORÈME 6.2 . Soit mo une fonction 1-périodique, de classe C°°, admettant un
nombre fini q + 1 de zéros, et vérifiant mo (0) = 1, (9) et (11) . On suppose en outre
que

(1+
e 2 ''~~ r

m o (x) =	 2	 v (x),

où r E N*, et où v est une fonction lipschitzienne, non nulle en 2 . Soit en outre,
pour p quelconque tel que p > 1, et tout n > 1,

et

k o
()i • •2 ° .Iv(2 )fin .

(i) La suite (Sp,n-f-1 ~Sp,n)n> 1 converge avec une vitesse exponentielle vers un réel

(ii) Une condition nécessaire et suffisante pour que E L (R) est que /3 <2' .
On a alors

1
sp = r - - loge ~p .p

On notera le parallèle avec l'énoncé du théorème 4.2 . En particulier, Sn = S2,n,

n

	

x +

	

x+ p x +P~v 1 p f (x) =

	

(	 ) IPI(. . .
v2n

	 ) I f(
2n

	 )2

	

,
k 0

d'où Sp , n = J:iv I p 1(0) . La démonstration du (i) est exactement la même que dans
le théorème 4.2 . En revanche, la démonstration du (ii) étant un peu plus technique,
nous l'avons reportée en appendice .

Remarques. Soit mo un filtre d'échelle de classe C°° . On sait que est intégrable
sur R [25] . Par conséquent si s 1 > 0, q est de classe C8'

_E pour tout e > 0 . Dans le
cas où m0 est un polynôme trigonométrique positif ou nul, on montre dans [5] que,
si ne s'annule pas sur [- 2 , +2 ], alors sl est le coefficient de Hôlder optimal pour q
(si s 1 E N*, il faut ici remplacer la classe de Hôlder par la classe de Zygmund) .

Cas particulier où mo est un polynôme trigonométrique . Nous conservons les
notations du §5 . Soit p un entier positif quelconque .

Si p est pair, IvIP est un polynôme trigonométrique, PJ. V JP laisse invariant l'espace
de dimension finie T2 (N-r)-1, et /3, est aussi la plus grande valeur propre positive de
l'opérateur .PHI restreint à l'espace Tz (N--r)-1

Si v est positif ou nul, cette dernière remarque s'étend au cas où p est impair . On
dispose alors d'un critère très simple pour que E L' (R) .



Exemples. Nous donnons les valeurs de s1 et s2 pour les filtres (de longueur
infinie) présentés dans [16] :

2i~x

	

1
•

	

(filtre de Butterworth) . mo (x) _ (1+2	 )2 18(6 + 2 cos 4rrx) _ 1
2

s i

	

0.7633 et s2

	

1 .2564 .
•

	

(filtre de Butterworth) . mo(x) _ ( 1+f1	)3 32(20 + 12 cos 47rx)-1 22

	

I

	

1

	

'
s l

	

1 .5615 et s2

	

2.045 .
2

	

1
•

	

mo (x) _ ( 1+m2	 )4 256(4 -- cos 27rx) (448 + 320 cos 4rrx) -112 .

s1 ^~ 2.238 et s2

	

2.702 .
2inx

	

1
•

	

(filtre de Butterworth) . mo(x) _ ( 1+ 2	 ) 4 1128(70 +56 cos 4rrx + 2 cos 8irx)-11 2 .
s 1

	

2.3707 et s2

	

2.843 .
2

	

1
•

	

mo(x) _ ( 1+m2	 )5 1512(34 -- 20 cos 27rx + 2 cos 4irx) (4608 -I- 3584 cos 47rx)-112 .
s 1

	

2.843 et s2 ^_r 3.282 .
•

	

(filtre de Butterworth) . mo (x) _ ( 1+'2
~x ) 5 1512 (252 + 240 cos 47rx -I- 20 cos 8?rx) -1

s l

	

3.184 et s2

	

3.649 .

7. Application à la construction d'interpolations dyadiques continues .
Soit (G3 )SEN une famille croissante de sous-groupes discrets de Rn tels que G~ _
US>0G5 soit dense dans Rn . Soit en outre f une fonction quelconque, à valeurs com-
plexes, définie sur Go . L'interpolation [2], [10], est un schéma qui permet de prolonger
f, de manière itérative, à G1, G2, . . . , Gn , . . . : on obtient ainsi une fonction f définie
sur G~ . L'une des questions est de caractériser les interpolations, dites continues,
telles que toute fonction interpolée sur G~ admette un prolongement continu sur Rn
(voir [11]) .

Nous travaillons ici avec n = 1 et dans le cadre dyadique G S = 2_SZ, s E N .
Après quelques rappels, nous nous proposons de donner, sous des hypothèses assez
générales, un critère très simple pour qu'une interpolation dyadique soit continue .

Procédé d'interpolation dyadique . Nous désignerons par D l'ensemble des
réels dyadiques, c'est-à-dire de la forme 2-r k, où r E N et k E Z .

Etant donné une famille {c(n), n E Z} de réels, nuls sauf pour un nombre fini
d'entiers n, on définit le procédé (D) d'interpolation dyadique de la manière suivante :
à toute suite réelle a = (a(n))flE z, on associe la fonction f, définie sur D par

f (n) = a(n) si n E Z
f(2-mn +- 2-(r+1 )) = I:kEZ c(n - k) f (2-rk) pour r = 0,1,2, . . ., et n E Z .
Pour fixer les idées, nous noterons dans la suite p et q, p < q, les deux entiers tels

que l'on ait c(n) = 0 pour n [p, q] et c(p)

	

0, c(q)

	

0 .
Notons D r , pour r E N, l'ensemble {2-r%, k E Z} des dyadiques d'ordre r . Les

éléments de Dr+ 1 -- Dr sont exactement les réels de la forme 2_mn -{- 2 (m+1) , n E Z .
Ainsi, le procédé (D) est bienn défini dans le sens qu'il permet, partant d'une suite a
quelconque, de construire une et une seule fonction f définie sur D. On dit que f est
la fonction interpolée par (D) partant de a.

Remarque . Il est naturel d'imposer que la fonction interpolée partant de la suite
{a(n) = 1, n E Z} soit identiquement égale à 1 sur D, c'est-à-dire que

>c(n)=i .
nEZ

Interpolante fondamentale. Soit (V) un procédé d'interpolation dyadique . La
fonction ~~ définie sur D comme l'interpolée par (D) partant de la suite bo = (O,n)nEZ~
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est appelée l'interpolante fondamentale relative à (D) (on a noté So ,n = 1 si n = 0,
So,n = 0 sinon) .

Reprenant les notations ci-dessus, l'interpolante fondamentale ç~ est à support
borné contenu dans [2p + 1, 2q -I-1], autrement dit on a ~~(x) = 0 pour tout dyadique
x n'appartenant pas à ce dernier intervalle . En outre, toute fonction interpolée par
(D) s'écrit sous la forme

f(x)

Pour tout dyadique x fixé, la série ci-dessus est une somme finie . En particulier, si a
est une suite à support fini, la fonction interpolée correspondante est à support borné .

Interpolation dyadique continue . Soit (D) un procédé d'interpolation dyadique .
Puisque D est dense dans R, la question du prolongement à R des interpolées a un
sens, ce qui conduit à la définition suivante : On dit que (D) est une interpolation
dyadique continue si l'interpolante fondamentale ~~ relative à (D) admet un pro-
longement continu sur R, que l'on notera encore ~~ .

D'après ce qui précède, & est alors à support compact contenu dans [2p+l, 2q+1],
et toute fonction f interpolée par (D) admet un prolongement f continu sur R, donné
par

(14)

	

f(x) -

	

f(k»~(x - k) pour tout x e R.
kEZ

Si l'interpolante fondamentale ~~ est de classe Cp sur R, toute fonction f interpolée
admet un prolongement de classe C~°, les dérivées successives jusqu'à l'ordre p de f
s'obtenant par dérivation terme à terme dans (14) .

Lien avec les filtres d'échelle et applications . Dans ce travail, nous nous
limiterons aux interpolations dyadiques continues telles que l'interpolante fondamen-
tale engendre par translations entières un système de Riesz (1) . Dans ce cas, si
(f(n))flEz est une suite de £2 (Z), la série dans la formule (14) converge, non seule-
ment ponctuellement, mais également dans L 2(R) . Nous verrons qu'en fait la plupart
des interpolations dyadiques continues satisfont à l'hypothèse précédente .

THÉORÈME 7.1 . Soit {c(p), . . . , c(q)} une famille de réels tels que >k c(k) = 1,
et soit (D) le procédé d'interpolation dyadique associé . Les deux propriétés suivantes
sont équivalentes :

1 . (D) est une interpolation dyadique continue, et son interpolante fondamentale
& engendre par translations entières un système de Riesz .

2. Le polynôme trigonométrique

~)e2i~r(2k+1)x

kEZ
f (k)q5~(x - k), x E D.

est un filtre d'échelle, et la fonction d'échelle q associée est continue, telle que

(15)

	

çb(n) =

	

dn e Z .

On a alors & _ ç5 .
Démonstration du théorème . Pour simplifier les notations, nous posons h2n

ô0,n, et h2n+1 = c(n), n E Z .



Pour prouver que 1 implique 2, il suffit de vérifier que l'interpolante fondamentale
q~ satisfait à l'équation d'échelle (voir §1)
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Par continuité, il suffit de prouver que f : x -* &()2et g : x -~ I nEZ hn~~(x - n)
coïncident sur D . Or ç5,( . -n) est la fonction interpolée par (D) partant de la suite 6,,
définie par Sn(k) = &,n-k . Par linéarité, la fonction g est donc la fonction interpolée
par (D) partant de la suite a = >I nEZ hn Sn . D'autre part, pour tout entier n et tout
entier r > 0, nous obtenons, d'après la définition du procédé d'interpolation,

f(2-mn
+ 2-(r+1)) _ q (2)n + 2-(r+2)

)
c(n - )~~(2-(r+1) )

kEZ

c(n - k) f (2- Tk) .
kEZ

Donc f est aussi une fonction interpolée par (D) . Pour prouver que f et g coïncident
sur D, il suffit de montrer que f = g sur Z. Or, on a

.f(k) =ç5)

~~( x ) --

	

hnc (x - n),
2

nEZ

si
(k) = hk

	

s°'P

	

~ = 2p,
c(p)

	

si k9 = 2p+1,
bo ,p
f ( 2p + 1) _ &(p+ 2 ) _ c(p)

Démontrons maintenant que 2 entraîne 1 . Les fonctions x -} çb(2-rx), r E N, qui
appartiennent à l'espace engendré par le système de Riesz {(.~- k), k E Z} (voir §
1), s'écrivent, grâce à (15), sous la forme

«2-Tx) _

	

«2-Tk»(x - k),
kEZ

d'où, pour x= n+ 2, n E Z,

«2_mn + 2-(r ~-1) )

'i" 2

XER.

~ (2(n - k) -1
J
«2-tmk)

.2

Or, grâce à l'équation d'échelle (4) et à (15), nous obtenons pour tout entier p,

h ¢(2p + 1-n) = h(2p + 1) = c(p) .
kEZ

si k =2p,
si k =2p+1 .

Ainsi, apparaît comme l'interpolante fondamentale associée à la famille {c(n), n E
Z}, ce qui prouve la réciproque.

	

D
Remarque. Supposons que {c(p), . . . , c(q) } définisse une interpolation dyadique

continue, et notons ç~ son interpolante fondamentale . Nous avons montré ci-dessus,
sans aucune hypothèse supplémentaire, que & vérifie l'équation ç~(À) = H~ ( 2) ç~ ( 2 )
(utiliser la transformée de Fourier dans (16)) . Par conséquent, en vertu des résultats
précédents, & engendre par translations entières un système de Riesz si, et seulement
si, H~ ne possède pas de cycle périodique autre que {0} et {1}, ce qui est presque
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toujours vérifié . Ceci prouve bien que les interpolations dyadiques continues étudiées
dans ce paragraphe sont assez générales .

Nous nous proposons maintenant de caractériser, par une condition très simple,
les interpolations dyadiques du théorème précédent vérifiant en outre la propriété
suivante : ç° E LZ (R) . Si l'on souhaite construire des interpolations dyadiques telles
que & soit assez régulière, cette dernière condition est naturelle .

Soient {c(p), . . . , c(q) } une famille de réels tels que >k c(k) = 1, (D) le procédé
d'interpolation dyadique associé, et soit HI le polynôme trigonométrique défini dans le
théorème précédent . Comme H() = 0, il existe r E N* et un polynôme trigonomé-
trique v, avec v ( 2) 0, tels que

1 e2r
2

THÉORÈME 7.2 . On suppose que la fonction H~ possède q +- 1 zéros, et qu'elle
satisfait (11), et IH(x)~

	

--I-- (H(x ~ - 2 ) > 0 pour tout x E R . Soit, pour n > 1,

2 n -1

k o

La suite (Sn+1/Sn)n>1 converge avec une vitesse exponentielle vers un réel /3 .
Les deux propriétés suivantes sont équivalentes .

1 . (D) est une interpolation dyadique continue, ç E LZ (R), et q engendre par
translations entières un système de Riesz .

2.,C3<2r .
La fonction ~~ est alors de classe Cr -1og2 - E pour tout e > 0 .
Remarques . La démonstration du théorème 7.2 utilise les résultats du §6. En

particulier, d'après le théorème 6 .2, le coefficient s1, relatif à ~~, est donné par
s1 = r - log e /3, ce qui prouve l'estimation ci-dessus sur la régularité de '° .

Soient w = IHC I, Pw l'opérateur défini par (12), pw le rayon spectral de Pw sur
E, et enfin v(pw ) l'indice de pw pour Pw sur E Z (voir §3) . Sous les hypothèses du
théorème 7.2, la condition /3 < 2~ est équivalente à pw = 1 et v(pw ) = 1 (voir §6) .

Notons que H() +- H~( 2 + 2 ) = 1 pour tout x E [0,1] . D'après la remarque
(d) consécutive au théorème 3 .1, si H~ est positive ou nul, on a pw = 1 et v(pw ) =
1. Le résultat de [11], selon lequel toute famille {c(p), . . . , c(q) } telle que H~ ? 0
est une interpolation dyadique continue, est une simple conséquence de la remarque
précédente .

Si v est positif, il est de la forme

.~+ 1

v(x) =

	

ake2ïzrkx '
k=

où £ E N* . Le nombre /3 du théorème 7.2 est alors égal à la plus grande valeur propre
positive de la restriction de PzJ à l'espace de dimension finie `I re, voir § 3 et 5 .

La définition des interpolations dyadiques conserve un sens lorsque la suite {c(n),
n E Z} n'est pas à support fini (mais suffisamment décroissante quand (n( --- +oa) .
Les résultats du paragraphe 6 étant énoncés pour les filtres de classe C°°, le théorème
précédent reste donc valable si H~ E C°° .

v C2
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On peut généraliser la notion d'interpolation dyadique de la manière suivante
(voir les notations du début du paragraphe) : soit m E N* . Partant de fonctions
aa , définies sur Go, indexées par les multi-indices a, a < m, on veut construire
itérativement une fonction f sur G00, qui admette un prolongement f de classe cm
sur Ri', et tel que les fonctions â~

f coïncident avec aa sur Go, voir [24] . Dans le
cadre n = 1 et G 3 = 2_ 8 Z, la description pour m > 1 est formellement identique au
cas m = 0 étudié ici, et conduit aux analyses multirésolutions de multiplicité m -F- 1
[19] .

Démonstration du théorème 7 .2 . On pose

D'après le théorème 6 .2, les conditions ,3 < 2r et E L 1 (R) sont équivalentes . Or si
le point 1 du théorème est vérifié, on a en particulier ~~ E L 1 (R), et l'on sait, grâce
au théorème précédent, que ~~ _ çb, donc fi < 2 ..

Réciproquement, supposons que fi < 2' . Alors ç E L1 (R) . La transformée de
Fourier inverse de e est donc continue, à support compact, et d'après (11), les
translatées entières de forme un système de Riesz . Par conséquent, H0 est un filtre
d'échelle . En vertu du théorème 7.1, il reste à prouver que vérifie (15), ou ce
qui revient au même, que le polynôme trigonométrique 'y(x) = >I nEZ ~(n)e2 est
identiquement égal à 1 .

Grâce à la formule sommatoire de Poisson, on a 'y(x) _ ~kEZ 7(x -I- k) . On a
donc 'y(x) _ > kEz H0( 2 -I- 2 )~( 2 -I- 2 ) . Découpant cette dernière somme suivant les
indices k pairs et impairs, nous obtenons la formule

H~(2/y\2/+H°(2+2)x(2+2)

D'autre part nous avons H 0 ( 2) -I-H0(2 + 2 ) = 1 pour tout x E [0,1] . Ceci nous conduit
à considérer l'opérateur PHI défini selon (12) (avec H0 à la place de w) sur l'espace
E des fonctions continues sur [0,1] .

Les fonctions 1 et ry sont PHI-invariantes . Nous allons conclure par l'absurde
supposons que ' y ne soit pas identiquement égale à 1 . On peut alors choisir un réel a
tel que la fonction f = 'y + al , qui reste invariante par PHI , soit nulle en 0 . Cette
dernière est donc de la forme

f (x) = e 2" sin e rux g(x),

où £ E N* et g(0) 0 . Explicitant l'équation PHCf = f, nous obtenons l'égalité

sin e(nx)g(x) = e 2( ~+r) 2 xg x v x sin e (ix) cos T ~ x
2

	

2

	

2

+e 2( .e+r
g

>~(2 + 2 >

	

x + 1 v
x

-f- 1 )sinr 7(x)cosQ ~2 2

	

2 2

	

2

	

2

Utilisant la relation 2 sin x cos x = sin 2x, on montre aisément que nécessairement
£ > r . La fonction f s'écrit finalement sous la forme

+00

ç(À) = fi

k=1
H0 (2 )

f (x) = e z~ r ~ sin'' nx fo (x),
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et la relation PHI f = f devient

f (x) = e2 2 rx sinr - x f o - cos y -x v --
2

	

()

	

()
2

	

2

	

2

+ (--1)reZ~(x+1)r cos r ~x fo x sinr ~x v x
2

	

2

	

2

	

2

= 2_rei7rrx sinr 7rx Pv fo(x),

où Pv est l'opérateur défini selon (12) . On a prouvé que Pv f o = 2r fo . Or pour tout
f E E, pour tout x E [0,1], et tout entier n > 1, on a I Pvf(x) I < 1 1 i f I (x), où P~ v 1
est l'opérateur associé à Ivi selon (12) . On a démontré dans le §6 que 3 est le rayon
spectral de P~v 1 sur E. On en déduit que le rayon spectral p v de Pv sur E est tel que
pv <41 < 2 .. Par conséquent 2r ne peut être une valeur propre de Pv sur E.

	

D

8. Appendice: Démonstration du théorème 6 .2. Il suffit de traiter le cas
p = 1 . Pour p quelconque, on remplacera (moi par imoi,pet E 1 par Eap (c a été
défini dans le théorème 6.1) . On pose u = i moi, a = ( v i . On note Pu , Pa les opérateurs
définis sur E selon (12), et pu, pa leur rayon spectral . Soit enfin v(pu ) l'indice de pu
pour Pu sur E 1 . La propriété (i) s'établit comme dans le théorème 4 .2. En particulier,
on a pa = f3, . Pour prouver (ii), nous aurons besoin du lemme suivant .

LEMME 8 .1 . Sous les hypothèses du théorème 6.2, si pu = 1 et v(pu ) = 1,
alors il existe une fonction ry E E 1 Pu-invariante, 1-périodique, à valeurs strictement
positives, et 'y est l'unique fonction Pu-invariante, 1-périodique et continue (à un
scalaire multiplicatif près) .

Démonstration du lemme. Commençons par prouver qu'il existe une fonction
'y E E 1 , Pu-invariante, 1-périodique, à valeurs positives ou nulles, telle que 'y(0) = 1 .
Comme mo( 2) = 0, on a P1(O) = 1 pour tout entier n > 1 . D'autre part, d'après le
théorème 3 .1, on a M = sup ra> , iiP1ii œu < +oc, et on montre aisément par récurrence
(voir [18]) que, pour tout entier n > 1 et toute fonction f E E1 ,

(17)

LOÏC HERVÉ

iiiPfiii'

	

L`52-" IIP,`lll~lllflll, +n„Ilfll~,

où Rn est une constante positive ne dépendant que de n et u (la norme iii • iii 1 a été
définie dans le § 3) . On en déduit qu'il existe un entier N pour lequel on a, pour tout
f E E1

,

iiiPfiii,û

	

< riiffiiil +RNiIfii©, où 0 < r < 1 .

D'où,

III'tuN Jlli1=111PN (Pu f)III1

<- rl I IPu J l l l1 + RN I IPu f l I00

<- r 2 iiif iiil + RN(r + M)iif 1100 •
puis, par récurrence, pour tout f E E1 et tout entier k > 1,

- r~-IliPlii,~N <- r k iiif iii, + RN • r -1 + M1

	

1
11f1100 •1-r

En conséquence, la famille {PuNf , k > 1} est équicontinue et bornée dans (E, il
Cette dernière propriété, appliquée avec f = Pu 1, pour m E {O, . . . , N - 1}, mon-
tre que {P1,u n > 1}, et donc { n Iii P, 1, n > 1}, sont équicontinues et uni-
formément bornées dans (E, i i l 1 00 ) . Grâce au théorème d'Ascoli, on peut extraire

1
+2
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de cette dernière suite une sous-suite convergeant vers un élément y > 0 de E 1 , 1-
périodique, vérifiant par passage à la limite 'y(O) = 1 et Puy = y , ce qui prouve bien
la propriété annoncée .

L'ensemble Z(-y) des zéros de y sur [0,1] est un compact invariant pour m0 (cf.
§2) . On a y(0) = y(1) = 1, et d'après (11), tout compact invariant contient 0 ou 1 .
Donc y > 0 .

Enfin, l'unicité de y se démontre suivant les mêmes techniques que pour le théorème
2.5, en utilisant cette fois l'opérateur relativisé T défini sur E par Tf = y-1Pu (yf) .
Le lemme est ainsi démontré .

Preuve de (ii) . Si q E L 1 (R), on a, en vertu du théorème 6 .1, pu = 1 et v(pu ) = 1 .
Par ailleurs, d'après le théorème 3 .1, il existe une fonction go E E 1 , positive ou nulle,
telle que Pago = pago = i31 go . La fonction g (x) _ sin 7rx I r go (x) appartient à E 1 , et
vérifie, d'après la formule sin 2x = 2 sin x cos x,

Pug(x) =
2-r sin 7rxl r Pago(x) = 2-'73,g(x),

d'où 2- '/31 < pu , soit ,Q1 < 2 .. Si i31 = 2r, alors Pug = g, d'où, en vertu dli lemme
précédent, g = g(0)'y, soit g =_ 0, ce qui est absurde .

Réciproquement, si Q 1 <2, le lemme 4.3 appliqué avec w = a et b = r prouve
que E L 1 (R) (on pourra s'inspirer de la méthode utilisée pour le théorème 4.2) .

Calcul de s 1 . Considérons un réel b tel que b > log2 ,Q1 . On a

f+00
I~IT-bl~(

À
)Id

À
= f +~ I~Ir-6

fi cos
2~ r ~ v C2

0o

	

J °°

	

k1

	

/c>1

_ /'+O° p
IT-6

I sinzr ÀIr ~
IT 11

v () dÀ

,.+°°

	

1
C ,~

	

1 + IÀI 6 k>1

D'après le lemme 4.3, cette dernière intégrale est finie, d'où s1 > r-log e f3, . Procédons
maintenant par l'absurde en supposant que s1 > r - log e ,C31 . Il existe alors un réel
b > r - loge j31 tel que f ±0 À j b (À)1 dÀ < oc . La fonction f, 1-périodique, positive
ou nulle, définie par

f(x) -

	

+k(x+k)I
kEZ

est intégrable sur [0,1] . Remarquons que f est a priori à valeurs dans [0, +oo], et
qu'elle est serai-continue inférieurement, comme limite croissante de fonctions contin-
ues .

Grâce à (3), il vient que

f(X) =
k
2 u C2 + 2) 0

V
C2~)

dÀ .

da

VXER.

Découpant cette dernière somme suivant les indices k pairs et impairs, on obtient
Puf = 2'f,

	

- l'opérateur Pu étant considéré sur L1 ([0,1]) dans l'égalité précédente .
LEMME 8 .2 . L'ensemble des zéros de f est réduit à {0,1} .
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Preuve du lemme . Pour x E [0,1], nous appelons trajectoire de x pour mo tout
sous-ensemble de [0,1] de la forme {a,, • • • a1x, n > 1} où {a,n n > 1} est une suite
d'éléments de {S,oS1 } vérifiant mo (a c1x) • • • mo (o - 1x) ; 0, pour tout n > 1 .
Les applications So et S1 ont été définies dans le §2 . L'adhérence de l'ensemble des
trajectoires de x est un compact invariant pour mo appelé orbite de x .

Commençons par prouver que, si f est nulle en un point x de [0,1], alors f est
identiquement nulle sur l'orbite O~ de x . Il est clair que f est identiquement nulle
sur l'ensemble T~ des trajectoires de x . Soit y E Ox : il existe une suite (yn )n> i
d'éléments de T~ convergeant vers y . Comme f est serai-continue inférieurement,
nous avons 0 < f (y) < lira inf ra f (y), d'où f (y) = 0, ce qui prouve la propriété
annoncee .

Rappelons que «k) = 0, pour tout k E Z, k 0 . On a donc f (O) = f(1) = 0 . Soit
x 0,1 : il reste à démontrer que f (x) 0. A cet effet, on procède par l'absurde
si f (x) = 0, alors f est identiquement nulle sur l'orbite de x, qui par hypothèse
contient 0 (ou 1) . Il existe donc une suite (x) >nn1 convergeant vers 0 (ou 1, mais la
preuve est alors analogue) telle que f (x) = 0 pour tout n > 1 . Écrivant la relation
Pu f (xn ) = 2--b f (xn ), et utilisant le fait que 2 n'est pas un point d'accumulation de
zéros de u, il vient que f (2 -I- 2 ) = 0 pour tout n assez grand, d'où, par passage à la
"lira inf", f ( 2) = 0. On en déduit que f est identiquement nulle sur l'orbite de , qui,
d'après un résultat prouvé dans [18], coïncide avec [0,1] . Ainsi, est identiquement
nulle sur R, ce qui évidemment est absurde . Le lemme est démontré .

Considérons maintenant la fonction h, positive ou nulle, 1-périodique, définie par
h(x) _ sin ~rx, -rf (x), si x E]0,1 [, et h(0) = h(1) _ (2r_b - 1) -1a( 2) f ( 2 ) . La
fonction h est a priori à valeurs dans [0, +oo] . On vérifie aisément que h est semi-
continue inférieurement . D'après le lemme 8.2, on a h(x)

	

0, `dx E [0,1] . Donc
infXE[o,1] h(x) > 0 .

Pour x E [0,1], on pose Pah(x) = a( 2)h( 2 )-E-a(2 -E-2 )h( 2 -I- 2 ) . De l'identité Pu f =
2-b f , et de la formule sin 2x = 2 sin x cos x, il résulte que Pah(x) = 2r-bh(x) pour tout
x E ]0, 1[ . Par ailleurs, nous avons choisi h (O) et h(1) telles que Pah (0) = 2' -'h(O) et
Pa h(1) = 2 r-bh(1), d'où finalement Pah(x) = 2h(x) pour tout x E [0,1] .
Nous pouvons maintenant conclure : il existe une constante d > 0 telle que 'y(x)
dh(x), pour tout x E [0,1], où 'y est la fonction du lemme 8 .1 . Donc pour tout n > 1,
'y(x) < d2n(r-b)/31 n h(x) . Or, rappelons qu'on a supposé b - log e X3 1 , soit 2r-b < ~ 1 •

Il vient que 'y est identiquement nulle, ce qui est absurde . Le théorème est démontré .
D
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Abstract. A generalization of sampling series is introduced by considering expansions in terms
of scaled translates of a basic function with coefficients given by sampled values of the convolution
of a function f with a kernel of Fej6r’s type. Such expressions have been used in finite element
approximations, sampling theory and, more recently, in wavelet analysis. This article is concerned
with the convergence of these series for functions f that exhibit some kind of local singular behavior
in time or frequency domains. Pointwise convergence at discontinuity points and Gibbs phenomena
are analysed. The convergence in the HS-norm is also investigated. Special attention is focused on
multiresolution analysis approximations and examples using the Daubechies scaling functions are
presented.

Key words, sampling series, wavelets, Gibbs phonomenon

AMS subject classifications. 41A25, 41A58

1. Introduction. In this paper we shall deal with expansion series of the form

in terms of the scaled translates of a basic function . When the coefficients are the
sampled values of a function f, Ch,k f(hk), this representation is denoted by

(1.2) Shf(x) E f(hk)(h-lx- k),

and it is known in sampling theory as sampling series. An historical overview of this
matter is given in [4].

Our aim here is to study expansions of type (1.1) with coefficients given by the
sampled values of (f #h)(hk) of the convolution of f with a kernel of Fejr’s type
h(V) h-lp(h-lv). That is,

(1.3) Qhf(x) Sh(Rhf)(x) E Rhf(hk)((h-lx- k),

where

(1.4) Rhf(x) f(x v)h-#.(h-v)dv,
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with # e L (R) and f_ #(v)dv 1. Observe that sampling series correspond to the
limit case when # is the delta distribution.

Expansions of type (1.3) have been extensively used in finite element approxi-
mations, where typically # and (I) have compact support and Sh and Rh are called
prolongation and restriction operators, respectively [1].

Multiresolution analysis of L2(R) (cf. [17], [18], and [9]) is another interesting
context in which expansions (1.3) appear. In a multiresolution analysis of L2(R) a
function f E L2(R) can be decomposed as follows:

kEZ >_j kEZ

The function (I)(x) appearing in the first term in the right-hand side of the above
expression is called scaling function. For j E Z the sets

{Ojk(X) 2J/2o(2Jx- k),k e Z}

form orthonormal bases of embedded closed subspaces V C L2(R) and

(1.6) H/f(x) E(f’ (jk)Ojk(x)
kZ

is the orthogonal projection of f onto Vj. Observe that IIjf has the form (1.1), where
the coefficients are the L-scalar products (f, d2jk}2j/2, and can also be represented in
the convolution form (1.3) with h 2-j and #(v) (I)(-v). Similarly, the functions
,k(x) in the second term of (1.5) are defined as

in terms of the function (x), which is usually called basic wavelet, and the set
{(x),,k R} constitutes an orthonormal basis for L2(R). Moreover, for every
j, the closed subspace Wj spanned by {jk(X),k Z} is the orthogonal complement
of V in V+I. Consequently, in this kind of decomposition the higher resolution
approximation IIj+if is obtained by adding to Hyf a high frequency component

Djf E (f’ j)jk(x)
kZ

corresponding to the orthogonal projection of f onto Wj. A multiresolution expansion
(1.5) is a discrete version of the continuous wavelet transform

Wf(a, b) a-/2 f(x) X..-.b dx.
oc a

This technique provides an adequate framework to analyse those phenomena that are
well localized in time or frequency domains. It has received considerable attention
in the last years and had been succesfully applied in several fields of mathematics,
physics, and signal analysis (el. [6], [14], and [19]).

There also exist generalizations of expansions (1.5) in the form

f(x) -(f ’k}Oyk(x) + (f, ,a}a(x)
kZ >_j kZ
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that differ in that the set {(I)jk, jk} of the synthesizing functions is not orthogonal
and the analysing functions {(I)k k} are not necessarily the same as the synthesizing
functions. The projectors

(1.7) Pjf(x) E (f’ Oa}jk(x)
kEZ

also have the form (1.3)with h 2-j and #(v) @*(-v). This kind of decomposition
includes the phi-transform [13] and biorthogonal multiresolution expansions [5], [22],
all of them being appropiate for local time-frequency analysis.

With this motivation, most of the results of the present paper are concerned with
the convergence of series (1.3) for functions f that exhibit some kind of local singular
behavior in the time or frequency domain. In the examples presented here we used
the compactly supported scaling functions (I)N constructed by I. Daubechies in

[8]. Even though the emphasis is in the context of orthogonal multiresolution analysis,
we also indicate how the results can be stated for a wider class of functions and
#. Section 2 is mostly devoted to the pointwise convergence at jump discontinuities
and to Gibbs phenomena. For instance, we will deduce that in multiresolution ap-
proximations Hj f the Gibbs phenomenon does occur near a discontinuity point but,
due to the local support of , it is restricted to a small neighborhood. In 3 we anal-
yse the convergence in the HS-norm. A classical result from finite elements theory
states that the order of convergence depends on the Strang-Fix condition and on a
moment relation. Here this result is obtained for basic functions @ and # that do not
necessarily have compact support.

2. Pointwise convergence. In this section we will investigate the pointwise
convergence of expansions (1.3). We are mainly interested in the analysis of the
Gibbs phenomenon at jump discontinuities. To carry out this analysis we need first
to state the pointwise and uniform convergence of Qhf(x) at continuity points of f.
When asking for conditions on (I) and # such that

lim Qhf(x) f(x)
h-O

at each point of continuity of f, we are led to consider the same question for the
operators Sh and Rh.

Concerning the convergence of singular integrals (1.4) we refer to Proposition
3.2.1 in [2]. It states that, if # e LI(R) and f_#(v)dv 1, and f e L(R) is
continuous at t, then Rhf(t) /(t), as h -* 0. Furthermore, if f is continuous on

(a- , b + ) for some r > 0, a < b,a, b E R, this convergence is uniform for all
t e [a, b].

Let us also recall some results for sampling series (1.2) given in [3]. For a bounded
function such that YkEZ IO(x k)l converges uniformly on [0, 1), it is proved in [3,
Thm. 1], that the following assertions are equivalent:

(a) for each f L(R) and each point t of continuity of f, Shf(t) f(t), as

(b) satisfies the partition of the unity property

(2.1) E (I)(x- k) I,
kZ

for all x [0, 1].
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In what follows NL denotes the set of those functions # E LI(R) normalized
by f-oo tt(v)dv 1. We call Nl the set of the bounded functions O(x) such that
}--kez I(I)(x k)l converges uniformly on [0, 1) and that satisfy (2.1).

Combining the above results we can easily prove the following theorem.
THEOREM 2.1. Assume # NL and N1. Then, for each f L(R) and

each point t R of continuity of f,

lim Qhf(t)= f(t).
h---o

Moreover, if f is continuous on (a- ,b + rl) for some > O, a < b,a,b R, the
convergence is uniform on [a, b].

Note that, if (I) E L (R), the partition of the unity property implies that

[ 1, k O,
()= 0, eZ\{0},

where

e(x) -  Xdx

is the Fourier transform of q)(x). There exist additional conditions that guarantee
that the converse is also true (e.g., if is continuous).

A function (I) is called r-regular if it is r times differentiable and for all indices ,
such that 0 <_ <_ r,

IdZ/dxZ <_ Cn(1 + Ixl) -n

for all integers n > 0.
According to Y. Meyer [18], r-regular scaling functions corresponding to multireso-

lution analysis of L2(R) are in N1, and all the zeros of at
2krr, k 7 0, have at least order r+l. Therefore, as a consequence-of Theorem

2.1 we have the following corollary.
COROLLARY 2.2. Let be an r-regular scaling function and Ilj f the operator

defined in (1.6). If f L(R) is continuous at t, then Hjf(t) -- f(t). Moreover, if
f is continuous on (a- r, b + r) for some r > O, a < b, a, b R, then

lim IIj f(x) f(x)
j o

uniformly on [a, b]
2.1. Convergence at discontinuity points. Next we will study the behavior

of the series (1.3) for functions f that have a jump discontinuity at a point t, where
the limits

f(t+)= lim f(t+)
e---*O+

f(t-)= lim f(t-)
e---*O+

exist and are different. Consider first a simple example.
,p .a. C () (- e), wr i Hvyia funcio- () 0

for x < 0 and H(x) 1 for x _> O.

k_h-lt

Rhf(hk) ] #(v)dv
j_
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(2.2)
k_h-lt

Qhf(t + x) E O(h-l(t + x) k)/_
kEZ

#(v)dv.

Looking a’t the above expression, we are naturally led to define

Y

/(x, y) O(x) tt(v)dv

and

(e.3) (,) z( + , ).
kEZ

Therefore, (2.2) can be written as

Qhf(t + x) Cl(h-lx, h-it),

and at the discontinuity point one has

Qhf(t) =G(O,h-lt).

For # E NL and (I) E N1, the series (2.3) converges for all u and w R, and
represents a function that satisfies G(u, w / 1) G(u, w). The function F(w) defined
by

r() a(o, )

is therefore a l-periodic function. Using this notation in the above example, we can
write Qhf(t)= r(h-t).

Notice that, inthe limit case #(v) 5(v-O), F(w) }-w<k (w-k). It coincides
with the function , (w) introduced in [3], where the theorem that follows is proved
for the particular case of sampling series.

THEOREM 2.4. Let f L(R) have a jump at t, and c R. Then for # NL
and N1, the following two assertions are equivalent:

(i) limh-0 Qhf(t) af(t+) + (1 a)f(t-).
(ii) F(x)=a, x e [0, 1).

Proof. Let us define

(2.4)
f(x)-f(t-),

() O,
f(x) f(t+ ),

x<t,
x--t,
x>t.

Then gt L(R) is continuous at t and

Rhgt(x) gt(x- hv)#(v)dv Rhf(x) f(t-)
-l(x_t)

=l(x-t)

I(t+) ()d.

#(v)dv
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Calling

It,h(z) f - #(v)dv,

we have

Rhgt(hk) Rhf(hk) It,h(hk)f(t+) -[1 It,h(hk)]f(t-).

Consequently

Qhf(x) Qhgt(x) + f(t+) E It,h(hk)(h-lx- k)

+f(t-) 1- E It,h(hk)(h-lx-k)

Note that

cx cx k_h-

E It,h(hk)(h-lt- k) E O(h-lt- k)/_
k---c k---(x

#(v)dv r(h-t).

Therefore

(2.6) Qhf(t) Qhgt(t) + r(h-at)f(t+) + [1 r(h-t)]f(t-).

Now we use Theorem 2.1, which ensures that limh-,0 Qhgt(t) 0. Hence (ii) implies

lim Qhf(t) af(t+) + (1 a)l(t-).
h--0

Conversely, if (i) holds, from equation (2.6) it follows that

lim F(h-lt) a
h-,0

and assertion (ii) is obvious. [1

Because F(w) is hardly ever a constant, limh-0 Qhf(t) does not exist in general.
From equation (2.6) we see that Qhf(t) will oscillate between the values

1 clf(t+) + [1 Cl]f(t-)

and

,2 a2f(t+) + [1 c2]f(t-),

where al limsupr(w) and a2 liminfr(w),w e [0, 1). Nevertheless, specific
discrete scale parameters h can be chosen such that limh-,0 Qhf(t) does exist. For
example, choose h such that the differences h- it [h- t] converge to some w0 E [0, 1)
as h 0. If F is continuous, then

lim Qhf(t) f(t+)r(wo) + l(t-)[1 r(w0)].
h-.0

This is precisely what happens in multiresolution approximations IIjf of functions
that have jump discontinuities at dyadic points t rn2s, m, s E Z.
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COROLLARY 2.5. Let f E L (R) have a jump at t. If t is a dyadic point, then

IIjf(t) f(t+)F(0) + f(t-)[1 F(0)]

as h 2-j --, O, where

k6Z -k

Figure 2.1 illustrates the functions F for Daubechies’s scaling functions O2 and
4 which are not constant.

0.6

0.5

0.4

0.3

(a)

0.5 1.5 2.5

0.6

0.55

0.5

0.45

0.4

(b)

0.5 1.5 2.5

FIG. 2.1. The function F(I,(x) for (b ON; (&) N 2 and (b) N 4.

2.2. The Gibbs phenomenon. The convergence of the most popular expan-
sion series of orthogonal functions, e.g., Fourier, Legendre, or Chebyshev series, is
nonuniform in the neighborhood of discontinuity points of f where strong oscillations
appear. This nonuniform behavior is called the Gibbs phenomenon, and it generally
affects the rate of convergence even far away from the point of discontinuity where f
is smooth. We will analyse here the Gibbs phenomenon in approximations Qhf.

Considering again the translated Heavyside function f(x) H(x- t), we can see

that, for all x E R,

Qhf(t + hx) G(x, h-t),

The Gibbs phenomenon will occur if G exhibits over (G > 1) or undershoots (G < 0).
For example, let t 0 and suppose G(x, 0) > 1 for some x _> 0. Then, th hx 0
as h -- 0 and Qhf(th)= G(x, 0) > f(0+).

The result in (2.7) can be generalized as follows.
THEOREM 2.6. Let Nl1, # NL1, and f L(R), where f has an isolated

jump discontinuity at t. Then, as h -- O,

(e.8) Qhf(t + hx) f(t+)G(x,h-lt) + f(t,)[1 G(x,h-t)] --+ 0

for all x R.
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Proof. Define gt as in (2.4). From (2.5) it follows that

Qhf(t + hx) Qhgt(t + hx) + f(t+) E It,h(hk)(x + h-it- k)
kEZ

+f(t-) [1-Eet’h(hk)O(x-t-h-lt-k)l’kEZ
where

k_h-lt

E It,h(hk)O(x + h-t- k) E O(x + h-t- k)/_ #(v)dv G(x, h-t).
kZ kZ x)

Therefore

Qhf(t + hx) Qhgt(t + hx) + f(t+)G(x,h-t) + f(t-)[1 G(x,h-lt)].

Observe that gt(t) 0 and gt(x) is continuous in a neighborhood of x t. The result
on uniform convergence of Theorem 2.1 implies that Qhgt(t + hx) --+ 0 as h 0. The
proof is hereby complete.

We conclude from this theorem that the convergence behavior of
Qhf(t + hx) near the discontinuity point t is determined by the values G(X, Wh),
where Wh h-it- [h-t]. Equation (2.8) ensures that Qhf(t + hx) will range be-
tween the values

m(x)f(t+) + [1 m(x)]f(t-)

and

M(x)f(t+) + [1- M(x)]f(t-),

where re(x) liminfh-0 G(X, Wh) and M(x) limsuPh_,0 C(X, Wh). If M(x) > 1
or re(x) < 0 for some x E R, then the Gibbs phenonenon appears. Since G(u, v)
characterizes the occurrence of the Gibbs phenomenon, we call it the Gibbs function.

Remark 2.7. A result similar to the above theorem was obtained in [20] for
approximations by periodic spline functions. Here the Gibbs function G plays the
role of the sine integral function Si(x) for trigonometrical series and of Gibbs spline
S[](x) for spline approximations.

Example 2.8. In this example we apply the result of the above theorem to mul-
tiresolution analysis approximations l-Ijf. The corresponding Gibbs function is

+
kZ -k

If f E L (R) has a jump at a dyadic point t, from Theorem 2.6 we conclude that

IIjf(t + 2-ix) -+ f(t+)G(x, 0) + f(t-)[1 G(x, 0)]

Figures 2.2(a)-2.4(a) show the graphs ofGN (x, 0) for Daubechies’s scaling func-
tions ON, N 2,3, 4, where over- and undershoots can be seen. Since the ON
are supported on [0, 2N- 1], it is easy to prove that GN (x, 0) 0 for x <_ 2- 2N
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1.2

08

0.6

0.4

0.2

(a)

-2 -i

(b)

FI(. 2.2. The Gibbs function Go(x, w) for (I) (I)2; (a) w 0 and (b) w 6 [0, 1].
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0.6

0.4

0.2

(a)

-’ -?

(b)

FIG. 2.3. The Gibbs function Go(x, w) for (I) (I)3; (a) w 0 and (b) w 6 [0, 1].

and GcN(x,0) 1 for x >_ 2N- 2. This means that, for these cases, the Gibbs
phenomenon does occur in approximations IIjf of a function f having a jump dis-
continuity at a dyadic rational. However, it is localized in a neighborhood of the
discontinuity point. In Table 2.1 the values of GN (0, 0) F (0), N 2,..., 6, the
minimum GON (c, 0), and the maximum GON (/, 0) are displayed.

If the discontinuity point t is not dyadic, IIjf(t + 2-ix) will diverge in general,
but the Gibbs phenomenon will also occur. Figures 2.2(b)-2.4(b) show the graphs
of GON(X w), w [0, 1]. They show over- and undershoots whose positions and
amplitudes change with w. Observe that, for each w (0, 1), GON(X w) 0 for
x_<l-2NandGN(x,w)=l for x >_ 2N-1.

Remark 2.9. The Gibbs phenomenon of higher order in biorthogonal multiresolu-
tion approximations. The analysis of a Gibbs phenomenon of higher order, say for a

dkfunction f with a jump discontinuity in its derivative d--fi f, for some k >_ 1, may be
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0.4
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FIG. 2.4. The Gibbs function Go(x, w) for p (I)4; (a) w 0 and (b) w 6 [0, 1].

TABLE 2.1

N
2
3
4
5
6

Gory (0, 0)
0.2113248 -1.0000000

..Go (c, 0)
-0.0223290
-0.1299706

1.0000000 1.3110042
0.5522790 -1.0000000 1.0234375 1.1241512
0.6315820 ’0.9453125 -0.16i30389 1.5937500 1..0591883
0.4816549 -0.7890625 "’20.0936842 0.8281250 1.1136424
0.4050844 -1.4531250 ’-0.01’5720 0.9609375 i.1635085

reduced to study the problem at k 0. For example, consider a biorthogonal multires-
olution analysis {Vj, Vj*}jez with dual compactly supported scaling functions q and

in C, e > 0. As pointed out in [16], if E C1+, there exists another biorthogonal
multiresolution analysis {Vj, Vj* } such that

d d
dx dx

where Pj and Pj are the corresponding projectors operators (1.7). This commutation
formula shows that a Gibbs phenomenon of first order will occur for Pj if and only if
a Gibbs phenomenon of order zero appears in approximations by Pj f. This procedure
is straightforward for higher orders (k > 1).

3. Convergence in H (R). In this section we will study how accurately func-
tions f E HS(R) can be approximated by expansions (1.1) in the H-norm. In the
context of finite element approximations the answer to this question is a cl.assical re-
sult obtained by Strang and Fix [21]. Assuming that H’(R) and has Compact
support, they established that smooth functions can be approximated by expansions
(1.3) with error O(hm+l-s) in the HS-norm, s <_ m, if and only if the polynomials of
degree <_ m can be written as linear combinations of p and its integer translates. If

is normalized by f O(x)dx 1, this is equivalent to the following hypothesis.
HYPOTHESIS 3.1. N11, and the zeros of its Fourier transform at all the

points 2rj, j 7 O, are of order m + 1.
This condition is sometimes referred to as the Strang-Fix condition.
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In general, additional assumptions are necessary to get good accuracy in arbitrary
approximations (1.1). For instance, for expansions (1.3)-(1.4), the following moment
relation is required.

HYPOTHESIS 3.2. # and are related by

(3.1) ()() 1 + o(q+l),

q_>0.
For compactly supported # E NLIN L(R) and E Hr(R), and for f

HP+I (R), with p min{m, q}, the above hypotheses imply that

where 0 _< s _< min{p, r} and the constant C C(s) is independent of f (see, for
example, [1] and also [7]).

The following example illustrates how these requirements are fulfilled by the scal-
ing functions of Daubechies.

Example 3.3. The scaling functions of Daubechies (I)N satisfy the Strang-Fix
condition with m N- 1 (cf. i8]). Note that their Sobolev indices r r(N) are
much less than N- 1 (cf. [10]). Let us look at the moment relation for the orthogonal
projection Hjf which corresponds to #(x) O(-x). Orthonormality implies that

E I( + 2kr)l: 1
kEZ

for all R. Consequently

(3.3) ()()

Therefore, if f e HN(R) and 0 <_ s <_ r(N),

(3.4) Ill- IIjfllHs <- C2-J(N-s)IIfIIHN.
Next we shall see that it is possible to have the convergence estimate (3.2) under

weaker conditions, i.e., without assuming # and with compact support.
THEOREM 3.4. Assume that # NL, is r-regular and satisfies the Strang-Fix

condition, and they are related by (3.1). Let p min{m, q}. Then the error estimate

(3.2). holds for all f HP+(R).
Proof. The proof can be carried out in a way analogous to [21, Thm. I]. In order

to estimate

Ill Qhfll2H (1 + I]:)sl]’() Qhf()12d

we have to show that the integrals

I f (1 + @()12d

and
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are all bounded by Ch2(p+l-s)llfll2Hp+I
The Fourier transform of Qhf(x) is

Qhf() hRhf(h)(h),

where

Rhf() nhf(hk)e-ik h-1 E hf(h-1( + 2g71-)).
k k

Therefore,

Qhf() f)fi(h)(h) + hhf(h-(h + 2k))(h).
k:/:o

Replacing this expression in I1 one has

I1

_
2{y ,_Tr/h(1+ l[2)sl?()[1 fi(h)(h)]12d

+ (1 + Ilu)sl hf( +
<-zrlh j0

{()+ (b)}.

The moment relation (3.1) implies that

() < Ch2(q+-) (1 +

and, by the Cauchy-Schwartz inequality,

(b) _< Ch2(q+l-s)

I2 is also split into two terms"

>_rlh >_zrlh

2{ (i) + (ii)}.

Notice that

(i) <_ C J(l Ih12(p+l-s)(1 + Il)l’()ld
I>_zr/h

<_ Ch2<p/-> (1 +

Replacing (3.5)in (ii) we get

(ii) h2 (1 + Ile)lRhf(h)ll(h)led
I>_r/h

<_ Ch- Inhf(5)l u I( + 2j)lel5 + 2jled(.
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Suppose that, for 0 <_ s _< r,

(3.6) ]( + 2jTr)]2[c + 2jr] 2s O([[)2m+2

as --+ 0. From this estimate we hence conclude

(ii) <_ Ch1.2s [Rhf()12112p+2d

< Chl-s+(p+l-1/2)[[Rhfl] 2
Hp+l

< Ch2(p+I-s)[]f[[ gp+l
The above estimates for (a), (b), (i), and (ii) lead to the result in (3.2). The estimate
in (3.6) can be obtained using the Strang-Fix condition. For compactly supported
(I) E Hr(R) the proof in [21] is based on the Paley-Wiener theorem and the theory
of entire functions. Equation (3.6) also holds when (I) is an r-regular function. In
this case, the function defined by the series on the left-hand side of (3.6) is Ca (see
aemma 1 in [15]) and has a zero of order at least 2m + 2 at

This theorem can be used to derive the order of accuracy in biorthogonal mul-
tiresolution approximations.

COROLLARY 3.5. Let Pj be the projection operators

f(x) (f
kEZ

where ( and (* are dual scaling functions associated with a biorthogonal multiresolu-
tion analysis. Assume that is r-regular and xnO*(x) L(R) for alg integer n o.
ff f H+I(R) then

][f- Pf[[g C2-(+-)[[f[[g+,

forOsr.
Proof. Note that Pjf is written in the form (1.3)-(1.4) with ,(x) O*(-x). As

already mentioned in 2, r-regular scaling functions satisfy the Strang-Fix condition
with m at least equal to r. Biorthonormality implies that

(( + 2kr)"( + 2kr) 1
kEZ

for all E R. Furthermore, this series defines a Ca function (cf. Lemma 1 in [15]),
and each term (I)( .+ 2kr), k = 0, has a zero of order r + 1 at 0. Therefore

()() ()’;() 1 ( + 2k)’( + 2k) 1 + o(rq-1).
kO

Since the hypotheses of Theorem 3.4 are satisfied, the estimate follows. [:]

Remark 3.6. For orthogonal projections Hj associated to r-regular multiresolution
analysis of L2(R), a sharper result was obtained by Y. Meyer (el. [18]). Let ej
2JSl[Djfl[L2, where Dj is the orthogonal projection onto Wj. Recall that W is the
orthogonal complement of Vj in Vj+I and

L2(R) V @,>j
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Then the HS-norm is equivalent to the sum of the L2-norm of H0f plus the g2-norm
of the sequence ej, j >_ 0.

When a smooth function f has a nearly singular local behavior in space or fre-
quency domain, the HS-norm of its derivatives becomes high, so that in practice, the
order of accuracy theoretically predicted is only detected for very fine scales. Typical
cases are the very oscillatory functions and the functions that undergo rapid changes
in a narrow boundary layer. The approximation of such functions is particularly im-
portant in the numerical analysis of partial differencial equations. The two examples
presented below are also discussed in [11] for Legendre and Chebyshev series, and
also in [12] for the Zak transform. In what follows (I)N is the Daubechies sc.aling
function supported on [0,2N- 1], I/N is the associated basic wavelet, and Hj
are the orthogonal projectors on the multiresolution analysis subspaces Vj.

Example 3.7. Approximation of oscillatory functions. In order to illustrate the
good localization property of wavelet series in frequency domain, we will study the
rate of convergence of Hjf in L2([0, 1]) for the periodic function f(x) cos(2Mrx).

Hjf(x) f(x) E Ebmkmk(X),
m_j k

where

bmk 2m/2 (2"X- k)cos(2Mx)dx

+

2-m/2F(2-m+lM)cos[2-m+lMkTr -t- r/ (2-rn+lM)].

The functions introduced above are

Fv () v/A() + B()

where

A() (v) cos(rv)dv,

Bv() (v) sin(v)dv.

Observe that F() /l(r)l. Since () has a zero of order N at 0 (cf.[8]),
it follows that (3.7) starts converging rapidly to zero when 2-J+Mr O. In fact,
as can be deduced from Fig. 3.1, the error IIHjf- filL is almost a constant, since

IIjf is practically equal to zero for w 2-/M < 1 (i.e., 2-j+Mr > 7r). When w
increases beyond 1, IlIIjf- fllL starts decreasing, algebraically, at a rate O(co-N).
This rate of convergence is consistent with the estimate (3.4).
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The localization of the turning point at w 1 is related to the bandwidth for
the filter determined by (I). In [8] the graphs of (I) (I)y and their Fourier transform
-1()1 are plotted for different values of N. As N increases, one observes that the
energy in the Fourier domain is concentrated in an interval around 0. Because of
that, (I) can be interpreted as a low pass filter, in the sense that high frequencies are
attenuated by the system H0 determined by (I) and low frequencies are transmitted.
The function F(2) v/l(I)(2r)l is usually called the gain. For a filter which has
its maximum gain at 0, the bandwidth is defined as/9 1 -2, where 1 and 2 are
chosen so that

g(2l)-- Fo2(22)-- F(20)/2.

In the present case, the maximum gain is attained at 0 0 and F(0) 2r. Since
F(2) is a symmetric function, the bandwidth is equal to 21, where 1 is such that

[(2-1)[2 1/2.

The values of 21 are approximately 3.115, 3.131, 3.137, 3.139, and 3.141 for N
3, 4, 5, 6, and 8, respectively. One clearly sees that 2r1 approaches as N increases.
That is, 9 1. Analogously, the bandwidth /gj corresponding to IIj is 2j. This
implies that, as j oc, higher frequencies are transmitted by the system Hi. In
our present case, f(x) cos(2Mrx) has M complete wavelengths within the interval
[0, 1]. We argue then that the wavelet series (3.7) will start to converge rapidly to
zero when M < 2j-l, i.e., w 2y-1/M > 1. Heuristically, we conclude that the rate
of convergence 2-iN as given by (3.4) is only achieved when the highest frequency is
transmitted.

Example 3.8. Resolution of thin boundary layers. Next, we will illustrate the
convergence of IIy f for the functions

f(x) exp [(x 1)/5].

As 5 0, f,(x) develops a boundary layer of width 5 near x 1.
It can be shown that

where w 2-jb,

E(2yx, w),

(b(v) exp(wv)dv.

For fixed w >_ 0, E(u, w) is a bounded 1-periodic function in the variable u, and for
fixed u E R, E(u, w) is a C-function in the variable w. The Strang-Fix condition,
together with the moment relation (3.3), implies that

:o
)(- wN1){A(N i)A(i) + TN(U) (N)!

+O(wN+I)
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_1.
-N-2
I:] -N,4
o -N-6
-N-8

FIG. 3.1. The L2-error corresponding to Example 3.7.

uniformly for 0 _< u _< 1. Here TN is the bounded and 1-periodic function defined by
TN(X) keZ O(X- k)(x- k)N. Therefore

Is(x) Hyfh(x) E(2Yx [2Yx] w) O(wN)f()
as w - 0. This result is consistent with the estimate (3.4) given the fact that

fh(x)-Y dN:d--5(X). It is also what one obtains using piecewise polynomials of
degree _< N- 1 based on evenly spaced knots. It must be mentioned that better
results are achieved with nonuniformly spaced knots that have higher concentration
within the boundary layer, as in Chebychev expansions (cf. [11]).

REFERENCES

[1] J. P. AUBIN, Approximation of Elliptic Boundary-value Problems, in Pure and Applied Math-
ematics. A Series of Texts and Monographs, Wyley Interscience, New York, 1972.

[2] P. a. BUTZER. AND R. J. NESSEL, Fourier Analysis and Approximation Theory, Academic Press,
New York, 1971.

[3] P. L. BUTZER, S. RIES, AND R. L. STENS, Approximations of continuous and discontinuous
functions by generalized sampling series, J. Approx. Theory, 50 (1987), pp. 23-39.

[4] P. L. BUTZER AND R. L. STENS, Sampling series for nonnecessarily band-limited functions:
An historical overview, SIAM Rev., 34 (1992), pp. 40--53.

[5] A. COHEN, I. DAUBECHIES, AND J. C. FEAUVEAU, Biorthogonal bases of compactly supported
wavelets, Comm. Pure Appl. Math., 45 (1992), pp. 485-560.



1402 SNIA M. GOMES AND ELSA CORTINA

[6] J. M. COMBES, A. (ROSSMANN, AND P. TCHATMITCHIAN, Wavelets, time frequency methods
and phase space, in Inverse Problems and Theoretical Imaging, Springer, Berlin, New York,
1989.

[7] W. DAHMEN AND C. A. MICCHELLI, Translates of multivariate spline, Linear Algebra Appl.,
52/53 (1983), pp. 217-234.

[8] I. DAUBECHIES, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math.,
41 (1988), pp. 909-996.

[9] , Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1992.

[10] T. EIROLA, Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal.,
23 (1992), pp. 1015-1030.

[11] D. GOTTLIEB AND S. ORZSZAG, Numerical Analysis of Spectral Methods: Theory and Ap-
plications, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1977.

[12] A. J. JANSSEN, The Zak transform: A signal transform for sampled time-continuous signals.
Philips J. Res., 43 (1988), pp. 23-69.

[13] A. KUMAR, D. R. FUHRMANN, M. FRAZIER, AND S. D. JAWERTH, A new transform for time-
frequency analysis, IEEE Trans. Signal Processing, 40 (1992), pp. 1697-1707.

[14] P. G. LEMARI], LeE ondelettes en 1989, in Lecture Notes in Mathematics 1438, Springer-Verlag,
Berlin, 1990.

[15] , Functions a support compact dane lee analyses multirdsolutions, Rev. Mat. Iberoamer-
icana, 7 (1991), pp. 157-182.

[16] , Analyses multirdsolutions non orthogonales, commutation entre prokecteurs et deriva-
tion et ondelettes vecteurs divergence nulle, Rev. Mat. Iberoamericana, 8 (1992), pp. 221-
237.

[17] S. MALLAT, Multiresolution approximations and wavelet orthonormal basis of L2(R), Trans.
Amer. Math. Soc., 315 (1991), pp. 344-351.

[18] Y. MEYER, Ondelettes et Operateurs, Hermann, Paris, 1990.
[19] , Wavelets and applications, in Proceedings of the International Conference, Marseille,

France, May 1990. Y. Meyer, ed., Springer-Verlag, Berlin, 1992.
[20] G. RCHARDS, A Gibbs phenomenon for spline functions, J. Approx. Theory, 66 (1991), pp. 344-

351.
[21] G. STRANG AND G. A. FIX, A Fourier analysis of the finite element method, in Constructive

Aspects of Functional Analysis, Edizioni Cremonese, Rome, 1973.
[22] M. VETTERLI AND C. HERLEY, Wavelets and filter banks: Theory and design, IEEE Trans.

Signal Processing, 40 (1992), pp. 2207-2232.
[23] G. WALTER, A sampling theorem for wavelet subspaces, IEEE Trans. Inform. Theory, 38 (1992),

pp. 881-884.



SIAM J. MATH. ANAL.
Vol. 26, No. 6, pp. 1403-1414, November 1995

() 1995 Society for Industrial and Applied Mathematics
001
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SEVERAL SPACE DIMENSIONS*

C. M. DAFERMOS
Abstract. It is shown that admissible L solutions of any system of two hyperbolic conservation

laws in several space variables with flux functions whose Jacobians commute are always stable in Lp

for p [1, 2] and, under additional assumptions, also stable in L.
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1. Introduction. We consider the initial-value problem for a hyperbolic system
of n conservation laws in m space variables"

(1.1)
m

oU(x, t) + , O,F"(U(x, t)) o, x e " t e (o, ),

(1.2) u(z, 0) v0(x), x e .
The symbol Ot stands for O/Ot and 0 denotes O/Ox a 1,...,m. The state
vector U takes values in an open bounded neighborhood (9 of the origin in n. For
a 1,..., rn, F are given smooth maps from (9 to n such that for each unit vector

in m and any fixed U in (.9, the n x n matrix

m

(1.3) E "DF(U)

has real eigenvalues and n linearly independent eigenvectors.
When the system is nonlinear, the initial-value problem is notoriously difficult.

Solutions starting out from smooth initial values eventually develop discontinuities;
hence only a theory of weak solutions is relevant, globally in time. Accordingly,
here we prescribe initial data U0 in L(m;(.9) and consider weak solutions U in
L(:m x (0, cx)); (.9). The reader should be aware, however, that the existence of
such solutions has been established in a definitive manner only when n 1 [7].

To secure uniqueness within the class of weak solutions, one has to adopt admis-
sibility criteria that will disqualify spurious solutions (for a survey, see [4]). Here we
will enforce admissibility by requiring solutions to satisfy "entropy" inequalities of the
form

(1.4)
m

o,(U(x, t)) + O.q"(U(x, t)) <_ o,

where , the entropy, is a smooth real-valued function on O, and q (ql,..., q,), the
associated entropy flux, is a smooth map from (D to .g’. We postulate that every Lip-
schitz continuous solution of (1.1) is admissible and. thus satisfies (1.4) automatically.

Received by the editors November 12, 1993; accepted for publication March 4, 1994. This
research was supported in part by National Science Foundation grant DMS-9208284, Army Research
Office contract DAAH04-93-G-0125, and Office of Naval Research contract N00014-92-J-1481.

Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University,
Providence, Rhode Island 02912.
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This will be the case if and only if

Dq DTDF’, a l, m.

We require that every admissible solution of (1.1) satisfy (1.4) for any pair (r/, q), with
convex, for which (1.5) holds. The compatibility conditions

(1.6) HrlDF (DFa)THrl, a 1,..., rn

for (1.5), where H denotes the Hessian matrix of r], generally induce 1/2n(n- 1)rn
independent equations on 7. Therefore, unless either n 1 and rn is arbitrary or
n 2 and m 1, system (1.1) should not be expected to possess entropy-entropy
flux pairs beyond the trivial ones: (U) pTu, q(U) pTFa(U) with P some con-
stant n-vector. Nevertheless, the systems of conservation laws of continuum physics
are endowed with a nontrivial entropy-entropy flux pair for which (1.4) expresses,
explicitly or implicitly, the second law of thermodynamics. This entropy, however, is
not necessarily convex (see [5]).

When (1.1) possesses an entropy-entropy flux pair (r/, q) with rt convex and

(1.7) [q(U)]

_
s(U), U O,

then, as shown in the appendix,

(1.8) x rl(U(x,t))dx <_ x <rTst
v(Uo(z))d , o < t <

t0r any r > 0. In particular, when (U) is uniformly convex,

(1.9) IU(x,t)12dx <_ c2 IUo(x)12dx, 0 < t <

The natural question of whether admissible solutions of (1.1), (1.2) also satisfy sta-
bility estimates

(1.10) J(l< IU(x, t)lPdx <_ Cp fxl<r-Pst
IUo(x)l dx, 0 < t <

for p 2 then arises. The cases p 1 and p -- c are of particular interest: the
former would hint that (t.1), (1.2) may be well posed in BV, while the latter would
induce valuable pointwise bounds on solutions. Estimates (1.10) with Cp 1, for any
p E [1, cx), are well known for the single equation n 1.

As shown by Brenner [1], when (1.1) is linear, (1.10) holds for all p E [1, c) if
and only if the Jacobians of the F commute:

(1.11) DFDF DFDF, a, fl=l,...,m.

Ranch [9] notes that if solutions of a quasilinear system (1.1) satisfy (1.10) then the
same must be true for solutions of the system resulting from linearization about any
constant state. Therefore, (1.11) is a necessary condition for (1.10), with p : 2, in

As noted by Friedrichs and Lax [6], when r/ is uniformly convex, the change of variables V
Drl(U) renders (1.1) symmetric. Conversely, if (1.1) is symmetric then r/(U) IUI2 is a uniformly

convex entropy with entropy flux q, qa f UTDFa(U)dU.
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the quasilinear case as well. The object of this paper is to demonstrate that (1.11) is
also a sufficient condition for (1.10), at least when n 2.

Our approach will be based on the following observation. Since (1.1) is assumed
to be hyperbolic, for a 1,..., m, DF(U) will have real eigenvalues and n linearly
independent eigenvectors. When (1.11) holds, all the DF’(U) share the same set of
n linearly independent eigenvectors, say R1 (U),..., R,(U). It is easily checked that,
upon renormalizing, if necessary, the eigenvectors associated with multiple eigenval-
ues, (1.6) is equivalent to

(1.12) RHTRj O, i,j 1,...,n, # j

(see [3] also). Thus, under assumption (1.11) the number of independent conditions
on / is reduced from In(n- 1)m to -n(n- 1). In particular, when n 2, (1.12)
reduces to a single linear hyperbolic differential equation of the second order, which
admits a large family of solutions. Consequently, we will limit our investigation to
the case n 2. The analysis may be readily extended to the class of systems of more
than two equations, identified by Serre [10], which are endowed with a "rich" family
of entropies.

To establish (1.10) it would suffice to construct a convex solution of (1.12) such
that

(1.13) clUIp
_
I(U)

_
ClUIp, u e 0

for positive constants c, C, and associated entropy flux q satisfying (1.7). Note that,
because of (1.12), r/will be convex if and only if

(1.14) RTiHTRi >_ 0, i= 1, ,n.

For n 2 and any p [i,2], in 3 we construct entropy-entropy flux pairs (V, q)
with the above specifications thus establishing Lp stability (1.10) for p in that range.
To attain Lp stability when p > 2, special restrictions have to be imposed on .system
(1.1). Conditions that induce Lp stability for p >> 1 and that, in the limit p ,
yield positively invariant regions for solutions are discussed in. 3.

It should be noted that the aforementioned conclusions on Lp stability and in-
variant regions for the hyperbolic system (1.1) apply equally well to the parabolic
system

m

(1.15) OtU + O,F"(U) aU,

because any solution of it satisfies the identity
m m

(1.16) Or, + O,q" A o,UTHO,U
a=l

for any emropy-emropy flux pair (, q) of (1.1). The relation between invariant regions
obtained through entropy inequalities and those deduced from the maximum principle
will be discussed in 3.

Clearly, the class of systems in which DFa and DF commute is very special.
In 2 we shall see how one may construct systems of two conservation laws with this
property, starting out from signed eigenvectors. The simple example

F"(v) , 1,...,
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where es, a 1,..., m, are smooth real-valued functions, may provide a useful
model for exploring other special properties that systems with commuting Jacobians
potentially have (simpler solution of the Riemann problem, BV estimates, etc.).

2. Riemann invariants and entropies. We consider a hyperbolic system of
two conservation laws (1.1) with the property (1.11). Thus, for a 1,...,m and
any U E O, the matrix DEs(U) has real eigenvalues As(U) <_ #s(U), generally
depending on a, and a corresponding set of linearly independent eigenvectors R(U),
S(U) independent of a.

Upon renormalizing, if necessary, R and S, we construct real-valued fields z and
w on O such that

DzR=I, DzS=O,
(2.1) DwR O, DwS I.

In analogy with the one-space dimensional situation, we will call z and w Riemann
invariants of the system. We note that for a 1,...,m and U O, Dz(U) and
Dw(U) are left (row) eigenvectors of DEs(U) with associated eigenvalues As(U) and

#s (U), respectively. In particular,

(2.2) DFs AsRDz + #sSDw.

If U is a classical solution of (1.1), multiplying the system from the left by Dz or

Dw we obtain

f + o.(2.3) + 0.

which shows that z stays constant along 1-characteristics and w stays constant along
2-characteristics.

For simplicity let us assume that the map U - (z, w) is a diffeomorphism of O to
a rectangle T of 2, mapping 0 to 0. Therefore, we may use new coordinates (z, w)
in place of the original state vector U. To avoid cumbersome notation, we shall be
employing, in the customary fashion, the same symbol to express any particular field
as a function of U and as a function of (z, w). By virtue of (2.1), for the typical field,
say p, the chain rule yields

(2.4) Pz DpR, p, DpS.

We show that As, #s are fields of eigenvalues of the Jacobian DFs of a vector
field Fs with associated eigenvector fields R, S if and only if

(.) (,R) (,S) 0.

Indeed, let z, w be determined through (2.1) and denote by As the 22 matrix field on
the right-hand side of (2.2), which has eigenvalues As, #s, right (column) eigenvectors
R, S, and left (row) eigenvectors Dz, Dw. We note that ASRw AsSz O, because

(2.6)
Dz[ASR AsS] As[DzR DzS] -As[(Dz),R (Dz)S] O,
Dw[ASR, Ass] #s[DwRw DwSz] -#s[(Dw),R (Dw)S] O.

Therefore

(AsR) -(#sS) (ASR), (AsS) AR- A’S.



SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS 1407

By virtue of (2.4) the right-hand side of (2.7) vanishes if and only if DA’ is symmetric,
i.e., if and only if A’ DF’ for some vector field Fa.

Consequently, the entire class of systems (1.1) of two conservation laws with the
property (1.11) may be constructed by the following procedure. We start out from
arbitrarily assigned linearly independent fields R,S, determine z, w through (2.1),
then select any solutions Aa,# of (2.5), a 1,...,m, and finally get F,a
1,..., m, from (2.2).

By virtue of (1.12), (1.14), to construct convex entropies of (1.1) in the present
setting we have to find solutions of the equation

(2.8) RTHTS 0

that satisfy the inequalities

RTH?R >_ O, STHS >_ O.

Because of (2.4),

(2.10) RTHrS D(DrlR)S- DTDRS
z zDzR, 7DwR,

RTHuR D(DrR)R- D?DRR
z, ?DzR DwR,

STHrlS-- D(DS)S- DTDSS
rww rzDzSw %,DwSw.

On the other hand, using (2.1) and (2.4),

(2.13)
-DzR,,, (Dz)R STHzR a,
-DwR (Dw)R STHwR := b,

(2.14) -DzR (Dz)zR RTHzR := f,
-DwRz (Dw)zR RTHwR := g,

-DzS (Dz)wS STHzS := h,(2.15) -DwS (Dw)S STHwS :-- k,

where Hz and gw denote the Hessian matrices of z and w. Thus (2.8) a.nd (2.9)
reduce to

(2.16) r/ + a/ + br/ O,

(2.17) v + fv + gv >_ o,
r/w + hr/ + kr/w >_ O.

We note that the coefficients a, b, f g, h, k appearing in (2.16), (2.17) and defined
through (2.13), (2.14), (2.15) arise in several connections in the theory of hyperbolic
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systems of two conservation laws. For example, the sign of h (or g) determines the
direction in which z (or w) jumps across admissible 2-shocks (or 1-shocks).

To determine the entropy flux q associated with an entropy r/, we multiply (1.5)
from the right by R or S and use (2.4) to get

(..lS) q=Asr/z, q=#sr/w, a=l,...,m.

Eliminating qS between the two equations in (2.18) (assuming As -J: #s), yields the
familiar equation

(2.19) r/zw + As #s
r/ +

#s As r/ 0, a 1,..., m,

which may leave the impression that r/depends on the characteristic speeds. However,
multiplying (2.5) from the left by Dz or by Dw and using (2.1), (2.4), and (2.13), we
deduce

=a, =b, a= l m,(.o) , ,
which 8how8 that (2.19) i8 identical to (2.16).

3. Stability in L. The aim here i8 to construct entropy-entropy flux pair8 for
(1.1) inducing the Lp stability property (1.10) for various values of p. A8 before, we
focus our investigation on system8 of two conservation laws, n 2, satisfying (1.11).
The Riemann invariant8 (z, w) will take value8 in a rectangle 7, which i8 assumed
small so that terms of order O(Izl + Iwl), 7 > 0, will be small in comparison to
1. However, the upper bounds on the size of 7 and the constants involved in the
order symbols which appear throughout this section will be uniform with respect to
p E (1, c), so we will have no difficulty in treating the limiting cases p 1 and
/9---=00.

LEMMA 3.1. For any p in (1, oo) there is an entropy-entropy flux pair (rl, q) with
the following properties:

(3.1) (z, w) -Izlp + Iwlp + O(Izl + Iwl)(Izlp -4-IwlP),

q(z, w) (o, O)lzlp + (o, O)lwlp + O(Izl + Iwl)(llp + Iwlp),
a= 1,...,m,

(3.3)
lzz +frlz + grlo p(p 1)[1 + O(lvl)]lzl- + PO(Izl-)

+p[X + O(Izl)]{g(O, O)lwlP-2w + gz(O, O)lwlP-2wz / gw(O, O)lwlp}
+[b2(O, O) b(O, 0)f(0, O) bz(O, O)]lwlp + pO(Izl + Iwl)(Izlp / Iwlp),

(3.4)
rl,o +hlz + krl, p(p 1)[1 + O(Izl)]lwlp-= + pO(lwlp-l)

+p[1 + O(Iwl)]{h(O, O)lzlp-2z + hw(O, O)lzlp-2zw + h(O, O)lzlp}
/[a2(0, O) a(O, 0)(0, O) ao(O, o)]lzlp / pO(lz[ 4-Iwl)(Izlp / Iwlp).

Proof. Let r/(z, w) be the solution of (2.16) on 7 under Goursat-type conditions

(3.5) ,(z, o) Izl", ,(o, ) I1".
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We fix.any (z, w) e 7, integrate (2.16) over the rectangle with vertices (0, 0), (z, 0),
(z, w), (0, w) and perform integrations by parts to get

(3.6)

From (3.5) and (3.6) we deduce (3.1) through iteration.
The associated entropy flux q may be computed from by integrating (2.18):

(3.7)
qa(z, w) #a(z, w)r/(z, w) + [As(z, 0) #a(z, 0)]r/(z, 0)

fo Aaz (, 0)(, O)d f #,(z, w)rl(z, w)dw,

from which (3.2) follows by virtue of (3.1).
We now multiply (2.16) by the integrating factor exp f adw and integrate with

respect to w. After an integration by parts,

(3.s)
z(z, w) exp[- g a(z, )d](z, 0) b(z, w)7(z, w)

+b(z, 0) exp[- ff’a(z, )d]r/(z, 0)
+ foTM exp[- f2 a(z,)d]{bo(z,w) + a(z,w)b(z,w)}rl(z,w)dw.

Combining (3.8) with (3.1) and (3.5), we obtain

(3.9) riz(Z, w) p[1 + O(IwlD]lzlP-2z b(O, O)lwlp + O(Izl + Iwl)(Izlp +

Similarly,

(3.10) r,(z, w) p[1 + O(Izl)llwlp-2w a(O, O)lzlp + O(Izl + Iwl)(Izlp + Iwlp).

Next we differentiate (2.16) with respect to z and use (2.16) again to get

(3.11) zw + a% (ab az)z + (b2 bz)%,.

We multiply (3.11) by the integrating factor exp f adw and then integrate with respect
to w to obtain
(3.12)

r/z (z, w) exp[- f a(z, )d]r/ (z, 0) + [b2(z, w) bz(z, w)]r/(z, w)
exp[- f[ a(z, )d][b2(z, O) bz(z, 0)](z, 0)

+ f0 exp[- f a(z, )d][a(z, w)b(z, w) a(z, w)]nz (z, w)dw
f0 exp[- f a(z,)d][a(z,w)b2(z,w) a(z,w)bz(z,w)

+2b(z, w)b,,,(z, w) b,(z, w)]r/(z, w)dw.

From (3.12), (3.1), (3.9), and (3.5)it follows that

(3.13)
fizz(Z, w)= p(p- 1)[1 + O(Iwl)]lzl- + pO(lwl)lz]r,-1

+[b-(O, O)- b(O, 0)]11" + O(Izl + Iwl)(Izl" + Iwl"),

Combining (3.9), (3.10), and (3.13) we arrive at (3.3). Interchanging the roles of z
and w yields (3.4). This completes the proof.
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We have now laid the preparation for addressing the issue of Lp stability. Recall
that the strategy is to get (1.10) via the entropy inequality (1.8) for an entropy-
entropy flux pair (U, q) with U convex which satisfies (1.7) and (1.13).

Let (Up, qp),p E (1, cx), denote the entropy-entropy flux pair constructed in
Lemma 3.1. Note that (p, qp) satisfies (1.7) and (1.13) for any p e (1, cx) by
virtue of (3.1) and (3.2). We shall check whether rp is a convex function of U
through (2.17) with the help of (3.3), (3.4). For p e (1,2], the right-hand side
of (3.3) is p(p- 1)lz]P-2 + O(Izlp-1 + ]wlp-l) and the right-hand side of (3.4) is
p(p- 1)lwlp-2 + O(Izlp-I + ]wlP- ). Therefore, for p e (1, 2], setting

(3.14) ? r/p + ar2, q qp + aq2,

where a is a sufficiently large positive constant, yields an entropy-entropy flux pair
(, q) with r(U) convex, satisfying (1.7), (1.13). Furthermore, a may be chosen in-
dependently of p (1,2] so we can pass to the limit p 1 in (3.14) and get an
entropy-entropy flux pair (,q) with (U) convex which satisfies (1.7), (1.13) for
p-- 1. We have thus established the following theorem.

THEOREM 3.1. Consider a hyperbolic system (1.1) of two conservation laws with
commuting Jacobians (1.11). Admissible solutions with small oscillation of the initial-
value problem (1.1), (1.2) have the Lp stability property’(1.10) for any p e [1,2].

We now turn to the case p > 2. It is no longer possible to add, as in (3.14),
a2 to rp without violating (1.13), and so we will have to work with (yp, qp) as our
entropy-entropy flux pair, requiring that p(U) itself be convex. It follows from (3.3)
and (3.4) that

(3.15) g(0, 0) 0, h(0, 0) 0

are necessary conditions for (2.17) to hold. It is easy to derive sufficient conditions
that would apply to particular ranges of values of p. Our goal here is to pass eventually
to the limit p -- cx, and so we seek sufficient conditions effective for p :> > 2. From
(3.3), (3.4) and by virtue of Young’s inequality

(3.16)
Ip p--1

1]wlp pP

it is clear that (2.17) will hold for p large when, in addition to (3.15),

(3.17) 0) 0)1 > 0,
hz(0, 0) Ihw(0, 0)1 > 0.

We have thus proved the following theorem.
THEOREM 3.2. Consider a hyperbolic system (1.1) of two conservation laws with

commuting Jacobians (1o11). When (3.15) and (3.17) hold, admissible solutions with
small oscillation of the initial-value problem (1.1), (1.2) have the Lp stability property
(1.10) for any p >> 2.

Assuming (3.15), (3.17) and p >> 2, we write (1.8) for the entropy rp, raise the
resulting inequality to the power l/p, and let p -- cx. By virtue of (3.1), this yields
the following theorem.

THEOREM 3.3. Consider a hyperbolic system (1.1) of two conservation laws with
commuting Jacobians (1o11). When (3.15) and (3.17) hold, the Riemann invariants of
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admissible solutions with small oscillation have the L stability property

(3.18)
max{llz(’, t)llLoo(l=l<),
< max{llz(.,o)llo(,,<+t>, Ilw(-,

for some s > 0 and any r > 0, t > 0. In particular, for any 5 positive small, the square
{(z, w): Izl <_ 5, Iw[ <_ 5} is a positively invariant region for the Riemann invariants

of solutions.
An alternative way to show that the squares are positively invariant regions is by

employing Lax-type entropy-entropy flux pairs [8]

(3.19) (z,) cos(z)[u(z, ) + o(})],
q(z, w) cosh(tz)[A(z, w)u(z, w) + 0(})], a 1,..., rn,

cos (e )[v(z, w) +(3.20) qa(z, w) cosh(gw) [#, (z, w)v(z, w) + 0()], a 1,..., rn.

To satisfy (2.18) and because of (2.20), we need

(3.21) uw + au O, vz + bv O

To secure that the convexity conditions (2.17) will hold as t -0, v > 0, which can be easily attained through (3.21), and also h(0, w) 0, hz(0, w)
O, g(z, O) O, gw(z, 0) > 0, i.e., conditions slightly stronger than (3.15), (3.17).

We note that the assertions of Theorems 3.1, 3.2, and 3.3 for the hyperbolic
system (1.1) also apply to the parabolic system (1.15) with r ec and all other
assumptions remaining the same. The reason, of course, is that solutions of (1.15)
satisfy the identity (1.16) for any entropy-entropy flux pair (r/, q) of (1.1). When r/is
convex, integrating (1.16) over m x [0, t] yields (1.8) with r

As shown by Chueh, Conley, and Smoller [2], the square { (z, w)
will be an invariant region for (1.15) if and only if

(s.ee) h(-5, w) <_ O, h(5, w) >_ O, -5 <_ w <_

We sketch a direct proof to gain another perspective for the implications of (1.11).
Upon multiplying (1.15) by Dz or by Dw from the left, we get

OtZ -b ET_l/aOaZ tAz- ,ET_IOaUTHzOaU,(3.23) Otw + E’ff=l#,O,w aAw grn=lOaUTHwcOaU.
Now suppose that some solution of (1.15), whose range was initially confined inside the
square {(z, w) "[z[ < 5, [w[ < 5}, crosses the boundary of the square for the first time
at time > 0 at a point . For definiteness, assume z(N, ) 5 (the other possibilities
can be handled by the same method). Thus at (,), c9az 0, i.e., DzO,U O,
and so O,U is collinear to S. Then, by (2.15) and (3.22), _,,=IOUTHzO,U >_ 0
at (, ). The classical maximum principle for parabolic equations now provides the
desired contradiction.

Note that (3.15) and (3.17) imply that (3.22) holds for any positive small 5. Serre
[11] has developed a method based on entropy inequalities, which could be used to
show that, for the square {(z, w) "[z <_ 5, [w[ <_ 5} to be an invariant region for (1.1),
it would suffice to assume (3.22) just for that particular 5.
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Appendix. Here we verify the assertion that if (r/, q) is an entropy-entropy flux
pair for a system (1.1) of conservation laws such that r/ is convex and (1.7) holds,
then any i solution of (1.1), (1.2) which conforms with (1.4) satisfies (1.8) for
every r > 0, t > 0. Of course, when U is of class BV, (1.8) is simply established by
integrating (1.4) over the frustum {(x, ’): 0 < T < t, Ix] < r + s(t-T) } and applying
Green’s theorem.

We begin by showing that after redefining, if necessary, U on a set of measure
zero,

(A.1) fn X(x)U(x’t)dx= lim
l telo e -e

X(x)U(x, T)dxdT, 0 < t < (x)

holds for any X E L (m). Let X E C(/i’). We fix t > 0, e > 0 and construct the
Lipschitz function , with compact support in m [0, ec), by (x, T) X(X)O(T),
where

(A.2)
1, 0_<T<t--,
(t--T), t--<T<t,;
O, t<_-<oc.

Then

(A.3)

0 -OtCU EOF(U) dxdT (x, O)Uo(z)dx
0l--’1

X(x)U(x, T)dxdT EOX(x)F"(U(x, T))dxdT

-/.X(x)Uo(x)dx + 0().

It follows that for any t > 0, the limit on the right-hand side of (A.1) exists for all

X C(m) and, thereby, for all X Ll(m) We may thus normalize U so that
(A.1) holds. This renders the map t- U(., t) continuous in L weak *.

Next we fix r > 0, t > 0, > 0 and construct the Lipschitz function by (x, -)
(x, T)O(T), where is again defined by (A.2) and

(A.4)
1,

/ -Ixl];
0,
0,
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Then, by virtue of (1.4)and (1.7),

-Ot EOaCq dxdT (x, 0)(U0(x))dx

(A.5)

(U(x, r))dxdr (Uo(x))dx
C t-e I<r

+- srl + dxdT +
+s(t-)-< Ixl <r+s(t-r)

(U(x, 7))dxdT (Uo(x))dx + 0().

Since r is convex,

(A.6) (U(x, T)) >_ (U(x, t)) + D(U(x, t))[U(x, T) U(x, t)].

Therefore (A.5) yields

(A.7)

j:,<y(U(x, t))dx fx <+st
y(Uo(x))dx

<_ D(U(x, t))U(x, t)dx - D(U(x, t))U(x, T)dxdT + 0()o

Letting c $ 0 and using (A.1) we arrive at (1.8).
Note that any entropy-entropy flux pair (), ) with ) uniformly convex induces,

through

(A.8) { q(U):= )(U) )(0)- D(O)U,
(U) (l(U) (Is(O) DO(O)[F(U) F"(0)], a 1,..., m,

another entropy-entropy flux pair (r], q) which satisfies (1.7). Therefore L2 stability
(1.9) holds in that case.
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A COMPARISON OF TWO VISCOUS REGULARIZATIONS OF THE
RIEMANN PROBLEM FOR BURGERS’S EQUATION*

M. SLEMROD

Abstract. This note compares solutions of two regularizations for Burgers’ equation ut
(u2/2)x 0 with Riemann initial data u u_(x 0), u u+(x > 0) at 0. The regularizations
are given by u + (u/2)x eux and u + (ue2/2) etu with appropriate initial data in each
case. The first regularization is more traditional while the second preserves the space-time dilational
invariance of the Riemann problem for the inviscid equation. Here it is shown that the difference
of the two regularizations approaches zero (in appropriate integral norms depending on the data) as

--*0+ for0 <

_
1.

Key words, hyperbolic conservation law, viscous regularization

AMS subject classification. 35165

Introduction. The objective of this paper is to begin a comparison of two
viscous regularizations of hyperbolic systems of conservation laws

ut + f(u)x 0, where u" IR IR+ -. IRn

f’(u) possesses real distinct eigenvalues for all u E IRn

with Riemann initial data

.(x, o)= { u_ x O,
u+, x>0.

The first regularization is quite classical: one simply imbeds (0.1) in the viscous
equation

u

The difficulty with this regularization is that (0.3) does not possess space-time
dilational invariance ((x, t) --* (ax, at), a > 0) of (0.1), (0.2). That is, while solutions
of the Riemann initial value problem (0.1), (0.2) depend only on the self-similar inde-
pendent variable , solutions of (0.3) will not. To circumvent this difficulty Dafermos
[1], Kalasnikov [7], and Tupciev [11] independently suggested the viscous regulariza-
tion of (0.1), (0.2) given by

(0.4) +

v(x, o)= { u_ x O,
u+ xO.
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INT-8914473 and Office of Naval Research grant N00014-93-1-0015.
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Equations (0.4), (0:5) do possess the desired space-time dilational invariance. In
fact substitution of the ansatz v(x,t) Ce() into (0.4), (0.5) yields the system of
ordinary differential equations

(0.6) -gbe’ + f(e)’- ee’’, -c < < c

with boundary conditions

(0.7)

and _4_d
dh"

In his papers [1], [2] Dafermos gave a class of equations in the case n 2 for
which (0.6), (0.7) do indeed possess a solution and which converges, bounded almost
everywhere, -oc < < cx, to a solution of (0.1), (0.2). Shocks in his solution of
(0.1), (0.2) are admissible according to the viscosity criterion, i.e., they are the limit
of traveling wave solutions of (0.3). Further examples applying this method were
given in the papers of Dafermos and DiPerna [3], Fan [4], Slemrod [8], and Slemrod
and Tzavaras [9].

As mentioned above this note will compare the two regularizations of (0.I) given
by (0.3) and (0.4). For simplicity only the canonical scalar case of Burgers’s equation

(0.8) + 0

with Riemann data (0.2) is considered here. The re,son for this simplicity is well
known: the solution of the Riemann problem for (0.8) possesses either a shock or a
rarefaction wave, but not both.

For the scalar equation (0.4) with n 1, it is an easy matter to see that
(0.6), (0.7) possess uniformly bounded (in , e) solutions with uniformly bounded
total vriation. Hence {O} will contain a subsequence which converges bounded M-
most everywhere (a.e.) in as 0+ to a solution of Riemann problem (0.1), (0.2).
Then the issue is as follows" Can we show that the error ue - approaches zero in
some sense for a class of data u(x, 0) pproaching Riemann data as e 0+? An
armative answer is given for the case f(u) u/2 in Theorems 1 and 2. This shows
that the et regulrization may provide a convenient interpolation between inviscid
equations (0.1) and fully viscous equations (0.3) for the case of Riemann problems. Of
course a better test will come at the level of systems when n 2, which still remains
to be done.

The paper is divided into two sections after this Introduction. Section 1 considers
the case u_ u+ when the admissible solution of (0.1), (0.2) will be a continuous
rrefaction wave. Section 2 considers the case u_ ) u+ when the admissible solution of
(0.1), (0.2) will be a piecewise constant shock wave. Here admissible is taken to mean
solution satising the Lx entropy criterion (see, for example, [10]). The method of

proof for both cases is modeled on an energy stability argument of Goodman [6] for
stability of traveling wave solutions of (0.3). The difference here is that the viscosity
is vnishing, while in [6] it remains fixed.

1. refaction ce u_ u+. We consider (0.6), (0.7) for the ce of Burgers’s
uequation f(u) nd dta u_ u+. In this ce (0.6), (0.7) becomes

+
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where the superscript s has been suppressed. The theory of [1] can be applied to
(1.1), (1.2) to obtain the existence of a solution. The standard uniqueness theorem
for ordinary differential equations as applied to shows that is monotone increasing
when u_ < u+ and is u_ (= u+) when u_ u+. Moreover, since ’ _> 0 and ’ --. 0
as I1 --* c we know ’ has a nonnegative maximum on (-c, c). At such a maximum

" 0, ’" _< 0, which from (1.1) implies 0 _< ’ _< 1. Hence solutions of (1.1), (1.2)
are

(i)
(ii)

monotone increasing, 0 < ’ <_ 1 when u_ < u+,
constant u_ (-- u+) when u_ u+

We will compare v (x, t) () with solutions u(x, t) of the viscous equation

X
ulx, ol

LEMMA 1. limx-+o u u+, limx-_ u u_ for t > to.
Proof. Differentiating (1.4) with respect to x and using the standard L2 theory,

one can prove the existence-uniqueness of smooth solutions of (1.4), (1.5), where
ux -- 0 as Ixl -- 4-c. Next use the representation formula for the solution of the
nonhomogeneous heat equation ut ux -(u2/2) with data (1.5) as given by the
representation formula in terms of the Green function for the heat operator (see, for
example, [5]):

The representation formula is the sum of two integral terms, one arising from the
nonhomogeneous forcing -(u2/2) and the other from the initial data (1.5). We then
let Ix] c in the two integrals and apply Laplace’s method for the asymptotic
evaluation of integrals. The fact that u -- 0 as Ix] --* c yields the second term zero
as Ixl- cx, while () - u+ as - +c, () u_ as - shows that the
first term approaches u+ as x (x, u_ as x -- -c.Define y (x, t) -" u (x, t) v (x, t) so that y satisfies

(1.6) yt + (f(u) f(v))x ey + e(1 t)vx

(1.7) y=0 at t=t0.

Next set

(1.8) Ye(x,t) y(z,t)dz
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Sinceu=u+=(+oo) at x=oo, u=u_=(-oo) at x=-oo for t>t0,
we have

d [ z=+ 0
j_

yedx- (f(u) f(v)),x=_=dt oo

and hence

(1.9) y(x, t)dx y(x, to)dx 0 for t > to,

so that

(1.10) YO as Ixl, t>to,

while

(1.11) Y=0 at t=to, -oo<x<oo.

Also, substitution of Yxe y into (1.6) yields

1
Yxt A- -((]zx -4- u)2 (v)2)z :Yxxx -4- (I t)vxx,

which upon integration from - to x and application of (1.11) shows that Y satisfies

Y2(1.12) Yt + vYx + - Y + (1 t)v, t>to,

and boundary and initial conditions (1.10), (1.11).
We can now state and prove a theorem comparing the two viscous regularizations

in the case when u_ < u+.
LEMMA 2. For the case f(u) u2/2, u_ < u+, set Y(x,t;to) foo(u(z,t)

v(z,t))dz, where u satisfies (1.4), (1.5) and v(x,t) () () satisfies
(1.1), (1.2). Then

O_Ye(x,t;to) _:(ln(o) -(t-to)) on to_t_l.

x with 0 < Ce’ < 1 we knowProof. Since v(x,t) () and v(x t) ’(:):
_1) for to < t < 1 It then followsand 0 < (1- t)v < :(:0 < vg(x,t) < -i

that __Y 0 is a subsolution and Y e(ln t t) e(ln to to) is a supersolution of
(1.11)-(1.12) on 0 < t < 1. Hence

(1.13)
t

O <_Y(x,t;to) <_:(ln(o) -(t-to)),
and the lemma follows immediately.

THEOREM 1. For" the case f(u) u2/2, u_ _< u+,

(i) fit’[l/_ : - (-t0)-t (u(x’t)-v(x’t))2dxdt<- In (u+-u_) on to _< _< 1;
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in particular with to , t 1,

(ii) lim (ue(x, t) ve(x, t))2dxdt O.

Proof. From (1.13) we know Ye _> 0, hence multiplication of (1.12) by Y
and integration by parts yields

(1.14)
2 dt

y2dx - vzy2dx + e y2dx <_ e(1 t) Yvzdx.

and (1 14) impliesSince 0 _< ’ <_ l we know 0 <_ vz <_ Z

y2dx - y2dx + Ydx (1 t)
2 dt YVxdx

or

(1.15)
2 dt - y2dx + - y2dx <- e - 1 Yvxdx

for to _< t <_ 1. But on this interval we know from Lemma 2 that

(1.16) 0 <_ Y(z, t) <_ L(t),
t

L(t) In (o) -(t- to).

Hence (1.16), when substituted in (1.15), gives

(1.17)

I d(i/?2 dt - y2dx +- y2dx <_ cL’(t)L(t) v=dx

d
---n2(t)(u+ -u_).
2 dt

Now integrate (1.17) from to to using initial condition (1.11), and the theorem is
proven.

Remark 1. It is result (ii) that gives the sharp estimate on how the two regular-
izations agree. This is true because the initial data (1.5), u(x, ) () approaches
the Riemann data: (7) -- u_ x < 0, (7) --, u+, x > 0. Note that we needed to
use data (1.5) and not the Riemann data to enforce the initial condition (1.11).

(0.3) willRemark 2. The restriction 0 < t

_
1 makes sense: for t large ,

approach (0.1) as -- 0+, while (0.4) will remain parabolic.

2. Shock case u_ > u+. In the case u_ > u+, the solution of (1.1), (1.2) is
of course monotone decreasing with no uniform (in ) bound from below on . Hence
a different method of analysis from 1 is required.

First we introduce the traveling wave variable a and the rescaled time variable
-’a ___i__,T=_i.z-st In these variables (0.3) and (0.4) become, respectively,

(2.1) u-sua+(u---) =u
and
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Equation (2.1) admits the one parameter family of traveling wave solutions u(a, T)
(a --co) independent of T satisfying

u

_
(2.3) -s( u_)+

2

(2.4) (-) u_, (+) u+,

1
(2.5) s (+ + _).

For ve(x,t) we once again impose Riemann data (0.5) so that v(x, t) (), where
() satisfies (0.6).

We choose a0 so that

/_-2o

(2.6) {(x) u_ } dx + {(x) u+ } dx O.

This can be done because is monotone decreasing with (-oc) u_, (+xz) u+,
and the left-hand side of (2.6) approaches -cx(+cxz) as ao approaches
Hence there is some intermediate value ao for which (2.6) holds.

As in 1 we define

(.7) (,) (,) (,) ( o) (,)

and let

(2.s) fVe(a, -) {(a co) ve(a, T)} da.

We see ye satisfies

( u2 v2 )(2.9) y sy, + 2 2 eTY + (1-- eT)U

Integration of (2.9) shows

.i_- .
d-- y(a, T)da- sy O.

=- 2 2 =-

But for 0 < T fixed a implies x and u(, T) (+) (+)
U+, U(--, T) (--) (--) U--, and hence

15 17y(a, T)da y(a, O)da

Now write

/? /5y(a, 0)da {(a co) v(a, 0).} da

{(a co) u_ } da + {(a co) u+ } da

/_2o(()
_

} + (() +} o



TWO VISCOUS REGULARIZATIONS OF BURGERS’S EQUATION 1421

by (2.6) so that

and hence

for r _> O,

(2.10) "r>0.

Next substitute YJ y into (2.9) to obtain

u2/

Y sY +
\ 2 v2) eTYzaa + (1 eT)Uaa,

2

which upon integration from -oc to a yields

(2.11) Y sY + uY TF + (1 T)Ua

At T 0 we see from (2.6) that

Ye(a, 0) { (a ao) v(a, 0)} da
1 z- -ao -v_ dz<_O

ifa=;_

Y(a, O) ao v+ dz <_ O if a=- >0.

Hence we know Ye(a, T) satisfies (2.11), (2.10) and

(2.12) Ye(a, 0) <_ 0, -oo < cr < oc.

We are now in a position to state and prove a theorem comparing the two viscous
regularizations when u_ > u+.

THEOREM 2. For the case f(u) u2/2, u_ > u+ let ue(x,t) (a- a0),
where is the traveling wave solution of (0.3), i.e., , go satisfy (2.3)-(2.6). Let
v (x, t) e() e() be the solution of (0.4), (0.5) where satisfies (1.1), (1.2).
Then there exists a const. (independent of ) depending only on u_, u+, so that for
0<t<_l,

/ / (x, (x, _< const.
JO J--

in particular, with t 1,

/oiFlim t(u(x, t) ve(x t))2dxdt O
0

C

Remark 3. Note that the initial data for u given by u(x, 0) b( -a0)
approaches the Riemann data (0.2) as 0+.

Remark 4. As noted in Remark 2 the restriction 0 < t < 1 is natural.
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Proof. Since u ’(a-a0) < 0, Y 0 is a supersolution of (2.10)-(2.12) when
0<I--T, 0<T,i.e.,0<t<_l. HenceYe<_0 or 0<T< , --oo<a<oo. Now
multiply (2.11) by Y. We obtain

which upon integration by parts becomes

(2.13)

But since Y <_ 0, the third term on the left-hand side of (2.13) is nonnegative, and
hence we have

(2.14)

But ’ < 0, and hence (2.14) implies

1 d
y2da + T y2da < (1 CT)2

(U- u+) <(2.15)
2dT o oo 2

(u_ u+)

Before proceeding further we shall estimate the L2 norm of Y(a, 0).

Ye(a, 0.) {(a a0) ve(a, 0)} da so that

Ye(a, 0) {(a- ao)- -} d for o" _< 0

{(-ao)-+}da for a>O.

Of course we could substitute the explicit formula (a) u+ + 1/2(u+ u_)[1
tanh((u_ -u+)a/4)] at this stage and obtain the desired estimate. However, with
possible generalizations in mind for more general flux functions and systems, it seems
better to obtain the bound without special formulas.

For notational convenience set Ye(a, O) Y(a) for the moment. Then, on -cx <
a _< 0, (2.3) implies

(2.16) + o



TWO VISCOUS REGULARIZATIONS OF BURGERS’S EQUATION 1423

with h(a) s-(( + u_)/2) (u+-)/2 _> k > 0. Equation (2.16)implies that Y(a)
satisfies Y(a) Y(O) f_exp(-fhd)d <_ (0) f_ekad <_ (ek/k)(O-) <_
(ek/k)((--ao)- u_) on (--, 0]. A similar bound holds on [0, oc), and hence

Y(a, 0)2da _< const.,

where const, is independent of .
Next integrate (2.15) from -= 0 to T(<_ ) to obtain

(2.17)

where the dependence of y, Y on is again suppressed.
We now switch back to the independent variables x, t and denote

O(x, t) y(a, T) u(x, t) v(x, t), where u(x, t) (x st ao)
and ve(x, t) is the solution of (0.4), (0.5). We see from (2.17) that for 0 < _< 1,

f t 2 (x, t) dx dt
J_ < (u_ u+) + const,

2e

(2.18) Jo /- t(u(x’t) v(x’t))2dxdt <- e(u_ -u+)+ const, e

< const, s.

Inequality (2.18) yields the desired result.

Acknowledgment. The author thanks Professors A. Tzavaras and M. Rascle
and the referee for their valuable remarks regarding this work.
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ON SCALAR CONSERVATION LAWS WITH POINT SOURCE AND
DISCONTINUOUS FLUX FUNCTION*

STEFAN DIEHL?
Ou(z,t)Abstract. The conservation law studied is Ot + --z(f(u(x,t),x)) s(t)(x), where u is

concentration, s is a source, ti is the Dirac measure, and

f f(u), x > O,
F(u, x)

is the flux function. The special feature of this problem is the discontinuity that appears along
the t-axis and the curves of discontinuity that go into and emanate from it. Necessary conditions
for the existence of a piecewise smooth solution are given. Under some regularity assumptions
sufficient conditions are given enabling construction of piecewise smooth solutions by the method of
characteristics. The selection of a unique solution is made by a coupling condition at x 0, which
is a generalization of the classical entropy condition and is justified by studying a discretized version
of the problem by Godunov’s method.

The motivation for studying this problem is the fact that it arises in the modelling of continuous
sedimentation of solid particles in a liquid.

Key words, conservation laws, discontinuous flux, point source

AMS subject classifications. 35A07, 35L65 35Q80, 35R05

1. Preliminaries.

1.1. Introduction. This paper is a shortened version of [7], to which we refer
for further details.

Let u(x,t) be a scalar function, describing some kind of density, of the space
coordinate x and the time coordinate t. It is well known that solutions of the initial
value problem for a nonlinear scalar conservation law

(1.1)
ut + f(u)x --O, x e ], t > O,

0) x e

where f E C2, even for u0 E C, may form discontinuities after a finite time. By
interpreting the problem in a weak sense it is possible to define global discontinuous
solutions. Uniqueness is guaranteed by an entropy condition. If f is nonconvex, the
behaviour of the discontinuities is more complicated than in the convex case; see,
e.g., Ballou [1]. He uses the method of characteristics to construct piecewise smooth
solutions for piecewise constant initial data and "admissible" initial data (see the
definition in [1]). Cheng [4] uses another method to construct solutions for bounded
and piecewise monotone initial data. Dafermos [5] has shown that weak solutions of
(1.1) generically are piecewise smooth if f has one inflection point.

Motivated by a part of the modelling of continuous sedimentation of solid particles
in a liquid, to be described shortly in 1.3, we shall study a more general conservation
problem with a point source and a discontinuous flux function. The problem will be
described in 1.2. The questions of existence and uniqueness will be analysed in 2,
which contains the main results: Theorem 2.17 on existence and Theorems 2.18, 2.19,
and 2.20 on uniqueness. The solutions are selected by means of a coupling condition,

Received by the editors January 11, 1993; accepted for publication March 4, 1994.
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Condition F, which generalizes the classical entropy condition (Proposition 2.9). In
3 Condition F is numerically justified by studying a discretized conservation problem
obtained by a scheme of Godunov type. The equivalence between Condition F and
the so called viscous profile condition is analysed in [8]. The stability of these viscous
profiles is studied in [9].

A special case of our problem is the Riemann problem with discontinuous flux
function, dealt with in 2,3. In this problem there is no source term and the initial
value is simple. The problem was addressed earlier by Gimse and Risebro [11]. In
[12] Gimse and Risebro have, by construction of a sequence of approximate solutions,
proved the existence of a solution of the Cauchy problem for a conservation law with
discontinuous flux function arising in two-phase flow. They have left the question of
uniqueness open. A uniqueness result for this type of equation is given at the end
of 2.5. The presence of a point source causes considerable complications, even if
there is no discontinuity in the flux function. Liu [17] studies nonlinear resonance
when the source also depends on the state variable u. Another related problem is the
initial boundary value problem in the sense of Bardos, Le Roux, and Nedelec [2]. In
that problem a discontinuity is allowed along the boundary as long as it would like
to propagate out from the domain. Confining our problem to one quadrant (of the
x-t-plane), we get an initial value boundary flux problem; see 2.6. In this problem
the flux at the boundary is prescribed and a value at the boundary is allowed to
produce a discontinuity if and only if this discontinuity propagates into the domain.

1.2. The problem and assumptions. Let s(t) be a source situated at x ---" 0,
where the flux function F(u,x) is a discontinuous function of x. Given initial data
u(x, 0) u0(x), x E I, the weak formulation of the problem is

(1.2)

0 .-oo -oo 0

where F(u,x)= <[f(u)’ x>0,
x<0.

e c3

In the distribution sense it can be written

Ou(z,t) 0
ot + t), x))

o)

e > o,.
x E I,

where 6(x) is the Dirac measure. If u is a smooth fhnction except along x 0, then
by standard arguments it is easy to show that (1.2) is equivalent to

(]..3)

ut + f(u)x O,
u + .q(u) O,

f (u(0+, t)) .q(u(O-, t)) + s(t),
o)

x>0,
x < 0, t :> 0,

t:>0,
xER.

The weak formulation (1.2) can allow a Dirac measure in u. For example, if f
constant f0 and g constant go, then u(x, t):= no(x)+6(x) fo (s()+go- fo)
is a solution. To avoid this, by a solution we mean a finction u satisfying (1.2). A
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function u is said to be piecewise smooth if it is bounded and C except along a finite
number of Cl-curves in every bounded set, such that the left and right limits of u
along discontinuity curves exist. We especially introduce the notation

u+(t) lim u(+/-5, t),
\o

u (t) lim u+ (t + e).

The order of the limit processes is significant, for example, when a discontinuity
reaches the t-axis or s(t) is discontinuous. Note that u=(t) are continuous from the
right. A function of one variable is said to be piecewise monotone if there are at most
a finite number of points on every bounded interval where a shift of nonotonicity
occurs. We define a discrete set of real numbers as a set that contains at most a finite
number of points on every bounded interval.

Assumptions. In this paper problem (1.2) will not be treated in full generality.
To motivate a uniqueness condition for the discontinuity along the t-axis, the analysis
is restricted to solutions in the class

F {u u(x, t) "u is piecewise smooth, u+(t) are piecewise monotone}.
The initial value function u0 is assumed to be piecewise monotone and piecewise
smooth. The source function s is assumed to be piecewise monotone, piecewise smooth
with bounded derivative, and continuous from the right. The flux functions f, g E C2

are assumed to have at most a discrete number of stationary points and the property
[f(u)l Ig(u)l -+ oc as lul cx3. The last assumption is nade to avoid unbounded
solutions; see an example in [7]. To be able to construct a solution of problem (1.2),
we assume that it is regular in a sense defined in 2.4..

1.3. Physical motivation. Continuous sedimentation of solid particles in a liq-
uid takes place in a clarifier-thickener unit or settler; see Fig. 1.1. The one-dimensional

Q!

Clarification

zone

Thickening zone

-H

D

FIG. 1.1. Schematic picture of the continuous clarifier..thickener.

x-axis is shown in the figure. The height of the clarification zone is denoted by H
and the depth of the thickening zone is denoted by D. At x 0 the settler is fed
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with suspended solids at a concentration uf(t) and at a constant flow rate Qf (vol-
ume per unit time). A high concentration of solids is taken out at the underflow at
x D at a rate Qu. The effluent flow Q at x -H is consequently defined by
Q Qf Qu. It is assumed that these three flows are positive. The cross-sectional
area A is assumed to be constant and the concentration u is assumed to be constant
on each cross section. We define the bulk velocities in the thickening and clarification
zone as v Qu/A and w Qe/A with directions shown in Fig. 1.1. The feed inlet
is modelled by the source function s(t) Qfuf(t)/A > 0 (mass per unit area and
unit time). The standard batch settling flux (u), introduced by Kynch [15] and still
used today, is shown in Fig. 1.2, where Umax is the maximal packing concentration
and Uinfl is an inflection point. The phenomena at the feed level may be modelled by
equations (1.3) with the flux functions f(u) (u) + vu and g(u) (u) wu. The
theory of this paper can also be used to predict the effluent concentrations ue(t) and
uu(t). An analysis of the sedimentation problem is carried outin [6].

() + vu

(u) (u)- u

FIG. 1.2. The flux curves in the sedimentation problem (left) and in the problem of two-phase
flow (right). Note that in the right figure either of the graphs can be f or g.

Another context where a discontinuous flux function appears is in the modelling
of two-phase flow through one-dimensional porous media; see Gimse and Risebro [12]
and the references therein. The source function is then s =_ 0 and the flux function F
may have several discontinuities in the space coordinate. The qualitative behaviour
of these discontinuities may be analysed by letting the flux functions f and g in (1.3)
have the shapes as shown in Fig. 1.2 with one global minimum, f(0) g(0) and
f(1) g(1). At the end of 2.5 the questions of existence and uniqueness for the two
problems when f is the upper (lower) and g is the lower (upper) curve in Fig. 1.2
(right) are commented upon.

1.4. Properties of nonconvex scalar conservation laws. In this section we
review some basic properties of the solution of the scalar problem

(1.4)
ut+j(u)s=O, xeIR, t>0,

0) x e

If x x(t) is a Cl-curve of discontinuity for u, it obeys the jump condition or Rankine-
Hugoniot condition

x’(t)

S(a,/3) l()-l(fl) for a # fl and ux+ u(x(t)+/-O, t) Unstable discontinuitieswhere
are rejected by imposing the entropy condition

S(v, uS-) >_ S(uS+, uS-) Vv between u- and ux+
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by Oleinik [18]. Existence and uniqueness of solutions of (1.4) for a general flux f
were proved by Kru2kov [14]. In what follows, when talking about solutions of the
differential equation ut +f(u)x 0 in an open set, the jump condition and the entropy
condition are assumed to be fulfilled along curves of discontinuity.

The Riemann problem. The main idea of the analysis of the solution of (1.2) relies
heavily on classical results for the solution of the Riemann problem

(1.6)
ut+f(u)=0, x, t>0,

u(x, 0) u’ x < 0,
ur, x > O,

where ut and ur are constants. In what follows the notation RP(f; st, ur) will be
used for (1.6). The unique solution of (1.6) can be presented as follows. Assume
that ut < ur. For a general flux function f, define (u) f(u; st, Ur) on the interval
[u, u] by

./= sup{h" h convex on Jut, ur]; h(v) <_ f(v), Vv e Jut, Ur]},

i.e., f is the greatest convex minorant of f. The derivative ’ is a continuous nonde-
creasing function in the interval (st, ur). Let f’(ut) be interpreted as a right derivative
and fl(ur) as a left derivative. Let h denote the inverse function of the restriction

of fl to the open intervals where is increasing. Then the unique weak solution of
(1.6) in the case u < Ur is

(1.7) u(x,t) h(), ?(u).t < x < ’(u)t, t> O,
>

Inside the cone

V(f; st, u,) { (x, t)" .’(u,)t<_ x <_ j’(u,)t, t > 0},
the solution consists of rarefaction waves separated by discontinuities. For example,
if f is concave and ut < u, then the cone is merely a straight half line, i.e., a shock.
The case in which ut > ur is treated in the same way, using the least concave majorant
instead. If ul u, then the solution is simply ut and the cone V 0 by definition.

2. Existence and uniqueness. In 2.1 the existence of solutions of (1.2) or

(1.3) is characterized in terms of conditions on f, g, and s. The solution of (1.3) is
locally governed by the equations ut + f(u)x 0, x > 0, and ut + g(u)x O, x < O,
separately, away from the t-axis. To obtain a global solution, we must find boundary
functions a(t) and/(t) along the t-axis, which together with the initial data define
solutions in x X 0, respectively, such that the fitting of these two solutions defines a
global solution u(x, t) satisfying u+(t) a(t), u-(t) (t), and the third equation
of (1.3),

(2.1) f(u+(t)) g(u-(t)) + s(t).

Note that s(t) is continuous from the right. The key problem is that c(t) and (t)
cannot be given beforehand in the general case.
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The existence of solutions locally in t is proved in 2.4 by choosing allowable
and (t) such that construction of solutions in x 0, respectively, by the method of
characteristics is possible.

Nonunique solutions occur when more than one pair of boundary functions (a,
is allowable. A coupling condition, Condition F, is introduced in 2.2 as a means to
pick out a unique solution.

2.1. Definitions and necessary conditions. We start with an example show-
ing that there may not exist any solution at all of (1.2).

Example 2.1. Consider the problem when s -= constant, f(u) -u, g(u) u and
the initial data

u(x, O) u’ x < O,
Ur X 0.

In this case the characteristics, emanating from the x-axis and carrying the values ul
and ur, go into the t-axis. Hence u-(t) ul and u+(t) ur, t >_ 0. A solution of
(1.2) exists if and only if -ur ut + s, i.e., (2.1) is satisfied.

Suppose the problem (1.2) is solved up to time t, and hence u+ are known. To
characterize which u+ are possible at time t to continue a solution, the following
definitions and two lemmas are needed, in which the underlying idea comes from the
knowledge of the solution of the Riemann problem (1.6).

DEFINITION 2.2. Given u+, u_ E I and the flux functions f and g, define (see
Figs. 2.1 and 2.2)

min f(v), u<u+,
u+ .eI.../l

max f(v), u > u+,
ve[u+,u]

P(f;u+) {u+} [J {u’u < u+; ](u + ;u+) > ](u;u+), W > 0}
u {. > ,; ](u- ; u,) < ](; ,1, v > 0},

P(f; u+) (u. ](u; u+ f(u) },

{ }(;_) i,u_l (u_; ),
min g(v), u > u_

v[u_ ,u]

g(g;u_) (u_} U (u u < u_; {(u + ;u_) < t(u; u-), W > 0)
u {u. > ._; (- ; _) > (; _), w > 0},

(; u_) {. 0(; u_) (1}.

Observe that ](.;u+) is a nondecreasing function whose graph consists of in-
creasing parts separated by plateaus, where the function is constant. Analogously,
t)(’; u_) ..(u_; .) is nonincreasing with a graph consisting of decreasing parts sep-
arated by plateaus. Furthermore, ] and . are continuous functions in both of their
variables. In what follows we shall sometimes use the shorter notation P P(f; u+)
and N N(g; u_). The difference between P and/5 is illuminated in Figs. 2.1 and
2.2 and in the following lemma. (The proof is found in [7].)
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3 c :) o

P-1 Po P1 P_ u+ P1

FIG. 2.1. The graphs of f (solid) and the two main possibilities for ](.;u+) (dashed). The set
P Ji Pi, where Po {u+ } in the right-hand plot.

"’=!

U+

FIG. 2.2. Examples of the sets P and for given u+. Observe that P C_ .
LEMMA 2.3. Given u+, u_ E R, then

P(f;u+) {c" the solution of RP(f;a,u+) satisfies u+(0)= a},
/5(f; u+) {c" the solution of aP(f; o, u+) satisfies u-(O) c},
N(g; u_) { the solution of RP(g; u_,) satisfies u-(O)=/},.
/(g;u_) {3" the solution of RP(g;u_,fl) satisfies u+(0)=/}.

Consider a piecewise smooth solution of (1.2) in the neighbourhood of the t-axis
at some time, say t 0. The resolution of a discontinuity approximates the solution of
the corresponding aiemann problem; cf. Dafermos [5] and Chang and Hsiao [3]. Since
uo(x) and u+(t) are smooth for small x > 0 and t > 0, respectively, the solution u
of (1.2) approximates, for small x > 0 and t > 0, the solution of RP(f;u+(O),u+(O))
with the cone Y(f;u+(O),u+(O)) C {(x,t)’x >_ 0, t > 0}. An. analogous reasoning
holds for x < 0. These facts yield the following lemma.

LEMMA 2.4. If u is a piecewise smooth solution of (1.2) for t [0, T) for sone
T > O, then

u+(t) P(.f;u+(t)), t [0, T)
,- (t) e 2(,; u_ (t)), t e [0, T).

DEFINITION 2.5. Let t be fixed and u+,u_ ]R be given
intersecting ranges

Define the set of

(+, _, t) ](;.,+) ((s; _) + .(t)).
Tbr the projection on the u-axis of the inte’rsection of the graphs of the fanctions we
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define

5(t) 5(+, _, t) { e . ](; u+) (;_)+ (t)},
fimax(t) supV(t), fimin(t) infV(t).

Since ] is nondecreasing and [7 is nonincreasing, ](t) is an interval. When the set
U(t) only consists of one point, it is denoted by t(t). Furthermore, we introduce the
set of pairs

r(u+,u_,t) {(,Z) y() g(Z) + s(t) ](5(t);u+)};
see Fig. 2.3.

]((t);+)

FIG. 2.3. An example of the set U(t). The dashed line from 1 to 3 is a plateau of (.; u_)
and the oze from Oil to ot3 is a plateau of ](.;u+). Note that F’= {(ci,j) i,j 1,2,3}.

We say that the graphs of/(.; u+) and O(’; u_)+ s(t) intersect if I(u+, u_,t) O.
The necessary conditions on the boundary limits u+(t) can now be summarized.

THEOREM 2.6 (necessary conditions). If u is a piecewise smooth solution of (1.2)
for t E [0, T) for some T > O, then

(u+(t),u-(t)) D(f;u+(t)) l(g;u_(t)),
(u+(t),u-(t)) P(f;u+(t)) N(g;u_(t)),
f(u+(t)) g(u-(t)) + s(t),
I(u+ (t), - (t), t) # ,

t e [0, T),
t e [0, T) \ D,
t e [0, T),
t e [0, T),

where D is a discrete set such that

D C_ {to e [0, T)’u+(t) or u_ (t) is discontinuous at t= to }.

Proof. The first statement is Lemma 2.4. A piecewise smooth solution satisfies
u+(t) u+(t) for t [0, T) \ D+ for some discrete set D+. For such ’a t u+(t)
P(f;u+(t)) holds by definition. Analogously, u-(t) e N(g;u_(t)) holds for t
[0, T) \ D- for some discrete set D-. Letting D D+ (2 D-, the second statement
is proved, but this can also be true for a set D strictly contained in D+ t.J D-;
see, for example, the Riemann problem with discontinuous flux function, 2.3. The
third statement is (2.1). This, together with Lemma 2.4, implies ](u+(t);u+(t))
O(u-(t); u_(t))/s(t) for all t e [0, T). Since ] is nondecreasing and t is nonincreasing
there must be an intersection, and the fourth statement is proved.
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2.2. The coupling condition: Condition F. The nonuniqueness of solutions
of (1.2) is demonstrated by the following two examples.

Example 2.7. Let s -: constant, f(u) -u, g(u)= -u, and the initial data

u(x, O) u x < O,
ur X >0.

Independently of the values u+, the characteristics always emanate from the t-axis,
and hence there exist infinitely many solutions which satisfy (2.1): u+ -u- + s.
Note that P N , Vt

_
0, independently of the initial data. Two possible choices

ul t- u+ Ur t tl Zt+ t- Ur t

FIG. 2.4. (Example 2.7). There are infinitely many choices of u- and u+.

of u+ and u- are shown in Fig. 2.4, where the jump from u- to u+ corresponds to
a horizontal dotted line from the graph of g(-) + s to the graph of f. Of all these
solutions the one with u- u+ fi turns out to play a distinguished role; see the
numerical justification in Theorem 3.1.

Example 2.8. Let s constant, f(u) u, g(u) a parabola according to Figs. 2.5
and 2.6, and the initial data

Ju, x < 0,
U(X O)

Ur X O.

Let Ul and u2 be the concentrations defined by Fig. 2.5, i.e., g(u) + s f(ul)
g(u2)+s. The solution shown in Fig. 2.5 is in accordance with the numerical treatment

U t Zt U

/
/

FIG. 2.5. (Example 2.8). A solution with minimal variation. Note that u- ut and u+
ul. Thin lines in the right plot are characteristics. The two dotted line segments in the left plot
correspond to the two discontinuities in the right plot.

in 3; see Theorem 3.2. Another solution is shown in Fig. 2.6.
Gimse and Risebro /11] use the condition to minimize lu+- u- to obtain a

unique solution of the Riemann problem with discontinuous flux function. However,
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Ul U+ U- r

FIG. 2.6. (Example 2.8). A solution with a smaller jump at x 0 than the solution in Fig. 2.5,
but with greater variation.

Example 2.8 shows that such a jump need not exist. If we interpret the notation
u+ and u- in [11] as "inner states" at x 0 instead of as limits of a solution, then
a discontinuity along the t-axis (with zero speed) would be allowed with an "inner
state" on one side of the discontinuity. Then the condition to minimize lu+ -u- can
be used as a uniqueness condition. For example, the solution in Fig. 2.5 could be seen
as the limit of solutions of the type in Fig. 2.6 when the speed of the shock in x < 0
tends to zero from below.

Since we interpret u+ as limits of a solution, the^uniqueness condition presented
below is based on the intersection of the graphs of f and 0 + s(t). Some properties
of a unique solution, involving the jump between u- and u+ and the variation of the
solution, can be found in [7].

In each of the Examples 2.7 and 2.8 a specific solution can be selected by the
Conservative Godunov scheme of 3. Note that in Example 2.7 F(u+, u_, 0) { (fi, fi) }
holds; see Definition 2.5. Letting the pair of boundary functions (c(t),/(t)) _-- (, fi),
t >_ 0, we then obtain the same solution that we get by the numerical treatment in
3; see Theorem 3.1. In Example 2.8 F(u+, u_, 0) {(Ul, ul), (ul, u2)} holds. The
solution obtained by the numerical treatment (see Theorem 3.2) coincides with the
analytical solution obtained by using the boundary functions (c(t), (t)) (ui, ul),
t _> 0. In both Examples 2.7 and 2.8 (u+(t),u-(t)) E F(u+(t),u_(t),t), t >_ 0 holds.
Motivated by this as well as by a viscous profile analysis in [8], we introduce the
following coupling condition.

Condition r. For fixed t and given u+, u_ E I, (u+, u-) r(u+, u_, t) holds.

Since problem (1.2) or (1.3) is a generalization of (1.1), Condition F must be a

generalization of the entropy condition.

PROPOSITION 2.9.
entropy condition (1.5).

If f g and s =_ O, then Condition F is equivalent to the

Proof. Let x x(t) C be a discontinuity with u smooth on both sides By a

change of coordinates, under which the entropy condition is invariant, we can assume
that the discontinuity has zero speed (replace x by x-x(t) and f(u) by f(u)-x’(t)u).
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Assume that u- < u+ (the case u- > u+ is similar). Then

Condition F (u+, u-) r(u+, u-, t)
f(u+) f(u-) ](; u+)
f(u+) f(u-)= ](u-;u+) (since u- e )
f(u+) f(u-) ](u-; u+) min f(v)

u-vu+

==v S(u-, v) >_ 0-- S(u-, u+) /v between u- and u+.

The following example shows (unfortunately) that there exists a time (t 0 in
the example) at which (u+,u-) (P(f;u+) x N(g;u_)), i.e., the set D in Theo-
rem 2.6 can be nonempty. It also provides another example of a solution satisfying
Condition F.

Example 2.10. Let f(u) u, g(u) a parabola according to Fig. 2.7, s(t) t,
and the initial data

Ju, x < 0,
U(X, O)

(u, x>0.

where ur is arbitrary and u satisfies f((0)) g((0)) g(u) according to the
figure. Since s(t) is increasing, we can let u(t) be the smooth increasing function
that is the unique intersection of the graphs of f(.) and g(.)+ s(t) with ui(0) fi(0).
The solution shown in Fig. 2.7 satisfies Condition F, and u+(t) u-(t) u(t) for
t > 0 and, in particular, u-(0) (0) e /Q(u_(0)) \ N(u_(0)), where u_(0) u.
Note that the set F(ur, ut, 0) { (fi(0), ut), (fi(0), fi(0)) } consists of two pairs, but

+ (0) ]

at (0) u

FIC.. 2.7. (Example 2.10). A shock moves to the left, separating the value ul from the values
u-(t) ui(t), >_ O, on the characteristics coming from the t-axis. In x > 0 the characteristics
emanating from the t-axis carry the values u+(t) ui(t), >_ O.

since s(t) is increasing, only the pair (2(0), fi(0)) serves as the initial condition for the
pair of boundary functions (a(t), (t)). If s(t) were decreasing, only the other pair of
F(u, us, 0) would be possible; cf. Example 2.8. This will follow from Theorem 2.19.

2.3. The Riemann problem with discontinuous flux function. Let the
source function s be independent of time. It is no restriction to let s 0. Using
the same initial data as in the Riemann problem (1.6), (1.3) becomes the Riemann
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problem with discontinuous flux function

ut + f(u) 0, x > 0, t > 0,

ut+g(u)=O, x<0, t>0,

(2.2) f(u+(t)) g(u-(t)), t > 0,

u(x, O) u’ x < O,
ur X > O.

This problem is treated by Gimse and Risebro [11]; cf. the discussion after Exam-
ple 2.8 above. A solution of this problem can be constructed by fitting two "Riemann
cones" with (u+, u-) E P N according to Lemma 2.3. The following proposition
introduces a function c(u+, u_, t) (u+, u-) E (P N)N F, which will yield the
correct boundary values. Furthermore, if u is a solution of (1.2) satisfying Condi-
tion F, then Theorem 2.6 says that (u+, u-) (P N) NF for all t outside a discrete
set. Therefore, the function c will also be used in the construction of solutions in the
general case; see 2.4.

PROPOSITION 2.11. Let t be fixed and u+ u_

then the set (P(f; u+) x N(g; u_)) F(u+, u_,t) consists of exactly one point, and
hence a function c is well defined by

c(u+, u_, t)= (u+, u-) e (P N) F.

Proof. I implies U =/= . Put /= f(U;u+). Since the restrictions fiR and
gIN are injective,

(u+,u-) e (P N)

uniquely determines u+ and u-.
We shall now describe the function c by considering all the cases that may occur

depending on the set -.
Case 1. t N C P; see Fig. 2.8 and Example 2.7. Application of the function c

yields u+ u- .
+ (t) + (t)

+ (t)
:

N N
o ,I----.p .._p

fi u_ u+ fi u+ u+

FIG. 2.8. Examples of Cases (left) and 2a (right). The sets N and P are indicated above the
u-axis.

Case 2a. fi N \ P; see Fig. 2.8. The function c yields

u+ {max (P ffl (-c, )), u+ < fi,

min (P N (, oo)), u+ > fi,
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Case2b. fi E P\
yields

N (symmetric to Case 2a); cf. Example 2.8. The function c

u+

{max (g VI (-cx, 2)),
U

min (N f (fi,

Case 3. U is infinite or fi (P t_J N); see Fig. 2.9. The function c yields

u_ u- 0 u+ u_ u- fi u+ u+

FIG. 2.9. Examples of Case 3:0 is infinite (left) and z q (P LJ N) (right). In the left figure
u+ u+ holds.

THEOREM 2.12. If I(ur, ul,O) # , then there exists a unique solution u E
U

xof (2.2) satisfying Condition F for t >_ O. The solution is of the form (-) and the
constant boundary values are given by (u+, u-)--c(ur, ul, 0).

Proof. Let (co, o) c(u, ut, 0). By Lemma 2.3 there exists a solution, say v(),
of RP(f; co, u) such that the cone V(f; co, u) is entirely contained in x >_ 0, t > 0,

xand v(0+)= Co. Analogously, there is a solution w() of RP(g;ut,o)with a cone
entirely in x _< 0, t > 0, and with w(0-) o. Since f(ao) g(3o) by the definition
of c, a function solving the problem is

(x) {vial, x > o,
x<0, t>0.

To prove the uniqueness let fi(x, t) E be any solution of (2.2) that satisfies Condi-
tion F Vt > 0. First we show that (+(t),fi-(t)) (a0,0) for small t > 0. Assume
that fi+(t) is nonconstant for small t > 0. Since fi+(t) is smooth and monotone for
small t > 0 and f nonconstant on every open interval, two cases may appear:

1. f’ (+(t)) < 0 for small t > 0. Then the characteristics to the right of the
t-axis have negative speed and must therefore come from the positive x-axis. Hence
+(t) u for small t > 0, which is a contradiction.

2. f’ (fi+ (t)) > 0 for small t > 0. Since +(t)is nonconstant and g is noncon-
stant on every open interval, the relation (2.1), f(t+(t)) g(-(t)), implies that



1438 STEFAN DIEHL

5-(t) is nonconstant for small t > 0. Thus g(t-(t)) t) (5- (t) 5_ (t)) is also non-
constant and Condition F implies that this occurs only if g’ (5-(t)) > 0 for small
t > 0. Then the characteristics to the left of the t-axis have positive speed and must
come from the negative x-axis carrying the constant value 5-(t) uL, which is also a
contradiction.
Thus +(t) constant for small t > 0 must hold and, then,

(x)(2.3) for x > 0 and small t > 0,

where tP is the solution of aP(f;fi+(0),ur). Theorem 2.6 and Condition F say
that (+(0), -(0)) e (/5(Ur) (u,)) N F(ur, uL, 0), which implies that +(0)
?RP (0-{-) O/0, and hence + (t) ao for small t > 0. Analogously, we conclude that
-(t) _-- 0 for small t > 0. The only possibility left for (x, t) to differ from u() is
that +(t) = a0 and/or -(t) 0 for t > to E (0, oc). Then the "new initial data"
are (x, to) u(x/to) v(x/to), x > 0. Either fi(x, to) u, x > 0; then
and the reasoning above (at t 0) gives + (t) _= u a0 u+ (t) for small t-to > 0.
Otherwise v(7) consists of a cone Y(f; a0, u) entirely contained in x >_ 0, so that
f’ (v()) > 0 for small x > 0..h]most the same reasoning as above (at t 0) can be
used: If+(t) is nonconstant for small t-to, then only item 2 is possible and the same
reasoning holds and gives a contradiction. Thus + (t) constant for 0 < t
for some s > 0, and this implies that (2.3) holds for 0 < t < to + s, so the limit value
is again + (t) _= a0 for 0 < t < to + , and we have proved that + (t) u+(t) for
0 < t < to + . Analogously, 5-(t) _= u-(t) holds for small t to > 0 and hence
5(x, t) u() for small t- to > 0, which is a contradiction. [:]

2.4. Construction of solutions in the general case. In this section the ex-
istence of a solution of (1.2) locally in t is proved by construction. When constructing
solutions of the simpler problem (1.1), certain assumptions have to be laid on the
initial data; see Ballou [1] and Cheng [4]. To construct a solution of (1.2)-we must
define boundary functions, a(t) and/(t) with the same regularity that we require of
the initial data u0, i.e., piecewise smoothness and piecewise monotonicity. However,
since the main problem of the construction is to define these boundary functions,
we must impose restrictions on u0, f, g, and s to ensure that a(t) and (t) become
piecewise smooth and piecewise monotone. Since the behaviour of a solution changes
abruptly when a discontinuity reaches the t-axis, it is natural to formulate conditions
for existence locally in t. In Definition 2.14 restrictions on u0, f, g, and s are given,
defining what we call a regular problem. If problem (1.2) is regular, then we show
how a solution u E E satisfying Condition F can be constructed by the method of
characteristics for 0 < t < for some > 0. Then, if u(x,- 0) serves as initial
data for a new regular problem starting at t , the solution can be continued. We
comment further on Definition 2.14 at the end of this section.

Below we shall present a "procedure of construction" of a solution and postpone,
until Theorem 2.17, the proof that it works and that the solution satisfies Condition F,
as well as the fact that it belongs to the class E. Also, the proof of Theorem 2.17
will clarify the steps of the procedure. The idea is the following. From Theorem 2.6
we know that a piecewise smooth solution satisfying Condition F fulfils (u+, u-)
c(u+, u_,t) for all t outside a discrete set. In contrast to the simpler problem in
the previous section, the function c defined in Proposition 2.11 will be used twice
to define the boundary functions a(t) and (t) in the general case. This is because
of the dependence of uo(x) on x and the dependence of s(t) on t. At t 0 the
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function c is used for the first time to define two constants a and b, which are used in
two auxiliary problems. These problems produce two functions +(t) and -(t), on
which the function c is applied again to define, finally, c(t) and (t).

It is convenient to divide the initial data

(, 0)= {u(x),
and define ug(0) _= ug(0-) and ur(0) ur(0+).

PROCEDURE OF CONSTRUCTION.

1. Let (a, b) c(u(O), ug(O), 0).
2. Solve the initial value problems

Ot + f()x "-O,

(2.4) a, x < 0, and
(x, 0)

u(x), x > 0,

and compute + (t) and -(t) for t 0.
3. Let

(.)
and define

x<0,
x>0,

+() 0,

(x,0) ,

T--sup {tl "I(+(t),-(t),t) 0, Vt e [0, tl]}

(.(t), Z(t)) (+(t), -(t), t), 0 < t < T,

x<O,
x>O,

Iv(x, t), x > o,
(2.9) (x, t)

[(x, t), < 0, O<t<.

In step 3 we define a(t) and (t) as continuous from the right, since they should
eventually satisfy a(t) u+ (t) and fl(t) u-(t).

Example 2.13. If we apply the procedure to the problem in Example 2.10, we
obtain (1) (a,b) ((0), u), (2) +(t) _= (0) and -(t) _= u, and (3) a(t) (t)
ui(t), t >_ O. Note that in this example (a(0),/(0)) # c(+(0),@-(0),0), which
motivates definition (2.6) at t 0. Furthermore, we can let oc in 4 and the
solution u(x, t) in 5 is shown in Fig. 2.7.

DEFINITION 2.14. Problem (1.2) is said to be regular if the following hold:

(2.8)

and

5. Let

wt + g(w) O, x < O, O < t < ,
(x, o) (x), x < o,
-(t) (t), o <_ t < .

(.6)
(.(0), Z(o)) (.(0+), z(0+)).

4. Solve the initial boundary value problems with s _< T as large as possible,
i.e., is the first time when c(t) or (t) is discontinuous or a discontinuity reaches
the t-axis:

vt A- f(v)x -----O, x > O, 0 < t < e,

(2.7) v(x, o)= (x), x > o,
v+ (t) (t), o < t <
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1. The solutions and Cv of the initial value problems (2.4) belong to E for small
t>0.

2. The function

(2.10) (t) =_ f(+ (t)) g(-(t)) s(t)

is either >, <, or =_ 0 on some interval 0 < t < 5.
3. If u(t) is a unique intersection of f(.) and g(.) + s(t) for small t > 0 with

ui(O) ?(0), "min(0) or max(0), then the function8

s((t)) s(/(t)),
(u(t)) (-(t))

are either >, <, or =_ 0 on some interval 0 < t < 5.
For item 1, note that and are generically piecewise smooth in the case of

one inflection point of S and g, respectively; see Dafermos [5]. This is the case in
the applications to sedimentation and two-phase flow; see Fig. 1.2. Furthermore,
the solutions and near the origin are solutions of perturbed Riemann problems
with the initial data monotone on each side of x 0. Considering all cases of flux
functions (see Chang and Hsiao [3]) it follows that + (t) and -(t) are monotone for
small t > 0.

Before stating the existence theorem, we need two lemmas on some properties of
the function c. The first says, among other things, what .happens when applying c
twice.

LEMMA 2.15. Let ch(A, B) denote the convex hull of A U B, where A and B are
points or intervals oS]. Given a fixed t >_ 0 and u+, u_ l, let (c0, 0) c(u+, u_, t)
and Uo U(u+, u_, t). Then

a E ch(u+, co)
E ch(u_, flo)

](; ) ](u; u+)
(u; Z) (; -)
r)(,Z,t)
(, Z, t) (o, Zo).

Vu ch(Uo, co),
Vu e ch(’o, o),

Proof. Let ro (u+, u_,t). From Cases 1-3 after Proposition 2.11 it follows
that either ao u+ or ao lies closer to Uo than u+ and on the same side of Uo as u+.
Analogously, either o u_ or o lies closer to Uo than u_ and on the same side of
0 as u_. Then Definition 2.2 of ], P, etc. implies the statements in turn. rl

LEMMA 2.16. Let -(0) ’(ur(0),ut(0),0). The solutions and of (2.4)
satisfy

(s (+ (o), (- (o), o) (s(o),
/((o); +(o)) =/(t(o); (o)),
(0(o); -(o)) 0(0(o1; u(O)).

Proof. The resolution of the discontinuity between a and ur(0) is approximated
by the solution of aP(f;a, ur(O)); cf. the discussion preceding Lemma 2.4. This
implies +(0) e ch(a,u(0)) and -(0) ch(b, ut(0)). The statements are implied
by Lemma 2.15.
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THEOREM 2.17 (existence). I] (1.2) is a regular problem and

(2.11) I(a,/, t) # 0 g(a, , t) E R x R x [0, T) for some T > O,

then there exists a solution u E satisfying Condition F for t [0, e) for some
e e (0, T].

Remark. (2.11) can be replaced by the weaker conditions I(ur(O), ul(0), 0) q}
and T > 0 with T defined by (2.5).

Proof. Carry out steps 1-3 in the procedure of construction. (2.6) alone gives
f((t)) g((t)) + s(t) for t >_ 0 and together with Lemma 2.15 gives

(2.12) (.(t), Z(t)) c(.(t), Z(t), t), t > o.

In particular, (2.12) means (c(t),/(t)) r(a(t),(t),t), t > 0. It remains to verify
Condition F at t 0. The continuity of ] implies that ] ((+ (t),- (t), t); + (t))
is a continuous function of t for small t _> 0. Using (2.6) and the continuity of ] and
t and letting t --+ 0+, we get

f((0)) g((0)) + s(0) ? ((+(0),-(0),0);+(0)).
This, together with Lemma 2.16, gives (c(0), (0)) F(ur(0), ul(0), 0).

Below it will be shown that a(t) and/(t) are smooth and monotone for 0 < t < e
for some > 0 (we can assume that s(t) is continuous in this interval). Then (2.12)
and Lemma 2.3 ensure that the method of characteristics can be applied to construct
solutions v and w in the strip 0 < t < e of the initial boundary value problems (2.7)
and (2.8). Then u(x, t) in (2.9) is a solution in E of (1.2) for 0 5 t < e. Near the
origin this solution is smooth except along the t-axis and along possible discontinuities
emanating from the origin going into x > 0 and x < 0, respectively.

By the assumption that u(x, 0) is piecewise smooth and piecewise monotone there
exists a 5 > 0 such that one of the following alternatives holds:

I. f’(u(x)) > 0 for 0 < x < 5 and g’(uz(x)) < 0 for -5 < x < 0. Then

(+(t),-(t)) (a,b) holds, which implies that ](.;+(t)) ](.;a) and

(.;-(t)) O(.;b) are independent of time. Since by assumption s is mono-
tone for small t > 0, there exists an el > 0 such that one of the following
cases occurs:
A. s(t) s(0), 0 < t < el. Then a and defined by (2.6) are constants.

Define v and w by (2.7) and (2.8). Let e E (0,e] be the first time a
discontinuity crosses the t-axis. Then (2.9) defines a Solution for 0 <
t<.

B. s(t) s(0), 0 < t < 1. Then (2.6) implies that a and/ satisfy

(2.13) /(.(t); + .(t), t > 0.

The graph of the nondecreasin^g function ] consists of increasing parts
separated by plateaus (where f constant) and, analogously, the graph
of consists of decreasing parts separated by plateaus. Define the set
U(t) V(a, b, t), t _> 0. Three cases may occur"

(i) There is a unique intersection at 2(0) with f’(u) ]’(u) > 0 and
g’(u) {7’(u) < 0 gu ( (0)) in a neighbourhood of (0). The
parenthesis in the previous sentence applies if fi(0) happens to be
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an inflection point. Condition F implies that a(0) (0) fi(0)
and (2.13) reduces to

f (t(t)) g(t(t)) + s(t),

which defines a(t) (t) fi(t) C1(0,2) for some s2 (0,1]
by the implicit function theorem. The assumptions on s(t) and the
fact that f is increasing and g is decreasing in a neighbourhood of
fi(0) yield that

f’ (t(t)) g’ (t(t))
is either positive, negative, or zero on 0 < t < 3 for some 3 E
(0, 2]. Hence a(t) =/(t) fi(t) is monotone with bounded deriva-
tive for t E (0,3). Let (2.7) and (2.8) define solutions v and w
and let E (0, s3] be the first time a discontinuity enters the t-axis.
Then (2.9) defines a solution for 0 < t < .

(ii) There is a unique intersection at fi(0) which separates a plateau and
a strictly monotone part of ] or + s(0). Since s(t) is either increas-
ing or decreasing for small t > 0, there is either an intersection as
in (i) or an intersection with exactly one plateau involved for small
t > 0. In the latter case either a or is constant and the other is
defined by (2.13) and is smooth with bounded derivative and mono-
tone for 0 < t < 2 E (0,] by the implicit function theorem and
the assumptions on s(t). Let (2.7) and (2.8) define solutions v and w
and let E (0, s2] be the first time a discontinuity enters the t-axis.
Then (2.9) defines a solution for 0 < t < s.

(iii) 5(0) is infinite, i.e., a plateau of ] coincides with a plateau of t+s(0)
at t 0. Assumption 2 of Definition 2.14 implies that the plateaus
separate immediately and we get a unique intersection as in (i).

II. f’(u,.(x)) >_ 0 for 0 < x < 5 and g’(uz(x)) > 0 for -5 < x < 0. Then

+(t) a and hence ] is independent of time for small t > 0. -(t) is
defined by the characteristics from the negative x-axis carrying the values
uz(x). Then we say that one plateau of the graph of t)(.; - (t)) is moving
and we denote the set of the corresponding u-values by

M(t) {u’(u;-(t)) g(-(t))}, t > 0;

see Fig. 2.10. The other plateaus are called fixed. Also define U(t)
5(a, -(t), t), t _> 0. A solution can be constructed as in case I with some
modifications depending on the moving plateau. Instead of making a divi-
sion depending on s(t) (IA and IB), we must consider the sign of (2.10);
(t) f(a) g(Cv-(t)) s(t), which is either positive, negative, or zero for
small t > 0 by the regularity assumption (item 2 of Definition 2.14). Then,
for example, 7(t) 0 for small t > 0 means that the moving plateau lies
on the fixed value f(a), but with one or both end points moving smoothly
and monotonically (by the implicit function theorem and the assumptions on

s(t)), and hence (2.6) will yield smooth and monotone functions c(t) and fl(t)
for small t > 0 as in case I. These functions will have bounded derivatives
except possibly at t 0.
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M(0+) M(t)

-(0) u -()

FIG. 2.10. The moving plateau at 0 (left) and a some > 0 (right) in a case when -(t)
is decreasing.

One new complication arises when there is a unique intersection at fi(0),
which also is an end point of a moving plateau. Let us study the case when
fi(0) min M(0+) in Fig. 2.10 and -(t) is decreasing. If s(t) is decreasing
for small t > 0, then there is a unique intersection of the graph of f and
the fixed plateau of t in Fig. 2.10, and a solution is defined as in IB(ii). If
s(t) >_ s(O) for small t > 0, then there is a unique intersection ui(t) of the
graphs of f(-) and g(.) + s(t) for small > 0 with ui(0) (0). Then item 3
of the regularity assumption gives the fact that g(u(t)) g((v-(t)) is either
negative or nonnegative for small t > 0, i.e., either the graph of f intersects
the plateau or the decreasing part of 0(.;-(t)) for small t
solution is defined either as in IS(i) or IB(ii).

III. f’ (ur(x)) < 0 for 0 < x < and g’(u(x)) <_ 0 for - < x < 0. This case is
symmetrical to the previous one.

IV. f’(ur(x)) < 0 for 0 < x < and g’(ul(x)) > 0 for -6 < x < 0. In this

case both ] and t have moving plateaus. Because of assumptions 2 and 3 of
Definition 2.14, a solution can be constructed with an extension of cases II
and III similar to the extension from "case I to case II.

Finally, note that the constructed solution belongs to E.
The technical reason for Definition 2.14 is that we want to avoid plateaus (of

] or ) oscillating with unbounded frequencies. The restrictions thus mean that
plateau either stays fixed or moves monotonically (for small t > 0) away from, for
example, another plateau. In each case only one particular pair of the set F will be
possible as initial value for the pair of boundary functions (a, fl); see 2.5. However,
even though three different solutions appear in these cases of movements of a plateau,
these three solutions approximate each other for small t > 0. This is true because,
regardless of what pair of F is chosen, a possible discontinuity between u_ and u-
(or u+ and u+) will have zero speed for t 0+; cf. the discussion after Example 2.8.
This indicates that oscillations of bounded variation would not cause any trouble and
it seems plausible that the regularity assumption in Definition 2.14 could be relaxed
considerably. However, for the applications we have in mind it is very unlikely that one
should find a situation in which the problem is not regular, and hence the procedure
of construction could be used repeatedly to obtain a global solution.

Note that letting either ut(x) and ur(x) be constant or s(t) be constant does not
Simplify the construction of a solution and the proof of existence in this section. If all
three functions are constant, we have the Riemann problem with discontinuous flux
function (2.2).

2.5. Proof of uniqueness. In this section we shall outline how to prove that
the solution constructed by the method in 2.4 is the only one in the class E that
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satisfies Condition F. The proofs of Theorems 2.18, 2.19, and 2.20 below provide
many examples of the construction of a solution. The same notation as in 2.4 will
be used.

Consider the three cases after Proposition 2.11. When there is a unique intersec-
tion as in Case 1 (in an open time interval) it is easy to construct a solution satisfying
Condition F. It will simply satisfy u+(t) = u-(t) t(t). This solution is trivially
unique since the set F(u+(t), u_(t), t) F((t), (t), t) {((t), (t)) } consists of
only one pair. When there is an intersection as in Case 2 or 3, there is at least one
plateau of f or 0 involved, which may imply that the set F consists of more than
one pair. As we have seen in the proof of Theorem 2.17, this or these plateaus can
"move"; see Fig. 2.10. Depending on whether a. plateau, say of 0 + s(t), moves up or

down or stays fixed in relation to, for example, a plateau of ], only one pair of the
set F can be used in each case to obtain a solution. The correct pair is chosen by the
construction procedure in 2.4. The proof of uniqueness consists of the exclusion of
all other pairs of F. To perform these exclusions we shall use a result by Bardos, Le
Roux, and Nedelec [2] concerning the two initial boundary value problems

v + j(v) 0, x > 0, t > 0,

o) x > o,
v+(t) e t > 0,

and

(2.15)
wt + g(w) 0, x < 0, t > 0,

0) < 0,

w-(t) e P(g;(t)), t >_ O.

Observe the arguments f and g of/ and/5. A solution of (2.14) is thus allowed to
have a jump at x 0 from c(t) to v+ (t) if this discontinuity would like to move to the
left, i.e., if S(a(t), v+(t)) =_ (f(a) f(v+))/(a- v+) <_ O. Dubois and Le Floch [10]
introduce the set

$(f; a) {u E IR S(a, k) <_ 0 for every k e ch(u, a)},

and show the first equality in

$(f; a) {u+(0) u is the solution of RP(f; a, fl), fle IR} =/(f; a),

where the last equality is implied by Lemma 2.3. They also show that 8(f; a) is equal
to

$1(f;a> {u" kech(u,)max sgn [(u a)(f(u)- f(k))] 0}.
Bardos, Le Roux, and Nedelec [2] have shown that there exists a unique solution
v of (2.14) that satisfies v+(t) $1 (f; c(t)). This is done by a vanishing viscosity
approach. We shall use this result and the symmetrical one for (2.15) to prove that
there is only one pair of functions (a,/) that satisfies Condition F as well as v+ (t)
c(t), w-(t) /(t) for small t >_ 0. Note that a(t) and /(t) are required to be
continuous from the right at t 0.
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THEOREM 2.18. If problem (1.2) is regular with g increasing, f arbitrary, and
I(a, , t) = 0, V(a, , t) E it( [0, T) for some T > O, then there exists a unique

u e e [0, e (0, T].
Remark. Note that Condition F is automatically fulfilled since _-- constant for

each t. A similar theorem holds for the symmetrical case when g is arbitrary and f
is decreasing.

Proof. We shall only treat some cases here and we refer to [7] for the rest.
The existence follows from Theorem 2.17. Let u denote the solution constructed
there. Since g(u) > 0, except at a discrete set of inflection points, all characteris-
tics in x < 0 have positive speed and define u-(t) (t) uniquely. Thus u-(0)
u(0) and hence (.;u-(t)) _-- g(u-(t)) for t >_ 0. It remains to prove that there
is only one possibility for choosing the boundary function a(t), namely, the one
used in the construction in Theorem 2.17. With the notation used there, define
5(t) r(+(t), u-(t),t) for small t >_ 0. Note that Lemma 2.16 gives (0)
(ur(0), ul(0), 0) and f(-(0); +(0)) f((0); ur(0)). Two main cases may appear:

1. There is a unique intersection at fi(0). Hence a(t) is uniquely determined by
(t) a(t) for small t > 0.

2. The set r(0) is infinite, i.e., a plateau of ] coincides with the constant
g(u-(O))+s(O). Depending on the graph of f, there are two main cases: A. f (ur(0)) :
]((0); +(0)) and B. f(u(O)) ]((0); +(0)). We shall only treat case A here and
refer to [7] for all subcases that occur in case B. By symmetry it .suffices to assume
that u(0) > timex(0); see Fig. 2.11. Let a, E {1,... ,n} be all possible u-values

1 (2 c3 cn ur(0) U

FIG. 2.11. Case 2A in the proof of Theorem 2.18. The dashed graph is ](.;+(0)) ](-;an).

that satisfy y(a) =/(5(0);+(0)), numbered according to Fig. 2.11. Note that

]((0); u(0)) ]((0); an). The conservation law (2.1), f(a(t)) g(u-(t)) + s(t),
implies that for every admissible a(t), a(0) ai must hold for some {1,..., n}.
Since O+(t) a an for small t >_ 0, which gives f(+(t)) _-- f(an) ]([(0); Ur(0))
for small t >_ 0, (2.10) becomes (t) f(an) g(u-(t)) s(t). By the regularity
assumption three cases may occur:

(i) (t) 0 for small t > 0. Then a(t) ---- ai for small t > 0 for some i. Independently
of i, the unique solution v of (2.14) satisfies v(x, t) uRP() in { (x, t)" 0
gt, t > 0} for some g > 0, where uPP is the solution of RP(f; hi, u(0)), for
v+(t) uRP(0--) e J(f; a(t)). Thus, uniquely, v+(t) uRP(0--) an u+(t)
for small t > 0.

(ii) (t) > 0 for small t > 0. Independently of a, there is a unique intersection as
in 1 with u+(0)

(iii) (t) < 0 for small t
for small t > 0. The solution is defined as in 1. Suppose instead that the
boundary function
and f(a(t)) g(u-(t)) + s(t) > f(an) for small t > 0. Then the solution
v of (2.14) satisfies v+(t) an a(t). Hence the solution constructed in
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Theorem 2.17 is the only possible one. E]

THEOREM 2.19. If problem (1.2) is regular with g decreasing, f arbitrary, and
I(a, 3, t) : O, V(a, 3, t) IR x IR x [0, T) for some T > O, then there exists a unique
solution u E satisfying Condition F fort [0, ) for some e (0, T].

A similar theorem holds for the symmetrical case when g is arbitrary and f is
increasing. The proof is found in [7].

Note that Theorem 2.18 deals with the case of intersection when t is one plateau
from -cx to c for every t and Theorem 2.19 deals with the case when is decreasing
for every t. The following theorem includes the case when a plateau with moving end
point(s) is involved in the intersection. The proof is found in [7].

THEOREM 2.20. If problem (1.2) is regular with f g having precisely one
stationary point, which is a global minimizer Umin, then there exists a unique solution
u E satisfying Condition F for t [0, ) for some > O.

This theorem states that if, for example, f is convex, then there always exists a
unique solution of the initial value problem for the equation ut + f(u) s(t)5(x)
(assuming regularity).

For the flux functions in the problem of continuous sedimentation (see Fig. 1.2)
uniqueness in the class E is shown in [6].

Recall the problem of two-phase flow in porous media in 1.3. The flux functions

f and g in Fig. 1.2 (right) have precisely one stationary point, which is a global
minimizer. This is qualitatively the same as in Theorem 2.20 with the simplification
that the source function is s 0. There are two qualitatively different possibilities for
] and two for , depending on whether u+ lie to the left or to the right of the minimum.
For a case simpler than the sedimentation problem it can be proved (see [6]) that
0 <_ no(x) .<_ 1 = 0 <_ u(x, t) _< 1 and I(a, , t) O, (a, , t) [0, 1] x [0, 1] x [0, x).
Hence the procedure of construction in 2.4 can be applied if the problem is regular.
Gimse and Risebro [12] have proved the existence of a global solution if the initial
value u0 has bounded total variation. They have left the question of uniqueness as
an unsolved problem. The proof of Theorem 2.20 yields uniqueness in the class E.

2.6. The initial value boundary flux problem. Consider the initial value

u, + f(u) 0, x > 0, t > 0,
x > 0,

f (u+(t)) fo(t), t >_ O.

This is a variant of (1.3) when g 0 and s(t) fo(t). The definitions and results
above may be modified to this problem. For example, in the analogue of Theorem 2.6
no restrictions are laid on u_. The construction of a solution can be done as in 2.4
with obvious modifications. The analysis now relies on the intersection of the graph
of ](.; u+(t)) and the constant graph fo(t). Hence the proof of Theorem 2.18 Mso
yields the following theorem. Note that Condition F is automatically fulfilled.

THEOREM 2.21. If (2.16) is regular and fo(t) E ](IR;a), V(a,t) E IR x [0, T)
for some T > O, then there exists a unique solution u E for t [0,) for some
e (0, T].

3. Justification of Condition F by Godunov’s method. In this section
we shall justify Condition F by studying a discretized version of our conservation
law problem (1.2). The idea of Godunov’s [13] numerical method for an equation
ut + f(u)x 0 is to use the integral form of the conservation law and the entropy

boundary flux problem
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solution of the Riemann problem (1.6) to form an approximate solution by means of
a discretization. The extension of this procedure to our problem (1.2), which includes
the source along the t-axis, is straightforward if placing grid points on the t-axis. The
scheme is presented in 3.1.

It is well known that Godunov’s method for a scalar equation ut + f(u)x 0
produces a sequence of approximate solutions that converges to the unique entropy
satisfying solution, provided such solutions of the Riemann problem (1.6) are used
in the derivation of the algorithm; see Le Roux [19]. The extension of Godunov’s
method to our problem does not include any extra condition along the t-axis, so it is
suitable for a justification of Condition F. No convergence proof of the algorithm is
presented here.

In 3.2 the extension of Godunov’s method is used on the Riemann problem with
discontinuous flux function (2.2) in two cases.

3.1. Extension of Godunov’s method to problem (1.2). For 5 and T >0
let { (i5, jT)’i, j e Z, j >_ 0} be a grid in the half plane R R+. Let

(3.1) a maxlf’(u)l and b maxlg(u)l
uEM uEM

where the interval M depends on the initial data as well as on f, g, and s; cf.
Theorems 3.1 and 3.2 below. The scheme is derived by considering analytic solutions
of parallel Riemann problems originating from piecewise constant initial data. These
parallel solutions will not interact if choosing the ratio of the mesh size of the grid

1
(3.2) A-- < min ,
It is assumed that the ratio is constant when T, 5 0. Using U as the approximate
solution at grid point (i, j), the scheme is written as

where

ujU/1 U] + (f(u_l/2) f( i+1/2))’ i > 0,

ug + +
U/j+l UJi + A(g(uT_ii2) g(27+1i2)), < O,

(iT1/2)5 (j+l)-- uo(x) dx and Sj s(t) dr,
T

(i--1/2)6 j-r

and from the solution of the Riemann problem (1.6) it follows that the fluxes on the
straight lines in the t-direction between the grid points are given by

(3.6)
min h(v) if U(_I_U,

v[UiJ_.l UJih(u_1/2)- where h=
max h(v) if UJ_I > UJ, g,

i>O,
i<0.

Note that h(Ui_l/2)J (V_l,J vii) (VJi vii_l). Define a piecewise constant func-

tion Or(x,t) by

r(x,t) U] for (x,t) E [(i- 1/2)5, (i + 1/2)5) [jT, (j + 1)T).
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The scheme (3.3)-(3.5) is conservative in the sense that the numerical solution
preserves the same amount of mass as the analytical solution. A theorem of Lax
and Wendroff [16] states that if a sequence of numerical solutions obtained by a
conservative method applied to the equation ut + f(u)x O, x E , is convergent,
then it converges to a weak solution. This is also true for the scheme (3.3)-(3.5) and
the proof is very similar to the one of the Lax-Wendroff theorem.

3.2. Justification of Condition F. The justification is done in two ways. First
we consider a time point when u+(t) are smooth and then we consider a time point
when they are discontinuous.

Assume that the scheme (3.3)-(3.5) converges (in the weak sense) to a solution
of (1.2) with u+ well defined. Let to be a time such that u+(to) u+.(to), and let
j" <_ to < (j + 1)- hold as j -* c, T - 0. Hence we assume that U: -- u+(t0),

1,2, U - u, and Sj - s(t0) as j - cx. This and the property h(u_i/2)
(U_I, U/j) h(uJi, UJ_I) for the cells -1, 0, and 1 in the scheme (3.3)-(3.5) yield

](u; ](u+;
](uO; u-) +

u-) u-).

The second equality says that u e (to), and since ](u+; u+) f(u+) and t(u-; u-)
g(u-) hold, we conclude that

f(u+) g(u-)+ s(to) ](u; u+) (u+, u-) e F,

i.e., Condition F is satisfied at all time points when u+ are continuous.
Now we consider the case when u+(t) are discontinuous. For a general solution

of (1.2) the "most common" cases concerning the intersection of the graphs of ]
and t) + s(t) are Cases 1 and 2 after Proposition 2.11. We shall apply the scheme
(3.3)-(3.5) to the Riemann problem with discontinuous flux function (2.2) (where
s 0) in these two cases; see Theorems 3.1 and 3.2. Recall that the analytical
solution, which satisfies Condition F, consists of two Riemann cones, one on each side
of the t-axis. The boundary values on either side of the t-axis are constant for all
t _> 0, say (u+, u-) (c0,0) c(ur, u, 0). Because c0 is constant, the solution
of RP(f;, a0, ur) is, in x > 0, t > 0, identical to the solution of the quarter-plane
problem

ut+f(u)x--O, x>O, t>O,
u(x, 0) u, x > 0,

u(0, t) co, t >_ 0.

Hence the usual Godunov method produces this solution (in x > 0, t > 0) when it
is applied both to RP(f; s0, u) and (3.7). Note that the constants ur and c0 imply
that the limit of U(xo, to), when T " 0, is obtained by considering the values on a
fixed grid alo.ng a diagonal with speed xo/to. In Theorems 3.1 and 3.2 the sequences
{U} and {U3 } are shown to converge to the constants that satisfy Condition F, i.e.--1

(u+, u- =-- (so, o) c(ur, st, 0). Thus the sequence {U } lies "close" to the constant
sequence {c0} and, by the reasoning above, using the latter sequence a well-defined
entropy satisfying solution of (3.7) will be obtained.
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THEOREM 3.1. Assume that f’ > O, g’ < 0 and that the graphs of f =_ ] and
g - intersect at t as in Case 1 (after Proposition 2.11). Then the sequences U_I
and UJl converge to t as j oc.

Proof. In the definition of a and b, i.e., (3.1), let M be a compact interval, which
has fi as the centre and contains ul and ur. We shall prove by induction that U E M
for -1, 0, 1 so that the scheme (3.3)-(3.5) is well defined. This is true by definition
for j 0 because U0 1/2(ul + ur) and U u and U Ur, i 1, 2, Assume
that U E M for some j >_ 0, i Z, then f’ > 0, g’ < 0, and (3.6) imply

(a.s)
g(u_i_/.) g

i 0, 1, 2,

Leth=g-f. Thenh(fi)=0and0>h’=g’-f’>_-b-aimply

(3.9) (a + b) <_ h(x)
<0x-

Since a, b > 0, (3.2) implies

1 ( 1) 1
<min ’ 2(a+b)min(a+b,a+b) <

1

a b a+b’

which together with (3.9) gives

(3.10) 0<l+Ah(x)_ <1 Vx e M \ {fi}.
x-t

Using (3.8) in the iteration formula (3.4) gives

) (vgU(-t-1- ’ 1 + AU _"...fi

and hence (3.10) implies Vgq-1 M. For the 1-cell, from (3.3) we have

(3.11) U-hi U U U (1- A f UI f(U )U
Now the fact that f’ > 0 together with the bound (3.2) implies that the last factor
in (3.11) lies strictly between 1/2 and 1. This implies that U+1 lies between U1 and
Ug and thus U+1 E M. Repeating this procedure with the corresponding formula of
(3.11) for the 2-cell, etc. we can obtain Uj+l M for every 1, 2, Analogously,
uj-bl
_i M holds for every 1, 2,..., and the induction is finished.
The iterative formulas (3.3) and (3.4) give the discrete system

U+1

(3.12) Uq_
ug +  h(ud),
U + A(f,(UJo) f(UJl)).

The only fixed point for this system is (, .) and the eigenvalues of the triangular
functional matrix are 1 + Ah’(Uo ), 1 Aft(U). By the bound (3.2) these eigenvalues
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have modulus < 1, hence U/j -+ 2 as j --+ oo for 0, 1. The corresponding procedure
can be done with g instead of f to obtain Uj

-1 -- 2 as j --, oc. [:]

THEOREM 3.2. Assume that f > 0 and that g has precisely one stationary point,
which is a global maximizer; see Fig. 2.5. Let the intersection be as in Case 2b (after
Proposition 2.11) with ul and u2 as in Fig. 2.5. Assume that ul + ur <_ 2u2. Then
the sequences U3 --+ u- =_ ut and U

The proof is found in [7]. The assumption u + ur <_ 2u2 is made to be able
to apply an induction proof similar to that of Theorem 3.1. If u is larger we get,
according to computer simulations, a transient behaviour before it is possible to apply
the induction proof.
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ON THE SLOW MOTION OF VORTICES IN THE
GINZBURG-LANDAU HEAT FLOW*
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Abstract. We study vortex motion in the Ginzburg-Landau flow. We consider this flow in the
limit of large Ginzburg-Landau parameter. It is shown that when this parameter tends to infinity,
the vortex mobility tends to zero. Our proof is based on an a priori estimate on the growth of a
new weighted energy and on the recent work of Bethuel, Brezis, and Helein on Sl-valued harmonic
mappings in R2.
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1. Introduction. We will consider the problem of vortex motion for the Ginz-
burg-Landau heat flow

(1.1)
(1.2)
(1.3)

+ -(i
u(x, t) g(x) for x e oft, t > 0,

u(x, o) uo(x) for x

Here t is a two-dimensional domain, is a positive parameter, u --, R2, g
0t -* R2, and [g] 1. This system appears in a canonical way when one expands
a large class of second-order dissipative systems about bifurcation points [K], [BKP].
Therefore.it serves as one of the fundamental models in the study of the dynamics of
nonequilibrium patterns [PZM]. Equation (1.1) is also a caricature of certain models
for liquid crystals [PR2].

The main objective in analyzing (1.1)-(1.3) is to study the motion of the zeroes
of u. These zeroes, which are often called vortices or defects, are readily observed in
many experimental setups. One would like, therefore, to understand their dynamics
and equilibrium distributions.

It is easy to check that (1.1) is a gradient flow for the functional

1 iVu](.4) f. + -(1- lul2)2 dx.

This implies that the stable steady states of (1.1)-(1.3) are the minimizers of (1.4).
A complete characterizatiori of the minimizers in the limit --. 0 was recently an-
nounced by Bethuel, Brezis, and Helein [BBH1], [BBH2]. In particular, they have
shown that the energy (1.4) is bounded from below by a term proportional to Ilnl
provided the degree of the map g is nonzero. They also found a characterization for
the equilibrium location of the zeroes (al, a2,..., ad) of the minimizers. These zeroes

*Received by the editors November 30,1993; accepted for publication (in revised form) March
31, 1994.
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Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47405.
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are the solution of a concrete optimization problem of minimizing an energy function
E E(xl,x2,... ,Xd), where d is the degree of the boundary data g. The energy E
depends only on g and the harmonic Green function of

The dynamics of the vortices in the limit e --. 0 can be considered within the
framework of a general program initiated by Neu IN1] and later extended by Pismen
and Rubinstein [PR1]. The idea is to consider the zeroes as "particles" that interact
through an external "field." The small parameter defines a natural length scale,
and the ball of radius s around each zero defines the particle core. In the region
outside these cores the solution is dominated by a smooth field that is tempered by
singularities located at the zeroes.

This program was implemented for (1.1) by several groups [BKP], [FP], [PRo],
[N2], who formally used the method of matched asymptotic expansions to derive equa-
tions of motion for the zeroes and equations for their equilibrium distributions. To
leading order in s, the equations are of the form

(1.5) m ai(t) -VaE(al, a2, ad), 1, 2,..., d.

The constants mi are called the mobilities of the vortices.
One of the most interesting features of (1.5) that was found through these formal

Since the right-hand sidecalculations is that the mobilities are small: mi

of (1.5) is generically bounded (cf. [BBH2]), it follows that the vortices move slowly,
that is, it takes a period of time which is O(]ln [) for a vortex to move a distance 1.
The main result in this paper is a theorem stating that under certain conditions, the
mobilities are indeed O(). The theorem is formulated and proved in the next two
sections. The proof relies on a weighted energy estimate derived from the parabolic
Pohozaev identity obtained in [BCPS]. A key observation is that the weighted energy
(see..(2.5) below) remains bounded uniformly in for data possessing a vortex at the
origin. The proof makes crucial use of the lower bound for the energy of a minimizer
of (1.4) found in [BBH2].

We have quoted the results of Bethuel, Brezis, and Helein, who showed that the
number of zeroes in the steady state is precisely the degree of the boundary data.
This fact has also been demonstrated, in some set-ups, for arbitrary (finite) values
of [BCP], [BCPS]. By degree-theoretic considerations, this is the minimal number
of zeroes that a smooth function must have to be compatible with g. This does not
preclude, however, the possibility that the number of zeroes increases in the course of
the evolution (1.1)-(1.3). In 4 we demonstrate, through an explicit construction, that
an arbitrary number of vortices might emerge spontaneously. Clearly, these vortices
appear in pairs with degree :t:l.

2. Main result. We take Ft C 12 to be a bounded convex domain with smooth
boundary. Then, consider smooth boundary data g 0t --. R2 satisfying the condi-
tions

and

(2.2) deg(g, 0) 1.

Here deg(g, 0f) denotes the Brouwer degree (i.e., the winding number of g considered
as a map from 0f into S1). We take the initial data u0 (= u) to be a smooth mapping
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from to l:t2 satisfying the following conditions:

(.3) Iol < ,
(2.4) E(uo) =- .o 1/2 IVuol2 / -2V(o)dx <_ r Iln[ + Co,

(2.5) E’(uo) =- . ]xl 2 [1/2 IVuo[ 2 + -2V(uo)] dx C1,

[ 12 [lne[(2.) 0 + -(1 -I0[)0 d

where V(u) ([u[2- 1)2. rthermore, we sume u0 is compatible with g. For
simplicity, we will sume the data is first-order compatible to appeal to standard
existence, uniqueness, and regularity theory, but this is by no means necessary. Finally,
we take the origin to be the only zero of u0 in with, necessarily,

(2.7) deg(uo, OBr(O)) 1

for all r < dist(0, Off). Here and throughout the paper, Br(x) denotes the ball of radius
r centered at x. The constants C0, C1, and C2 above are taken to be independent of
E.

In 3 we will explicitly construct initial data satising these conditions.
Remark. We shall only need the fact that is star shaped with respect to the

original vortex locationplaced for convenience at the origin. However, since we wish
to allow the vortex to be originally located anywhere in , this leads to the assumption
of convexity.

Now let u denote the solution to problem (1.1)-(1.3), where g and u0 satisfy
conditions (2.1)-(2.7). The existence of a unique classical solution to (1.1)-(1.3) fol-
lows from Theorem 7.1 of [LSU, Chap. VIII. rthermore, applying the mimum
principle to the differential equation satisfied by [u] 2, one finds that (2.1) and (2.3)
imply

(2.8) [u[ < 1 for x , t > 0.

We now state our main result.
THEOREM 2.1. Assume that at each time t > 0 there exists exactly one zero of

u, denoted by q(t), with deg(u, OB(q(t))) 1 for all positive r < dist(q(t),0).
Let R and A be any postive numbers and denote by T the infimum of the set {
]() R, dit((), 0) },uh o op. Th

(2.9) lira inf
Te

e0 [ln[ > 0.

To prove (2.9) we will need the following two results.
LEMMA 2.2 (weighted energy estimate). There exists a constant C3 independent

of e such that
E()(T) E(o)+ CT

for ll T > O.
LEMMA 2.3. For ay a (0, 1) we have th,e spatial HgIder estimate

(e.10) sup
(x,
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.for some positive constant Ca independent of and t.
We will begin with the proofs of the lemmas and then prove our theorem.
Proof of Lemma 2.2. For simplicity of presentation, in this proof we will suppress

the dependence of the solution on and write u for u. Since fl is star shaped with
respect to the origin, there exists a number s0 > 0 such that

(2.11) x.u>_s0 for allxE0ft,

where u denotes the outer unit normal to 0f. Proceeding as in the proof of Lemma
4.1 in [BCPS], we first take the inner product of (1.1) with Vu. x and integrate over
fl. After repeated integration by parts and using V(u) 0 for x E 0, one obtains

(2.12) /(ut.(Vu.x))dx+jfO 1/2(x.u)IVul 2 -(Vu.u)(Vu.x) ds 26-2 Jfa V(u) dx.

Now take the inner product of (1.1) with the quantity 1/21xl2ut and integrate
over f. After integrating by parts and using (1.2) to conclude that ut 0 on OFt, we
find

d/ ix1211/21Vu12 /(2.13 - + -2y(ul] dx 1/2 Ixl 2 lutl 2 + (Vu. x).ut dx.

Substitution of (2.12)into (2.13) yields
(2.14)

d- Ixl 2 [1/2 IVul 2 + a-2V(u)] dx

[1/2 [x[ 2 lut[ 2 + 2-2V(u)] dx + fl 1/2(x. )IVu[2 (Vu. ,)(Vu. x)ds

I/2(x u)(Vu u)2 + (x T)(Vu u)(VU T) ds + I/2 Zn(x u) .O,g, 2 ds,

where T denotes the unit tangent to Oft and O-g denotes the derivative of the bound-
ary data along Oft. We note that (2.14) is a parabolic version of the well-known
Pohozaev identity from elliptic partial differential equations. Other such identities
were discovered earlier by Giga and Kohn; see [GK].

Utilizing (2.11), we conclude that

d__dt fa Ix[2 [1/2 [Vu[ 2 + -2V(u)] dx <_ C3

for some constant C3 depending on s0, Ft, and g. The result follows.
Proof of Lemma 2.3. First note that by direct calculation we find that the energy

Ee is nonincreasing along the flow

+ -2V(u)dx Ja [ut[ 2 dx <_ O.

Hence, by (2.4),

(2.16) < _< + Co.
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We use this and (2.8) to conclude that

1
e-2 1)2 lul2 dx1)UllL,(a (lul 2

<_ e-2V(u) dx

< y/)]lneI+Co

for some constant C independent of e and t.
Now differentiate equation (1.1) with respect to time, take the inner product with

the quantity 2ut, and integrate over to find

ut .uu dx u. A(u) + e-2(1 lul) lu 12 2-2(u ut)2 dx.

Thus

2dx =_/ (Ivu12+ e-2 lul 2 lull 2 + 2e-2(u u)2) dx / e-2 /n lul2 dx.

Multiplying (2.15) by e-2 and adding it to (2.18) we find

Invoking hypotheses (2.4) and (2.6), we conclude that

/nl 2 11 dx + e-2E(uo)- lut(x,t)] dx + e-2Ee(u)(t) <_ - Auo + e-2(1 luo]2)uo
2

for some constant C independent of and t. We now appeal to assumptions (2.4) and
(2.6) to obtain

(2.20) IlullL(n < C x/’linel

for some constant C. In view of (1.1), estimates (2.17) and (2.20) imply that for all
t__>O,

II/XullL<a) _< c v/llnl.
Hence, by Theorem 8.12 of [GT], we have
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and the Sobolev imbedding theorem implies (2.10). We note that this result is not
sharp; indeed, based on gradient estimates for the elliptic case, one would expect
that the L norm of the gradient is bounded by C/e, but (2.10) suffices for our
purposes.

Proof of Theorem 2.1.
Step 1. Fix any R > 0 and > 0 and recall that we define the time Te by

(2:21) Te inf(t Iqe(t)l- R, dist(qe(t), 0) >_

where we assume this set is nonempty. For convenience set

1
min(R, A).a--

Now define the set

{ 1
(2.22) Se r e (a, 2a) "lue(x, Te)l >_ - for all x such that Ix qe(re)l r

We first will argue that there exists a number e0 > 0 such that

a
(2.23) HI(S) >

-2

for all e < e0, where HI(S) denotes the (one-dimensional) measure of the set S. We
proceed by contradiction and suppose there exists a sequence {ej } -- 0 such that

a
(2.24) gl(sg > -,
where Sj denotes the complement of Sj in the interval (a, 2a), i.e., S (a, 2a)-S.
By definition (2.22), we note that for all r E S there exists a point xr (--
satisfying

1
(2.25) ]xr qe (Tej)l r, lue (xr, Te)l < "For simplicity of notation, in the remainder of Step 1 we will suppress the subsequential
index j and simply write e for e. Invoking Lemma 2.3 with, say, a 3/4, we find
that for all .r E Sg we have

(2.26) 1 v/lln el 1< - C4R3e/4 <
-4 e -2

for all x satisfying Ix- x _< Re,, where

(2.27) Re --- 4C4 v/lln e

Hence, for all r S and x BR (x.) we have

1
)2(1-I 1 + I 1)

(2.28)
>1 )2_1-lul >
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from which it follows that

where H2 denotes the two-dimensional measure. In light of (2.24), we find

H2({UresBR (xr)}) >>_ CRe

for some constant C independent of e and t. We then use (2.16) to reach the desired
contradiction

[lne + Co > E(uo) > E(ue)(Te)

1 C
2

e
>_ - Y(.(x,T))dx > -fd-C.R - aC/lnl

Step 2. Next we will establish the estimate

(2.29) -IVu(x’T)12 +-2V(u(x’T=))dx > C5llnl-C6
2a(q(T)) 2

for positive constants C5 and C6 independent of . To this end, we first claim that by
(2.23), for every positive < e0 we can find a number re 6 Se such that

IVu(x,T,)l -v(,(x Te)) ds. +

< IVue(x, Te) + s-2V(ue(x, Te)) dx.
a 2a2

In (2.30) and throughout Step 2 all balls will be centered at the vortex location qe(Te)
and we shall simply write Br for the ball centered at qe(Te) of radius r. If (2.3o) were
false for all r 6 Se, (2.23) would immediately lead to the contradiction

We will establish estimate (2.29) by comparing the Dirichlet integral, of ue(.,[/-) in
B3a to the Dirichlet integral of a constructed function which, agrees with ue inside Br
but which equals (x -qe(Te))/ix qe(Te)] outside
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To facilitate this construction, we now introduce a local polarcoordinate system
(r, 0) centered at the vortex qe(Te). Since deg(ue(’,Te),OSr) 1 for all r e (0, 4a),
we can, in particular, write

where Ce is a smooth function such that Ce(0) Ce(2r) 0, and by the definition
(2.22) of Se, Ce is a smooth function satisfying

(2.31)
1 _< e(O) _< 1 for all 0 C [0, 2zr].

Now define the functions Ae and/3e by the formulas

Ae(r, O) ( 1
a(e(O)) (r re) + (e(O) for r + (re, re =i- a), 0 E [0, 2r]

and

0) Ce(0) (r re) + Ce(0) for r e (re, re + a), 0 e [0, 2r],
a

and let we fl --. R2 be defined by

(2.32) we(r, O) Ae(r, O)ei(+/:(",))
for r < re,
for re < r < re + a,
for r >_ re + a.

Note that we is a continuous Hl(f) function.
We now appeal to the lower bound on the energy of a ninimizer (cf. Theorem 5

of [BBH2]), which says

(2.33) inf E:(v) >_ r Ilnel C
v

for some constant C independent of e (but depending on the domain and the degree
1 boundary data), where the mininization is taken over H functions with given
boundary data. We therefore conclude that

The first of these three integrals is independent of e, since we is independent of e. there
and V(we) V(ei) 0. For the last of the three integrals we ue, so it is certainly
bounded by

1
IVue(x, Te)[ 2- + e-2V(ue(x, Te)) dx.

Also, in the second integral we have

--2V(we) dz <_ -2V(ue(re, O, Te))r dr dO,
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since
I(,’, , T)I () -< A(r, ) Iw(r, )1

for re _< r _< re + a. It then follows from (2.30) that

1 2e-2V(we) dx <_ C
2.
5 IW(, T)I + e-2V(ue(x, Te)) dx

for some constant C independent of . In view of (2.34), (2.29) will then be established
if
(2.35)

/B [VWel 2 dx <_ const./B IVue(x’ Te)[2 + -2V(ue(x’Te))dx + const.
re +a --Bre 2a

Using the definition of we in (2.32) we find

(2.36)

+

=-I1-t-I2.

OWe

+

-50- +

+ - -- rdrdO

0 )Ae -rrr r dr dO

Ae 1+-0-0- ;

Writing estimate (2.30) in terms of the L2-norms of de/dO and dee/dO, we get bounds
on these norms in terms of the energy of ue in B2a, as well as an L2-bound on Ce
itself, via the Poincare inequality. In light of the uniform boundedness of tel and IAel,
integral I1 is then bounded in the sense of (2.35). Similarly, one bounds I2 to obtain
(2.35) and (2.29)follows.

Step 3. Invoking (2.29), we find that

(2.37)

Then, appealing to (2.5) and Lemma 2.2, we obtain

4a2(C5 Ilnel- C) <_
<_ E(uo) + CaT <_ C + CaT

and Theorem 2.1 follows. E]

3. Construction of initial data. We will show in this section, through an
explicit construction, that there exists initial data u0 u satisfying the bounds
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(2.3)-(2.6), which has exactly one zero at the origin satisfying (2.7), and which is
compatible with the given data g. Thus it is valid data to use in applying Theorem
2.1. While the construction is quite special, suggesting that application of Theorem
2.1 may be limited, we wish to point out that these assumptions really amount to
ignoring transient behavior in the solution u to (1.1)-(1.3) for arbitrary initial data.
That is, one can argue formally that the solution with arbitrary data will rapidly
develop into a function meeting the criteria for data given in Theorem 2.1.

We will define our candidate for u0 in terms of a polar coordinate system (r, )
centered at the origin. In view of (2.2), we may write

(3.1) g g(O) ei(O+x(e)),

where X is a smooth function such that X(0) X(2r). The construction will make
use of the separation of variables equilibrium solution to (1.1) (with 1) given by
p(s)e, where p satisfies the ordinary differential equation

(3.2)
1 1

-p"- -p’+ p p(1 p2
s -5 forO < s < e

(’= ), subject to the boundary conditions

(3.3) p(O) O, p(oc) 1.

It is known that (3.2), (3.3) admits a unique solution which has the asymptotic be-
havior

1 1
(3.a) 1 as s -- cx.

Denoting

we let U be the solution to the variational problem

(3.5) inf
1 2 -2

u -Bd(0)
IVul + -(1 -lu12)2 dx,

where the minimization is taken over functions in H (t-Bd(O)) satisfying the Dirich-
let conditions

(3.6) u=gon0fl, u=p on0Bd(0).

The existence of a (smooth) solution to (3.5), (3.6) follows easily by the direct method.
We then have the following proposition.

PROPOSITION 3.1. The function uo u defined on by

p( Ixl d,uo U(x) for Ix] > d

satisfies (2.3)-(2.7). Furthermore, it is first-order compatible.
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Remark. While u0 so defined is not smooth on the circle r d, it is clear that it
can be smoothed out in a neighborhood of this circle while still satisfying (2.3)-(2.7),
so we shall ignore this issue.

Proof. Property (2.3) follows readily from the maximum principle applied to the
quantity lUll 2, while property (2.7) and the compatibility are an immediate conse-
quence of the definition of u0.

Verification of (2.4). We write

Now we compute

2Ee(u0)’= {Vu0{ + -2V(u0)dx

]i "=O02]id[ Ou 2 10uo 2 ]
(3.8) r<dt -r + + -2(p2 1)2 r dr dO

Ip’() + p(s)2 + s(p(s)2 1)2 ds.
Jo

Using (3.3) and (3.4) one easily checks that

(.9) I’() + (() 1) + () c
J0

for some constant C independent of , while

To bound f{>at "’ we introduce the competitor s(r)ei(+e(,ll in the variational

problem (3.5), (3.6), where

{ [1-"(,)] (r- 2d) + 1(3.11) e(r) d

1

and

for d < r < 2d,
for r > 2d

fx-ae (r-d) for d_< r _< 2d,(3.12) (r, )
X() for r > 2d.

We claim that the energy of this competitor in the set t- Bd(O) is bounded by
a constant independent of , from which it will follow that the same is true of U,
thus establishing (2.4). To this end, note that since e(r)e(+(,)) is a unit vector
independent of in the set {r > 2d}, this claim will be proven if one can bound the
energy of the competitor in the set {d < r < 2d}. A direct calculation using (3.4),
(3.11), and (3.12) yields such a bound; we omit the details.

Verification of (2.5). We .write

(3.13)
E(o) /alxl [ lVol2 + -=v(o)] dx

f< + f,.>
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In the verification of (2.4) we found that

1 iVu01
r>d}

+ -2V(uo)dx < C,

so

{r:>d, ’x’2 I ’u’2 -2V(u)] dx

is bounded independent of a as well. Then we compute

<}
+ -y(.0)]

r2 + -0 +-2(p2-1)2 rdrdO

Ip’(s)l u + sP(S)2 + s(p(s) 2 1) 2 e282 ds.
J0

In light of (3.9), the only relevant term to check here is

rs2 sp(s) 2 ds <_ 7r2 s ds <_ C,
JO JO

hus completing he verification of (2.5).
Vriificaion o[ (2.6). We write

1_.

Since u0 is an exact equilibrium solution of (1.1) in the regions {r < d} and {r > d},
we find that both integrals are zero. Of course, after smoothing our construction near
{r d}, there will be some positive contribution to the integral, but this process can
be easily carried out while only creating a contribution that is (.9(1). We note that
while (2.6) will suffice in proving Theorem 2.1, our construction yields a much better
bound.

4. Creation of vortices. In this section we will present an example which shows
that it is possible for zeroes (vortices) of degree +/-1 to emerge after finite time in the
solution ue to (1.1)-(1.3). The reader will note that in Theorem 2.1 we assume that
only one zero (of degree 1) exists for all time. It is because of the example presented
below that we must make such an assumption. While we firmly believe that for the
initial data u0 constructed in 3 no additional zeros are created by the flow, we as yet
do not have a proof of this. In any event, the existence of such an example is slightly
surprising, since, intuitively, one might guess that the creation of additional zeroes
would violate the dissipation of energy (2.15).

Since the effect does not require e << 1 for simplicity we will let u denote the
solution to (1.1)-(1.3) with 1. We take ft C R2 to be any bounded domain
containing the origin and g to be arbitrary smooth boundary data. Then we require
the initial data u0 (u(01), u2)) to be any snooth function compatible with g on
possessing k zeros q, i 1, 2,... k, q 0 with

k

_
deg(u0, OBr(q)) deg(g, 0ft) for all small, r,

i-----1
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and such that uo satisfies

tl)(xl,x2)" x2 -(_ 1x21 --(x2
1(o)(, z) + + x? ( +)

in some ball Bro (0), where 5 > 0. The relevant features of this choice of data are that

(o) (o, ) o (o) (o,-),

while for all sufficiently small r0 we have

{t(01) 0} [’} {t(02) 0} N Bro (0) 0

(see Fig. 1).

Xl
(o,-)

((2)
U

FIG. 1. The zero sets of the two components of the initial data in a neighborhood of the origin.

Henceforth we fix r0 such that (4.1) and (4.3) hold. Note that such a choice
can be made so that (4.3) is valid for all small 5. We will then show the following
proposition.

PROPOSITION 4.1. Let u solve (1.1)-(1.3) with 1, where f, g, and uo are
as described above. In particular, we assume (4.1) and (4.3) hold for some ro > O.
Then there exists 50 > 0 such that for all positive 5 <_ 50, the corresponding solution
u develops two zeroes ql (t) and q2(t) in Bro (0) after some finite time. Immediately
after their emergence, these zeroes will satisfy

deg(u, OBr(qi(t))) :t:1, 1, 2

for all r sufficiently small.
Remark. We do not claim that these zeroes will necessarily persist. Indeed, one

would typically expect that they will annihilate each other shortly after the time of
their creation.

Proof. The argument consists of showing that the vertical component of the ve-
locity of the level set {u(1) 0} (resp., {u(2) 0}) is negative (resp., positive) and
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bounded away from zero uniformly in 5 for all small times in a neighborhood of the
origin. In light of (4.2), this implies that the two zero sets must collide, resulting in
the creation of zeroes of opposite degree.

To this end let Zl zl (Xl, t) denote the local graph of the zero set of u(1) which
includes the point (0, ) at time t 0, i.e., zl (0, 0) . Similarly, we let z2 z2(xl, t)
denote the local graph of the zero set of u(2) such that z2(0, 0) -6. Since uo is taken
to be smooth, one readily obtains local C2 bounds on the solution u in the cylinder
Bro (0) x [0, T] for any T > 0. Such bounds and the condition

(4.4) (0,

imply that Zl and z2 are well defined and smooth in the cylinder Bro x [0, T*] for some
T* small (but not dependent on 6 since Ilullc2 is independent of 6).

To obtain the initial velocity of the graphs Zl and z2, we differentiate the equations

t(i) (Xl, Zi(Xl, t), t.) O, i 1, 2

with respect to t and use (1.1) (with 1) to find

(4.5) (z (0 -(u(O)t -au(*) lul
=-Au(0, i=1,2,

where the nonlinear term vanishes, since we are evaluating u(i) along its zero set.
Using the fact that u is C2 in Bro (0) x [0, T*], we may take the limit in (4.5) as t -. 0
and use (4.1) to find

(zl)t(0,0) -1 and (z2)t(0,0) 1.

Hence there exists a positive time T <_ T* and a positive number A, both depending
on [[u[[c2 but independent of 5, such that

1
(zl)t(xl,t)

_ -- for Ixl _< A, 0

_
t

_ ,
1

(z2)t(xl,t) >_ - for [xll _< A, 0 <_ t _</.

Since Zl (0, 0) 5 and z2(0, 0) -6, we conclude that there exists a 6o > 0 such
that for all positive 6 _< 60, the two graphs cross and the corresponding solution to
(1.1)-(1.3) develops two zeroes (of degree 4-1) after a short time in a neighborhood of
the origin, fl
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A UNIQUENESS RESULT FOR A GENERALIZED RADON
TRANSFORM*
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Abstract. There exist five families of Lipschitz curves on the unit square such that any contin-
uous function is uniquely defined by the values of its integral (properly defined) along these curves.
We present this uniqueness result as a consequence of the Kolmogorov superposition theorem.
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1. Introduction. The main intention of this article is to demonstrate a connec-
tion of results in linear superpositions of functions and the uniqueness problem for a
generalized Radon transform. We will actually present one such relation, namely, a
consequence of the Kolmogorov superposition theorem. We will start with a descrip-
tion of a general problem.

Suppose that for each ( E J (J is the set of indices) there is a family (also
called a spread) ta of nonintersecting submanifolds F, t E T Ta, of some manifold
M (.JteT F, and for each F F there is a measure d#r such that one can introduce
a generalized Radon transform by

(1) Rf(F) / fd#r
F

for an integrable function f. Typically, F are smooth hypersurfaces, the parameter
set T is a one-dimensional interval, M C_ Rn, and f is a continuous function with
compact support. The general uniqueness (or invertibility of R) problem we consider
here is as follows: If Rf(F) RI(a, t) 0 for all a, t then f 0. Similar problems
have been addressed in a number of papers (see [1]+/-[6], [9]-.-[10], [12]-[16]).

The question we discuss here is the following one" How many families (the car-
dinality of J) does it take to assure the uniqueness (invertibility) of R? Intuitively,
it seems very likely that if the number of different families is infinite, the uniqueness
takes place, and if the number of families is finite, the uniqueness does not hold.
In many cases that have been considered, this assertion is supported; however, one
should recall the result of Boman [1] showing that the uniqueness is not necessarily
assured in case F are straight lines in R, a J [0, 2r] is infinite, and the measure
is C and positive.

Here we consider the case of a finite number of families. Is it possible to find a finite
system of families such that uniqueness holds for continuous functions? Unexpectedly,
the answer to this question in a typical case is positive. The main result of this paper
is the following one: There exist five families of Lipschitz curves on the unit square
in R and such a measure on each of these curves that the uniqueness property holds
for all continuous functions.

For the special case we are describing we have F F as curves on the closure
of the unit square A C R; we also use the notation It(f) instead of Rf(F) for

Received by the editors June 30, 1993; accepted for publication (in revised form) March 3, 1994.
Mathematics Departnent, Wichita State University, Wichita, Kansas 67260-0033

man@twsuvm, uc. twsu. edu).
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the corresponding integral (1). We also make one more remark. In many cases it
is desirable to consider natural measures d#r such that the Fubini theorem holds:
the "double" integral of f over M could be presented as a repeated integral, that is,
an integral of It7 (f) over T with some measure d#(t). The measure we introduce
below is such a natural measure (see (3)).

As stated above this result is going to be a consequence of the well-known theorem
by Kolmogorov, that is, the theorem that presented a solution of the 13th problem
of Hilbert. We use the notation A for the closure of the unit square: A {(x, y)10 <_
x,y<_l}.

THEOREM A (superposition theorem of Kolmogorov). There exist five functions
(I)i(x, y) i(x) + i(y), 1,..., 5, such that for any f e C(A) there exist contin-
uous functions xi(t), so that

5

+
i--1

The functions i(x), (y) can be chosen strictly increasing and Lipl functions.
For proof see [11]; the choice of Lipschitz functions was proved in [7].
2. Definitions and basic results. A reasonable way to introduce a family of

curves is to consider them as level sets of a function. Following a suggestion of
Ehrenpreis, such a family will be called a spread and the corresponding function will
be a spread function. We present the definition in two steps.

1) Let D be a domain in R2 and (I) e C(-). Consider Ft {(x, y)](I)(x, y)
the level curve of (I), and [a, b] (I)(D), the range of (I). Clearly, Ftn F q} if t =and D [-Jte[a,b] Ft. We call the set Ft {Ft It e [a, b]} a spread on D and we call
the spread function.

2) A spread gt on D generated by a spread function (I) is called a proper spread
if the foilowing holds. There exists a homeomorphism " --. () such that
the set e } is a set of straight parallel lines on --" (r)ll(r) for any
t," [a, b].

All the results that follow hold for many domains in R. Without any significant
loss of generality and for simplicity of exposition we consider our domain to be the
unit square A.

Suppose we have a proper spread gt of curves on A generated by a continuous
function and F Ft t Let f C(F). Then f can be extended to a continuous
function on A, which we will still denote by f. We now introduce It(f), the integral
of f over F. Let F(e) {(x, y) AIO(x y) (t , t + e)}. Then we define

(2) It(f) =lim
fr()fdA

-.0 mese (F(e))

where dA is the area element and mes2 is the Lebesgue area.
Example. One can check the following. If (I) E CI(A) and grad(I) 0 on F Ft

with positive length, then It(f) fr f/II grad(I)II ds/l(F), where ds is the element
of length and/g(F) is the weighted length of F;/g(F) fr 1/11 grad(I)

LEMMA 1. 1. Let F from (2) be fixed. If It(f) exists for some continuous
extension off from F to A, then it exists and has the same value for any such
continuation of f to A. In this case It(f)I_< maxxer
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2. The set E(r) o continuous functions on F for which It(f) exists forms a
closed linear subspace in C(F). It(f) is a linear bounded functional on E(r).

3. /f f c const, on F then It(f) c.
4. If x(t) e C[a, b] then Ir (X((x, y)) x(t).
Proof. First one can check 3. It follows from the fact that the extension is con-

tinuous and also from the mean value theorem for the Lebesgue integral on bounded
functions.

One can now checl 1. The first assertion follows from the following observation.
The difference between two extensions of f is zero on F and, therefore, the integral
of the difference will always exist and be equal to zero. One can prove the inequality
by using the standard inequalities for the integral of a bounded function.

Statement 2 follows from the linear property of the Lebesgue integral and the
already proved inequality in 1.

Statement 4 follows from 3. D
Denote by , the push-forward induced by the function " A --, (A) [a, b]

J. (The push-forward takes measures on A to measures on J.) We now introduce a
countably additive measure # on J by the formula #(dt) O,(dA) (that is, it(T)
mes2(O-1 (T)) for T C_ J). One can see that it is a countably additive measure on J
and all Borel sets on J are it-measurable. Let f C C(A). We may now consider a
measure ,, given by pf(dt) O,(fdA). Clearly, ,, must be absolutely continuous
with respect to it. Therefore, by the Radon-Nikodim theorem there exists g C L1 (it)
such that pl git, where

g(t) :lim uf(t e, t q- e)) fr,(,) fdA
,-0 #(t- , t + e) =im0 mes(rt())

and g(t) exists almost everywhere with respect to the it-measure (almost everywhere
(a.e.) it) on J. If one compares this formula with the definition (2) of It(f), one has
the proof of the first part of the following lemma.

LEMMA 2. 1. g(t) Ir,(f) a.e. it and, therefore, the last integral is uniquely
defined for a fixed f a.e. it on J. In other words, the union of all level curves F for
which the limit in (2) does not exist, forms a set of Lebesgue area zero.

2. The following formula holds:

b

Proof. The proof of the last formula follows from the following observation. Con-
sidering measures as linear functionals on the space of continuous functions, we know
that the push-forward , is the adjoint of the pull-back * u uoO for u C(J),
that is,

Taking u 1 and v fdA, we obtain (3).
We will say that a certain property holds for almost every F if the union S of

all F for which this property fails has Lebesgue area zero: mes2(S) O. Obviously,
this definition does not depend on the spread function generating the set of curves; it
depends on the set of curves (the spread) only.
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The space E(F) (see Lemma 1) is nonempty and It(f) is a bounded linear func-
tional on this space. Obviously, E(r)

_
c(r).

LEMMA 3. E(r) c(r) or almost every r (a.e. r in the above-defined meaning).
Proof. Let set S be the union of all such F for which E(F) c(r). Consider

all polynomials of two variables with rational coefficients. They form a countable
set {P1, P2,...}. Let n be the union of all such F for which Ir(P) does not exist.
By Lemma 2, mes2(S) 0. Since every continuous function can be approximated
uniformly on A by this set of polynomials, S C_ [J,__l n and, therefore, mes2(S)
0. [:]

LEMMA 4. If f E C(A) and x(t) C[a, b] then for almost all (relative to the
measure) t [a, b],

(4) Ir {f(x, y)x((x, y)} Ir (f)x(t).

Proof. The proof follows from the linear property of the introduced integral and
the uniqueness of the introduced integral from Lemma 2.

3. The main statement. Now we are ready to prove the following theorem.
THEOREM B. There exist five proper spreads i 1,..., 5 of curves on A

such that if f C(A) and It(f) 0 for almost every curve F in any , then f =_ O.
Remark. Almost every F has the same meaning as before: all F with the exception

of a set of curves whose union has zero area in A.
Proof. Consider Oi(x, y) (x)+i(y) from Theorem A. As noted above all these

functions can be chosen to be strictly increasing and satisfy the Lipschitz condition.
We can also assume that (A) [0, q], (A) [0,pi], so (I)(A) [0, q + pi]. Now
consider F {(x, y) AlOi(x, y)= t}.

1. First we prove that ti {F} is a proper spread. Consider the system

t +

One can show, using the monotonicity of the functions involved, that the above
system provides a homeomorphism of A onto the rectangle 0
2p and, therefore, t is in one-to-one correspondence with parallel lines t const.

2. Let f e C(A) be a function for which Ir (f) --0 for almost all F. According

to Theorem A, f(x,y) -=5 Xi(Oi(x,Y)). Now consider (we use (3) and (4))
5

i=1

5

oqiE Ir) {f(x, y)X((x, y))}#(dt)

E Ir(f)xi(t)#i(dt O.
i=1 JO

Therefore f O.
Remark 1. The constructed spreads consist of Lipschitz rectifiable curves. The

It(f) is not necessarily absolutely continuous for every F.
Problem. Will the statement of Theorem B hold if It(f) fr fds, where ds is

the element of the arc length?
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Remark 2. Theorem A (see [11]) was proved for a general case in Rn for all n.
Similarly, one can prove a statement analogous to Theorem B in case n > 2, replacing
curves by surfaces.

Remark 3. One can check that the construction in (2) and most constructions
that followed can be done for f E L1 (A) instead of a continuous function. This would
lead to the following theorem.

THEOREM Bt. There exist five proper spreads fti i 1,..., 5 of curves on A
such that if f LI (A) and Iv(f) 0 for almost every curve F in any fti, 1,..., 5,
then f O.

To prove this, one can repeat the proof presented above and consider ffA fgdA,
g C(A). Then one can proceed as above to prove that this integral is zero and thus

f is orthogonal to any continuous function. Therefore f is equal to zero in L.
The following statement shows the critical difference in the outcome if we re-

place the Lipschitz condition for functions Oi generating our families of curves by the
requirement that these functions be continuously differentiable.

THEOREM C. Let spreads fi 1,..., s of curves on A be generated by spread
functions C(A). Then there exists a function f L2(A), f 0, such that
It(f) 0 for almost every curve F in any fi, i= 1,..., s.

Proof. The proof follows from the result in [8, Thm. 4] that proves that the set
G {g g(x, y) -i= Xi(Oi(x, y)), Xi e C} is nowhere dense in L2(A). Now taking
f E L2(A), fA_G, one can check, using the same idea as above, that It(I) 0 for
almost every F in any gt. D
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MONOTONICITY AND INVERTIBILITY OF
COEFFICIENT-TO-DATA MAPPINGS FOR

PARABOLIC INVERSE PROBLEMS*

PAUL DUCHATEAU

Abstract. This paper considers the coefficient-to-data mappings associated with unknown co-
efficient inverse problems for nonlinear parabolic partial differential equations. Integral identities are
derived that show the coefficient-to-data mapping is monotone and invertible in the case of a single
unknown coefficient and the mapping is invertible in the case of simultaneous determination of two
unknown coefficients.

Key words, inverse problems, parabolic equations
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Introduction. The determination of unknown coefficients in parabolic partial
differential equations from overspecified data measured on the boundary is a problem
of some importance in applied mathematics. Such so-called inverse problems arise
naturally, for example, in modeling nonlinear diffusion and flow in porous media.
Direct measurement of the quantities represented by the unknown coefficients often
requires very difficult physical experiments. The point of the inverse problems is to
replace a difficult physical experiment by a mathematical problem for which the input
is easy to measure. The ease of measurement requirement suggests that the data be
measured on the boundary.

Heretofore the method of "output least squares" has been a popular approach
to solving unknown coefficient inverse problems [1], [2]. Here the inverse problem is
replaced by an optimization problem designed to select coefficients that produce a
solution that best matches some measured output. Examples show that the choice of
output must be made with care [3]. The flaw in output least squares seems to lie in
the fact that there is no way of proving that the solution to the optimization problem
is a solution to the original inverse problem.

Previous analyses have succeeded in showing that the solutions of certain inverse
problems are unique if they exist [4]-[6], but until now it has been unclear whether the
inverse problems are in fact solvable. Results obtained here suggest the inverse prob-
lems are solvable and the coefficients can be computed from rather simple algorithms
based on very explicit representations for the associated coefficient-to-data mappings.

This paper is organized as follows. In 1 the so-called direct problem is formulated
and the properties of the measured output are deduced from the properties of the
admissible inputs. Integral identities that relate changes in equation coefficients to
changes in measured output are derived in 2. These identities are, in effect, explicit
representations of the coefficient-to-data mappings, and the final two sections are
devoted to showing how they may be used to constructively solve parabolic inverse
problems.

1. The direct problem. Suppose that
(i) C E C(0, oc) with 0 < Co <_ C(u) <_ C1 for 0 < u,

* Received by the editors November 30, 1993; accepted for publication (in revised form). March
24, 1994.

f Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523.
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Let
(ii) K E C (0, (:K:)) with 0 < Ko <_ K(u) <_ K1 for 0 < u.

a(u) C(s) ds and b(u) K(s) ds

so that a’(u) C(u), b’(u) K(u), and a(uo) b(uo) O. Then C and K will be said
to be admissible coefficients for the initial boundary value problem for the unknown
function u(x, t)"

(1.1)
Ota(u)=Oxxb(u) for0<x< 1, 0<t<T,

u(x,O) uo for0<x<l,

Oxu(O,t) =O and u(1, t) f(t) for0<t<T.

For each pair of admissable coefficients and data uo >_ O, f(t) C[0, T], there exists
a unique smooth solution u(x,t) for (1.1). One refers to (1.1) as the direct problem
as opposed to the inverse problem in which one seeks to determine the coefficients
a(u) and b(u) from overspecified data measured on the boundary. For the purpose of
finding unknown coefficients, two overspecifications are considered:

(1.2) h(t) u(O, t) and g(t) Oxb(u(1, t)) K(f(t))Ou(1, t).

The main purpose of this paper is to show that under appropriate assumptions on the
input data, f(t), the coefficient-to-data mapping for each of these overspecifications is
an invertible mapping. The input data, f(t), will be termed admissible if f(0) u0 >_ 0
and if(t) > 0 for t > 0. Assuming that the coefficients and input are admissible,
consequent properties can be deduced for the solution u(x, t) of the direct problem
and for the overspecified functions g and h.

LEMMA 1.1. Let u(x, t) denote the solution of the direct problem corresponding to
admissible coefficients C and K and admissible data f(t). Then for each 7, 0 < T <_ T,
uo < u(x, t) < f(T) for 0 < x < 1, and 0 < t <_ T. In addition, g(t) Oxb(u)(1,t)
K(f(t))Ou(1, t) > 0 for t > O.

Proof. For any -, 0 < T <_ T, one has, for admissible f(t), uo <_ f(t) < f(-) for
0 _< t < -. Let Mr and mr, respectively, denote the maximum and minimum values
of u on the parabolic boundary of Q (0,1) (0, -). Then the strong maximum
principle for parabolic equations implies mr < u(x,t) < Mr on the open domain
Q. Neither mr nor Mr occurs on x 0 because 0xu(0, t) 0. Then rn occurs at
t 0 and Mr occurs at x 1; i.e., u(x,O) uo mr and u(1, T) f(T) Mr. In
particular, u(1 h, T) < u(1, T) Mr for .all h > 0. This implies 0u(1, t) is positive
since

0u(1, -) lim
u(1, T) u(1 h, T)

h-.0+ h
>0 for allT>0.

LEMMA 1.2. Let u(x,t) solve the direct problem for admissible coejficients and
input. Then Oxu(x,t) >_0 on the open set QT ={0<x< 1,0<t < T} and there is
no positive measure subset of QT where Oxu(x, t) O.

Proof. For an arbitrary smooth function (x, t)

IOta(u) Ob(u)]O dx dt 0
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and integration by parts leads to the result

Oxu[C(u)O,o + K(u)O,xo] dx dt Oxb(t)Ox:] x-’l
dtx’--O

T(1.3)
+ (1--oet (o1=o

If p(z, t) is chosen to be the solution of djoint problem 1:

C()Otp + K()Op F(z, t) in Ur,
(1.4 (,) 0, 0 < < ,

(0, t)=0and(1, t)=0, 0<t<T,

then O(z, T)= 0, Ot(O, t)= Ot(1, t)= 0, and (1.a) reduces to

The mximum principle pplied to adjoint problem 1 shows that if F(x, t) 0 on QT,
then < 0 on QT and, since (1, t) 0, it follows that 0(1, t) > 0. Lemma 1 and
the hypotheses on f(t) imply g(t) K(f(t))Ou(1, t) > 0 for t > 0. Then the right
side of (1.5) is strictly positive. F(x, t) has been assumed to be nonnegative but is
otherwise arbitrary, hence it follows from (1.5) that Ou(x,t) is nonnegative in QT.
Similarly, the existence of a positive area subset in QT where Ou(x, t) vanishes leds
to a contradiction with (1.5).

LEMMA 1.3. Let u(x, t) solve the direct problem for admissible coecients and
input. Then Otu(x, t) 0 on QT and there can be no set of positive measure in QT
where Otu vanishes.

Proof. For an arbitrary smooth function (x, t)

f fQT IOta(u)- Oxxb(u)]Otdxdt O.

Therefore, integration by parts shows that

(1.6) T

If (x, t) is chosen to be the solution of adjoint problem 2:

C(u)& + K(u)O F(x, t) in Qr,
(.r) (,) o, o < < 1,

(o, t) o n (1, t) o, o < t < T,

then Ot(1, t) O, &u(1, t) f’(t), and since O.(O,t) 0 and Ou(O,t) O, the
integral identity (1.6) reduces to

(1.8) Ot(z, t)F(z, t) dz dt K()f’ (t)O(1., t) dr.
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The maximum principle applied to adjoint problem 2 shows that F >_ 0 in QT implies
< 0 in QT (i.e., replace (1.7) with an extended problem on (-1, 1) (0, T) with

(-1, t) 0. The maximum principle applies to the extended problem exactly as
it did for problem (1.4).). Then p < 0 in QT implies that 0x(1, t) > 0 and this
together with the hypotheses on f(t) ensure that the right side of (1.8) is strictly
positive. F(x, t) has been assumed to be nonnegative but is otherwise arbitrary, thus
it follows from (1.8) that Otu >_ 0 in QT. Moreover, Otu cannot vanish on a positive
area subset of QT without contradicting (1.8).

LEMMA 1.4. Let u(x,t) solve the direct problem for admissible coe)Cficients and
input. Then h(t) u(O, t) satisfies h(O) uo and h’(t) > 0 for 0 < t < T.

Proof. Applying the reasoning of Lemma 1.3 to the initial boundary value
problem

Ota(u)=Oxxb(u) for -l<x< 1,0<t<T,
u(x,O)=uo for -l<x< 1,

u(-1, t)-u(1, t)-f(t) for0<t<T

shows that Otu(x,t) > 0 in (-1,1) (0, T). In particular, Otu(O,t) h’(t) > 0,
0<t<T.

Lemma 1.4 supplies necessary conditions for a function h to lie in the range of
the coefficient-to-data mapping (C, K) - u(0, t).

2. Integral identities. Several integral identities relating the unknown coeffi-
cients in (1.1) to the overspecified quantities g(t) and h(t) in (1.2) are derived in this
section. The first identities relate changes in the conductivity coe]ficient, K(u), to
changes in the overspecified data.

THEOREM 2.1. Let u u(x,t) be a smooth solution of the direct problem (1.1)
for admissible coeJ:ficients a(s) s and b(s) bl(s) and admissible input f. Suppose
v v(x, t) solves the same problem for different admissible coejZficients a(s) s and
b(s) b2(s). Then for any 7, 0 < T <_ T,

(2.1) (hi (t) h2(t))O(t) dt= (K1 (v) K2(v))OxvO dx dr,

where

(2.3) p(x, t) 001

(K1 (v) K2(v))OvO dx dt,

Il (V(X, t) t_ 8(t(X, t) V(X, t))) ds

and where (x, t) solves adjoint problem 3:

Ore + p(x, t)Oxx 0

(2.4) 2(x,T) =0,

p(0, t)0x(0, t) )(t) and

and (x, t) solves the adjoint problem 4:

Ot + p(x, t)Ox99 0

o,
t) o

(1, t) =0,

in Q,

and (1, t)=p(t).
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Proof. Suppose that u u(x, t) is a smooth solution of the direct problem (1.1)
for a(s) s and b(s) 51 (s). Suppose also that v v(x, t) solves the same problem
but with a(s) s and b(s) b2(s). Then w(x, t) u(x, t) v(x, t) satisfies

(2.6)
Otw Oxx(bl (u) bl (v)) Oxx(bl (v) b2(v))

=0,

0xw(0, t)=0 and w(1, t)=0.

in QT,

Then for any smooth function (x, t) and any T, 0 < T <_ T,

f It). [Otw- Oxx(bl (u)-bl (v))] dxdt= f fQ. Ox(bl (v)-b2(v)) dx dr.

Writing

bl (u) bl (v) (u v) bi (v + s(u v)) ds p(u v),

it follows that

(2.7)

where p(x, t) is given by (2.3). The hypotheses on the admissible coefficient K1 are
sufficient to imply that p(x, t) is strictly positive on Qr and is Lipschitz with respect
to x and t. If (x, t) solves adjoint problem 3, then

wltt=o 0 and O(bl (u) bl (v))b AK(v)Oxv 0 at x 1.

Also the boundary conditions on the direct problems for u and v imply that
bl(u(1, t)) bl(v(1, t)) 0; Obl(u(O, t)) Obl(v(O, t)) 0; and AK(v)Oxv(O, t)

0. Then (2.7) reduces to (2.1). On the other hand, if solves the adjoint problem
4, then (2.7) reduces to

’OT(Ox(bl
(t) bl (v) ))(1, t) dt

AK(v)OxvOxdxdt Ox(bi(v) b2(v))2(1, t)dr,

AK(v)O,vO,dxdt O,(bl(v) -b2(v))(1, t)dt.

Since Ox(bl(v) b2(v))(1, t) (Kl(f) K2(f))Oxv(1, t)p(t) (gl(t) g2(t))p(t), we
obtain (2.2).

Integral identities relating changes in the capacity coefficient, C(u), to changes in
the overspecified data can be derived in a similar fashion.
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THEOREM 2.2. Let u u(x, t) be a smooth solution of the direct problem (1.1) for
admissible coefficients a(s) al(s) and b(s) s and admissible input f (t). Suppose
v v(x, t) solves the same problem for different admissible coefficients a(s) a2(s)
and b(s) s. Then

Aa(v)Ot dx dt AC(v)Otv dx dt Ah(t)w(t) dr,

Aa(v)Ot dx dt AC(v)Otv: dx dt Ag(t)p(t) dt

where (x, t) solves adjoint problem 5:

with

q(x,t)Ot + 0xx 0 in Qr,
(x, )=0,

0x(0, t) w(t) and (1, t) 0,

(2.11) q(x, t) C1 (v(x, t) + s(u(x, t) v(x, t))) ds

where (x, t) solves adjoint problem 6:

(2.12)
q(x, t)Ot + 0x 0 in Q,

:(x, ) o,
0x:(0, t) 0 and qo(l, t) p(t).

Proof. Suppose that u u(x, t) is a smooth solution of the direct problem (1.1)
for a(s) el (s) and b(s) s. Suppose also v v(x, t) solves the same problem but
with a(s) a2(s) and b(s) s. Then w(x, t) u(x, t) v(x, t) satisfies

(2.13)
Or(a1 (u) al (v)) OxxW -Or(a1 (v) a2(v))

(x,O) =0,

Ow(O,t)=O and w(1, t)=0,

in QT

and it follows that for any smooth function (x, t),

//Q [Ot (a (u) a (v) Oxxw] dx dt ]" /Q Ot (al (v) a2(v)) dx dt.

Integrating by parts leads to the identity

(2.14)
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here q(x, t) is given by (2.11). The hypotheses on the admissible coefficient C1 imply
that q(x, t) is strictly positive on QT and q is Lipschitz with respect to x and t. If
(x, t) solves adjoint problem 5, then

x=0 w(0, t)0x(0, t) and (al (u) a2(v))it=Tt=O =0

and (2.14) becomes (2.8). On the other hand, if solves adjoint problem 6, then

(Ow wO)[= Ow(1, t)(1, t) (g (t) g2(t))p(t)x=0

so that (2.14) reduces to (2.9).
Finally a pair of integral identities can be derived relating simultaneous changes

in C and K to changes in the overspecified data.
THEOREM 2.3. Let u(x, t; C, K) denote the unique solution of the direct problem

(1.1) coesponding to admissible coecients C and K and admissible input f(t). Then

(2.15) (g (t) g2(t)) (t) dt AK(v)avO Aa(v)Ot,

(2.16) (h (t) h2(t))(t) dt AK(v)OvOx2 Aa(v)Ot,

where (x, t) solves the adjoint problem 7:

q(x, t)Otl + p(x, t)Oxx 0 in ,
(e.l) (x,) =0,

O(O,t) O and (1, t) (t)
and 2(x, t) solves adjoint problem 8:

(x, t)o + p(x, t)o =0 n ,
(e.s) (x,) 0,

p(0, t)0(0, t) (t) and (1, t) 0

for p(x, t) and q(x,t) given by (2.3) and (2.11), respectively.
Proof. Suppose that u u(x, t) is a smooth solution of problem (1.1) for a(s)

a (s) and b(s) b (s). Suppose v v(x, t) solves the same problem but with a(s)
a2(s) and b(s)= b2(s). Then w(x, t)= u(x, t)- v(x, t)satisfies
(e.19)
Ot(a(u)-a(v))-O(b(u)-b(v)) O(b(v)-b2(v))-Ot(a(v)-a2(v)) in QT,

(x,o) =o,
o(0, t) 0 nd (1, t) 0.

Multiplying both sides of the partial differentiM equation by an arbitrary test function
(x, t) and integrating by parts leads to
(e.e0)

(a () a ()):1= [(a, () a, ())0: + (() l())a.:] tt=O

[O(b() b ()) O(bl () b ())]= et

a(l() ())at+ a(() ())1=o t

+ (() a())at (a() a())l=t=O
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Note that

(al (u) al (v))Ot99 + (bl (u) bl (v))Oxx w(q(x, t)Ot -t- p(X, t)Oxx),

where p(x, t) and q(x,t) are given by (2.3) and (2.11). If the test function 991
solves adjoint problem 7, then (2.20) reduces to (2.15). Here use has been made of
the facts

Oxbl (u) Oxb2(v) 0 at x 0 since Oxu(O, t) Oxv(O, t) O,
bl(u) bl(v) 0 at x 1 since u(1, t) v(1, t) f(t),

O(bl (v) b2(v))(1,t) gl(t) g2(t) and OxAb(v) Ag(v)Oxv.

On the other hand, if the test function in (2.20) is chosen to equal o2, where
2 solves adjoint problem 8, then (2.20) reduces to (2.16).

These integral identities can be used to consider the invertibility of the coefficient-
to-data mappings in several unknown coefficient inverse problems.

3. Invertibility of the coefficient-to-data mappings. A partial ordering on
the metric space C[a, b] is defined by letting f < g mean that one or the other of the
following alternatives holds:

(i) f(x) < g(x) for all x in (a, b), or
(ii) f(x) g(x) for a _< x _< p < b and f(x) < g(x) for p < x < b.
.THEOREM 3.1. Let u(x,t; K) denote the unique solution of the direct initial

boundary value problem

(3.1)
Otu Ob(u) for0<x<l,0<t<T,

u(x,O) =uo for0<x<l,
Ou(O,t)=O and u(1, t)= f(t) for0<t<T

corresponding to admissible coeJ:ficient K(s) b’(s) and admissible input f(t). Let g, h
denote the data functions g(t) K(f)Ou(1, t; K), h(t) u(0, t; K). Then

(a) K > K2 on [uo, f(T)] implies the existence ofT, 0 < " <_ T, such that hi > h2
on [0, r].

(b) hi > h2 on [0, T] implies the existence of#, uo < It <_ f(T), such that K1 > K2
on [u0, ].

(c) K1 > K2 on [uo, f(T)] implies the existence of T, 0 < T <_ T, such that gl > g2

on [0, T].
(d) gl > g2 on [0, T] implies the existence of #, uo < # _< f(T), such that K1 > K2

on [no, #].
Proof. Let u(x, t), v(x, t) denote solutions of (3.1) corresponding to admissible

conductivity coefficients K1 and K2, respectively. Then for hi (t) u(0, t) and h2(t)
v(0, t), it follows from Theorem 2.1 that for any 0 < T _< T,

(3.2) (hi (t) h2(t))O(t) dt (K1 (v) K2(v))OxvOx dx dr,

where (x,t) solves adjoint problem 3 and the function p(x,t), given by (2.3), is
strictly positive on Q. If the data )(t) from (2.4), adjoint problem 3, is chosen such
that (-) 0 and O(t) > 0 for 0 < t < T, then one can show that p(x, t) must satisfy
O(x, t) > 0 on the open region Q. The hypotheses on f(t) imply via Lemma 1.2
that Oxv(x, t) > 0 almost everywhere in Q.
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To prove (a)suppose that Kl(v) > K2(v) in C[u0, f(T)]. In particular, suppose
K(v) > K2(v) for all v, u0 < v < f(T). Then Ag(v(x, t)) > 0 for (x, t) in Q for all
T, w <_ T, and the right side of (3.2) is positive for any T <_ T. If there were a point
to in (0, 7) where Ah(t) hi(t)- ha(t) were negative, then Ah would be negative
in an open neighborhood of to. But then we could choose the values of v(t) on this
neighborhood to be so large and positive that the left side of (3.2) would be negative,
contradicting equation (3.2). Similarly, if Ah(t) 0 for all t in (0, -) the integral on
the left in (3.2) would be zero. But the right side of (3.2) is positive, and it follows
that Ah(t) _> 0 on (0, T) and Ah(t) > 0 on a subinterval of positive length in (0, T).
By decreasing T if necessary one can ensure that Ah(t) > 0 for 0 < t < - or else
Ah(t) 0 for 0 _< t _< T’ < T and Ah(t) > 0 for " < t < T. If K1 (v) K2(v) for
u0 _< v _< u and K (v) > K2(v) for u < v < I(T), then (3.2) implies Ah(t)= 0 for
0 _< t <_ t where f(t) ul. Now one proceeds as before to establish the existence of
a T _< T such that h :> h2 on [0, T]. This proves

Similarly, if g (t) g (f(t))Oxu(1, t) and g2(t) K2(f)Oxv(1, t) then Theorem
2.1 implies that for any -, 0 < T _< T,

(3.3) (gl(t) g2(t))p(t)dt (Kl(v) K2(v))OvOdxdt

where 99(x, t) solves (2.5), adjoint problem 4. If the data p(t) satisfies p(T) 0 and
p’(t) < 0 for 0 < t < -, then one can show that (x, t) must satisfy O(x, t) > 0 on
the open region Q. One can proceed as in the proof of (a) to show that K > K2 in
C[uo, f(T)] implies the existence of a T, 0 < 7 <_ T, such that gl > g2 in. C[0, T]. This
proves (c).

To prove (b)suppose that hi > h2 on [0, T]. In particular, suppose h(t) > h2(t)
for 0 < t < T. Then, under the previous assumptions on )(t), the left side of (3.2) is
positive for any -, 0 < T <_ T. If there were a u > u0 such that K (v) < K2(v) for u0 <
v < u, then choosing - such that f(T) Ul would lead to a negative integral on the
right side of (3.2) equal to a positive integral on the left. This contradiction precludes
the possibility K (v) < K2(v) for u0 < v < u. If one supposes that K (v) K2(v) for
uo <_ v <_ f(T), then the right side of (3.2) is zero while the left side is strictly positive,
which is another contradiction. Similarly, K1 (v) K2(v) for u0 _< v _< tl f(T) and
g (v) < K2(v) for u < v < u2 _< f(T) leads to a contradiction with (3.2). It follows
that there exists some #, #0 < # _< f(T), such that K (v) > K(v) for u0 < v < #
or else g(v) g2(v) for u0 _< v _< ul < # and K(v) :> K2(v) for u < v < it. If
h(t) h2(t) for 0 _< t _< tl < T and h(t) > h2(t) for t < t < T, then (3.2) can
be used to conclude that K(v) K2(v) for #0 _< v _< u f(tl). Now we proceed
as before to establish the existence of a # > u such that K > K2 on In0, #]. This
proves (b). The proof of (d) is based on (3.3) instead of (3.2) but is otherwise similar.

The properties (a) through (d) are sometimes described by saying that the coeffi-
cient-to-data mappings K - g and K - h are monotone mappings. Note that if
the ordering relation f < g were a total ordering on C[0, T] and C[u0, f(T)], then
the monotonicity of the coefficient-to-data mappings would imply unicity for solutions
of the inverse problem and it would imply existence of an inverse for the coefficient-
to-data mapping. Since we have only a partial ordering, the monotonicity implies a
weaker version of uniqueness and invertibility.

For fl, f2 in C[a,b], the functions f, f2 are said to be distinguishable on [a, b]
when there exists a partition H, {a 0 < < < n b} of [a,b] such
that for each subinterval (i-,), 1 <_ <_ n, one has f < f2 or else f2 < f on
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(i-1, i). Two functions are not distinguishable on [a, b] if they are identical on [a, b]
or if their graphs cross infinitely often in [a, b]. Of course continuous functions that
are not distinguishable on [a, b] are not necessarily identical on [a, b]. If D[a, b] denotes
the subspace of C[a, b] composed of distinguishable functions, then D[a, b] contains
the functions that are analytic on [a, b] but excludes rapidly oscillating functions like
sin(l/x) on (0, 1).

Note that fl distinguishable from f2 on [a, b] does not necessarily imply that ei-
ther of the relations f > f2 or f2 > f holds across the whole interval [a, b]. However,
exactly one of these relations must hold on (0, ), the first subinterval of a partition
associated with the distinguishable functions f, f2. If K1, K2 are admissible conduc-
tivitycoefficients that are distinguishable on [uo, f(T)], then their graphs, are ordered
on (0, ).

COROLLARY 3.2. Under the hypotheses of Theorem 3.1, if K is distinguishable
from K2 in C[uo, f(T)], then there exists T, 0 < - <_ T, such that hi(t) is distinguishable
from h2(t) in C[0, T] and g (t) is distinguishable from g2(t) in C[0, T].

Proof. Let {no < Ul < < tn f(T)} denote a partition associated with
K,K2 in D[uo,/(T)]. Suppose, for example, K1 > K2 on u0 < v < Ul /(tl) _<
f(T). Then part (c) of the theorem implies the existence of a T _< T such that gl > g2 in
C[0, T]; i.e., gl and g2 are distinguishable in C[0, T]. Similarly, part (a) of the theorem
implies h and h2 are distinguishable on [0, T] for some T, 0 < " <_ T. This is a
uniqueness result asserting that coefficients that are distinguishable cannot produce
indistinguishable data; i.e., if the inverse problems where K(u) is to be identified
from either h(t) or from g(t) has more than one solution, these solutions are not
distinguishable on In0,/(T)].

The monotonicity of the coefficient-to-data nappings also implies a restricted type
of invertibility. One way of using the integral identities to implement this inversion is
illustrated in 4.

THEOREM 3.3. Let u(x, t; C) be the unique solution of the direct initial boundary
value problem

(3.4)
Ota(u) Oxxu for O < x < l, O < t < T,

u(x, 0)=uo forO<x<l,
Oxu(O, t) O and u(1, t) f (t) for O < t < T

corresponding to admissible coefficient C(s) a’(s) and admissible input f(t). Then
in the notation of Theorem 3.1,

(a) C1 > C2 on [uo, f(T)] implies the existence of T, 0 < - <_ T, such that h2 > hi
on [0, ].

(b) h > h2 on [0, T] implies the existence of#, u0 < # <_ f(T), such thatC2 > C
on In0, #].

(c) C > C2 on [u0, f(T)] implies the existence of T, 0 < T <_ T, such that gl > g2

on [0, T].
(d) g > g2 on [0, T] implies the existence of#, u0 < # <_ f(T), such that C > C2

on In0, #].
Proof. The proof of this theorem is based on the identities (2.8) and (2.9) instead

of (2.1) and (2.2) but otherwise is quite similar to the proof of Theorem 3.1. If the
data w(t) in (2.10) is chosen to be positive for 0 < t < T, then the solution of adjoint
problem 5 is necessarily negative in Q. Using these facts in (2.8) leads to results (a)
and (b) that C > C2 is consistent with h2 > h.
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There appears to be no natural way to extend the notion of monotonicity to the
coefficient-to-data mapping associated with the simultaneous identification of the two
unknown coefficients C(u) and K(u) (or, alternatively, a(u) and b(u)) from the pair
of overspecifications (1.2). However, restricted uniqueness and invertibility results are
true for this problem as they were in the inverse problems in a single unknown. The
restricted inversion for this problem will be discussed in the next section.

THEOREM 3.4. Let u(x,t), v(x,t) denote solutions of the direct problem (1.1)
corresponding to admissible coejficient pairs (C1, K1), (C2, K2), respectively, with ad-
missible input f(t). Let (g,hl) and (g2, h2) denote the corresponding data pairs as

defined in (1.2).
(a) If K is distinguishable from K2 and C is distinguishable from C2 in

C[uo, f(T)], then the coefficient pairs generate data pairs (g, h) and (g2, h2)
that are distinguishable on [0, t] for some tl, 0 < tl <_ T.

(b) If the data pairs (gl,hl) and (g2, h2) are identical on [0, T], then K1 is not
distinguishable from K. and C1 is not distinguishable from C2 on [uo, f(T)].

Proof. Suppose that K is distinguishable from K2 and C1 is distinguishable from
C2 in C[uo, f(T)], and let {no < Ul <... < ?-tn f(T)} denote a partition associated
with K, K2 in Din0, f(T)] and {u0 < u < < Un f(T)} denote a partition
associated with C1, C2. Choose the smaller of the two numbers ui, and call this Ul.

There are several cases to consider but the idea of the proof can be seen by
considering just two of them. Suppose, for example, that Kl(V) > K2(v) and al(v) <
a2(v) for uo < v < Ul f(t) <_ f(T). If )l(t) in adjoint problem 7 satisfies Ol(T) 0
and ) (t) > 0 for 0 < t < -, then we can show that 0x(x, t) and Oral(X, t) are both
positive in Q. Similarly if O2(t) in adjoint problem 8 satisfies O2(T) 0 and 2(t) > 0
for 0 < t < -, then we can show Ox2(x, t) > 0 and Ot2(x, t) < 0 in Q. If we choose
7 tl, then AK(v)OvOl Aa(v)Otl > 0 on Q and it follows by the arguments
used in Theorem 3.1, that (2.15) implies gl > g2 on (0, tl). On the other hand, if
we have /(l(V) > /(2(v) and hi(V) > a2(v) for u0 > v < Ul f(tl) _< f(T), then
AK(v)OxvO2 Aa(v)Ot2 > 0 on Q. In this case the usual arguments used with
(2.16) imply h > h2 on (0, tl). We have proved that coefficient pairs (C1, K1), (C2, K2)
that are distinguishable cannot produce data pairs (g, h) that are not distinguishable;
this implies uniqueness of the solution to the inverse problem for the simultaneous
identification of (C,K) (equivalently, (a) and (b) from the data in (1.2).

To prove (b), suppose K is distinguishable from K2 and C is distinguishable
from C2 in C[u0, f(T)], and suppose also that Ag(t) Ah(t) 0 on [0, T]. Then
Ag(t) Ah(t) 0 on (0, tl) where Ul =/(tl) where u is as it was in the proof of
part (a) so that An(v) and Ag(v) do not change sign on (no, u). Then (2.15) implies

f f. AK(v)OvO dx dt f f. Aa(v)Otl dx dt.

Since OxvOxl and 0tl are positive on Q, and AK(v) and An(v) do not change sign
on Q,, AK(v) must have the same sign as An(v) on (u0, ul). In the same way (2.16)
implies

J fQ. AK(v)OvO2 dx dt f fQ. Aa(v)O,2 dx dt,

and in view of the fact that Ot2 < 0 while OxvO2 >_ 0, the same argument now shows
that Ag(v) and An(v) have opposite signs on (no, Ul). It follows that AK and Aa
are both zero on (no., ul) and, since Ag Ah 0 on (0, T), the interval (no, Ul) must
cover the whole interval (uo, f(T)). Since the assumption that the coefficient pairs
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are distinguishable leads to the contradictory conclusion that the coefficient pairs are
identical on (u0, f(T)), it follows that the coefficient pairs must be indistinguishable on
(u0, f(T)). Statement (b) asserts that the coefficient-to-data mapping (C,K) - (g, h)
is injective, but (a) and (b) are not quite equivalent since indistinguishable is not the
same as identical.

4. Invertibility in the space of polygonal approximations. Let u(x,t;
K) denote the unique solution of the direct initial boundary value problem (3.1)
corresponding to the admissible conductivity coefficient K and admissible input f(t).
Then the maximum principle implies uo <_ u(x,t) <_ f(T) for all (x,t) in QT and
we may seek to determine K(u) on the interval uo <_ u <_ f(T) from either piece of
overspecified data g(t) K(f(t))Ou(1, t) or h(t) u(O, t).

The monotonicity of the coefficient-to-data mapping can be exploited in con-
structing an inverse mapping if the domain and range are totally ordered. The spaces
C[0, T] and C[u0, f(T)] are only partially ordered, but a total ordering can be induced
by restricting the mappings to subspaces that consist of piecewise linear continuous
functions. The admissibility of f(t) is essential for this step.

Let {0 to < tl < < tn T} denote a partition of the interval [0, T].
Then {u0 < Ul < < Un f(T)}, where f(tj) uj for j 0, 1, ...,n, defines
a corresponding partition of the interval [u0, f(T)]. Define PnK(u), a polygonal (i.e.,
continuous and piecewise linear) approximation to K(u) on In0, un], as follows. For
each rn, rn 1,..., n, let PnK(u) be given for u,-i _< u _< u, by

Urn ? U Urn--1(4.1) PnK(u) tCm-- + am
?rn trn-- ?rn Urn--

The constant parameters {to0,..., gn} can be determined from either of the data pairs

f and g or f and h. For purposes of this illustration f and 9 are used. Assume the
initial constant, a0 K(uo), is known. This represents no loss of generality since a0
can be obtained from the data f(t), g(t); see [7], [8].

First it will be shown how a is obtained and then the procedure will be general-
ized to the case of subsequent a’s. Let/(1 (u) equal the linear function given by (4.1)
on (u0, Ul). Note that the definition of Kl(u) contains the as-yet unknown parameter
;1. Let K2(u) be given by (4.2) with ;1 0; i.e.,. K2(u) equals the constant g0 for
u in (u0, ui). Note that the family of functions Ki(u) that are linear on (u0, ul) and
satisfy Ki (u0) a0 is totally ordered.

Let gl (t) equal the overprescribed data function g(t) on (0, tl), and let g2(t)
K2(f(t))Oxv(1, t;K2) on (0, t), where v(x,t;K2) denotes the solution of the direct
problem (3.1) on Qtl (0,1) x (0, ti) corresponding to the coefficient K K2. Note
that Corollary 3.2 implies Ag(t) gl (t)- g2(t) is not zero unless the linear functions
K and K2 are identical on (u0, u). Finally let (x,t) denote the solution of the
adjoint problem 4 for data p(t) such that p(t) 0 and p’(t) < 0 for 0 < t < tl. Then
Theorem 2.1 implies

AK(v)OxvO dx dt Ag(t)p(t) dt.
tl

But

AK(v) K1 (v)- g2(v) (;1 ;0) (;1 g0)Al(v) fort0 <_ v <_ u,



PARABOLIC INVERSE PROBLEMS 1485

which leads at once to the result

(4.2) 1 0 + f’ Ag(t)p(t) dt

f fQt, AI(V)0xv0x dx dt"

Since the integral in the denominator can only be positive, 1 is greater than or less
than 0 according to whether Ag(t) is positive or negative.

To find m once the first rn constants 0, 1,..., m-1 are known, let K1 (u) and
K2(u) both be given by (4.1) for u0 _< u _< u,-l. Then AK(v(x,t)) 0 for (x, t) in
(0, 1) (0, tm-1). On (urn-l, Um)let

m /, ? tm--1
K1 (u) /m--1 + m

Um tm-- tm tm--

Let v(x,t) denote the solution on (0,1) (0, t,) Qt. of the direct problem (3.1)
for K(v) K2(v). Then Ag(t) denotes the difference between the data function
gl(t) g(t) and g2(t) K2(f(t))Oxv(1, t) for 0 < t < t,. Finally let (x,t) denote
the solution of the adjoint problem (2.5) on Qt.. Then Theorem 2.1 leads, as it did
for m 1, to the result

(4.3) ’m a--I +
f’.Ag(t)p(t)dt

f fs. Am(v)OxvO dx dt’

where Sm (0, 1) x (tm-l,tm) is the part of Qt. where AK(v(x,t)) is not zero.
Executing this procedure for rn 1 to m n generates a polygonal approximation
PnK(u) for K(u) on the partition {u0 < Ul ’’" tn} of [t0, f(T)].

This construction of the polygonal coefficient PnK(u) is explicit and can be car-
ried out for every partition of It0, f(T)]. This reflects the invertibility of the coefficient-
to-data mapping K(u) g in the space of polygonal coefficients where the relation

f < g acts as a total ordering. Numerical experiments to test the effectiveness of
algorithms that incorporate this construction will be discussed in future publications.

Now consider the simultaneous determination of the two unknown coefficients
C and K. Note that when determining just one of the coefficients, assuming the
other to be known, one is free to choose either of the overspecifications in (1.2).
However, to determine both of the coefficients simultaneously one must use both of
the overspecifications in (1.2).

Let u u(x,t; C,K) denote the unique solution of (1.1) corresponding to admis-
sible coefficients C and K and admissible input, f(t). Let h(t), g(t) be as defined in
(1.2).

With a partition of It0, f(T)] as previously chosen, constants a,, 0, are to be
determined so as to define PnK(u) and Pna(u), polygonal (i.e., continuous and piece-
wise linear) approximations to K(u) and a(u) on It0, u]. For each m, m 1,..., n,
PnK(u) and Pna(u) are defined for u,-i <_ u <_ Um by

?-tm U -- m--1(4.4) PnK(u) I’m--i nt- gm
tm tm-- tm tm--

ltm it it m--1(4.5) Pna(u) Om--1 -- mm ’ttm-- tm tm--
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One can define an algorithm for determining the constants am and Om for m
1,..., n, assuming that a0 and 0 are known from the data. The algorithm proceeds
step by step for each m. For m > 0 fixed, suppose PnK(u) and Pna(u) are given by
(4.4) and (4.5) with aj and 0j known for j 1 up to m- 1. To extend PnK(u) and
Pna(u) to (urn-l, Urn) define K2(v) gm-1 and a2(v) Ore-1 for u,-I <_ v <_ Urn.
Also define

?-tm V V tm--1(4.6) /Q(v)
Um m-1 m m-1

m V V m-1(4.7) a1 (v) Om-i q- )m tm-1

_
V

_
Urn,

tm Um--1 m m-1

noting that the functions K1 (v) and al (v) depend on the (as-yet unknown) quantities
am and 0.. Let v(x, t) denote the solution on Qt. of (1.1) for coefficients K K2,
a 42 and the same input f(t), and define functions

g2(t)=K2(f(t))Oxv(1, t) and h2(t)=v(O,t), O<_t <_t,.

Then with g (t), hi (t) equal to the overspecified data g(t), h(t), respectively, (2.15)
and (2.16) are used to write

(4.8) Ag(t)Ol (t) dt [AK(v)OxvO991 Aa(v)Ot991] dx dt,

(4.9) Ah(t)O2(t) dt [AK(v)OxvO92 Aa(v)Otg2] dx dt,

where Sm (0, 1)x (tm--, t,). Here use was made of the fact that AK(v) ha(v) 0
for uo <_ v <_ Um-. In addition, 99 (x, t) and 2(x, t) denote the solutions of adjoint
problems 7 and 8, respectively, for coefficients p(x, t), q(x, t) given by (2.3) and (2.11)
with K K2 and a a2. Then (4.8), (4.9) are two equations in the two unknowns
am, Om. These equations assume the form

(4.10) )m m-- q- M- AHm

where

AGm Ag(t)Oi(t)dt, AHm Ah(t)O2(t)dt,

and the entries Mij of the 2-by-2 matrix M are given by

Mll--is Am(v)OxvOx dxdt,

with

An(v)
V Un-1 for u_

__
V

__
’ltn.
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Note that Am(v) >_ 0 on Sm; hence Mll > 0, M22 > 0, M21 > 0, and M12 < 0. Then
det M is positive and a unique solution for ,, v% exists independent of the data g, h.
This is a reflection of the invertibility of the coefficient to data map (a, K) -. (g, h)
within the space of polygonal coefficients.

Note that for test function (x, t) that solves either of the adjoint problems 7 or
8, it follows that

Aa(v)Otp dx dt Aa(v)ltt--o dx OtAA(v)p dx dt

Then (4.8), (4.9) become

(4.11) Ag(t)) (t) dt [AK(v)OxvOx + AC(v)Otvl] dx dt,

(4.12) Ah(t)z92(t) dt [AK(v)OxvO2 + AV(v)Otv2] dx dt.

These equations provide the basis for the algorithm to generate polygonal ap-
proximations for K and C rather than K and a.
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ANALYTICITY OF SOLUTIONS OF THE GENERALIZED
KORTEWEG-DE VRIES EQUATION WITH RESPECT TO THEIR

INITIAL VALUES*

BING-YU ZHANG

Abstract. The initial value problem (IVP) of the generalized Korteweg-de Vries (KdV) equation

O,u + 0(()) +0 0, (, 0) ()

is well posed in the classical Sobolev space Ha(R) with s > 3/4, which establishes a nonlinear map
g from Ha(R) to C([-T, T]; Ha(R)). It is shown that

(i) if a a(x) is a C function on R to R, then K is infinitely many times Frechet differentiable;
(ii) if a a(x) is a polynomial, then g is analytic, i.e., for any E Ha(R), g has a Taylor series

expansion

1 K(n)()[hnK( + h)= .
n-’-O

Each term yn K(n)()[hn] in the series solves a linearized KdV equation. Consequently, any
"small" perturbation K( + h) of K() can be obtained by solving a series of linear problems.

The proof of these results relies on various smoothing properties of the associated linear KdV
equation.

Key words, well-posedness, Frechet differentiability, analyticity
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1. Introduction. Consider the initial value problem (IVP) for the generalized
Korteweg-de Vries (KdV) equation

(1.1)
O,u + + O2u 0,

0)

t, x_R,

in which a(x) is assumed to be a Co function on R to R, although a weaker differ-
entiability suffices for some results below.

The KdV equation (i.e., a(u) u2/2 in (1.1)) and its generalized form (1.1)
have been studied by many authors (see, for example, [1], [2], [13], [17] for an initial
collection of references). In particular, it is well known that the IVP (1.1) is locally
well posed in the classical Sobolev space HS(R) with s > 3/2 (cf. [12], [13], and [22])
and globally well posed with some restrictions on a(u) or the size of the initial data
when s > 2 (see [11], [13], and [20] for the well-posedness of the IVP (1:1) in other

function spaces). In the case in which a’(u) uk in (1.1) with k being a positive
integer, Kenig, Ponce, and Vega [18] proved that the IVP (1.1) is locally well posed
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in the space HS(R) with

(1.2)

s > 3/4 if k--- 1,

1/4 if k=2,

s_>1/12 if k=3,

s > k-___4 if k > 4,2k

and globally well posed when 1 _< k _< 3 and s _> 1.1 Their proof is based on careful
analysis of various smoothing properties of the associated linear problem together
with the contraction mapping principle.

With a few technical modifications, the approach by Kenig, Ponce, and Vega [15],
[18] can be easily adapted to the general case. To state this expected result precisely,
we introduce the following Banach spaces as Kenig, Ponce, and Vega did in [18].

Let s > 0 and T > 0 be given. For

w" R[-T,T]R,

define

l(T,w) sup IIw(., t)lls,
[-T,T]

A2(T,w) sup [DOw(x,t)[2dt
x T

A3(T, w; l) IIJtOxw(., t)llLdt
-T

with/e [0, s- 3/4], where js (1 -02)s/2,

A4(T, w; r) (1 + T)-p sup IJrw(x, t)12dx

with r e [0, s- 3/4) and p > 3/4 .being a fixed constant, and

(1.3) A,r(T;w)=max{Al(T,w), A2(T,w), A3(T,w;1), A4(T,w;r)}.

Define

(1.4) T,= {W E C([-T,T];H(R)) At,r(T;w < oc}Xl,r

In the case of the classical KdV equation, Bourgain [4], [5] has recently shown that the IVP
(1.1) is globally well posed in L2. Then, combining the estimates established in [18] with some ideas
introduced by Bourgain, Kenig, Ponce, and Vega [19] proved that the IVP (1.1) is locally well posed
in H with s < 5/8.
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with (1, r) e [0, s- 3/4] [0, s- 3/4). It is a Banach space equipped with the norm

IlWllxr.s "= h,r(T; w).

It can be shown that if a(0) a’(0) 0, then for any e gs(R), there exists a
(T,sT > 0 depending only on ]]] such that the IVP (1 1) h unique solution u ..,,

where s > 3/4 and (l, r) e [0, s- 3/4] x [0, s- 3/4). The global result can be also
obtained when the same restrictions are enforced on a(u) in (1.1) or on the size of the
initial value as those in Kato [13] but with s 1 instead of s 2.

T,s (orThus the IVP (1.1) establishes a nonlinear map K from HS(R) to Xt,
C([-T,T];H(R))). The regularity of this nonlinear map g is our major concern
in this paper.

In the cse of the classicM KdV equation, Bona and Smith [2] first proved that
the corresponding map g is continuous from H(R) to C(0, T; HS(R)). In [23] Shut
and Temam showed that K is locally Hhlder continuous with exponent 1/2, while
considering K a map frown Hs+/2(R) to L((-T,T);HS(R)) (s 2). The conti-
nuity of the map K from H(R) to C(0, T; H(R)) in the general case is established
by Kato [13]; it follows from his semigroup approach. These early results did not use
smoothing properties of the equation. In the case of a(u) u, as a by-product of the
fixed point pproach based on smoothing properties of the equation, Kenig, Ponce,
and Vega [18] proved that K is Lipschitz continuous from HS(R) to X[. Later,
Zhang proved in [25] that the map K corresponding to the classical KdV equation is

infinitely many times echet differentiable from HS(R) to T sXg,$ and t has Taylor
series expansion at any given HS(R). That is, the map K is anMytic from H(R)

yT,sto l,r
In this pper we shall first show that the nonlinear map K established by the

XT,sIVP (1 1) is Mso infinitely many times echet differentiable from H(R) to t,r"
For any n 1, its nth derivative K()() t H(R), an n-linear map from the

Tsn-fold product space (HS(R))n into Xt,r can be constructed by solving a system
of inhomogeneous linearized KdV equations. More precisely, for any n 1 and
h HS(R) (k 1,2,...,n), let

(1.5) W),...,n] :: g(n)()[hl,’. ..,hn].

Then solve

(1.6)

for n 1 and

(n) (?.t)W(n) 3 ,(n) :_Ox(Hn)otw[: n] + Ox(a’ [: ,1) + ’x[
(1.7)

w[ ](x, 0) 0

for n > 2 where u K() and Hn is a polynomial of w(j)
[ i]

and 1 j n- 1 (see 3 for the structure of Ha).
If we choose h h2 h and let

with 1 <_ i:, ij <_ n

Yn K(n)()[hn],
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XT’s thenwhich is a homogeneous polynomial function of degree n from HS(R) to 1,r
we can define the nth Taylor polynomial Pn of K at E HS(R),

n

Pn()[h] :-- K(b)+ K(n)()[hk]
n

(1.8) u+ .,
k--1

and a formal Taylor series P of K at E HS(R) by letting n --+ c in (1.8).
While assuming that a(u) is a polynomial, we shall prove that for any HS(R),

there exists a 5 > 0 such that if h Us(R) with Ilhlls _< 5, then

(1.9) K( + h) K(n)()[hn]n!
k=O

with the series converging uniformly about h with Ilhlls
_

ti in the space Xt,r In
other words, the map K is analytic from HS(R) to "’l,r

The proof of the above regularity results for the map K relies on various smoothing
properties of the associated linear KdV equation (see [6], [8], [9], [13], [16], [18], and
[24] for smoothing properties of dispersive wave equations and their applications).

It is worth pointing out that each term Yn g(n)()[hn] in the series (1.9) is a
solution of a linearized KdV equation. Hence, in the case in which a(u) in (1.1) is a
polynomial, solutions of the IVP (1.1) can be obtained by solving a series of linear
problems. This would provide us with a new approach to,the IVP (1.1) (cf. [3]). One
can first solve system (1.6)-(1.7) inductively and construct the Taylor polynomial Pn
(1.8). Then one shows that the {P,} is a Cauchy sequence and its limit (n --is the needed solution of the IVP (1.1). One of the advantages of this approach is
that the following result related to the global well-posedness of the IVP (1.1) follows
almost automatically [3]: For any s > 3/4 and T > O, let Z)s,T be the collection of all

HS(R) such that the corresponding solution of the IVP (1.1) exists on the interval
I-T, T]. Then 7)s,T is a nonempty open subset of HS(R).

The paper is organized as follows. In 2, in addition to listing the estimates
concerning the IVP

(1.10) Ou -}- 03xu f(x, t), u(x, O) so(x),

which are needed to establish the nonlinear results, we consider the IVP for the
following linear equation:

Otu + Ox(a(v)u) + 03xu f(x, t),

0) (x).

x, tR,

xT,sWe show that if v E o,o, then for any HS(R) and f LI([-T,T];HS(R)), the

XT’s andIVP (1.11) has a unique solution u

(1.12) < Z (11 11 I111 + IIS(.,
l, Xo,o T
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The estimate (1.12) will be key in obtaining differentiability of the map K. The proof
of the well-posedness of the IVP (1.1) in the space HS(R) with s > 3/4 is presented
in 3. We show that the map K is infinitely many times Frechet differentiable from

T,s T,sHS(R) to X1,r in 4. The analyticity of the map K from HS(R) to Xl,r in the case
in which a(u) is a polynomial is established in 5.

Notation..The norm in L2(R) will be denoted by I1.11 and the norm in HS(R) will
be denoted by 11.118. The notation I1.11 is used to denote the norm in L(R).

O (-02)8/2 and j8 (1- 02)8/2 denote the Riesz and the Bessell potential
of order s, respectively.

[A,B] AB- BA, where A, B are operators. Thus [js; fig jS(fg)_ fjSg
where f is regarded as a multiplication operator.

Ha(R) := gls>oHS(R).
Forl_<p,q_<cx,andf" R [-T,T]R,

q)If(x,t)lPdx dt

IIflILgLT If(x, t)lqdt dx

2. Linear estimates. Let {W(t)}+_ be the unitary group generated by the
linear third order operator Af _fl,, in the space L2(R). Then the solution of the
IVP associated with

for x, t E R,

is given by

v(t) w(t) o,

and the solution of the inhomogeneous equation

Otv + 03 v f(x,t),

v(x,O) =0

x, tER,

is represented by

W(t 7)f(., "r)d-r.

LEMMA 2.1. For any s >_ O,

(2.3) IDOW(t)voledt)
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and

(2.4) ]lDs+l/4w(t)vo]]dt <_ c]lvo]]s.

In addition, /f s > 3/4, then

(e.) su, IJW()ol(x)dz _< (1 + T)l0,
[-T,T]

wh [0, - 3/4) and p is a fixed constant larger than 3/4.
Proof. See Kenig, Ponce, and Vega [17, Lem. 2.1, Thin. 2.4, and Cot. 2.9].
LEMMA 2.2. For any s 0 and T > O,

(2.6) IIW(t)voll Ilvoll
and

(.z) sup w(t )I(., )& IlI(., )ll&.
[-r,rl -r

and

(2.9)

Proof. (2.6) and (2.7) follow easily from Kato ([13, Lem. 3.1]).
LEMMA 2.3. For any s >_ 0 and T > O,

If s > 3/4, then

DOx W(t T)f(., )dT

/oD+1/4 W(t--T)f(.,T)dT
L LT

(2.10) J W(t v)f (., T)dv
L2L

IIflIL(t-T,TI;H())

T
_

c IIf(., -)ll&-.
-T

< c(1 + T)p IIf(., )lld-,
T

where e [0, s- 3/4) and p is a fixed constant larger than 3/4.
Proof. The proof follows from Lemma 2.1 by using Minkowski’s integral inequality

(cf. [1).
LEMMA 2.4. Let s > 1/2 and T > 0 be given. Then there is a constant c > 0

such that

(2.11)

and

llu,Ovllsdt

_
aT/2( + T)PllullxGllvllxo,o

T

(2.12)
T

IIG(uv)lldt

_
cT1/2(1 + T)Pllullxo,o Xo,o’,1111 ’,

-T

xT,for any u, v E o,o.
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Proof. For the proof see Kenig, Ponce, and Vega [lS, the claim (4.10)] or Lemma
2.4 in [25]. 71

LEMMA 2.5. Let s > 0 be given. Then there is a constant c > 0 such that for any
Yk E HS(R), k- 1,2,...,m,

and if s > 1/2, then

(2.14)

j--1 k--1, kj

m

for any m >_ 2, where the constant c in (2.14) may be different from the c in (2.13).
Proof. (2.13) with m 2 is Lemma X4 of gato and Ponce [14]. The general case

follows easily by induction. The proof is complete. El
LEMMA 2.6. Let b Ca(R; R) with b(O) O. Then

]lb(u)lls < (llulls), s > 1/2,

where b(.) is a monotone increasing function depending only on b.
Proof. See gato ([13, Lem. A.3]).
LEMMA 2.7. Let s > 1/2 and T > 0 be given and assume a Ca(R; R) with

XT’s and y IzT’sa(O) O. Then there is a constant c > 0 such that for any u o,o -o,o

T

T o,o

where (.) is a continuous monotone increasing function only depending on a.

Proof. First of all,

and it is easy to see by using Lemmas 2.5 and 2.6 that

<_ Zl
where fl (.) R+ R+ is a continuous monotone increasing function only depending
on a. Using Lemma 2.4 yields

Ila’(u)yOxul]sdt < c sup
T [-T,T] T

< T1/2(1 -[-T)PI ([[[[xT,) [[’[[ T,[[Y[[xT,
0,0 X0,o o,o

It follows from Kenig, Ponce, and Vega [17, Lem. 2.10] that

Ila(u)Oyll IIJ(a(u)Oy)ll
Ila()DO + a()(J D),% + [J’; a()lOll

< Ila()DOll + Ila()llllll
+ {llOylllla(u)ll + Ila’(u)Oulloollyll}.
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Note that

f fIla(u)lloollyllsdt <_ sup Ila(u)ll8 llylldt
T [-T,T] T

<_ cT1/2(1 + T)P2(llu]]xr,s)lly]lx[,os,0,0

where/2(.) R+ R+ is a continuous monotone increasing function depending only
on a,

f fIla(u)llllOxylldt <_ sup Ila(u)ll IlOxylldt
T [-T,T T

o,o o,o

Ila’(u)Oullllylldt <_ sup
T [-T,T -T

where

fl3(r) sup

where

Ila(u)OOylldt < T/- la(u)OOxul2dxdt
T T

<_ lul]OOu]dxdt sup
T [-T,T] U c

<- cT’/2( 1 + T)4(llllx:;lllulIx, Ilyllxo;,0,0

(r) sup

We conclude that

llOx(a(u)Y)lldt < cT/2(1 + T)’/(llul-- )llyllx;
for some constant c > O, where

(r) max{rl(r), /2(r), r3(r), r4(r)}

The proof is complete. El
From the proof of the above lemma we may draw the following corollary.
COROLLARY 2.1. Let s > 1/2 and T > 0 be given and assume a E C(R;R)

XT,swith a(O) O Then for any u E o,o,

(2.16) T, (1 + T)llullz’,.
T

llO=(a(u))lldt < c llUllXo,o o,o’
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where fl(.) is a continuous monotone increasing function only depending on a.
LEMMA 2.8. Let s > 1/2, T > 0 and a E C(R; R) be given. Then there exists

xT,s T,sa constantc>O such that for anyuE o,o andyk Xo,o withk-- 1,2,...,m and
m>_2,

(2.17)
m m

]lO(a(u) H Yk)lldt <- cm(]lUl]Xor,’o) H IlYkllXo,’o’T k=l k=l

where (.) is a continuous .monotone increasing function only depending on a.

Proof. By applying (2.14) we have

Ox a(u) yk

k-1

<_ a’(u)Oxu H Yk + H a(u)yjOxyk
k--1 s k---1 j--1, j:/:k s

m

cm+l (lla’(u)- a’(0)ll / la’(0)l)Ilyl0ll 1-I
k--2

"J,-Cm+l (lla(u)- a(O)ll + la(O)l)

)* IlYl0xykll 1-I IlYII + ]Iy2GyllI II Ilyll
k=2 j=2,jCk =3

Then, using Lemmas 2.6 and 2.4 leads to

Ox a(u) H Yk dt <_ c’+1 sup (11’() -a’(O)ll + la’(0)l)
T k=l s

[-T,T]

* H sup Ilyll IlylOulldt + sup (lla(u) -a(0)ll + la(0)l)
k=2 [-T,T] -T [-T,T]

. sup Ilyll IlylOylldt+ sup Ilyll sup Ily0y, ll

cr+ll(llUllxr’)T/2(lo,o + T)llUlXo,or, IYI Xo,o,
m

r,’)T/2(1 + T)p Ilyllx,.+mcP+l(llUllxo,o o,o
k=l

m

cmfl(llullx’) H IIyIIxG0,0
k=l

for some c > 0. The proof is complete. E]

Now we turn to consider the linear problem

(2.18)
Otu + Ox(a(v)u) + 03xu f(x, t),

(x, 0) (x),

x,tR,

where a(.) e C(R; R) with a(0) 0.
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XT,sTHEOREM 2.1 Let s > 3/4, (1, r) E [0, s- 3/4] [0, s- 3/4), T > 0 and v 0,0
be given. Then for any f e LI([-T, T]; HS(R)) and e HS(R), there exists a unique

xT,ssolution u t,r to (2.18) such that

( )Ilullx. <(llvll ,) I111+ IIf(.,t)lldt
’ X’ -T

where is a continuous monotone increasing function only depending on a.

Proof. We use the same contraction principle argument that Kenig, Ponce, and
Vega used in [18].

For any given e HS(R) and f e LI([-T,T];HS(R)), the inhomogeneous prob-
lem

(2.20)

defines a map

for any

Otu + 03u f Ox(a(v)w),

(z, 0) (z)

the solution u

0,0

where b > 0 is to be determined
Rewrite (2.20) in its integral equation form as follows:

(2.21) u(t) W(t) + W(t T) (f Ox(a(v)w)) (., T)dT.

Applying (2.3)-(2.10) and (2.15) to (2.21) leads to

A (;,)< I111 -4- Ill(. ).lld / IlO(,(,)w)ll d-,-l,r S 8

(2.22) c I111 + IIf(-,r)lld + atl/2(1 + t)o(llVllx,)A;,o(t;w)
T o,o

for (1, r) [0, s- 3/4] x [o, s- 3/4). In particular,

A (t; ) < 11 + I111 + (llllxb)t/(1 + t)A,o(t; w)0,0
T

Choosing

(2.23) b 2 I111 + IlflldT
-T

and 0 < T* < T such that

(2.24) cT*(1 + T*)"(llvllxT,,o) /2,
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we obtain

(2.25) A80,o(T*; u) < b.

Thus, is a map from S"* to S"* with b given by (2.23). The contraction property
of the map. follows similarly. As a result, there exists a unique u E SbT* such that

(2.26) u(t) W(t) W(t ’) (Oz(a(v)u)) (T)dT + W(t T)f(., T)dT

for -T* < t < T* and

(2.27) At,rT*;u) I111 + IlflldT
-T

Note that T* determined by (2.24) only depends on (llvllxo,o
particularly. Thus, a standard argument shows that T* can be extended to T* T

r,8 and a. Theand (2.27) holds for T* T with another c depending only on IIv[[xo,o.
proof is complete.

Remark 2.1. Theorem 2.1 is still true if a(v) in (2.18) is replaced by

a(vl + (I A)v2)dA

with Vl, v2 e Xob.
3. Well-posedness. om now on we sume that a(u) in (1.1) satisfies a(0)

a’(0) =0.
THEOREM 3.1. Let s > 3/4 and (1, r) e [0, s- 3/4] x [0, s- 3/4) be given. Then

the following hold:
(i) For any e H(R), there exists a T > 0 depending only on ]llls and a

unique solution u e C([-T,T];HS(R)) to the IVP (1.1) satisfying

II0u(., t)ll

Moreover,

where (.) is a continuous monotone increasing function with rl(O) O.
(ii) For any T’ < T, there exists a neighborhood U of in n (R) such that the

map

K" u(.,t)

cT"s is Lipschitz continuous.from U to .,
THEOREM 3.2. Let s >__ 1 be given. Then Theorem 3.1 is true with T arbitrarily

large provided that

I1!1: a,
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where % is the ceiling of a a(u) defined by Kato [13, Thm 4.4].
Remark 3.1. % =(xifa’(u) < 0ora’(u) <_ lulp withp <_ 3as lul cx (see

Kato [13]).
Remark 3.2. Theorem 3.2 follows from Theorem 3.1 and the global a priori

estimates for solutions of.the IVP (1.1) of Kato [13] by a standard argument.
We start to prove Theorem 3.1 by establishing the following a priori estimate for

solutions of (1.1).
PROPOSITION 3.1. Let s > 3/4, T > 0, and (1, r) e [0, s 3/4] [0, s 3/4) be

T,sgiven. If u E Xo,o is a solution of (1.1), then there exists a To > 0 depending only on

IIlls such that

(3.1) A,r(T0; u)< clllls
where c > 0 is a constant independent of u.

Proof. Consider the integral equation form of (1.1),

(3.2) u(t) W(t)- W(t- T)Ox(a(u))(T)dT.

Applying (2.3)--(2.10) to (3.2) yields

for any t <_ T. In particular, using (2.16) we have

A (t; <  11 11 +0,0 s

(3.4) <_ clllls + c(A),o(t; u))t/(1 + t)A,o(t; u).

Since/(A,0(t; u)) is a continuous increasing function of t, there exists a t To such
that

T1/2(3.5) c3(A,0(T0; u)) 0 (1 + To)p 1/2.

Then it is from (3.4) that

(3.6) As (To; u)< 2c11110,0

Thus the following inequality must hold:

cD(2clllls)T/2(1 + To)" >_ 1/2.

It implies that To > M > 0 for M1 > 0 depending only on IIlls. The estimate (3.1)
then follows from (3.3), (2.16), and (3.6). The proof is complete.

PROPOSITION 3.2. Let s > 3/4 and (1, r) [0, s 3/4] [0, s- 3/4) be given.
For any HS(R), suppose . H, (0, 1), with

lim 0 in HS(R).
.---*0

Then there exists T > 0 such that for any e (0, 1), (1.1) has a unique solution
ue e C([-T,T];H(R)) with u(x,O)= (x) satisfying

(3.7) As (T; u) <l,r
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for 0 < < 1, where c > 0 is independent of .
Proof. According to Kato [13], ue E C([-T,T]; H(R)), where Te only depends

on I111. Since I111 is uniformly bounded for e e (0, 1), we may assume that

T>T1
for some T1 > 0, and therefore

It follows from Proposition 3.1 that

for any e (0, 1)

yTl ,s
Ue 0.0

A (T;u) < c[1[Il,r s

for some T > 0 and c > 0 independent of e. The proof is complete.
Proof of Theorem 3.1. For HS(R), choose H(R) such that

lim in H(R).
e--+0

By Proposition 3.2, there exists a T > 0 and c > 0 such that for any E (0, 1), the
IVP

a + a(()) +a 0,

(x, 0) (x)
has a unique solution u e C([-T,T];H(R))satisfying

h,r(T; u)< c[[[[.
TsWe show that u is a Cauchy sequence in X,r. Then its limit u as e --. 0 is the

desired solution of the IVP (3.1) corresponding to the initial value .
Let e < e and

Then w solves

where

W t ?Ae/.

Otw + Ox(A(u, u,)w) + Ow O,

w(x, 0) o- ,,
A(u, v) a’ (Au- (1 A)(v))dA.

According to Theorem 2.1 and Remark 2.1,

A,r(T; w) _< c*[[
T,sfor some c* > 0 independent of e, and therefore u is a Cauchy sequence in X,

Finally, if T < T, there exists a neighborhood U of in Hs (R) such that the IVP
(1.1) defines a map -- u(., t) from U to T’,sX, For any 1, 2U, letuandvbe
the solutions of the IVP (1.1) with u(x, 0) 1 (x) and v(x, 0) 2(x), respectively.
Then, similarly, we have

A (T’;u-v)<c[[-l,r

,where c depends only on I]byll, j 1, 2. Therefore the map -- u is Lipschitz
continuous. The proof is complete. [3
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4. Differentiability. Let s > 3/4 and (1, r) e [0, s 3/4] [0, s 3/4) be given.
According to Theorem 3.1, for any E Hs (R), there exist a T > 0 and a neighborhood

XT,sU of in H(R) such that (1 1) defines a nonlinear map K from U to l,r,

u := K()

for any b E U, where u is the solution of (1.1).
Suppose that the map K is n times Frechet differentiable; then its nth order

derivative g(n)() at e U is a symmetric n-linear map from H(R) to xI,T. and
for any hi,... ,hn H(R),

K(n)()[hl" ’h’] K + khk
k--1 0,...,0

As for the homogeneous polynomial function K(n)()[h’] of degree n induced by
K(n)(), it is given by

K(n)()[h"] d--K( + h) =0

for any h Hs (R).
Let

Then direct computation shows that w!’)..,nlt.,-

K(n)()[hl,...,hn] and Yn K(n)()[hn]

solves

(t ,(1) r3 ,(1) O,[1] -- Ox(aP()Wl:])) + ’x[l]

(1)(X O) =hi

for n 1 and

n w(1 n a,uw() a () -O(H),[,...,] [ ])+ow[ ]-

=0

for n 2 with K() and

(4.3) Un
"= k+...+k=n

where 2u is the summation over all (ii,.. " i-,k,’.. k) satisfying

.m1 < <---<,
Nr m 1,2,...,j and

U U{ir} {1,,...,n}.
m=l/=1
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One can easily see that ,(1) k-2, ,n, solves (4.1) with hi replaced by hk. Similarly,[k],

w(2) 1 < il i2 < n solves (4.1)-(4.2) with hi and h2 replaced by hi, and h[i1,i2]
respectively.

As for Yn, it solves

(4.4)

for n- 1 and

for n _> 2, where

3Otyl + Ox(a’(u)yl) + O’yl O,

Yl (x, O) h

(OtYn + Ox(a’(tt)yn) + 03xYn
yn(X,O) "--0

n a(j)(u) n!
M

j 2E j! E kl!.., kj! Ykl... Y.
k--...+k--n

T8On the other hand, according to Theorem 2.1, for given u E X0,0 with s > 3/4,
xT,s(4.1) defines a linear map ]C(1)(u) from H(R) to t, with (1, r) [O,s- 3/4] x

[0, s 3/4),

]C(1) (u) [hk ,(1)

where w(1) is the solution of (4.1) with the initial value hk HS(R) Inductively,
T,s(4.1)-(4.2) defines an n-linear map ]c(n)(u) from the n-fold space (HS(R))n to Xt,r

for any n _> 2.
PROPOSITION 4.1. Lets > 3/4, (/,r) [0, s-3/4] )< [0, s-3/4), T > 0 and

u e XT’so,o be given. Then for any hi, ha e HS(R), (4.1)-(4.2) has a unique solution

wl,!..,n], which defines an n-linear map ]c(n)(u) from the n-fold space (gs(R))n to
xT,s

t,r" Moreover,

(4.6)
o,o

k--1

for any n >_ 1 and hi,... ,hn HS(R) where c(n,.) is a continuous monotone in-
creasing function from R+ to R+ with c(n, O) O.

Proof. It follows from Theorem 2.1 that system (4.1)-(4.2) defines an n-linear
map )C()(u). We prove estimate (4.6) by induction.

It is easy to see that (4.6) is true with n 1 by applying estimate (2.19) to
equation (4.1). Suppose that (4.6) is true for 1 _< k _< N- 1. Applying Lemma 2.8
and estimate (2.19) to equation (4.2) with n N, we obtain
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N cj j

0,0 0,0
8

j=2 k+...+k=N /=1

N

c(N, [lUlIxo,o
k=l

The proof is complete. S
COaOLLAaY 4.1. Let s > 3/4, (l,r) [0, s- 3/4] x [0, s- 3/4), T > 0, and

u Xob be given. Then (4.4)-(4.5) defines a homogeneous polynomial ()(u)[hn]
yT,s andof degree n from H R to ,

(4.7) [l()(u)[h]lx c(n,

lot any h H(R).
Now we may formally define the nth Taylor polynomial P(h) of the map K at

Ce H(R) s
n

1
P(h) K()+ ()(u)[h]

k=l
n

1

k=l

where u K().
PROPOSITION 4.2. Let z denote the nth Taylor remainder of K at H(R):

z, K( + h)- Pn(h).

Then Zn 8olve8

(4.8)

for n 0 and

(4.9)

for n >_ 1, where

Ozo + O(FI(.. v)zo) + O.Oaxzo
zo(x. o) h(x)

OtZn + Ox(F1 (u, V)Zn) -t- 03xZn -Ox(Dn),

z(.O) =0

u K(), v K( + h),

and

n+l n+l--m

(4.10) Dn= EFm(u’v) E Zk E
m=2 k=0 klT...Tkm-l=n-k

with

Fm(u, v) fO 001 (fi(m))),-1. )m-1 a m )jv + 1 H )U u d)m d)
j=l j--1
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and

Ymqm---.
form= 1,...,n+ 1.

Proof. Direct computation shows easily that (4.8) and (4.9) with n- 1 are true.
Assume that (4.9) is true for n _< N. For n- N + 1, by definition,

1
ZN+I ZN (N + 1)!

yN+I ZN qg+l,

where qN+l solves

(4.11) / o,+, + o(’()+) +o+ -O(E+),

qN+l =0

with

Hence

where

+ a(") (u)EN+I= E m! E
m=2 kI+’"+km=N+l

qkl qk,,"

3 ( )OtZN+I + OXZN+I --Ox El(u, V)ZN a(1)(u)qN+l Ox(GN+I),

N+I

GN+I E FM(U’ v)
m--2

N+I a(m)(U)
rn--1

We can readily verify that

(, v)zv ’()qu+F(,)U+ + F(,
N+I N+2-m

E

N+l-m

E zk E qkl...qk,-m
k=0 kl +...+kMl =N-k

E
kl+"’+km=N+l

qkl qkm"

E qkl qk._
m=2 k=l kl+"’+km-l=N+l-k

N+2

+ E Fm(u,v)zo E qk,1 ""qk,-i
m=3 kl +...+kin- --N+

N+2 NT2-m

F,(, v)z/l + Fro(u, v) z
m=2 k=0

E
kl +...+km-l=N+l-k

We conclude that

OtZN+l + Ox(Fl(t,V)ZN+l) + 03xZN+l --Ox(DN+l),

ZN+I (X, O) O.

qkl qk,_l
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The proof is completed by induction. [3

THEOREM 4.1. Let s > 3/4 and (l, r) e [0, s- 3/4] x [0, s- 3/4) be given. Then,
for any * E HS(R), there exist, a T > 0 and a neighborhood U of * in HS(R) such
that the nonlinear map K defined by the IVP (1.1) is infinitely many times Frechet

XT’s Its nth derivative K(n) at U is given bydifferentiable in U from HS(R) to l,r

K(n) ()[hl,..., hn] (n)(u)[hl,..., hn]

for any hl,...,hn e gs(R), where (n)(u) is defined by system (4.1)-(4.2) with
g().
Proof. We only need to prove that for any U,

K(+ h) E . ()[hk] + I]h
k=0

as h 0 in gs(R) uniformly for ]1- ells -< ]lhlls by the converse Taylor theorem
(see [7]).

Let

v g( + h), u K(), Y(k) K(k)(u)[hk]
for 1 < k < n and

1
niYnZo V Z ZO YO Zn Zn--1

Choose 51 > 0 such that

$51 () { HS(R), [[ -[[s _< (l } C U.

By Corollary 4.1, for any $51 (b),
k:12.., n,

where c(k, IlUllx , ) is uniformly bounded on S, ().
0,0

It suffices to prove that

(4.12) Ilzllx, wllhil2+1

for n o, where 7n is uniformly bounded for $5 ().
We prove estimate (4.12) by induction. First it is ey to check that (4.12) is

true for n 0 by applying Theorem 2.1 to equation (4.8). Suppose (4.12) is true for
n N; then applying Theorem 2.1 and Lemma 2.8 to (4.9) with n N + 1, we have
that

IIzN+ llx , 
N+2 N+2-m T

k N l-k Tm=2 k=0 k+" + m-= +



1506 BING-YU ZHANG

The proof is complete. Cl

COROLLARY 4.2 (Taylor’s Formula). For any E U and h HS(R), if

for any (0, 1),

for n >_ 2 such that

(5.4)

for any n >_ 1, where c > 0 is a constant independent of n and h,

is a continuous monotone function depending only on a(j), and flj =_ 0 if a(j) =_ O.
Proof. Note that qn yn/n! solves

{ cOtql W Ox(at(u)ql) + Oql O,

(x, o) h(x)

(5.3) a(n) j2 o/(kl)t(k2) ...(l(kj)
"= kx-b....-bk=n

for n 1 and

(5.6)

and

then

n--1
1 fl (1 )n--1K( + h) E .K(j)()[hj] +

Jo n! K(n)( + h)[hn]d
j=0

for any n >_ 1.

Proof. See [7, Thm. 8.14.3].
5. Analyticity. To show further that the map K is analytic, i.e., it has Taylor

series expansion at any HS(R),

(5.1) K( + h) E K(n)() [hn]n!
n----0

we need more accurate estimates of the nth derivative Yn K(n)()[hn] and the nth
Taylor remainder Zn.

PIOPOSITION 5.1. Lets > 3/4, T > 0, (1, r) [0, s-3/4] x [0, s-3/4) and
u e XoT,’os be given. If Yn is the solution of (4.4)-(4.5), then there exists a sequence
a(n) given by

a(1) 1



GENERALIZED KORTEWEG-DE VRIES EQUATION 1507

for n > 2.
Applying (2.19) to (5.5) yields

Assume that

for l<m<N.

Then applying (2.19) to (5.7) with n N + 1, we obtain

N+I 1

j--2 " k+...+kj=N+l

llOx(a(J)(u)qkl.., qk)llsdt
T

j

j--2 J: kl+...+k--N+l l--1

j

j=2 kl +...+ks--N+1 /=1
s

< c2(N+I)-o(N -+- 1)llhllsN+I.

Thus we have proved by induction that

Ilynllx,

_
c2-ln!a(n)llhll

l,r

which is (5.4) with a different c > 0. The proof is completed by induction. E]

Similarly, we have the following proposition.
PROPOSITION 5.2. Lets > 3/4, T > 0, (/,r) E [0, s-3/4] [0, s-3/4), and

T8u, v Xo,o be given. If Zn is the solution of (4.8)-(4.9) with Yn being the solution of
(4.4)-(4.5), then there exists a sequence /(n) given by

n+l n+l--m

(5.8) "y(Tt) ?’]1 E ?m E ’(k)
m--2 k--0

m-1

k+...+km_l--n-k i--1

for n >_ 1 with c(n) given by (5.2)-(5.3) such that

IlZnIIx, -- ’(n)llhll?/1,

where

0,0 0,0

r.8 with lj =- 0depending only on a(j) is a continuous function of I]Ullx[.,o and IlVllxo,o
if c(J) =_ O, and c > 0 is a constant independent of n and h.

Now we turn to consider convergence of the Taylor series (5.1).
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PROPOSITION 5.3. Let E U. If there is a 51 > 0 and c > 0 such that

and

(5.10) ’(n) _< cn, n >_ 0

uniformly for e SsI () where i(n) is defined by (5.7)-(5.8) with u K() and
yT,s uniformlyv K(b), then there exists a 5 > 0 such that series (5 1) converges in "’l,r

for Ilhll <_ 5.
Proof. Consider the nth Taylor remainder

n

Zn g( -- h)
j=O

According to Proposition 5.2 and hypothesis (5.10),

Ilznllzr.8 <_ "y(n)llhll+1 <_ cnllhll+1,

where c > 0 is independent of n and h HS(R) with Ilhlls < til. Choose 5 > 0 such
that

then

I]z,llxL <_ (1/2)’, >_ 1

for any h e HS(R) with Ilhll <_ 5. The proof is complete.
In the following we show that if a(u) in (1.1) is a polynomial of degree N,

(.11)
N

j=2

with by, j 1,2,.. ,N being real constants, then hypothesis (5.10) is satisfied for
any b U. Consequently, the map K is an analytic map from U C Hs (R) to ’l,r

First we prove a technical lemma.
LEMMA 5.1. Let N >_ 1 be a given integer and On be a sequence given by

(5.12) CN(1) 1,

n
bj 2(5.13) (N(n) - CN(kl)... (N(ky) for 2 <_ n <_ N- 1,
j.

kl-t-...Tkj--n

and

b (k) a n(5.14) aN(n) -5 aN (ky) for >_ N.
j--2 J" k-t-...Tkj--n
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Then there exists a constant c > 0 such that

(5.15) aN(n) <_ c’

for any n >_ 1.
Remark 5.1. In the case N 2 and b2 1, the lemma is Proposition 3.4 in [25]

where it is shown that

2n-1(2n 3)vv
for any n >_ 2.a2(n) n!

Proof of Lemma 5.1. Note that aN(n), for any n >_ 1, is uniquely determined by
(5.12)-(5.15) inductively. In particular, one may obtain

aN(l), aN(2),..., aN(N 1)

explicitly by computation.
Let

PN(X, y) y E ag(k)xk + Y
j \ k--1

N biN-1(5.16)
j=2 k=j k, +...+kj =k

It is easy to check that

0
PN(O, O) O, _a. PN(O, O) i.

By the implicit function theorem, the equation

(5.17) PN(X, y) 0

has a unique solution

y f(x) with f(0) 0

defined in a neighborhood of x 0 such that

PN(X, f(x))= 0 for any Ixl <_ 5

with some 5 > 0. Moreover, f(J)(0) 0 for j 1, 2,..., N- 1.
In fact, the function y f(x) is a real analytic function in a neighborhood of

x 0. In particular, it has a Taylor series expansion at x 0,

f(x)
j--N

which is uniformly convergent for Ix] < 5 with some 5 > 0.
To see this, let

N-1

+
k--1
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and

Z

N-1 N N-1

+
k----1 j=2 k--j

aN(k1).., ay(kj) h(x).

Then, equation (5.17) may be written as

which obviously has an analytic solution g(z) in a neighborhood of z 0 such that
g(0) 0. Thus y f(x) g(h(x))- -N-1 aN(k)xk is an analytic function in ak--1
neighborhood of x 0, since h(x) is a polynomial function of x.

Now let us define

dj aN(j) for j 1,2,...,N- 1.

It follows from (5.17) and (5.18) by direct computation that

ex ()x + e
j:N ": \k:l k--N

N biN-1 E
j=2 k=j kl+...+kj=k

k=N j=2

for any Ix] < 5. Hence

d j 1,2,...,N- 1

and

N

j=2 k+...+kj=k

for any k k N. That is, for j >_ 1 dj also satisfies the induction relation (5.12)-(5.15).
By uniqueness,

aN(k) dk for any k _> 1.

Furthermore, note that {dk} are coefficients of Taylor series (5.18). Therefore there
exists a c > 0 such that

aN (?’t) d, <_ cn for all n > 1.

The proof is complete. Cl

THEOREM 5.1. Let s > 3/4 and (1, r) e [0, s- 3/4] x [0, s- 3/4) be given and
suppose that the function a(u) in (1.1) is a polynomial function of degree N Then
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for any E Hs (R), there is a T > 0 and a neighborhood U of in Hs (R) such that
xT,sthe IVP (1.1) defines an analytic map K from U to l,r

, i.e., for any U, there
is a > 0 such that the Taylor series

1 K(n)g( + h) K() + E . ()[h’]
n=l

xT,sniIou coaso IIII <_ in ac ,
Proof. Since U is an open subset in Hs(R), there is aSl > 0 such that if h

with ]]h]]s _< 1, then

+hU.

Denote

v K( + h), u K()

and

zo v u

Then, by Propositions 5.1 and 5.2,

1
Zn Zn- . Yn forn_> 1.

and

l,r
8

Note that a(J)(u) 0 for j _> N + 1 by the assumption. Then (n) is given by

a(1) 1,

0(’/),-- E E o(kl)... O(j)
j=2 kl+...+kj=n

for2<n<N-land

j--2

for n >_ N. As for 7(n),

(k,)...(})
kl +...+k =n

(o) ,,,
n n+l--j

7(n) fll E ?]J E ")/(k)
j=2 k=0

j-1

k +...+kj_x--n-k i--1
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for 1 <_ n <_ N- 1, and

According to Proposition 5.3, it suffices to show that there is a c, > 0 such that

n(n) < c,

for any n >_ N with c, independent of n and Ilhll, _< 5. To this end, we first see from
Lemma 5.1 that

a(n) _< c, n >_ N

with some Cl > 0 independent of n and h. Thus, for 0 _< j _< N,

for some c2 > 0 independent of n and

N n+l-j

<_
j=2 k=0

_<
k--O

j--1

kq-...+kj_--n-k i--1

for some c4 > 0 independent of n. Then we can readily verify by induction that

’(n)

_
2n-lc

_
c,n

for some c, > 0 independent of n and h. The proof is complete.
COROLLAPY 5.1. Assume that a(u) in (1.1) is a polynomial and s >_ 1. Let

Yas := HS(R) { e Hi(R), [1111 ")’a}
where % is the ceiling of a (cf. TAm. 3.2). Then for any T > O, the map K defined by

vT, with any (1, r) e [0 s- 3/4] x [0, s- 3/4).the IVP (1.1) is analytic from Y to .,
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CONVERGENCE OF DOUBLE OBSTACLE PROBLEMS
TO THE GENERALIZED GEOMETRIC MOTION OF FRONTS*

RICARDO H. NOCHETTOt AND CLAUDIO VERDI$

Abstract. The connection between the generalized geometric motion of interfaces, interpreted
in the viscosity sense, and a singularly perturbed parabolic problem with double obstacle =t=l and
small parameter e is eymined. This approach retains the local character of the limit problem,
because the noncoincidence set, where all the action takes place, is a thin transition layer of thickness
(_0(e) irrespective of the forcing term. Zero-level sets are shown to converge past singularities to the
generalized motion by mean curvature with forcing, provided no fattening occurs. If the underlying
viscosity solution satisfies a nondegeneracy property, namely, its gradient does not vanish, then our
results yield interface error estimates and layer width estimates of order O(e). The proofs are based
on constructing viscosity subsolutions and supersolutions to the double obstacl problem in terms of
the signed distance function and approximate traveling waves dictated by formal asymptotics.

Key words, reaction-diffusion, double obstacle, generalized curvature driven motion, interface
convergence, interface error estimates
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1. Introduction. In this paper we investigate the relation between the general-
ized curvature driven motion of interfaces and a singularly perturbed parabolic double
obstacle problem. The zero-level set of u, the solution, to the singularly perturbed
reaction-diffusion partial differential equation (PDE)

(1.1) Ou-Au 4- ’(u)- g in f (0, T),

with quartic-like double equal well potential and co fl V/(s)ds, is known
to converge to an interface (t) that moves (formally) in the normal direction with
velocity

Y(x, + V x e

Hereafter a(x, t) indicates the sum of the principal curvatures of Z(t) at x and g is a
forcing term defined in f (0, T). This connection has been rigorously established in
[3], [9] in the case of no fattening, that is, provided E(t) has empty interior. Equation
(1.1), in turn arises in the Landau-Ginzburg theory of phase transitions [1]. A typical
example of potential is the quartic (s) (s2 1) 2, but there is no physical reason
why has to be of that form or even smooth. The key condition on to achieve the
geometric law (1.2) in the limit is that the two wells possess equal depth. Exploiting
such a freedom of choice, we consider the double obstacle potential

1-s2 if s e [-1,1],
(1.3)

4- ifs [-1,1].
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In contrast to the usual reaction-diffusion approach with a quartic-like nonlinearity,
the coupling of (1.1) and (1.3) exhibits a narrow transition region of order (9(), outside
of which u +/-1 irrespective of g. Since the resulting problem has to be solved within
such a thin noncoincidence set, where all the action takes place, we realize that this
approach retains the geometric (or local) structure of the original problem while being
insensitive to singularity formation. This property is essential for numerical purposes,
and it bears some intrinsic interest as well. There is, however, no complete theoretical
justification of this formulation because the optimal interface error estimates of [14]-
[16] of order O(s2) are only valid before the onset of singularities, that is provided
the motion is smooth. On the other, hand, the convergence results of [3], .[9], which
are valid past singularities, apply to smooth quartic-type potentials but not to the
(singular) double obstacle (1.3).

In this paper we demonstrate that the zero-level sets E(t) of u converge to
E(t) past singularities provided no fattening occurs. The proof is based, as in [3],
[9], on constructing viscosity supersolutions to the reaction-diffusion PDE in terms of
the signed distance function d to suitable level sets of the viscosity solution w to the
generalized geometric motion (1.2) [7], [10], [12]. The novelties here are the presence
of obstacles, which entail lack of regularity of u even for smooth initial data, and the
use of an explicit traveling wave dictated by formal asymptotics. Inspired by [19], the
first issue is tackled with a suitable notion of viscosity supersolution and correspond-
ing comparison principle. On the other hand, dealing with an approximate explicit
traveling wave with fixed transition layer width r, thereby independent of g, makes
the construction of supersolutions simpler than in [3], [9] and certainly more trans-
parent. It also avoids considering generalized flows (1.2) corresponding to perturbed
forcing terms g +/- co(I) as in [3], and yields a new (local) linear rate of convergence
(9() for interfaces, along with layer width estimates, under a further nondegeneracy
assumption on w. In fact, if IVw(x, t)l > 0 for x E E(t), then

dist(x, Ee(t))
_
CIVw(x, t)l-’.

Since this requirement is always valid before the onset of singularities, our results
extend those in [6] past singularities. It is remarkable that the linear rate is preserved
between singularities, which applies to a number of geometric flows [2], [18].

The local character of the double obstacle formulation, together with its conver-
gence properties even beyond singularities, leads to a robust but effective numerical
tool: the dynamic mesh algorithm of [13]. This is a finite element solver that solely
triangulates the transition layer and then updates it, after having solved the discrete
problem, to advance the algorithm in time. Such a simple but crucial idea results
in savings of computing time and memory allocation along with enhanced singularity
resolution via a space-time dependent relaxation parameter (x, t). This claim has
been confirmed both theoretically and numerically [13]-[17] and is further supported
here with a rigorous convergence result and error estimates past singularities.

This paper is organized as follows. In 2 we recall key properties of d and introduce
the notion of viscosity supersolutions to the double obstacle problem. In 3 we show
how to obtain an explicit representation of an approximate traveling wave via formM
asymptotics. With the candidate for supersolution at hand, we perform a formal
calculation in 4 that presumes regularity of d and confirms the desired properties of
our supersolution. This is useful for understanding the main idea behind the quite
technical rigorous discussion of 5. A (viscosity) comparison lemma, adequate for
obstacle problems, is fully discussed in 6. Both the explicit form of supersolutions



1516 RICARDO H. NOCHETTO AND CLAUDIO VERDI

and the comparison principle are key ingredients in proving the convergence of F(t)
to F.(t) together with interface and layer width estimates; this is carried out in 7.

2. Viscosity solutions. Let ft C In be a bounded Lipschitz domain and set
Q t x (0, T) for T > 0. Let the forcing term g satisfy

(2.1) g e W(Q).
Remark 2.1. A weaker condition, meaningful whenever g g depends on , is

written as

(2.2) llOg AgIIL(Q) + [IVgIIL(Q) C.

This could happen if ge is the solution of another PDE, as in the phase field model
for solidification [5], or just a regularized version of a rougher g.

Let E0 C t be a closed oriented manifold of codimension 1 and class C, and let
do denote the signed distance function to E0 that is positive outside E0. Let w denote
the (continuous) viscosity solution of the nonlinear degenerate parabolic PDE

(2.3) Otw- 5j iv12 Ow gVw[ 0 in n x (0, T),

satisfying w(., 0) d0(’) [7], [8], [10], [12]. Such an expression says that level sets of
w evolve formally in their normal direction with velocity V Otw/[Vw[ + g, as
stated in (1.2). Let E(t) indicate the zero-level set of w. Since E(t) is independent
of the special form of w(., 0), provided {w(., 0) < 0} Interior (E0), E(t) is called a
generalized geometric evolution for (1.2) [7], [10], [12]. Let I(t) be the inside and O(t)
be the outside of E(t) defined in terms of w by

(t) :: {x e . (x, t) < 0}, o(t) :: {x e a. (x, t) > 0}.
Assume E(t) remains within for all t e [0, T], whence E(t) I(t) O(t). This
condition is guaranteed for g 0 whenever fl contains the convex hull of Eo [10]. Let
d(., t) denote the signed distance function to the front E(t) that is positive in O(t);
thus d(., 0) d0(.). Such a function d satisfies the following property in the viscosity
sense [3, p. 446]:

(2.4) Otd Ad g(x d(x, t)Vd(x, t), t) 0 in {d > 0},

at least provided E(t) has empty interior (no fattening). When E(t) has a nonempty
interior, d(x, t) must be replaced by the distance between x and fl-(t) := {w(., t) < 0}
for all x e flfl-(t). Equation (2.4) s also valid, but with 0, for -dist(x,+(t))
for all x e +(t). In what follows we will use d(x,t) instead of dist(x, fl-(t))
or -dist(x, fl+(t)) for notational simplicity. Inequality (2.4) implies that whenever

C(Q) is such that d- has a minimum at (x0, t0) Q, where d(xo, to)
(Xo, to) > 0, then

(.) oCv(xo, t0) a(xo,.to) 9(x0 v(xo, t0)V(xo, t0), t0) 0.

In addition, the following regularity properties of d hold [9, p. 1101]"
d is lower semicontinuous in {d > 0}, upper semicontinuousin {d < 0},(2.6) continuous from below in time, and Lipschitz continuous in space.

The variational approximation to E(t) via a singularly perturbed double obstacle
problem is written as follows. We consider the (singular) potential defined in (1.3)
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and let co fl V/(s)ds . The subdifferential ’ of is the maximal graph

19’ / (-’ 1] if s -1,

7 (s) sign- (s) s -s if s e (-1, 1),
( [-1,+c) if s=1.

Let u be the solution to the parabolic double obstacle PDE
o in Q,(2.7) Otu eAue u + sign- (ue) 2 g

subject to the initial and boundary conditions ue(x, 0) sign(d0(x)) for x and
ue 1 on 0 (0, T), respectively. Although this problem has both a variational [11]
and viscosity interpretation [8], [19], the latter turns out to be more convenient in this
setting.

Thus we conclude this section with a definition of viscosity solutions for obstacle
problems [8], [19]. We say that a function u is a viscosity supersolution to the double
obstacle problem (2.7) if and only if u -1, and if u - attains a minimum at
(x0, to) Q for C (Q) and u$ (x0, t0) (x0, t0) < 1, then

(2.8) := Ot A -g 0 at (x0, t0).
Similarly, we can define a viscosity subsolution. A function ue is called a viscosity
solution of (2.7) if it is both a supersolution and a subsolution.

3. aveling waves and asymptotics. We study the traveling wave qa, solu-
tion of the following boundary value problem: given ,
and q. C.’(S) h that q.(x)i 1 fo at x S(-x..x.). q(x) > 0 fo at
x (-x..x.). and

qa (x) + q,(x) vaq,(x) - in

va is the velocity of the traveling wave. it is easy to see that there exists only one va,

(1+,va= log a+
X

such that xa /21 -v/4 > and the corresponding explicit expression of q, is

vq.(x) e, (. 7-)(1 -,)(in (1-v/4 x) + .-/4 cos (ffl-v/4 x))
Note that qa(x,) 1, q(xa) O, q(x) 1

In what follows we will choose a(x, t):= g(x, t) and denote the corresponding
traveling waves by q(x; x, t). We stress that V(x,t) and Xa(x,t) depend implicitly on

(x, t) via g(x, t). An explicit and simpler representation of q can be obtained as
follows by means of asymptotics [14], [15], [17].

The unique absolute minimizer 7 of the functional () :=
dx, such that 7(0) 0, 7(x) 1 in , and limx 7(x) 1, is given by

-i ifz < -g,

7(z) "= sinz ifz [-, ],
+1 ifz> g.

’(()Hence C1, (N) and solves the (elliptic) double obstacle problem "(z)
0 in R. In particular,

(a.) "() + () 0 e (-, ).
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In addition, let us define the function v] E C1’1 (),

(x.(x) co + ,’())v(x) o
if Ixl _< ,
if Ix] > -,

which satisfies I(x)l, I’(x)l < /’(x)in (-, ) and solves the problem

(.) "(x) + (x) ’(x)- 0 v x e (-, )2

Asymptotics suggest the following approximation F of the traveling wave q [14], [15],

(3.3) F(x; x, t) := (x) + g(x, t)(x) V x e R, (x, t) e Q;

F is written without subscript for notational simplicity. Note that F(-; x, t) C’I(R)
is strictly increasing in (-, ), because F’(x) > ’(x) for small , and satisfies

(3.4) F"(x) + F(x) g(F’(x) ) -2g2’(x) ’(x)O(2) in (-, ),
a consequence of (3.1) and (3.2); hereafter we use the notation F(k) 0F. In view

of (2.2), the following (formal) property of F holds in Q:

(3.5) (o,r Axr) 2v.r’. Vxd ev(O,g- Axg) 2eV’Vxg. Vxd ’O(e).
This illustrates the advantage of having the explicit expression (3.3) and corresponding
uniform transition region (-, )independent of (x, t) e Q. Compare with [3].

4. Supersolution: Formal discussion. We intend to use (2.4) to motivate
the construction of supersolutions u to the double obstacle problem (2.7). Set

G [[Vg][L(Q) + 1 and a(t) he2G(T-),
where A > 0 is to be selected. With F in (3.3), our candidate for supersolution is
written

(4.1) : (x, t) := r((x, t); x, t) ((x, t)) + (x, t),((x, t)) v (x, t) e Q,

where y denotes the stretched variable, with time-dependent shift + a(t),

(4.e) u(x,t) := (x.,) , (t)e 2

LEMMA 4.1. For A > 0 suciently large, uS is a (formal) supersolution to (2.7).
Proof. Since no confusion is possible, we set u := u. We have to show that

u O,u Au lu (co/2)g > 0. Since

eOtu r’O,d- ea’(t)r’ + evO,g,

Au +FAd + 2Vg Vd +
we have

I(F" ?))+F (Od Ad g)flu + F-sg(Fp-

sa’(t)r’ 2srt’Vg. Vd + s2(Otg- Ag).

If < thenWe only have to examine the case -1

_
u(x, t) < 1, that is, y < . y -,

F -1 and 7’ F’ F" 0, whence u -d (co/2)g > 0 for sufficiently
instead, then 0 < d(x, t) < (a(t) + 7) andsmalls. If- <y<

(4.3) ]g(x, t) g(x d(x, t)Vd(x, t), t) <_ ]]VgllLo(Q)d(x, t) <_ G(a(t) + r).
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In view of (2.4), we infer that

F’(Otd- Ad- g) >_ -sGF’ (a(t) + r).
Because of the definition of a(t), (3.4), (3.5) and property F’ > ]’), we thus have

(4.4)
7u >_ F’( Ga(t) a’(t) + (9(1))

er’ (Ca(t) + O(1)) >_ er’ (GA + O(1)) >_ 0

for a suitable choice of A > O. Since F(-; x, t) CI’() by construction, we conclude
that F" (y(x, t); x, t) is a bounded function and, thus, a distribution without mass

concentrated on {y(x, t) - }. The proof is thus complete. []
Remark 4.1. We see that the term Get(t) that controls (9(1) in (4.4) is the effect of

shift a. A similar effect is obtained in [3] upon considering the distance to a perturbed
motion V a + g + o(1) instead of (1.2), but with a time-independent shift. This is
only feasible in proving conve.rgence without error estimates; see Remark 7.4 below.

Remark 4.2. It is apparent from (4.3) that the exponential form of a cannot be
avoided unless g is independent of x. In such a case, we could consider the linear
shift a(t) := A(T- t) with A > 0 chosen sufficiently large for u+ to be a formal
supersolution again. When g 0, the shift becomes constant, namely, a(t) 0. The
above argument in Lemma 4.1 still applies and is much simpler than those in [3], [9].

Remark 4.3. A subsolution can be constructed along the same lines, namely,

(4.5) u[ F(d(’t) + + a(t); x, t) V (x, t) e Q.

5. Supersolution: Rigorous discussion. We want to prove that u u+
defined in (4.1) is a viscosity supersolution of (2.7). Since u _> -1, we only have to
demonstrate (2.8). That is, suppose E C(Q) is such that u- attains a minimum
at (x0, to) E Q and u(x0, to)= q)(x0, to) < 1. Hence, in view of (4.1) and (4.2),- that is d(xo, to) < e(a(to)+ r).Yo y(xo, to) < 2,

We have to show that

co >0 at(xo to),(5.1) 5rp eOt eA -i g

which, in turn, we split into several steps.
1. First of all we point out that we can always assume that the minimum of u

at (xo, to) is strict, that is,

(5.2) U(x, t) (u )(x, t) > 0 for (x, t) (xo, to).

In fact, for 0 < c << 1, we have

(x, t) := (x, t) a(lx xol2 + It tol 2) < (x, t) for (x, t) -7/= (Xo, to);

thus u- o > U >_ 0. If we obtain (5.1) for , then

eOto- eAo- -g- g >__ 2na at (x0, to).

Now taking a 0 leads to (5.1) for
2. Let Y0 < -. By virtue of (4.2) and the last two properties in (2.6), there

exists a > 0 such that, for all Ix- x0l _<_

y(x, t) < -, whence 1 <_ u(x, t) F(y(x, t); x, t) <_ -1.
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The facts that u is constant for all those (x, t) and U attains a minimum at (xo, to)
imply

-A >_ O, Ot >_ 0 at (x0, to).

Therefore, (xo,t0)=-1 yields

Ot-A--g_> g _> 0 at (xo, t0)

for sufficiently small, and (5.1) follows.
3. Let yo _> -, that is, d(x0, t0) >_ a(to) > 0. We first point out that, because

of the lower semicontinuity of d (see (2.6)), for/ > 0 sufficiently small, there is a
neighborhood of (x0, t0) where y(x,t) > - - and d(x,t) > (a(t)-/) > 0; in
addition, Y0 < -. We would like to use the fact that d satisfies (2.4). To do so,
we must be able to construct a smooth function 5(x, t) close to d(x, t) via inversion
of F. Since F is not strictly increasing, we define 5 as follows. Let 7 and be
regularizations of ’ and by convolution with a smooth kernel , whose support is
contained in (-a, a), where 0 < a _< is sufficiently small; thus Iraqi, I1 -< ’ in .
Similarly, g C(Q) is a smooth approximation of g verifying Ilga--gllL() <-- C,
which is consistent with (2.2). Let

(.) r(; x, t):= (x) + + ,(x, t),()
and observe that

(5.4) r’(x; x, t) >_ (x) + a _> c > 0 for all x E ]R, (x, t) E Q,

(5.5) Fa(x; x, t) --ato F(x; x, t) uniformly for x in compact sets of I, (x, t) E Q.

Consider the function

V(x, t) := r ((x, t);x, t) (x, t).

Again using the fact that d is lower semicontinuous in conjunction with (5.2), (5.4),
and (5.5), we infer the existence of a point (x, t), where U attains a local minimum,
say us, such that (x, t)o (xo, to) and

(5.6) < . (x, t) < -.
The rightmost inequality in (5.6) is a consequence of Ya lo Yo < . If this
were not true, then there would exist 0 < < and a subsequence, still labeled y,
satisfying ya > yo + and, in view of the minimality of (xa, ta) and (5.4),

r(o; xo, to) (xo, to) V(xo, to) > U(x, t) > r(o + ; x, t) (x, t).

Upon taking c 0 and using (5.5), (x, t) o (xo,to), - < yo + < , and the
fact that F is strictly increasing in (-g, g), we derive the contradiction

r(o; xo, to) > r(o + ; xo, to) > r(o; xo, to).

Since Fa(-; x, t) is strictly increasing, the following relation uniquely defines 5C(Q)

(x, t) Fa (z(x, t); x, t) t, where z(x, t) 5(x,t) x (t).

Moreover,

r (y(x, t); x, t) (x, t) U(x, t) >_ F (z(x, t); x, t) (x, t),
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and equality holds at (x, t,). We thus deduce that (x,, t,) is also a minimum for
d- 5 and 0 < d(x, t) -5(x,, t,). Consequently, (2.5) leads to

(.) 0(x, t) (x., t.) (x. (x., t)V(x, t), t) 0.

Since , 5 C, the following pointwise calculation makes sense:

a r:(a ’(t)) + ar,
2

Property a’(t)=-2Ga(t) thus yields

(0 (.-v.))
(.8) (r:v: + r. (r:

+ ,.(0. .) :,v.. v + r: ((.- v, .) ,).
We now intend to show, upon suitably selecting A > 0, that the right-hand side of
(5.8) is almost nonnegative at (x, t). With the aid of (5.4) and (5.7), we readily get

F: (0t5 A5 g(. 5Vh, .)) 0 at (x, t).
Since (x, t) is a minimum for d- 5, we have Vh(x, t)] 1 [9, p. 1104]. In light
of (5.6), we distinguish two ces according to whether or not

4. Let - +Z < Y < -Z. We invoke (3.4) along with (2.2) and (5.3) to arrive
at

r. (u.; x., t.) + r.(.; x., t.) (x., t.) (r.(.; x., t.)

r"(;,) +(,) (,)(’(,)
-12

x( )+() ?() + o().

r((.- ,.) ) sc sc(() + ).
ereore, i iew o[ (5.) we c choose
(5.8)

’(GA+ (1 O()>-C at (x t).(.) ov-a--ar. o ))+
5. Let --fl < y - +ft. The fact F(-;x,t) 6 C’() can be used to

write the above integral representation of the second term in (5.8) again, but .now it
is computed in (- 2fl,-y + 2fl). We easily see that such an integral is of order
O(fl). Choosing A O(1) appropriately, we again conclude (5.9) but with fl instead
of .

Assertion (5.1) is just a consequence of
0, and (5.9). We finally summarize the preceding derivation follows. Note that

we can construct a subsolution along the same lines.
THEOREM 5.1. The function uS defined in (4.1) is a viscosity supersolution of

the double obstacle problem (2.7).
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6. Comparison. The following result is a crucial tool in comparing viscosity
barriers of (2.7), which in particular implies uniqueness for (2.7).

LEMMA 6.1 (comparison lemma). Let u+ be a lower semicontinuous viscosity
supersolution and u[ be an upper semicontinuous viscosity subsolution. If u+ > u-
at t 0 and on Of (0, T), then u+ >_ u[ for all (x, t) E Q.

Proof. We split the proof into several steps.
1. Let fi2 := exp(-)t)u2, 0 exp(-,t)g, and := , > 0 for , > 0 to be

chosen later. Then fi+ satisfies

in {tiff < exp(-At)}
in the viscosity sense [9, p. 1116], and so does 2[, but with reversed inequalities. Since
no confilsion is possible, we set u+ fi and g .

2. We argue by contradiction. Suppose u+ < u- somewhere and set

sup (u--u+)>0.
(x,)e.Q

Since u- u+ is upper semicontinuous and Q is bounded, such a sup is attained in, say, at (x0,t0). The fact that u- u+ _< 0 on OFt x (0, T) and Ftx (0) implies
x0 E f and to > 0. We do not know whether u- and u+ are slnooth at (x0, to) (not
even the solution ue of (2.7), because u is not better than WcI(Q) [11]). We use
then a standard argument in the theory of viscosity solutions [8], namely, we double
the number of variables and at the same tilne penalize the doubling. Consider the
upper semicontinuous function

ItU(x,y,t,s) u-(x,t) u+(y,s) (Ix- Yl + s

for c O. Since U(x, x, t, t) u- (x, t) u+ (x, t), we see that

2 _> u := sup U(x, y, t, s) >_ u > O.
(x,y,t,s)EQ

Since Q is bounded, we conclude that there exists a point (xa,ys ts,ss) at
which the sup is attained, U(xa, ys, ts, ss) us. An application of Lemma 3.1 in [8,
p. 15] yields

(Ix yl + It sl2) o O,.. - -u+)(xo, to).

Here we report the argument for completeness. As ( 0 we clearly have that {us } is
decreasing, which in turn shows the existence of limsto us. Since

we get

5 (Ix. y.t: + It. ,.t <_ 2(.=. 0.

This proves (6.1). Since (xs,ys, ts, s,) belongs to a compact set, we can extract a
subsequence, still labeled as before, such that
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Since u- u+ is upper semicontinuous we deduce

_> u-(,)- u+(,) >_ limsupoU(x,y,t,so limol0’ >_ ’.

So (6.2) follows and (,) can be identified with (x0, to) above; thus E , > 0.
Moreover, from (6.1) we see that

(6.3) xo, Yo E gt, t, so > 0,

(6.4) u-(xa, to) > exp(-Ato), u+ (Yo, sa) < exp(-Aso).

3. Set
12 2)U+(x, t):= u+(y, s)+ (Ix- y + It- sl +

and note that U(x, yo,t,s) u- (x, t) U+ (x, t) +. We then realize that u--U+
attains a maximum at (x, to), and from (2.8), (6.3), and (6.4) we infer that

OtU+ -sAxU+ + U+ g
_

0 at (xo, t);

thus

W -W-+ u+(y,s)+(Ix-Y +ta-sl + 2g(x,t)"

4. Set

’(Ix. yl it.U-(y, s):= u-(xa, t)- +
and note that U(xa, y, t,, s) U- (y, s)-u+ (y, s) +a. The function u+ -U- attains
a minimum at (Ya, s,), which in view of (2.8), (6.3), and (6.4) yields

eOU- -sAyU- + U- g 0 at (y, s,).

This can be written as

(6.6) 2e(ta-sa)+ 2he ( (xa_yal2 ]2 )
5. Now subtract (6.5) from (6.6) to get

( )4nea b U(xa, ya, ta, sa) ([xa Ya]
(.7)

+ ((x., t.) (y., .)) 0.

nw of (.1) nd (.e), we cn choose, so sm that

X(,x. y.: ) (1U(x., y.,t., .)- + it. -i
16nand ].q(x,,t,)- g(y,,s,)] 4n., Finally, select A > + 1/2, which yields

Sn Then (6.7) is written as

0< s (A_2 )p <0,

which is a contradiction. This proves the assertion u+

7. Convergence and error estimates. Our goal is to prove convergence of
the zero-level sets Z(t). to the generalized geometric motion (t). Key ingredients
are the explicit frm of supersolutions of 5 and the comparison lemma of 6.



1524 RICARDO H. NOCHETTO AND CLAUDIO VERDI

Let l := (Ae2aT + r)s (a(0) + r)s and E+0, := {x e Ft" d0(x) =/}, which
is of class C1. We designate by F(t) the generalized evolving fronts that, starting
from E+/-

0,, are governed by (1.2), namely,

{x e a- t)

where w is the (unique) continuous viscosity solution of (2.3). Let d(., t) be the cor-
responding signed distance functions to E (t) and u be the barriers just constructed
in 4 in terms of d (see (4.1) and (4.5)). If E(t) develops interior, then d+(.,t)
must be replaced by gist(., {w(., t) < -/e}) and d: (., t) by-dist(., {w(.,t) > /e}) for
the argument below to apply (see (2.4)). We would like to prove that

(7.1) u[ (x, t) _< u(x, t) _< u+ (x, t) V (x, t) e Q.

In light of Lemma 6.1 and the fact that u+ is lower semicontinuous and u[ is upper
semicontinuous, because of (2.6), we only have to show that (7.1) is valid on the
parabolic boundary of Q. This is certainly the case on 0t (0,T), simply because

u- u+ u 1 in this set. In addition, since d(x, 0) d0(x) + l, for t 0 and
x EFt we have

u+(x,0) F(d+(x’) 2 a(0)) F( d(x)---E- + )>_ sign(d0(x)) u(x, 0) >_ u-(x, 0).

The desired inequality (7.1) then follows immediately from Lemma 6.1.
THEOREM 7.1. For x I(t) (resp., x O(t)), there exists s0(x, t) > 0 such that

u(x, t) -1 (resp., u(x, t) +1) v <_  0(x, t).

Proof. Let x e I(t) {w(-,t) < 0}. For s sufficiently small, w(x,t) < -l,
whence d+(x,t) < 0. This implies d+ (x, t) /s -or(t) < - and, therefore, -1 <_
u(x,t) _< u+(x,t) -1, because of (7.1). Similar reasoning for u; completes the
proof. []

Remark 7.1. If E(t) has an empty interior, then Theorem 7.1 establishes the
convergence of E(t) to E(t). As far as we know, the question of whether such a
condition is always valid for the evolution of smooth initial surfaces by mean curvature,
namely, g 0, remains a conjecture [10]. Instead, if g 0, then E(t) may develop
interior [4].

To derive interface error estimates we are forced to assume more regularity of E(t).
We say that x E* (t), the regular part of E(t), if x E(t) and w(., t) is of class C in
a neighborhood of x and satisfies the nondegeneracy condition IVw(x, t)l > 0. Note
that w is only known to be Lipschitz continuous in Q and also that E(t) E*(t) as
long as the motion is classical, that is, before the onset of singularities. Nevertheless,
E(t) E* (t) is known to hold between consecutive singularities for a number of flows,
e.g., for surfaces of rotation [2], [18]..

Let thick((t) x, n) denote the tifickness of the transition region (t):= {x E
Ft" lu(x,t)l < 1} in the normal direction n := Vw(x, t)/[Vw(x,t)l across x E(t).

THEOREM 7.2. For x E*(t), there exists s0(x, t) > 0 such that

(7.2) dist(x, E(t)) ;x,,1/2thick(T(t) n)<_2(Ae2aT+r)lVw(x,t)lTs V s_<s0(x,t).

Proof. Since u (-, t) =1 on E(t) and (7.1) is valid, it suffices for us to estimate
the distaflce between E(t) and x E*(t). Using Taylor’s formula about x, for
x + 5n E[ (t), and so 5 > 0, and s sufficiently small depending on (x, t), we obtain

+ t) t) + IW(x, t)15 + o(5) >
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Hence 5 _< 2/lVw(x t)1-1, as asserted in (7.2). []
Remark 7.2. The exponential blowup of the constant in (7.2) can only be avoided

if g is independent of x (see Remark 4.2). In fact, (7.2) cannot be improved with-
out additional assumptions, as the following radially symmetric flow in two dimen-
sions reveals. Let g(r, t) r and consider the initial condition r(0) 1 + 6. The

corresponding evolution is given by rb(t) (1 + (r(0)- 1)e2t) 1/2, which yields

Remark 7.3. Chen and Elliott [6] derived a linear rate of convergence for interfaces
before the onset of singularities, say in [0, t*), thatis valid for the mean curvature flow

0)"

distH(E(t),E(t)) <_ Ct# V t <_ t# < t*;

here distil stands for the Hausdorff distance. In such a regime, however, optimal error
estimates of order O(2) were established in [14], [15]. The virtue of (7.2) is thus its
validity even beyond singularities if the motion is locally smooth.

Remark 7.4. We stress that perturbing the original motion (1.2) as in [3], that
is, replacing g by g + o(1), would not immediately lead to (7.2). This is true because

d would depend on the viscosity solutions w of the resulting perturbed problems
rather than on w. Even though convergence of w to w is known as e $ 0, we would
also need uniform nondegeneracy of w to hold, which does not seem to be available.

Remark 7.5. We can summarize Theorem 7.2 by simply saying that E(t) lies
between the surfaces w(., t) +/-l +0(). It is then the profile of w near a singularity
or, equivalently, how far the level sets E(t) may separate from each other in the
vicinity of a singular point, that determines the rate of convergence.
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INSTABILITY AND BLOW-UP OF SOLUTIONS TO A
GENERALIZED BOUSSINESQ EQUATION*

YUE LIUf

Abstract. In this paper we investigate conditions for the finite-time blow-up of solutions of
the generalized Boussinesq equation (BQ)

u + (I(u) +u) 0, e , > 0.

The conditions are expressed in terms of the energy of the ground state. In particular, there exist
initial data arbitrarily close to the stationary state of lowest energy whose solutions blow up in finite
time.

Key words. Boussinesq equation, blow-up, solitary waves, ground state, stability theory

AMS subject classifications. 35Q, 35B, 76B

1. Introduction. It is well known that the initial-value problem of the Boussi-
nesq equation is not always globally well posed. There exist smooth initial wave and
velocity profiles for which the solution that emanates from them loses regularity in a
finite time [28], [16]. The purpose of this paper is to investigate some general condi-
tions for the existence and nonexistence of global solutions to a generalized Boussinesq
equation (BQ)

(i) uu uxx + (f(u) + uxx)xx O,

where f e Ci(R) with f(0) 0. Equation (1) has the equivalent form

Ut Vx
(1 v (- f()).

It has the four natural invariants

1 u2/ v2-F(u) dx,E(g) E(u, v) u2 / -(1 (,) ,

h(l h(, 1 ,
where we write 7 to denote the pair (u, v) and where F’ f and F(0) 0.

From the general methods of Levine [34] used by Kalantarov and Ladyzhenskaya
in [28], a solution of the BQ with nonpositive-energy initial data blows up in some

* Received by the editors November 1, 1993; accepted for publication (in revised form) April 8,
1994. This research was supported in part by National Science Foundation grant DMS 90-23864 and
Army Research Office grant DAAH 04-93-G0198.

fDepartment of Mathematics, University of Texas at Austin, Austin, Texas 78712.
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sense. In this paper we investigate more general conditions for blow up and, in par-
ticular, the relationship to the ground state.

We use I" Ip to denote the norm in Lp(Rn) and I1" IIs the norm in Sobolev space
H(Rn).

First, in 2, we determine the best constant Cp,n for the Sobolev inequality

for 1 < p < 7(n) where 7(n),= n+2 for n > 3(7(1) 7(2) oc) We obtain
(Corollary 2.5)

p--1

(4) Cp,n --IIlll
where n is the positive radial H solution (the ground state) of

for x E R’ and 1 < p < 7(n). We know, when n 1, (x) l(x) (p__A)1/(p-)
sech2/(p-1) (P-x) for 1 < p < oc. The best constant of an interpolation estimate
among various norms often has an analytical or geometrical significance [1], [24] and
has been much studied [6], [18], [19], [36], [41], [43], [44], [45], [54], [56]. It is possible
that our result is already known, but we could not find it in the literature. The
result (4) is derived from the following considerations. To compute Cp,,, it suffices to
minimize the functional

(6) I1 11 + 

for 1 < p < /(n). We show that the minimum is attained at the ground state .
It follows that the minimum dn of the energy E(u, 0) subject to the constraint that
R(u) 0 is attained at the ground state Pn, where we define

(7)

In 3, we follow the main idea of [46] to construct invariant regions K and K2
for the flow governed by BQ, where

(s)
K {u e HI(R)[E(u, O) < d,R(u) > 0},
K2 {u e H(R)IE(u, O) < d,R(u) < 0}

with d d. Then we obtain conditions on the initial data for which the BQ has
global bounded solution (Theorem 3.4) or for which the solution blows up-in a finite
time (Theorems 4.1 and 4.3). The energy of the initial data for which a solution blows
up does not have to be negative. Furthernore, in Theorem 4.3, the blow-up result
implies the instability of the ground state solution.

Finally, in 5, we construct global bounded solutions with initial data in different
regions that are related to traveling wave solutions of the BQ.

2. Variational problem and ground state. We study the nonlinear func-
tional Ip,n defined by" (6) that is naturally associated with the Sobolev inequality (3).
By (3), Ip,n is defined on HI(R).
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THEOREM 2.1. If 1 < p < "(n), then

Ip,n(n) min Ip,n(U),

where gn i8 the ground state of (5).
Remark. Ip,,(n) -IIT,II-1. In fact, multiplying the equation by n and inte-

grating, we obtain

(9) 11,  112 ----]gn Ip+IIp-bl"

Therefore Ip,n(n) [[nl[-x.
The proof of Theorem 2.1 follows from a series of lemmas, which are based on

estimates of ground state n. Lemma 2.2 was obtained by M. Weinstein [56] using the
compactness lemma of W. Strauss [54].

LEMMA 2.2. Let n >_ 2 and 1 < p < "(n). Let

(10) Jp,n (U) =- lit[ 2
2+ -P’ (2--n) Vlt[-n

and Olp,n =- min0eg,(l)Jp,(u). Then ap, 211-1/(p + 1), where is the
ground state of

p-1
nA+ [1+ p-1

4 \ 4
(2 n)) CP 0.

For n 1, the following lemma was obtained by Nagy [41].
LEMMA 2.3. Let n 1 and 1 < p < oc. Then

p--1

1< H
2 1

luly lux]lul p- 1’2

for u E Hi(R), where

H(a, b) =- (a + b)-(+b)r(1 + a + b)
a-ab-br(1 + a)r(1 + b)

for a >_ O,b >_ O.
--a

Remark. H(a, 0) 1, g(a, 1) (1 + ) and H(a, b) is decreasing in b > 0.
Hencee- <H(a,b)_<lfor0<b<landa>_0.

LEMMA 2.4. For n >_ 1,

Olp,n Jp,n( n)

[n(p+ + [(n + 2)- p(n- 2)]1/4[(n+2)-p(n-2)]llnll-1,

where is the ground state of (5).
Proof. Let (x)= A,(#x), where

,,p--1 (n + 2)- p(n- 2)
#2

(n + 2)- p(n- 2)
4 n(p 1)
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Then n is the ground state of (5). Using identities

(11) i(flnl2 (Tt -- 2) --p(n- 2)
2 2(p + 1) IInl12

and

(12) IV(P,I n(p- 1)
,2(p + 1)II(flnll21’

it is easy to compute

(13)

and obtain from Lemma 2.2 that Jp,n() ap,n for n >_ 2. For the case of n 1 and
1 < p <

(14) jp l () H ( 2
p-l’2

where (x)= (a2+) sech- (-Ax). In fact, putting n 1 in (13) and using
identity (11), we have

(5) sech (x) dxJp () 2---- (p + 3)(,:’) (p 1)1/2

On the other hand, it is easy to compute

(16)

1 (-21 + 1/2)-(x- +1/2)
F (1 + -1 + 1/2)

’2 (_) (1/2)-1/2F (1+ _)F (1/2 + 1)

2r-(p+ a)(;-(p- 1)1/2 B
2’p- 1

where B(a, ) r(.)r(z)/r(. + Z). But

?(17) sech(x) dx=B 2’p-1

Comparing this identity with (15) and (16), we obtain (14). Using identity (14), we
are then able to prove ap,1 Jp, (). First, we have

Op,1 ------ min Jp, (u)

_
Jp,1 ().

OeHI(P)

On the other hand, using Lemma 2.2, we have

for all u Hi(R),
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and using the identity (14), we obtain

Hence, Op,1 Jp,1 ((). Combining this equality with the proof of the case n >_ 2, the
proof of Lemma 2.4 is completed.

Using Lemma 2.4 and the idea in [36], we are now able to prove Theorem 2.1.
Proof of Theorem 2.1. If u u(Ax), for u e HI(Rn), then

--n

[Ip,n(UA)] p- )-nlu122 2n2f" ,2 IVUl2 AA + )a+2B,

where

2

A= lul 
2lulp+ 

1-p
n<O, and a-t-2=

1-I-p

B IVul 
2

1
p+ 1 In + 2-p(n- 2)] > 0.

Let F(a) AaA + Aa+2B for 0 < A < cx). We shall optimize A. It is easy to compute

F’(A) aA-A + (a + 2)A-+B,
F"(A) a(a 1)A"-2A + (a +2)(a + 1)A"B.

Solving F’(A) 0 yields

aA ) 1/2
A=A0= -(+2)B >0

and

F"(A0)-A0 2 (_l)A+(+l)(a/2) -(/2)B B

A-2(-2)A > 0.

Since F(A) -, +c as A --, and A --, +c, we obtain

min F(A)= F(Ao)

Thus
[Ip,n(lt))]P- :__ F(A) >_ F(Ao)

for 0 < A < +cx. Hence

Ip,n(U)-- Ip,n(tl) > [F(A0)] e-+ 2
(A) (V1)Ap____

a+2

k(n, p)h(n, p)A1/4 [(’+2)-p(n-2)] B’---A

k(n, plh(n, pl lul2/-c- (2-,) lVu[’lul-(p/
,p+l

k(n,p)h(n,p)Jp,n(u),
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where

2(p+ 1)k(n, p) .(n + 2) -p(n- 2)
h(n,p) [(n + 2)- p(n- 2)

Lemma 2.4 yields

(18)

min Ip,n (u) > k(n, p)h(n, p)ap,n
O:/:uEHI(R

k(n,p)h(n,p)[(p- 1)n]-[2(p+ 1)1- -+

[(n / 2) -p(n- 2)] I(+)-(-)l I111-
On the other hand, we have

(19) min Ip,n(U) Ip,n((n)"-- IInll’-.

Combining (18) and (19)yields

Ip,n(On) min Ip,n(U).

This completes the proof of Theorem 2.1.
COROLLARY 2.5. Let n >_ 1 and 1 < p < "y(n). The smallest constant for which

the Sobolev inequality (3) holds is given by (4), where qOn is the ground state of equation
().

Remark 1. If n 1, the remark following Lemma 2.3 leads to

p--1 p+3 p--1
4(p-l-) 2(p+l)Cp,1 > (p 1)4(,,+1)[2(p + 1)1 1/2 (p + 3) e

and
p--1

Cp,1 < (p 1)4(,1)(2p + 2)-1/2 (p + 3)

Remark 2. There are a lot of results in [6], [7], [14], [33], [42], [49], [39], [54], [55] on
the existence of decaying positive solutions of (5). Kwong [33] proved the uniqueness
of the ground state , of equation (5) for 1 < p < 3’(n), which is positive, spherically
symmetric, decreasing with respect to r, and exponentially decaying together with its
derivatives up to order two.

Using Theorem 2.1, we can show the following theorem.
THEOREM 2.6.

min{E(u, 0)10 # u e HI(Rn), R(u) 0} dn > O,

niP+where dn E(gn, 0), where n i8 the ground state of (5), R(u) [[u[[ -[ ,p+l, and
the energy E(u, v) 1/2 Ilu[[21 + 1/2 Iv[22 _lU[p+l.1+1

Proof. By (10)we have R(SOn)--0. So

dn E(99n, O) >_ min{E(u, 0) 0 # u e HI(Rn),R(u) 0} en

and

1 1 -1
(20) d E( 0) lln[[21 p+ 1

I"Ip+I P*’P+I 2(p + 1)IIm,ll > o.
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On the other hand,

p-1
H1e,=min

2(p+l) Ilull10ue (R’),R(u)=0

Let w- Ilu[[1 u. Then

(21)

p-1
e,

2(p+ 1)

p-1
2(p+ 1)

__+.) H1min [[w[[ [0 w (Rn), [W[p+l 1

min
Ilwll’/l
iw,,+ I0 -V= w e H. (It,,)

Ip-t--

By Corollary 2.5, we obtain for all 0 w E H (Rn)

TIP+Ip-t-1

> C-(p+I)
p,n

Combining this estimate with (20) and (21) yields

p-1
(22) en >_

2(p + 1)I1o,1.1 dn.

The proof of Theorem 2.6 is completed by (20) and (22). U

3. Invariant sets for the BQ. For n 1 and d dl, recall the definition (8)
of K1 and K2. In this section we assume f(s) Is[p-is for some 1 < p < ec.

LEMMA 3.1 (invariant sets). Suppose f(s) [8[p-18 with p > 1. Let initial data
satisfy uo e K1, vo e L2(R), and E(uo, vo) < d. Let if(t) (u(t), v(t)) be the solution
of the BQ with (0) (uo, vo) such that g e C([O,T),H L2) for some T > O.
Then u(t) K1 forO

_
t < T. On the other hand, if no K2, vo L2(R), and

E(uo, vo) < d, then u(t) e K2 and R(u(t)) < -2(d- E(uo, vo)) for 0 <_ t < T.
Proof. We only consider the invariance of K2 since for K1 the proof is similar.

Let uo K2, vo L2, and E(uo, vo) < d. Since E(u(t), v(t)) E(uo, vo) for 0 <_ t < T,
we have

E(u(t), O) <_ E(u(t), v(t)) E(uo, vo) < d.

Suppose u(to) K2 for some to in (0,T) That is, R(u(to)) Ilu(to)ll-iu(to) Ip+I > O.Ip+l
By R(u(O)) R(uo) < 0 and the continuity of R(u(t)) with respect to t, there exists
tl (0,t0] such that R(u(tl))= 0. Theorem 2.6 yields the contradiction

d > E(u(tl),O) >_ min{E(u, 0); 0 7 u e HI(R),R(u) =0} d.

Thus u(t) K2 for 0 _< t < T.
To prove the final inequality, we define the function W(p) R(pu) for p > O,

where u u(t) is given above and t is fixed. Observe that W(1) R(u) < 0 and

w(p)- pllll- pp+llul,++l > 0
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for p sufficiently small. Hence there exists some po e (0,1) such that W(po)
R(pou) 0. That is, pllull po+lup+IIp+l" By Theorem 2.6, we obtain

That is,
R(u(t)) < 2(E(uo, co) d) for0< t <T.

This completes the proof of Lemma 3.1. [3

COROLLARY 3.2. Let f(s) Islp-ls with p > 1. If uo E K2, vo L2, and
E(uo, co) < d, then lu(t)lp+l + p+L_llv(t)12 > IOlp+l for all t e [0,T). If uo e gl, then

Ilu(t)lll < II(llllU(t)lp+l < Ilp+l, and E(u(t),v(t)) < 0 for all t e [0,T).
Proof. Let uo K2, vo E L2, and E(uo, vo) < d. By Lemma 3.1 and

p-1
d E(, 0) 2(p + 1)

we have

This implies lu(t)l+ + L_+] Iv(t)lg > 1o1+1. On the other hand, if uo e K1, vo e L2,
and E(uo, co) < d, by Lemma 3.1 we have R(u(t)) > 0 and E(u(t), v(t)) < d for all
t [0, T). This implies

2(p+ 1)
1 1 p-1

11o11 d > E(u, v) > ]lu(t)l] p+l Ilu(t)]l 2(p + 1)

That is, Ilu(t)ll < I1 o111, so that

lu(t)l + < Ilu(t)ll < II ollf I o1 +1.

This completes the proof of Corollary 3.2. El
Remark. If E(uo, co) <_ O, we have uo K2.
The following result was obtained by Liu [37].
THEOREM 3.3 (local existence). Let 7o (no, vo).E Hi(R) x L2(l:t); then there

exist T > 0 and a unique weak solution (u, v) of the BQ in C([0, T); H x L2) with
(0) o such that E() E(o), Y() Y(o), 11 () 11 (o), and I2() I2(o).
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Furthermore, the interval of existence [0, T) can be extended to a maximal interval
[0, Tmax) such that either

(i) Tmax +cx), or

(ii) Tmax < @(:x:), lim
t-*Traax

II(t)IIH’L +c.

Remark 1. For a general function f E Cs/I(R) with f(0) 0 and initial data
uo Hs+2 Hs+l for sufficiently large s (for example s > ), we have a unique, local
classical solution to the BQ, which lies in a Sobolev space of high order. This can be
proved using the results of Bona and Sachs [8] or Kato [30].

Remark 2. In Theorem 3.3, if we further assume -lt0 L2, then

-lt e Cl([O, Tmax);L2),

where 2 is the Fourier transform of u. In fact, by the BQ, we have -lfi(t,)
-lfi0() + f (T, )dT and the statement follows.

THEOREM 3.4 (global existence in K1). Let f(s) [sip-is with p > 1. If uo
K1, vo L2, and E(u0, vo) < d, then there exists a unique global weak solution
(u, v) of the BQ (2) in C([0, cx); H x L2) with (0) o a.nd E(g), Y(), I1 (), and
I2(7) are invariant for all t > O.

Proof. It suffices to prove the a priori estimate Ilu(t)lll + ]v(t)]2 < C(Tmax) for
all 0 <_ t < Trnax. By Corollary 3.2, we obtain u(t) e gl and Ilu(t)[[1 < [1111 for
t e [0, Tmax. By the conserved energy E(g(t)) E(70), we obtain

1 1 1
2
Iv(t)l < lu(t)lp+lIp+l / E(uo,vo) < CP,+lXllu(t)[l+1p+l p+l

1 p-1 1
< I1111+ IIll- I1112p+ 1 2(p+ 1)

+d

This completes the proof of Theorem 3.4.

4. Finite blow-up time. The following blow-up theorem is a variation of the
theorem of Levine [34].

THEOREM 4.1 (blow-up). Suppose that

(23) sf(s)

_
(2 + e)F(s) for all s e R

for some e > O, where F’ f with F(O) O. Let uo e Hl(R),vo e L2(R), and

-fio E L2(R). Assume one of the following conditions.

(i) E(uo, vo) < O, or

(ii) E(7o) > 0 and (E(7o))1/2 < 1 (j-l’o, go>

where f_ --1700 de (3o, -17o). If --- (U, V) i8 the solution of the BQ with
g(O) (so, vo) such that

7 e C([0, Tmax); H L2),

where Tmax is the maximal existence time of g, then Tma < /c and

lim (llu(t)lll + Iv(t)lu)-- /c.
t’*Tnax
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of t,
Proof. To establish the proofs of (i) and (ii) with E(go) 0, consider the function

(24) (t) I-1 + Z(t + -),

where/3 and T are nonnegative constants, which we shall determine later, and is the
Fourier transform of u. If Tmax +co, we will obtain a contradiction. Notice that

(25) P(t) 2N(-t5, -tftt} + 2/3(t + T)

and

(26)
I,,(t) 2](t)l 2<-lt,( -" 2t ]()) -- 2]v(t)l 211(t) + <, f()> + .

On the other hand, using conserved energy E(7) E(70) and the condition (23), we
obtain

(27)

I"(t) 4(1 + a)lv(t)122 + 4allu(t)ll2 4(1 + 2a)E(go)

+ . + (I() ( + 4)()) a

>_ 4(1 / a)lv(t)l / 4all(t)ll 4(1 / 2a)(o, vo) /

where a > 0. It follows that

(28) II"- (1 + a)(I’)2 >_ 4(1 + a)S(t) + 2I 2llull 2(1 + 2a) E(ffo) /3
where

s(t) (1-l + Z(t + ))(Iv(t)l + ) ((-,) + Z(t + )) > o.

Thus

(29) II" (1 + a)(I’)2 > -2(1 + 2a)(2E(uo, vo) + )I.

Now suppose (i) holds. Then taking fl- -2E(ff0), we find the inequality

(30) (t),,(t) ( + )(,(t)) > o.

Choose T so large that I’(0) 2(-10, v0)- 4E(ff0)" > 0. Hence J(t) [I(t)]-satisfies J"(t) -aI-a-2(II’’- (1 +a)(I!)2 < 0 for all t _> 0, as well as J(0) > 0 and

J’(0) < 0. Hence J(t) <_ J(O) + tJ’(O), so J(to) 0, where 0 < to
Thus we see that

(31) lim [-(t)12 lim [J(t)]- +c,.
t-%- t-%-

If (ii) holds with E(uo, v0) 0, let fl 0, so that J"(t) (I-(t))’’ < 0, J’(0)
-aI--l(O)I’(O) < 0, and J(0) > 0. Therefore, we obtain (31) in this case as well.
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Now if (ii) holds with E(uo, v0) > 0, let/- 0. Then

(32) II"- (1 + a)(I’)2 >_ -4(1 + 2a)E(o)I

and
J’ (0) -aI--I(O)P(0) < O.

By the continuity of J’(t), there exists > 0 such that J’(t) < 0 for t E [0, 7). Let

t* sup{t J’(T) < 0 for T e [0, t)}.

We have 0 < t* <_ Tmax, where Tmax is the maximal existence time. Multiplying (32)
by -aI--2(t)J’(t) for t e [0, t*), we obtain

(33) [(J’(t))2] >_ 8a2E(go)(I-2-l(t)) for t e [0, t*).

Integrating (33)in [0, t), we obtain

(34) (J’(t))2 _> (J’(t)) 2 -8a2E(o)I-2a-1(t) :> (J’(0))2 -8a2E(70)I-2a-1(0).

Assumption (ii) implies that

J’(0) + v/-a(E(go))1/2I--1/2 (0) < O.

So
(J’(0))2 8a2E(o)I-2-1(O) > O.

Hence by the continuity of J’ (t) and J’ (0), we obtain J’ (t) < 0 for t e [0, t*). Moreover,

J’(t) <_ -((J’(0))2 -8a2E(o)I-2a-l(O))-} _-- -a < 0 for 0

_
t < t*.

It follows that t* Tmax and J’(t)

_
-a for all t _> 0. Therefore, J(t)

_
J(O)- at for

all t > O. So J(to) O, where 0 < to < g(---2). Hence in all cases we obtain

lim I(t)= lim I-lfi(t)l
t-*to t-*to

Using the BQ, we have 5t iO and

I-1(t)[2 -1-1,o12 + I,(-)1 dT.

Letting t t-, we obtain
t

13(-)12 dT= +oo.

This implies that there exists a sequence {tn}, 0 < tn <. to, such that

lim Iv(t)l= lim I(t,)l= +c.

This contradicts Tmax +cx. By the local existence theorem (Theorem 3.3), we
deduce Tmax

_
to <: +oc and limt_,Tgax(llu(t)lll + Iv(t)!2) +c. This completes the

proof of Theorem 4.1. 0
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Remark 1. The special case f(s) Islp-ls with p > 1 satisfies assumption (23).
In that case, under the conditions of Theorem 4.1, we have Tmax < oo and

lim Ilu(t)lll lim
t--.Tjax t--.Tjax

In fact, since Tmax < to < +oo and limt_T(llu(t)[[.1 + Iv(t)[2) +00, we obtain
either

lim Ilu(t)lll- /oo or lim Iv(t)12- /oo.
t--*T t--*Tr

In the latter case, we have

1 1 < IE(o)l + C,Xllu(t)ll+51v(t)l < E(ffo)+ p + l lU(t)l,++

Hence
lim

t-*Tax

In either case, we obtain

Ju(t)lv+l lim Ilu(t)lll +oo.
t--Tna

lim II(t)lll +oo.
t’-’Tnax

On the other hand, by E(ff(t)) E(ffo), we have

1
ll(t)ll < E(o)+

Hence,
lim lu(t)lv+- +oo.

Remark 2. If f(s) I1,- with p > 1, assumption (ii) in Theorem 4.1 implies
that R(u(t)) < 0, for all t [0, Tmx). In fact, we have

1 (<-12o, 0>)2 1 2E(ff0) < ]--__-i--l <-2-1o1-
This implies

1 1 1
2
R(u(t)) < Ilu(t)ll ]u(t)lp+lp+l < 0 for t 6 [0, Tmax).

Now we use our "best constant" results in 2 to obtain a more general blow-up
result, in which the energy could be larger.

THEOREM 4.2 (improved bl0w-up). Let f(s) Islp-is with p > 1. Assume

(i) vo e L2(R), uo e Hi(R), and -ito e L2(R);
(ii) uo K2 and E(uo, vo) < d.

Let ff (u, v) be the solution of the BQ with if(0) (uo, vo) such that ff C([0, Tmax);
H x L2), where Tmax is the maximum existence time. Then Tmax < +(x) and

lim II(t)ll= lim lu(t)lv+l=+OO.
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Proof. If Tmax +cx3, we will get a contradiction. Recall identities (26) and (27)
for/ 0 and a eA, which are I(t)= I-lfi(t)[22,

(35) I"(t) 2]v(t)l 2R(v(t)),

and

(36)
I"(t) (p + 3)lv(t)122 + (p- 1)llu(t)ll 2(p + 1)E(uo, v0)

(p + 3)lv(t)l + M(t).

By Lemma 3.1, assumption (ii) means R(u(t)) < 0 for all t > 0. Thus

ilu(t)lll < i(t[p+l < (y.p+l ll,p-,,pWX ,,,t-,,,+"-"p,

By Corollary 2.5, this implies

/)--1Ilu(t)llx > G1, ----I111 =1
and

M(t) > (p- 1) [llu(t)ll 2x 2(pp_l+ 1) d] _> (p- 1)[1111 -1171121]- o.

Hence I"(t) > (p + 3)lv(t)l. Using the Cauchy-Schwarz inequality, we obtain

I(t)I"(t) P + 3

(37) 4
(I’(t))2 > (p + 3)(15-121221v[22 -(}(-l,-lt))2

We claim that I’(t2) > 0 for some t2 > 0. Assuming the claim, define J(t) [I(t)] -,
where a aA. Inequality (37) means J"(t) > 0 for all t > 0.

Suppose that I’(t2) > 0. Then J’(t2) < 0, for some t2 > 0, that is, I’(t2) > 0, so
J(t:)| such that J(t3)= 0. Hencethere exists t3 E \0,- g’(t)

lim I-(t)l- lim I(t)= +.

Hence there exists a sequence {tn} t; such that limlv(t,)12 +cx. This can
be done by following the proof of Theorem 4.1. Thus we get a contradiction with
Tmx +c. Therefore, Tmx < and

lira (llu(t)llx + Iv(t)l)- +.
t--*Tnx

Because E(ff(t))= E(ff0), it follows that

lim lu(t)lv+-- lim Ilu(t)lll=+C.
t--*Tnax t--*Tnax

Now we prove the claim that I’(t2) > 0 for some t2 > 0. If not, then I’(t) < 0 for
all t > 0. By (35) and R(u(t)) < O,

(38) I"(t) 21v(t)l 2R(u(t)) > 2[v(t)l >_ 0;
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the limit
+

lim I’(t) I’(O) + I"(t) dt

exists. Hence there exists a sequence {tn} such that

lim I"(tn) O.
+oo

By (38), we obtain
lim Iv(tn)12 lim R(u(tn)) 0

tn"q-cx tn--q-o

and
lim E(u(tn), 0) lim E(u(tn), v(tn)) E(u0, vo) < d.

On the other hand, from [,emma 3.1 we have

2(E(uo, vo) d) > R(u(t)) - 0 as tn --+

This implies that E(uo, vo) >_ d. This contradicts assumption (ii).
As a result of Theorem 4.2, the following instability theorem follows. It asserts

that there are solutions with initial data arbitrarily near the ground state that blow
up in a finite time.

THEOREM 4.3 (instability theorem). Let f(s) 181p-18 with p > 1. Let
HI(R) be the ground state of (5). For any 5 > O, there is initial data uo HI(R)
with Iluo -111 < ( such that the solution (u, v) of the BQ with (0) (no, O)
satisfies

lim Ilu(t) lll
t-.T-

for some 0 < T < +oc.
To prove Theorem 4.3, we need the following lemma.
LEMMA 4.4. The set A {w Hi(R) -xzb() L:(R)} is dense in HX(R).
Proof. For any u H (R) and > 0, define w such that

(), I1 > ,
)() o, I1 <_ ,.

and

IIwll I(1 + )1/2al I( 1 + :)1/22()1 Ilulll < +.
This implies we A. On the other hand, we have

Hence we can choose 5 to be sufficiently small so that
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This completes the proof of Lemma 4.4. [:l

Proof of Theorem 4.3. For any 5 > 0, let 0 < o < min(, [[I11} and el < 4[1%o111
By Lemma 4.4, there exists wo E A such that Ilwo- %0[[1 < o. Let uo (1 + l)WO so
that uo E A. Then

By Theorem 4.2, it suffices to show that E(uo, 0) < d and R(uo) < 0. Using the "best
constant" result (Corollary 2.5), we have

But

E0 > [VlpwI [[lll I]1[1 [[p"bl --[[91t-f 0.

This implies

p--1 )
p-t-1

w0IP+I p-i-1 p+l
Ip+X > Iolp+X -IIoll, o [oip+x /O(o).

Next,
I1o11 (11o- qol[1 + }lqol[1) = < (o + Ilqolll) = -Ilqoll2 + 0(o).

Therefore, we obtain

1(1 + El) 2 2 1
(1 + l)p/llwollE(o, 0) I1o111 p + 1

1(1 + el)2
1

(1 + :I)p+I([[;< (11o111 + O(EO))
P -[" 1

-[" 0(0))

h(l)llOlll + O(o)

since IIIIY ’‘’’p+I )p+l Since"lp+l, where h(l)= (1 + El)2 )-4-f (1 + 1

h’(a) (1 + a)[1 (1 + a)p] < 0 for a > O,

we have
1

h(1)111121 < h()llll2
2 i)p + 1 I1111 d.

Choose eo sufficiently small so that O(o) < d- h(el)l19911. Then

E(uo, 0) < h(el)lloll + O(eo) < d.

On the other hand,

ip+R(uo) (1 + l)211woll -(1 + -Cl)p+llwo,p+l
< (1 + el)2(llmlll + O(eo)) (1 + el)p+l(llpP;1 q-- O(eo))

((1 + El)2 (1 + l)p+l)[[[[ -[- O(EO).
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Finally, choose 0 > 0 sufficiently small so that

O(e’o) < ((1 ’t- ’1)p-I’I --(1

Then R(uo) < 0. This completes the proof of Theorem 4.3.

5. Global solution for the solitary wave case. In this section, we will prove
a more general global existence theorem for the BQ. It turns out that such a solution
is bounded by the solitary wave solution c, which is defined in (39). The proof is
similar to that in 3.

Define
K {u e HI(R)ILc(u,-cu) < d(c), Re(u) > 0},
K {u e Hl(R)[nc(u,-cu) < d(c), Rc(u) < 0},

where Lc(u,) E(u, v) + cV(u,v), d(c) L(c,-Cc), R(u) (1 +
lux] -lull++ and is the ground state of

(39) -ux + (1 c2)u -IulP-lu 0

for Ic[ < 1. Also, () (x ct) a sech (a2) is the solitary wave solution

of theBQ, whereal= [1/2 (P + l) (1- c2)] anda2=5(1-c2) (p-l).
THEOREM 5.1 (global existence theorem in g). Let f(s) Islp-s with p > 1.

Let Ic[ < 1, uo e K, vo e L2, and Lc(u0, v0) < d(c), where L(7) E(7) + cY(7)
and d(c) Lc(c) Lc(9c,-%oc). Then there exists a unique global weak solution
7 (u, v) of the BQ in C([0, oc); H x L2) with (0) o such that E(g), Y(7), 11 (7),
and I2(7) are invariant for all t >_ O.

To prove Theorem 5.1, we need some lemmas.
LEMMA 5.2. Let ]c < 1 and d(c) L(,-cc); then

Mc =- min{L(u,-cu)]O u e HI(R),R(u) 0} d(c) > 0

where is the ground state of equation (39), satisfying

and

1
(1 c2

1 2Lc(u,-cu) E(u,-cu)+ cV(u,-cu) )lul +

Proof. It is easy to see Rc(oc) 0. Hence, d(c) >_ Mc. On the other hand, for
any nonzero u e H, with Re(u) 0, let u(x) A-- w(Ax) with A (1 -c2)1/2. We
have

+P_31R(w(11 11 
and

1 1 /Lc(u,-cu)
p+3

Ip+l A--E(w, 0).
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So by Theorem 2.6,
p-F3

Lc(u,-cu) _> A=-- min{Z(v, 0)10 v e g:, R(v) 0}
p-F3 p-F3

A :-r- E(, 0) A -:-r- d,

but (x) $(x) and d(c) "’+Ad > 0, where is the ground state of (5).
With this fact, it is observed that d(c) M. Therefore, d(c) M.

LEMMA 5.3 (invariant sets). Suppose f(s)= siv-s with p > 1. Let I1 < 1 and
the initial data uo K, vo L(R), and L(uo, vo) < d(c). Let ff (u, v) be the
solution of the BQ with if(O) (no, vo) such that ff C([O,T),H x L) for some
T > O. Then u(t) K for 0 t < T. On the other hand, if uo K, vo L2(R), and
L(uo, vo) < d(c), then u(t) e K and Rc(u(t)) < -2(d(c) Lc(uo, vo)) for 0 t < T.

Proof. We only prove the invariance ofK since the proof of the K case is similar.
Let uo e K for c < 1, vo e n2, and n(uo, vo) < d(c). By Lc(u(t), v(t))= const,

1
L(u(t),-cu(t)) n(u(t), v(t))- dlu(t) + lv(t)l + cV(u(t), v(t))

L(u(t), v(t))= L(uo, vo) < d(c)

for 0 t < T. If u(t) K for some t in (0, T), by the continuity of R(u(t)) with
respect to t in [0, T), there exists t0 in (0, T) such that R(u(to)) 0. So it yields the
contradiction

d(c) > L(u(to),-cu(to))
min{Lc(u,-cu)O u e Hi(R), R(u) 0} d(c).

This proves u(t) K for all t [0, T). For the rest of the theorem, we define the
function W(p) R(pu) with p > 0, where ]c] < 1 and u K is the solution of the
BQ with (0) if0. Then W(1) R(u) < 0 and

We(p) p2((1 c2)11 + lul) pp+IIulp+llp+I > 0

for some p (0, 1). Hence there exists some p0 (0, 1) such that W(po) Rc(pou)
0. That is,

p+l"

By Lemma 5.2, we obtain

d(c) Lc(pou,-cpou)

1(1 c2)lul + Il iu=Pg
p+l Ip+l

(1 1 )+llulP+l (1 1 )2 p+l ’+1< 2 p+l
1 1l

(l c2)u + luz] In’P+:Ip+l2 .+ 1
1
((1 -c)lul + I1

1 1R(L(,-,,)- R() L(, v)-

R()L(uo, vo)-
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Hence Rc(u(t)) < -2(Lc(u0, v0) d(c)) for 0

_
t < T. This completes the proof of

Lemma 5.3. E]

Proof of Theorem 5.1. By the local existence theorem (Theorem 3.3), it suffices
to prove the a priori estimate Ilu(t)lll + Iv(t)12

_
C(Tmax) for all 0 <_ t < Tmax. By

Lemma 5.3, we have u(t) E K for 0 _< t < Tmx. This means

1 1
(1 c2)lul, / 11- d(c)

P + l’tlP+1

and
(1 -=)II + lul -’+Ip+l >0.

By these two inequalities, we obtain

(1 c2)lul / II <
2(p + 1) .2) 2

p- 1
d(c)= A I1!1-

where A (1 c2) 1/2. This implies

5--p

Ilu(t)ll < A- I1o11.
On the other hand, by E(g(t)) E(g0), we obtain

for all t E [0, Tmx). V1

Remark. It is an open problem whether or not a solution g of the BQ initially
sufficiently close to unstable solitary wave c(c : O) blows up.
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Abstract. We consider a nonlinear coupled system of evolution equations, the simplest of
which models a thermoelastic plate. Smoothing and decay properties of solutions are investigated
as well as the local well-posedness and the global existence of solutions. For the system of standard
thermoelasticity it is proved that there is no similar smoothing effect.
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1. Introduction. In this paper we consider regularizing properties of systems
that are regarded as models for thermoelastic plate equations. We will show that the
vertical deflection of the plate as well as the temperature are arbitrarily smooth for
positive times, no matter what regularity the initial vertical deflection and the initial
temperature have. We will show this fact in 3. This property is not valid for other
thermoelastic models such as the thermoelastic bar, for example, as we shall see in

4. More generally, we consider a nonlinear coupled thermoelastic plate modelled in
a separable Hilbert space 7 by

(1.1) utt + M([u, O])A2u + N([u, 0])(A + #)0 O,

(1.2) 0, + R([u, 0])(A + a)O Q([u, 0])(A + #)u, O.

Here M, N, R, Q JR5 J are C2-functions, and M, R, and NQ _are strictly
positive; a, # E . Finally, by [u, 0] we denote the following vector field:

where [1" II denotes the norm in 7-/; A’D(A) C 7-/ 7-/is a nonnegative, self-adjoint
operator. The solution (u, 0) will satisfy the initial conditions

(1.3) u(t O) UO, tt(t O) ?1, (t O) 0,

and the abstract "boundary" conditions

(1.4) u(t) e D(A2), O(t) e D(A), t >_ O.
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A simple example is the following system modelling a thermoelastic plate in the
linearized version;

(1.5) utt+A2u+/3AO’-O in [0, oc[ ,
(1.6) Ot-AO-Aut=O in [0,(x[x ft,

where/3 0. The boundary 09t of the open set f is assumed to be smooth; u and
will satisfy

(1.7) u=Au=0 on 09t, O=0 on 09t.

Kim [61 studied equations (1.5), (1.6)in a bounded domain with the boundary condi-
tion (1.7) for u replaced by u E H(gt), and showed exponential decay of the couple

0).
We are first interested in proving smoothing properties, i.e., the solution (u, 0)

is arbitrarily smooth for t > 0 no matter which regularity the initial data have.
Smoothness for the abstract system (1.1)-(1.4) means that the solution (u(t),O(t))
belongs to D(A") D(Am) for any m E tY and any t > 0. Then we shall investigate
the rate of decay for the couple (u, 0) as t --. +c, depending on A, and in case (1.5)-
(1.7) naturally depending on the domain ft. Finally we show the global existence of
solutions (u, 0) if A is strictly positive. These results describe system (1.1)-(1.2) as
parabolic, the similarities to solutions of heat equations will be obvious. In contrast to
this we study the system of standard thermoelasticity (cf. [15], [16]), which is written
as follows in the simplest one-dimensional case (thermoelastic bar equation):

(1.8) utt TUxx + 70x 0,

(1.10) u(t o) o) o(t o)

(1.11) u=0=0 on Oft,

where gt =]0, 1[, ft =]0, +o[, or t =]- cx, +c[; (u, 0) is a function of t _> 0 x
and T, [q,[, t are positive constants. It is known (cf. [16]) that solutions behave like
solutions to the heat equation with respect to the decay behavior; but it is not true
for n-dimensional thermoelastic systems if n >_ 2. It is well known by now that, in this
case for the whole space n, the displacement vector field can be decomposed in two
parts: the solenoidal part, which satisfies the wave equation, and the irrotational part
which is a gradient (see [11]). Clearly, the solenoidal part propagates singularities.
We shall prove that the smoothing property does not hold even for the irrotational
part. Moreover, we shall prove, that it behaves like a wave equation, which propagates
singularities. For the formulation of the result we introduce the following notation.
t will denote a domain in

Hm(gt) wm’2(ft), H(gt)= wy’U(fl); m C YV,

will denote the usual Sobolev spaces based on L2(9/) (cf. [1]); V will denote the
gradient, (., .) will denote the inner product in L2(f) or in a general separable Hilbert
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space T/, I" will denote the norm in L2(t), Ck(I,E), k 6 will denote the space
of k-times continuously differentiable functions from I C into a Banach space E,
analogously, LP(I, E), 1 <_ p <_

The smoothing properties for the systems (1.1), (1.2) and (1.5), (1.6), respectively,
are expressed in Theorem 3.1. The local existence of solutions is the subject of
Theorem 2.4. To describe the decay, we consider the linearized version of (1.1), (1.2)
assuming a
is such that the product #q(t) is positive), i.e.,

(1.12) utt + m(t)A2u + n(t)AO 0,

(1.13) 0t + r(t)AO q(t)Aut O,

where m, n, r, q are Cl-functions of t satisfying

mo

_
re(t) ml, no

_
In(t)l <_ nl, q0

_
]q(t)[ <_ ql, ro <_ r(t) <_ rl

with m0,..., rl being positive real numbers, n(t)q(t) > 0 Vt > 0, and similar bounds
for the derivatives of them m’, n’, r’,

The asymptotic behavior of the solution depends on the spectral properties of
the operator A. When A is coercive, we get exponential decay (see Theorem 3.5),
which implies, in particular, the decay of solutions for the thermoelastic plates given
by (1.5)-(1.7) when f is a bounded domain. If the spectrum of A approaches zero,
one needs more information on A than that given in the general setting. In Theorem
3.6 we present a typical result that has L2- and L-decay rates for the thermoelastic
plate equation (1.5), (1.6) if gt is the whole space n or if t is an exterior domain.
By interpolation one also gets decay rates in Lq() for 2

For the case A >_ > 0, a # 0 we shall extend our local existence result to a
global existence result (see Theorem 2.8).

We remark that right-hand sides in (1.1) and (1.2), respectively, with appropriate
regularity (for Theorem 2.4) and smallness (for Theorem 2.8) can easily be included.

Using Theorem 3.6 it would also be possible to prove a global existence result
for (1.5)-(1.7), (1.3) for small data in exterior domains, including the whole space
n (cf. [17]); we do not go into details here. Finally, we turn to system (1.8)-(1.11)
in standard thermoelasticity and related systems as (1.8)-(1.1.0) with the boundary
conditions

(1.14) ux 0 on 0t,

or systems in higher dimensions of the following type:

(1.15) utt TAn + 7V8 O,

(1.16) 8t tcA8 + 7div ut O,

(1.17) u(t) e VH(t) Vt

__
0

for t 2 or ft j3. For domains in j3 with smooth boundary we will consider
boundary conditions of the form

(1.18) div u 0 0 on 0t.
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(According to (1.10), the initial condition has to be satisfied in each case.)
Systems (1.8)-(1.10), (1.11) and (1.8)-(1.10), (1.14), respectively, describe the

initial boundary value problem for a one-dimensional thermoelastic bar with rigidly
clamped and thermally insulated bound.ary in the case of (1.11), and with traction
free boundary at constant temperature in the case of (1.4). System (1.15)-(1.17)
describes the dissipative part of the solution to the Cauchy problem in F2 or Fi3;
cf. [12], [15]. System (1.15)-(1.18) is a set of equations for the dissipative part of a
thermoelastic problem in/R3 with the specific boundary condition given abovep; cf.

In each case the solution (u, ) has the same decay rates as the solution to the
heat equation (see [3], [5], [10]-[13], [15], [18], [19]; for a survey cf. [16]). In contrast to
this we shall prove that they do not have the same smoothing property: singularities
in the initial data are propagated as tme increases. This shows that the coupling
for thermoelastic plates is much stronger than that in standard thermoelasticity. All
problems above can be considered simultaneously, namely, for (1.8), (1.9), or (1.15),
(1.16) with boundary conditions given by (1.17), (1.18), it is easy to see that v :- u
satisfies

(1.19)

v(t O) vo := u0,

as well as

(1.21)
in case (1.11), and

(1.22)
in case (1.14).
(1.20) with

vt(t O) Vl Ul, Vtt(t O) V2 :-- T/t0 O/VO0,

v Av 0 on

Vx vxzx 0 on 0gt

For (1.10), (1.15) (1.18) v := divu also satisfies (1.i9), as well as

v0=divu0, vl :=divul, v2:=TAdivuo-TA00,

and the boundary condition (1.21). We remark that satisfies a differential equa-
tion similar to v with appropriate boundary conditions. Denoting by A the Laplace
operator with domain

D(A) := H2()f’l H(fl), Av := -Av

(respectively,

D(A) := {v e H2(t);V99 e HI(); (Vv, V99) -(v, A99)} Av "= -Av),
we see that v satisfies

(1.23) vttt + aAvtt + (2 + T)Avt - gTA2v O,

(1.24) v(t O) VO, vt(t O) Vl, Vtt(t O) V2,

(1.25) v(t) E D(A2), t _> 0.

(1.23)-(1.25) will be considered in a separable Hilbert space 7-/again, v "[0, cx[--- 7-/,
and our result on propagation of singularities will be proved in Theorem 4.1.
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2. Existence results. First we study the linearized problem

(2.1) Utt + m(t)A2u + n(t)(A + #)0 fl,

Ot + r(t)(A + )0 q(t)(A + #)ut f2,

(2.3) (t o) no, (t o) , o(t o) Oo

(with more general right-hand sides), and we look for solutions (u, 0) satisfying

(2.4) u C2([O,[,7-l) Cl([O, oc[,D(A)) VC([O, oc[,n(A2)),

0 e C1([0, cx3[, 7-/)NC([O,[,D(A)).

Rewriting (2.1)-(2.3) as a first-order system for

(ul)V Auo
o,

we consider

(2.6)
0 m(t)A

V+ -A 0
-q(t)(A + #) 0

=:B(t)

o v(t)
r(t)(A + a) f2

=:F(t)

(2.7) V(t O) V.
The coefficients m, n, q, r are considered Cl-functions. For V (V1, V2, V3),

W (W1, W2, W3), t 2 0, the Hilbert space ?-/t is defined by the inner product

n(t)(V, W>t (V1, W >7-I -- re(t)(V2, W2>T/-}- q- (V3, W3>7-/.

Observe that the corresponding norm I1" I1 is equivalent to the norm I" in 7-/. Defining
the operator B(t) by D(B(t)):= D(A) (in each component), it is not difficult to see
that -B(t) generates a C0-semigroup with constants M 1, /)= max {0,-a}, and
hence {B(t)}t>o is a stable family of negative generators in A’ H with stability
constants (M,)), depending on m’, n’, q’. With y := D(A) we see that

IIB(t)v- B(s)vllx <_ It- sl I111 for 0 <_ t, < T, v e 32.

Therefore ({B(t)}t>o ,A’,y) are a CD-system in the terminology of Kato [4]. As a
consequence we have the following lemma.

LEMMA 2.1. For V E 3;, F [0, T] -- A" Lipschitz continuous, there is a unique
solution Y e CI([O,T],2d)3C([O,T],3;) of (2.6), (2.7).

COROLLARY 2.2. For uo D(A2), ul D(A), Oo D(A), fl, f2 [0, T]--+ A’
Lipschitz continuous, there is a unique solution (u, 0) of (2.1)-(2.3) satisfying (2.4),
(2.5).
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The higher regularity for more regular data is given by the following lemma, where
we assume that fl 0, f2 0 for simplicity.

LEMMA 2.3. Let k >_ 2, uo E D(Ak), ui D(Ak-I), o D(Ak-1),m, n, r, q,
Ck-. Then there is a unique (u, 0) to (2.1)-(2.3) satisfying

u g=oCJ([0, oc[,D(Ak-J)), 0 N=oCJ([0, oc[,D(Ak-J-1)).

Proof of Lemma 2.3. 2A _> 0, (A / A)- 7-/ -- 7-/ is bounded; let w :- (A +
A)u, := (A / A)0. Formally, we obtain, assuming A 0 for simplicity,

wtt+ m(t)A2w + n(t)(A + #) 0,

(2.9) t + r(t)(A + a) q(t)(A + #)wt 0,

(2.10) w(t O) Auo, wt(t O) Au, (t=0)=AOo.

Observe that IIA-  ,II <_ cllwll holds. Assuming uo e D(A3), u e D(A2), o e
D(A2), we can solve (2.8)-(2.10) with Corollary 2.2. Then fi =: A-lw, A-
solves (2.1)-(2.3), and hence it is equal to u and , respectively. From the regularity
of (w, ) we conclude

u e N=o3Ci([0, c[, D(A3-J)), e .=o2C ([0, c[, D(A2-)),

where we used the differential equations and needed m, n, q, r to be Cl-functions.
The case k >_ 4 is obtained taking w(t O) Akuo, wt(t O) Aul, (t O)
AkOo

Our local existence result is summarized in the following theorem.
THEOREM 2.4. Let k >_ 3, let M, N, Q, R Ck-l(/i5, ) with M, R, and the

product NQ being positive functions, and let

(uo, u,Oo) e D(Ak) D(Ak-l) D(Ak-1).

Then there exists a unique solution (u,O) to (1.1)-(1.4) satisfying

k-C(u, ) e g=oCj ([0, T], D(Ak-)) =o ([0, T], D(A--))

for some T > O. T depends only on the initial data T T(p), where

p := (II olID(A ), I[ IlID(A), II 011D(A))

and T oc as p - O
To prove Theorem 2.4 we shall use a fixed point argument in appropriate spaces.

Let u0 D(A3), ul D(A2), 00 E D(A2). For N > 0, N2 > 0, T > 0 let

X(N,N2,T)
-: {(u,O). [0,T]--. 7-/;u e L([O,T];D(A3-i)),j 1,2,3.

e L([O,T];D(A2-k)); k =0,1,2}
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intersect with the set of couples (u, 0) satisfying

( o) o, ( o) u, o( o) Oo,

sup
0<t<T j=0 k=0

sup
0<t<T

IIu()l 2 < N22.ID(-) + IlOO(t)l [D(A2-)
j=0 k=O

We observe that X(N1, N2, T) # if Nj N(IluoIID(A+), IlullID(A), IIO011DA)), J
1, 2 is large enough.

LEMMA 2.5. 2d(N1,N2,T) is a closed subspace of the complete metric space Z
defined by

Z-= {(u,O)" [0, T] ?-l;ut, 0 E L([O,T],D(A1/2)), u L([O,T],D(A))}
and the metric

d((u,O), (v, 7)) := I1(-vt, A1/2 (ut-vt), u--v, Au--Av, O--7, A1/20--A1/2v)IIL([O,T],).
The standard proof (cf. [18]) of Lemma 2.5 exploits the weak-, compactness of

bounded sets in L([0, T], 7/) (observe that /is assumed to be separable).
A mapping ,S" X(N1, N2, T) C Z --, Z is defined by S(u, 0):= (t, ):= solution

to

ttt + M([u, 0])A2fi + N([u, 0])(A + #) 0,

t + R([u, 0])(A + a) Q([u, 0])(A + #)fit 0,

(t O) tO, tt(t O) Ul, (t O) 00,

which exists according to Lemma 2.3. Observe that -M([u,O](t))is bounded since

(u, O) A’(N1, N2, T).
LEMMA 2.6. The mapping S defined above maps A’ into itself if T is sufficiently.

small depending on N1.
Proof of Lemma 2.6. Let us denote

o Ao
o

Then satisfies

t(t) + (t)(t) O, ?(t O) Vo,
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where/ equals the previously defined B(t) with m(t):- M([u, 0](t)) and so on. We
have that

with/ _< cN21 (cf. [4]), since/ depends on m’, n’, q’ essentially and

with/ <_ cN2. I, := AlP" satisfies

W,(t) + h(t)W(t) o,

and hence we also obtain

l(t 0) AiY,

IIAG(t)II + [IAff(t)ll <_

This implies (u,O) e X(N1, N2,T) if

g2 >_ 4]11[9(A), N >_ 4[[[[(A), MeT
_

2,

which is true if

1(2)(2.11) T<_ cNlg El

LEMMA 2.7. The mapping , defined above is a contraction mapping if T is
sufficiently small depending on N1.

Proof of Lemma 2.7. Let (fiJ, J) := S(uY, 0Y) j 1, 2 and let (2.11) be satisfied.
Then w := fil 2, := 1 )2 satisfy

wit + m(t)A2w + n(t)(A + #) (t)A2fi2 + (t)(A + #)2,

Ct + r(t)(A + #) q(t)(A + #)wt P(t)(A + #)2 (t(t)(A +

,(t o) o, ,(t o) o, (t o) o,

where m M([u1, 01]), "= M([u’, 01])- M([u2, 02]), and so on. Let (cf. (3.9))
K3 K3 (w, b) be given by

(2.12)
1 { n 12 Cq0Ka := IIwll /mllAwll + 1l1 + -(wt,Aw)-(,wt) / IIAwll

n 12 q (Awt, A2w> e(A, Awt)}+m(t)[]A2w]2 + [A +

Using multiplicative techniques we obtain for sufficiently small ,
K3(t) < c(N)K3(t) + c2N {](t)[2 + ](t)[2 + ]P(t)] 2 + [O(t)] 2 }dt

c(Y)K3(t) + c3(g)d2((u,O), (u2, 02)),
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where cj > 0, j 1, 2, 3. This implies

sup K3(t) <_ c4(N)y2Td2((u1, tl), (u2, 02))
O<t<T

if s is small enough. We obtain

d2 ((1, tl), (fi2, 2)) < c5 (N21)NTd2((u 1), (u2,
<

with 0 < a < 1 if T T(N) is small enough.
The unique fixed point of S in X’(N1,N2,T) is the desired solution (u, 0) in

Theorem 2.4 for k 3. The case k > 4 can be dealt with either by studying
corresponding A’(N N2, Nk- 1, T) or inclusively proving the higher regularity of
(u, 0) by introducing w := A-u, A-O as in the proof of Lemma 2.3. (Observe
that the new nonlinearities look like h?/([w, ]) M([A-Iw, A-I)]) and that they
are easier to deal with since they are of lower order.) This completes the proof of
Theorem 2.4.

THEOREM 2.8. Let A > > O, a # O, and k > 3. Then there is 5 > 0 with
the following property: For any

(uo,u,Oo) e D(Ak) D(Ak-) D(Ak-l)
satisfying

there exists a unique global solution (u, 0) of (1.1)-(1.4) satisfying
k j (k-lg.j(u, 0) E Nj=0C ([0, [, n(Ak-Y)) , .=0, ([0, oc[, n(Ak--Y)).

Moreover, (u,t?) decays exponentially.
Proof. Let (u, 0) be a local solution according to Theorem 2.4. Under the as-

sumption of Theorem 2.8 we obtain for

:= O),

K3 having been defined in (2.12),

tKa(t)
_< cl (i)K(t) d1(N21)K4(t)

with c, dl > 0 depending on N2. If N2 <_ 1 we have

C1 (N2) _< co, d(N2) >_ do > 0

with co, do being independent of N1 and t. Then

d
-K4(t) <_ coKe(t) doK4(t).

By standard arguments, using Gronwall’s inequality, this implies that if K4(0) is
sufficiently small, then

(2.13) K4(8

_
e-a--2 SK4(0)

holds on some interval 0 <_ s _< t > 0. This yields an a priori estimate in s tl and by
a continuation argument the solution exists globally and satisfies (2.13) for all s
The smallness of K4(0) is guaranteed by choosing IlUOlID(A.) + IlUIID(A) +
small enough.
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3. Smoothing effect. The main result of this section is given by the following
theorem.

2 j N_0CJ ([0, T] D(AI-J))THEOREM 3.1. Let (u, 0) E Nj=oC ([O,T],D(A2-J)) x
be a solution of (1.1)-(1.4) for some T > 0 with (no, Ul, Oo) e D(A9) D(g) D(A).
Then for any t e ]0, T] and all m e , we have that (u(t), O(t)) e D(Am) D(Am).

Proof. Let us denote m(t) :- M([u,O](t)), n(t) := Y([u,O](t)), r(t)
R([u,O](t)), q(t)"---Q([u,O](t)). Then m, n, r, q e CI([0, T])since

d

By the spectral theorem for self-adjoint operators (cf. [2], [8]) there exists a Hilbert
space

7 --/ ?-/(A)d#(A),

direct integral of Hilbert spaces (A), A E tg with respect to a pointwise measure
and a unitary operator H" -+ 7-/such that

D A’ {v 7"l; ) -+ A"blv A 7:l}, m RVo

bl A"v (, , blv(,

Moreover,

I[A’vll 2 2m]Nv(A)l2 d#(A).

Let us denote v := Hu, "=/gO. Then (1.1), (1.2) turn into

(3.1) v, + n(t)= + (t)( + ,) 0,

Ct + r(t)(A + a) q(t)(A + #)vt O,

where we have dropped the parameters t and A in v and b. Let

1
i:e(t, ) .= -lv(t, ) + ,(t) ire(t) A=lv(t x) i: + I(t, A)

where l" is understood to be in ?-/(A). Multiplying equation (3.1) by vt and (3.2) by
n__ and summing up, we getq

d n(t)r(t)(3.3) e(t, ) v(t)
m’(t),,X:alvl: +(,,X + )11= + 2 Wqq

(3.4) Re {Avv} < ,Xlvl m(t),Xalvl + n(t).,X=lllvl + n(t),Xlllllvl.
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We will suppose that q(t) >_ qo (otherwise we take -vt instead of Cvt). Multiplying
(3.2) by vt we obtain

d
(3.5) -ae {vt} -r(t)(A + c)ae{vt} + q(t)Alvtl 2

+#q(t)lvtl2 m(t)A2Re {v} n(t)A]2 n(t)]2.

Inequalities (3.4) and (3.5) imply

d 12 moA3]v]2 n2(t)(3.6) ae{vtv} vt + 2mo 12 + n(t),v,

d qo Avt2 r2 (t)A(3.7) ae {-vt} _< - + ]]2 + {r(t)]a]- q(t)p} vt2 + qm.A3]v216
4(t)+ + n(t) + ((t), + (t)l)
oo

respectively. om (3.6), (3.7)we conclude

d q -q 2 qomoA31 Ivy2

+]1 + + +c
with c being a constant depending essentially on T, possibly varying from formula to
formula. Combining (3.3) nd (3.8)we obtain

d
E(t, A) < -cA {]vt(t,A)] 2 + A2]v(t, A)[ 2 + (t, A)2 }(3.9) d

+ {(t,) + (t, )l + (t, )},
where

(t, A) := $(t, ) + ARe{vtv} Re{vt}.

Taking s small enough, we get

(3.10) 1(t, A) _< ]C(t, A) _< 25(t, A),

hence

d
:(t, ) < -,:(t, ) + :(t, )

with positive constants cl, c2. We will consider two cases. First, we consider the case
in which A >_ 2c2/c c; then we consider the ce in which A c3. For A c3 we
get

(t, )Cl(t, ) -(3.11) t(t, A) <_ c$(0, A)e-’.

thus
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Multiplying by Am and integrating for A >_ C3, we get

(3.12) [ Am(A, t)d#(A) _< f m(A, 0)e- d().
c3 J

On the other hand, if A < c3 we get

(,) < (,) (, t) < (,0) W e [0, ].
dt

Using (3.10) we get

(3.13) $(t, A) c$(0, A)ect.

Multiplying by Am and integrating over 0 A c3, we obtain

(3.14) f Am$(A, t)d(A) cc f $(A, O)e:t dp(A).
c3 Jc3

Finally, from (3.12) and we conclude that for t > 0,

Ame(A, t) d,(A) c(t, m) e(A, 0) d,(A).

Using the diagonalization theorem (cf. [2]), we get

(3.15) Vt > O" ldmu(t)ll + IlAmO(t)ll a(t, m){llul[ + IlAuo[I + llAO01[}.

Remark 3.2. The constant c(m, t), given in inequality (3.15), is such that c(m, t)
ast0.

Remark 3.3. If M, N, R, and Q are Ck--functions, then the solution (u, 0) of
(1.1),(1.2) satisfies

(u, ) e Ck(]0, T]; OjeD(AJ)).

Remark 3.4. The smoothness effect property does not depend on the largeness
of the initial data, because the method we used can be applied for local or global
solutions.

[0,THEOREM 3.5. Let A > O, a O, # O, and let (u, O) j=o
D(A2-J)) xj=01Cj ([0,],D(A-)) be a solution to (1.12), (1.13), (1.3), (1.4). Then
(u, 0) decays to zero exponentially, i.e.,

E(t) Me-ritE(O)

for some positive constants M, d, where

1{ q,)n(t) , }E(t) := ut(t)] + m(t)[Au(t)] + O(t)

Proof. With the same technique as in the proof of Theorem 3.1---the energy
method--we conclude from (3.11) that there are M > 0 and Cl > 0 for which we have

E(t) $(t,A) d#(A) <_ M e-C’t$(O,A) d#(A) <_ Me-C’tE(O).
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We observe that cl depends on the Cl-norm of m, n, and q.
When the operator A is not coercive, that is, A >_ 0 only, the exponential decay

is not expected. In the following theorem we will study this case when t n and

’ \ B, where B is a bounded closed set.
THEOREM 3.6. Let gt n or let n >_ 3 and tn \ B, where B is a

bounded closed set with smooth boundary, and let n \ be star shaped. Then, for
the solution (u, ) of (1.5)-(1.7), (1.3), we have that

II(Ut, AU, O)(t)ilL()(L=()} <_ ct-(- }ll(tl, Ato, Oo)(t)llLi(
with a positive constant c neither depending on t nor on the initial data.

Proof. First let -- n. Denoting by fi(t, ) and (t, ) the Fourier transform of
u and , respectively, we obtain

(3.16) ttt(t, ) + 1ld(t, ) 3112(t, ) 0,

(3.17) t(t,) + 112(t,) + l12tt(t, ) 0.

Combining (3.16), (3.17)with (3.1), (3.2), and defining

13(t, )-= {]t(t,)l + Ill(t,)l +

we obtain, by the same multiplicative technique as in the proof of Theorem 3.1,

M > 0 d > 0 t >_ 0 E Ktn" (t, ) <_ Me-d’12t(O, ),
which implies for

(3.18)

Moreover,

1 [2 12$(t)-= {lu(t)l + IAu(t) + I0(t) },

(t, ) =/ (t, ) d <_ M/. e-d’’t(o, ) d
<_ t- 113(o, )llr < t- I1(,/Xo,

{ 1 }n/ eiXtt(t,)d(3.19) lut(x,

_< f z a o,

(3.18) and (3.19) prove Theorem 3.6 for n. Now, let n be an exterior
domain n 3. There exists a generalized Fourier transform " L2() L2(n)
such that

(3.20) $’((A)w)()

where A is he Laplace operator defined on H(Yt) V H2(gt) and (A) i8 assumed to
be defined via the spectral theorem. " is represented by

(=)() f (x, )(x) (t, ),
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with a kernel (x, ); see [14], [17]. In [17] it is proved, based on results from [9], that

2m e N 2c > 0 2x e t V e n \ {0}" 1(x,)l <- c(1 + I1)m

holds, provided n \ gl is star shaped. Using (3.20), we obtain the analogue of (3.16),
(3.17). Essentially repeating the calculation following (3.17), we obtain (3.18) again
and, using (3.19), we get

_< e- l 12tv/(0, + I :1) <_

In one space dimension we can use the Fourier-sine transform [7], for example,
if t -]0, c[, to obtain the corresponding result. For n 2 the known estimate for
(x,) has a factor log I1 as I1 --* 0, which leads to a decay like ct-n/4+ and
cet-n/2+e, respectively (instead of ct-1/2 and ct-1 as expected).

4. Propagation of singularities.
THEOREM 4.1. Let A >_ 0 be self-adjoint in a separable Hilbert space 7t and let v

be a solution to (1.23)-(1.25). Then we have for vo v2 O, that

Vs >_ 0"Vl D(As+2) = Vt _> 0" -* As+2 (lvt(t, ), A1/21)lv(t, A)) Tl x .
Remark 4.2. In terms of the example from one-dimensional thermoelasticity, the

nonsmoothing of the "hyperbolic"energy Ilut(t)ll 2 + Ilux(t)[I 2 is proved. The formula:
tion in terms of vl is made for simplicity of the exposition; similar results could be
obtained in terms of v0 and v2.

Proof of Theorem 4.1. Using the spectral theorem, we conclude from (1o23), (1.24)
that w(t,A) := blv(t,) satisfies

(4.1) Wttt -}" tAWtt -]- (,.2 + T)AWt -- TA2W O,

(4.2) w(t O) wo := blvo, wt(t O) w hive, wtt(t O) w2 :=/v:.

The solution w of (4.1), (4.2)is given by

3

,,,(t,

where Jj(A), j 1,2, 3, are the roots of the characteristic equation

and

2

bj(A) := E by (A)Wk(A)
k--O
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with

1-I( )’

Since w0 w2 0, we obtain

3 3

j--1 j--1

The asymptotic behavior of j(A) is known (see [19], [15]) and given as follows.
LEMMA 4.3. As A O,

fll(/)
T -- ,ff2
A+O(A-), 3}(A) 2(T +.2)

as A -- oc

+ v/ +-v+ o();

3] ()) -l- )--1 "-I- 0(,-2) :: i -- 0/3 ,--1/2 + 0(,-’g2

wh,- . (% -) otnt ( , ).
Except for at most two values of A > 0, we 9et

() # (), j # .
For any value of O, ae3j(A) > 0, j 1,2,3.

There are positive constants rl and Cj, j 1, 2, 3, such that

A < r2 =v C1A <_ aeflj(A) <_ C2A,

A > r2 =, Refj(A) > C3 (j 1,2,3).

This implies the following asymptotic behavior for b(A) j 1, 2, 3.
LEMMA 4.4. As A O,

I() + o(vq), +i
b (A) 2---’Tv’A( + 2) + O(1);_

a8 -- (x3

I(1 o(-1, () -- +o

Observe that the leading term for b2/3(A) as A --* 0 is like A-1/2 but, still, blue-32t +
be-33t O(1) as A --, 0; hence the interesting part is A --, cx. Now let t > 0. It is
easy to see that for any m

c > A2m {Iftl(t, A)I 2 + Alfl(t,A)l2} d#(A).
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Hence the fl-part is arbitrarily smooth. We will now prove that the remaining part
of w it is not smoother than Wl. In fact, let us suppose the contrary, so we have

cx) > A28+a {If2t(t,A)

We obtain for rt > 0 sufficiently large, depending on t later on using Lemmas 4.3 and
4.4,

> A2+4 -t)
2 1

e + o

2s+4
g-2at 1 2

4
cos(bt) + O

where a := Re fl, b := Im ft. Thus we obtain, for rl rx (t) sufficiently large,

min{r, 1} e-@ +lw()l>
4 (t)

which is a eontradicgion because v
Acknowledgment. The authors thank Y. Shibata for discussions concerning the

results of this paper.
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PERTURBED SCALE-INVARIANT INITIAL VALUE PROBLEMS IN
ONE-DIMENSIONAL DYNAMIC ELASTOPLASTICITY*

MICHAEL K. GORDON

Abstract. The author considers an initial value problem for equations describing the longitu-
dinal motion of an elastoplastic rod. Conditions on the stress a determine whether the deformation
of the rod is plastic or elastic, bdth of which are described by wave equations with different wave

speeds. Also, plastic deformation is quasi-linear while elastic deformation is assumed to be linear.
The initial conditions are continuous, piecewise C1, and have a jump in the first derivative only at
the origin. This is. a generalization of the scale-invariant problem solved by D. Schaeffer and M.
Shearer, in which plastic deformation is assumed to be linear and the initial conditions are piecewise
linear.

The analysis is divided into cases according to the structure of the corresponding scale-invariant
problem; the most interesting case reduces to a free boundary problem for the plastic equations on a

wedge with two free boundaries.

Key words, scale-invariant problem, plastic and elastic regions, free boundary problem, local
existence

AMS subject classifications. 35L60, 35R35

Introduction. Elastoplasticity is an important subject in the study of nonlinear
stress-strain responses in solid mechanics. In this work, we consider the following
one-dimensional elastoplasticity model:

(0.1) ota + k(.r)Ot. Ov.

ot={ (0)+

where v is velocity, a is stress, / is yield stress (the stress at which the material
deforms plastically), and k is a smooth (smooth will mean C throughout), positive
function. Notice that a < for any solution of (0.1). These equations are a simplified
version of equations which describe longitudinal motion of an elastoplastic rod with
hardening (cf. Lee [4], Clifton and Bodner [2], and Antman and Szymczak [1]).

We consider (0.1) with the following piecewise smooth initial data.

v(x, O) { aLx -4-- f(x)
a.x + f(x)

(x. o) { bLx +
bRx + g(x)

.(x. o) CLX + h(x)
cx + h(x)

for x_<0,
for x>_0,

for x < 0,
for x > 0,

for x < 0,
for x > 0,

* Received by the editors September 1, 1993; accepted for publication (in revised form) March
3, 1994. This research was supported in part by National Science Foundation grants DMS 8804592
and DMS 9201034, which include funds from the Air Force Office of Scientific Research.

Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695-
8205.
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where f, g, and h are smooth and they and their first derivatives vanish at the origin.
We also require that a(x, 0) _< -(x, 0). In particular, this means that ci <_ bi and
bR

_
CR.
Equation (0.1) may also be written in the following form:

(b)

Ota c(a)Ov, if a /

(tv (xO’
Ota=Ov, ifa<, or

0? =0,

and Ota >_ O,

Oa <_ O,

where c(a) (1 + k(a))-l/2. We say that the solution is plastic wherever (0.3(a))
holds and elastic wherever (0.3(b)) holds. Notice that both cases of (0.3) are satisfied
if a , and Ota O.

In [5], Schaeffer and Shearer consider (0.1), (0.2) with constant k and f, g, h 0,
and they construct a unique, continuous, piecewise linear similarity solution, consisting
of wedges emanating from the origin on which the solution is linear and either plastic
or elastic. They refer to this as the scale-invariant problem since it is invariant under
the scaling

5(x, t) -U(x, t).
Recall that the Riemann problem has piecewise constant initial data with a

jump only at the origin, and admits solutions which are invariant under the scal-
ing U(x,t) U(?x, t). The basis of the construction in [5] is to study the jumps
in the first derivatives between wedges in the same way that shocks and rarefaction
waves are studied in solving the Riemann problem. In [6], The Riemann problem is
generalized by taking piecewise smooth initial data with a discontinuity at the ori-
gin; (0.1), (0.2) can be regarded as an analogous generalization of the scale-invariant
problem.

In 1 we show that, under certain genericity assumptions, the solution to (0.1),
(0.2) must be of the same form as the corresponding scale-invariant solution. In 2, 3,
and 4, we solve the initial value problem (0.1), (0.2) locally (near x 0 for small time)
by dividing the solution into cases according to the form of the corresponding scale-
invariant solution. In each case, the problem is reduced to a boundary value problem
in the xt-plane for either the plastic equations or the elastic equations. In 2, we
derive the most interesting of these: a free boundary problem for the plastic equations
on a wedge with two free boundaries, which we solve in 4. The purpose of 3 is to
solve certain fixed boundary problems which are needed to solve the free boundary
problem.

1. The form of the solutions. We begin by defining a class of piecewise
smooth functions in which we expect to find solutions.

DEFINITION 1.1. Let bl be the set of continuous functions

U(x, t) t) <

where U is defined on some t >_ 0 neighborhood of the origin and either U is smooth
or its domain can be partitioned into sectors in the following way. There are smooth
functions {rh(t)}= such that
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(i) r/i(0) 0,
(ii) i(t) < T/i+l(t), t 0,
(iii) U is smooth on

T {(x, t): t >_ 0, (t) < x <_ +, (t)},
To {(x,t)’t > O,x <_ /l(t)}, and
T, {(x,t)’t >_ O,x >_ /m(t)},

l_<i<_m-1,

(iv) U is not smooth across any li(t).
Define

U(x, t)

DEFINITION 1.2. Let U E bl satisfy (0.2). Define the wedges

T {(, t)" t > 0, (0)t < x <_ +(0)t},
To { (x, t)" t _> 0, x <_ / (0)t},
Tm { (x, t)’t >_ O, x >_ lm (0)t},

1 <_i<_m-1,

and define U(x, t) by

f ’ ] A x + Bit,

where (Ai, Bi) lim(x,t)(o,o)VUi. Notice that ( is simply the linearization of U at
the origin and that the boundaries of the regions Ti are tangent to the boundaries of
Ti at the origin.

DEFINITION 1.3. For t > O, 1 <_ <_ m, define

U+,(t)
U+,(t)

lim OxU(x, t),
x--m (t)+/-

lim OtU(x, t).
:n(t)+

From the continuity of U, we have

(1.1) (Ui,+(t) U([(t))l(t) + (U+i,t(t) Uit(t)) =0.

Letting t 0+, we have

(1.2) (o o,_,),(o) + (o oo_) o,

which implies that ’ and _1 agree on x r/(0)t.
If U is a solution of (0.1), (0.2) then U solves the corresponding scale-invariant

problem. More precisely, we have the following lemma.
LEMMA 1.1. Let U bl satisfy (0.1), (0.2). Then U is the unique, continuous,

piecewise linear solution (given in [5]) to (0.1), (0.2) with k =_ k(O) and f, g, h O.
Proof. It is clear from (1.2) and Definition 1.2 that is continuous and satisfies

(0.2) with f, g, h 0. Hence, we just need to show that ’ satisfies (0.1) with k _-- k(0)
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on any with nonempty interior, i.e., ?(0) ?’]i+1(0). It is easy to see from (0.3)
that f2i must satisfy one of the following:

(1.3)
(b)

where co (1 + k(0))-l/2.
Suppose 0xg 0. Then only one of (a) or (b) holds. If (a), then Ui is plastic

locally (near the origin), so ai 9i and Ota >_ O. If (b), then Ot Oxgi Ot/i. But
ai <: 9i since ai _< "),i, so ai < 9i on the interior of Ti because Ot#i corgi. Hence U
satisfies (0.1) with k k(0) in either case.

If 0xi 0 then both (a) and (b) hold, so Oi satisfies (0.1) with k k(0) regardless
of whether i i or i < i on the interior of Ti. This completes the proof.

As mentioned in the introduction, we would like to be able to say that a solution
U of (0.1), (0.2) is locally of the same form as f. By this we mean that Ui is of the
same type (plastic or elastic) as Ui in a neighborhood of the origin and that no Ui
has empty interior. In order for this to be true, we must avoid "borderline" cases
of the scale-invariant problem. Also, we consider only one of any two cases which
give solutions which are reflections across the t-axis of one another. This leads to the
assumption that one of the following holds.

(1.4)

(i) SL

(ii) SL

(iii) SL

bn
(iv) SL

bL
(v)

bn
(vi) sR

bL

,SR ( 1, bL- aL > bR-}-aR,
,SR <: 1, bL- aL < bR +

aL(1 + COSL)/(CO + SL) > bR + aR(1 + COSR)/(Co + SR),
,SR > 1,

aL(1 + C08L)/(CO + 8L) < bR + aR(1 + COSR)/(CO + SR),
< 1 < SL,

aL(1 + C08L)/(CO 2r" 8L) > bR + aR,

< 1 < SL,

--aL(1 + C08L)/(CO + 8L) < bn + aR,

where SL aL/(bL CL), SR an/(cR brt), and co (1 + k(0))-l/2.
Replacing inequality with equality anywhere in (1.4) would represent a borderline

case. In borderline cases, the solution to the scale-invariant problem may be both
plastic and elastic on some region or yielding on a boundary between two elastic
regions. In such a situation, the local form of the solution to the perturbed scale-
invariant problem (0.1), (0.2) would depend on f,g, and h, a complication which
we avoid here. We shall, refer to initial data (0.2) satisfying one case. of (1.4) as
nondegenerate.

It is shown in [5] that if the initial data (0.2) is nondegenerate then U is of one
of the forms shown in Fig. 1.1. U is plastic on Pi and elastic on Ei. The arrows in the
figure represent elastic and plastic characteristic speeds; the outer arrows have slope
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--t ---t

(i)

z=t

(ii)

(iii)

X --Cot Cot

= P P

(iv)

x=od

at

=-cot[/

(v) (vi)

FIG. 1.1.

4-1 and the inner arrows have slope +co. The cases in Fig. 1.1 are numbered according
to which case of (1.4) is satisfied.

The following is the main result of this section.
THEOREM 1.1. Let U E bl be a solution of (0.1) with nondegenerate initial data

(0.2). Then U is of the same form as (J in a neighborhood of the origin.
We need a few technical lemmas to prove Theorem 1.1.
LEMMA 1.2. Let U 11 and suppose that, for some i, #i < 5/i on a border of Ti.

Then cri < "yi on the interior of Ti in a neighborhood of the origin.
The proof is easy and we omit it.
LEMMA 1.3. Let U bl satisfy (0.1), (0.2) and suppose that T shares a border

x }t with Tj. Then
(, )a, (, )o,,

h,- ;, o i1’ ti (.3())(t,,i,,@ ,d if ( ti (.3(b))
(or both cases of (1.3)).

Proof. Since r/(0) r/for all x ?k(t) between T and Tj, (1.2) implies

Combining this with (1.3) gives
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Eliminating 0xi and 0xj gives the result.
In [5] it is shown that the direction of a plastic-elastic interface determines whether

the plastic state lies to the left or right of the interface. We will need a slight gener-
alization of this result in the proof of Theorem 1.1.

It is easy to see from (0.3) that U.+,x (t), Ui+,t(t) satisfy one of the following:

(b)

v&(t) o.+ (t)

aS(t c(a(r(t), t))2vi+,x(t),
,+(t) /i,t(t)

_
0;

v+ a.+ (t)i,t(t) ,x

+ v.+ (t),(t) ,
-,+(t) 0.

The same is true of U(x(t), Uit(t). Let

(t) ,(t) ((,(t), t))
7(t)(7(t)2 1)

Then we have the following lemma.
LEMMA 1.4. Let U E bl satisfy (0.1), (0.2) and suppose that .for some t > 0

(i)
(1.6)

(ii)
u:(t) # ui-(t) o u+, (t) u( (t),
i(t) # 0, , ((v(t), t)).

Th, if (t) < 0 (., ,(t) > O) U.+ (t) U+,,x i,t(t) satisfy (1.5(a))(resp., (1.5(b)))
and U,(t),U,t(t satisfy (1.5(b))(resp., (1.5(a))).

Proof. Assume ,i(t) < 0 (the case i(t) > 0 is similar). It is not hard to show
from (1.1), (1.5), and (1.6) that Ui+,x(t), Ui+,t(t) and U((t), Ui-t(t) must satisfy different
cases of (1.5). (This is essentially because singularities propagate along characteristics
for first-order hyperbolic systems.) In particular, this means that

( 7) v. (t) # 0

(otherwise both cases of (1.5) would be satisfied simultaneously). We suppose that
u. (t) u+, i,t(t) satisfy (1.5(b)) and arrive at a contradiction. This implies that ai < i
and ai-1 ")’i-1 in a neighborhood of (Ti(t), t). Hence

(1.8) a.+ (t) < "h,+ (t)

and

(1.9) ,(t).+ (t) + + +, i,t(t) h(t).h,x(t) + "),i,t(t).

Combining (1.5(b)), (1.7), (1.8), and (1.9), we have

(1.10) ;,,\(t)-.+, (t) > 0.
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Now, using (1.1), (1.5), and arguing as in the proof of Lemma 1.4, we get

(i.ii) +

Equations (i.i0), (1.ii) imply that ui(t)v,x(t > 0 and so vi,-x(t < 0, which
contradicts the fact that U,.x(t), U(t(t satisfy (1.5(a)). This completes the proof.
0

Proof of Theorem 1.1. Since U is the solution to the scale-invariant problem, the
following facts follow from [5] and the strictness of the inequalities in (1.4).

(A) 0x > 0 on regions where U is plastic.
(B) Plastic-elastic interfaces of U are noncharacteristic.
(C) < on the interiors of, and on boundaries between, regions where U is

elastic.
Suppose i has nonempty interior; then it is a plastic or elastic region of . If

plastic, then Ot;/i 0t@i > 0 by (A), which implies that 0’i is locally positive, and
so Ui must be locally plastic. If elastic, then ai < % locally by (C) and Lemma 1.2,
and so Ui is locally elastic.

We now show that no Ti has empty interior. Suppose otherwise and consider the
following three cases.

(1) Suppose T separates elastic regions of U, or Ti lies on the x-axis. Then
(C) and Lemna 1.2 imply that Ui is locally elastic, but this implies that at least
one boundary of / is not locally characteristic and separates elastic regions of U,
contradicting (iv) of Definition 1.1.

(2) Suppose Ti separates elastic and plastic regions Tj, Tk. Let r be between j and
k. Applying Lemma 1.3 to r, rk, we have 0xG : 0 because of (A), (B). This implies
that Ur is either locally plastic or locally elastic. Since Uj is locally elastic and Uk
is locally plastic, there must be some locally noncharacteristic x ?s(t) separating
regions of the same type, again contradicting Definition 1.1 (iv).

(3) Suppose T separates plastic regions Tj,Tk,j < k. Then (A) implies that Uj
and Uk are locally plastic. First assume W(0) 4-c0. If r/(0) 0,+1 then (1.6)
is locally satisfied along x rl+l(t),rlk(t), and Uj+l(t),ul(t) have the same sign
(locally). This contradicts Lemma 1.4. If r/(0) 0, 4-1 then there are either points
on x W/+l(t) where (1.6) is satisfied and uj+i(t) <: 0, or on x Wk(t) where (1.6) is
satisfied and uk(t) > 0. Again Lemma 1.4 is contradicted.

Now assume that r/i(0) 4-c0. It is not hard to show that

0 < min{cgzj, O.k} __< lira
t-,O+

so 0zG > 0 for some j < r <. k. U must be locally plastic, otherwise Lemma 1.3
applied to U, Uk implies that OxG 0. Then there are either points on x (t)
where (1.6) is satisfied and r(t) > 0, or on x r/r+l(t) where (1.6) is satisfied
and +(t) < 0, contradicting Lemma 1.4. This completes the proof of Theorem
1.1. []

2. Construction of the solutions. The following is our main result.
THEOREM 2.1. If (0.2) is nondegenerate then there is a solution U Lt of (0.1),

(0.2). ioreove’r, U is unique within Lt, i.e., if bl is a solution of (0.1), (0.2) then
U and U coincide on the intersection of their domains.

This is proven by constructing a solution for each case of (1.4) of corresponding
form in Fig. 1.1. It is clear froln the construction that it is the only solution of



PERTURBED SCALE-INVARIANT INITIAL VALUE PROBLEMS 1571

FIG. 2.1.

that form and that, locally, a < 9/on elastic regions and Ota > 0 on plastic regions.
Uniqueness then follows from Theorem 1.1. We will carry out the details of the proof
only in Case (ii); the other cases are either straightforward or simplifications of Case
(ii) (see [3]).

Case i. The solution is locally elastic and has the form shown in Fig. 1.1 (i), so
U is found by simply following characteristics.

Case ii. Locally, U has the form shown in Fig. 2.1. U is smooth and plastic on

P1 and elastic on the Ei’s, and c1, O2 are smooth functions such that

-co < < 0 < < co.

Let v VL,d dL, 9/ 9/L on Et and v vR, d dR, 9/ 9/a on .Ea. Then by
following elastic characteristics we have

vR(x, t) = aRx + bat + F(x, t),
dR(x, t) bRx -}- art + G(x,
7R(x, t) cRx / h(x);
VL(X, t) aLX + bLt +
dL (X, t) bnx -+- aLt nu G(X, t),
9/L (X, t) CLX + h(x),

where

and

1
F(, t) [/(x + t) + f(x t) +( + t) ( t)],

1
G(, t) [/( + t) f(x t) +( + t) +( t)]

(2.4)
d + V dR nu VR, 9/ 9/R in E3,
d V dL --VL, 9/ 9/L in E2.

We know that d 9/ on x c(t), a2(t). Combining this with (2.4), we-have the
following boundary conditions on P.

(2.5)
v=vr, d=ar onx=((t),
v=vt, d=at onx=

where

(2.6)
vr vR +
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=,(t)

FIG. 2.2.

#.(t)pP
P3

=/l(t)

FIG. 2.3,.

Notice that neither of the plastic-elastic interfaces, x o1 (t) and x a2(t), can
be determined from information on only one side. We find them by solving a free
boundary problem on P1 with boundary data given by (2.5), (2.6) and with the plastic
equations

(2.7) Otv Oxa, Otcr c(a)2Oxv.

If c1 and O2 were a priori known, there would be two more boundary conditions
than necessary to solve this problem, but since c1, a2 are unknown it is reasonable to
expect a unique solution. We solve (2.5), (2.7), satisfying (2.1) in 4.

Case iii. Locally, U has the form shown in Fig. 2.2. Also,/ < -1 < c < -co
and c0<a <1</.

The solution in El, E4 is as in Case ii. We then have implicit equations crR ")’R
and crL 7L for the curves x l(t) and x fl2(t), resp., which can be shown
to be locally solvable using (1.4(iii)) and (2.2). Since both cr and v are known on
x fll (t) and x =/2(t), we now have a Cauchy problem for the plastic equations on

P1 and P2, which can be locally solved using the method of [6, Chap. 2]. Then both
a and v are known on the curves x al (t) and x = a2(t), leading to a free boundary
problem, similar to that of Case ii, for the elastic equations on E2 t_J E3. Since the
equations are constant coefficient instead of quasi-linear, this problem can be solved
by a simplification of the method used in Case iio We will remark on the differences
in 4.

Case iv. Locally, U has the form shown in Fig. 2.3. Also,/ < -1/ > 1, and
(0) co, -c0.
The solution in El, E2, P1, P3, and the curves x =/1 (t),/2(t) are found as in Case

iii. Using the method of Remark 4.2 in [6, Chap. 2], we can maximize the domain of
the solution to the Cauchy problem on P1 and P3, thereby finding the characteristic
curves x #1 (t) and x #2(t). The problem is thus reduced to a Goursat problem
on P2, which can be solved using the method of [6, Chap. 3].

Case v. Locally, U has the form shown in Fig. 2.4. Also, tip < -1 < aP < -co.
The solution in El, E4, P1 and the curve x fl(t) are found as in Case iii. We

then get an implicit equation for the curve x a(t) by setting the solution for cr +v in
P1 equal to aR + VR (following the left-moving characteristic from E4). The remaining
unknowns on E2 and E3 can then be found by following characteristics.
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FIG. 2.4.

,(t)

/E/()

FIG. 2.5.

Case vi. Locally, U has the form shown in Fig. 2.5. Also, 1 < -1, 0 < cV < co,
and #’ (0) -co.

The solution in El, E3, P1 and the curves x fl(t) and x #(t) are found as in
Case iv. We then have a free boundary problem on P2 with free boundary x a(t).
This problem can be solved by a simplification of the method used in Case ii, and we
will give the argument in a remark at the end of 4.

3. Solution of a fixed boundary problem. The purpose of this section is
to solve a Goursat problem for (3.1) which will be needed to solve the free boundary
problem derived in Case ii of 2. In Theorem 3.1 we show that this Goursat problem
has a solution and derive estimates which will be useful in proving convergence of the
interfaces to a solution of (2.5), (2.7). First we make a convenient change of variables
and coordinates.

Define

U---( ul)U2
by

(3.1) Ul (7 -- 0V, it2 (7 C0V,

and

1
(t x/co)(t + x/o), z(3.)

Let z :/91 (y) and y --/92(z) be equivalent to x 0/1(t), o/2(t). Then the boundary
conditions (2.5) become

u=ur onz=pl(y),
(3.3) u--u’ ony--p2(z),

where 0 < p (0), p(0) < 1 because of (2.1), and

u[ + cove, u cove,
(3.4) u (7, + coy,, u2 a, -cov,.
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We write the transformed plastic equations (2.7) in characteristic form:

Al(u)A(u)Oyu + A2(u)A(u)Ou O,

where

hi(u)= 0 1 0 A(u)

[ 1 A(u)] A(u)=Co-c(a)A(u) A(u) 1 co + c(a)"
We will solve (3.3), (3.4), (3.5) in 4, but first we consider the following boundary
value problem for (3.5). Let pl,p2 e Cl[0, oc) satisfy pi(0) 0,0 < p(0),p(0) < 1.
Suppose we have boundary conditions

(3.6) %tl-- )1 on z pl (y), t2 2 on y p2(z),

where i(y,z) is smooth and zero at the origin. Choose a > 0 such that a <
p (0),p(0) and define a region R(5) in the yz-plane as follows. Let Ti(5) be defined
by

(3.7) Ti(5) tcpi(Ti(5)), 1, 2.

Let
R(6) {(y, z) az _< y <_ +a(z pl(TI(6))) - Tl(6),

U < z < +(- ((5))) + (5)}

(see Fig. 3.1). Then we have the following theorem.
THEOREM 3.1. There is some 6. > 0 such that (3.5), (3.6) has a unique smooth

solution on R(6.).
Imitating [6, Chap. 2], we prove this theorem by means of an iterative process

which solves an analogous linear problem at each step. In [6], more specialized bound-
ary conditions than (3.6) are assumed for the linear problem, resulting in a possibly
larger domain of existence. However, this does not have a significant effect on the
domain of the solution to the quasi-linear problem, and the proof of Theorem 3.1 is
simplified by using (3.6).

Consider the linear system

(a.s) A1 (y, z)A(y, z)Oyu + A2(y, z)A(y, z)Ou O,

where Ai, A are defined as before with (y, z) replacing A(u), and ] is smooth and
zero at the origin.

LEMMA 3.1. There is some 6o > 0 such that (3.8), (3.6) has a unique smooth
solution on R(6o).

Proof. First we integrate along characteristics and put (3.8), (3.6) in an integral
form. Let ( :/(; y, z), g((; y, z) be defined by

(3.9)

df z) i(I(<;u,d-- (; y, z), ),

dg

d- ((; y’ z) ((, g((; y, z)),

’(z;.v, z) , (;, z)
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.(,z)

FIG. 3.1.

(see Fig. 3.1). Let .(y, z), .(y, z) be smooth functions satisfying

(3.10) f(pl(.);y,z) ., g(p2(.);y,z) ..
Choose 5’ > 0 such that

(3.11) lXl < < ,o’ R(5’).1,p<_l on

Equation (3.11) implies that R(5’) is a domain of determinacy for (3.8), (3.6), so
we can write (3.8), (3,6) in the following integral form on R(5’)"

(3.12) u(y, z)= A(y, z)-’ ((1+ u2)(., pl (.)) + fpz (.)(u20)(f, )d)( + ul)(pe(.),.)+ f/>(.)(u,Ol(5, gld5

where f f(ff; y, z), g g(; y, z), 0 Oy + Oz, O ,Oz + 0u.
We can write (3.12) as a fixed point problem, u Tu, where T is the integral

operator on the right side. It is easy to see that, for u, fi E CI(R(5’)),

(3.13)

for 5 <_ 5’, where II. II supR(5)I and A1 depends on (1 -IIII,,)-’, llV,ll,,. As
in the proof of Theorem 1ol of [6, Cha_p. 1], we can show that T CI(R(5’)) -+

CI(R(5’)). Since we only assume that A is C1, we see from (3.12) that we cannot
directly differentiate Tu with respect to y and z. The proof involves approximating
the derivatives with difference quotients, integrating by parts where necessary, and
then passing to a limit. This leads to an expression for VTu (which we omit). From
this expression, it is not hard to Show that, for u, Yt C1(R(6’)),

(3.14)
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for 6 < 6’, where A2 depends on (1 -11[[6,) -1, live[[6,. Choose 0 e (0,6’] such that
Ai60 < 1, 1, 2, and consider the sequence

U(n+l) Tu(’) u() O.

By (3.13),. (3.14), u() converges uniformly to a unique solution u E CI(R(5o)) of
(3.12), proving the lemma.

We will need estimates of the solution to the linear problem, (3.8), (3.6), in order
to solve the quasi-linear problem, (3.5), (3.6). Let
Define the modulus of continuity of f! Rn Rm by

(e,v/If) sup If() f(x)l.

For a set of functions (fl,. f }, let w(e, v/[{fk)) maxl<i<k
The modulus of continuity has the following properties.

(3.15) w(e, v/Ifg) < [flew(e, v/Ig) A- Ig[ew(e, v/If),

where ]-le suPlzl_<e l" I.

(3.16) (, llf/g) < Iflell/gl2c(e, v/Ig) + I1/glec(,

c(e, Cwlf) <_ ([C] + 1)(e, v/If),

where [.] is the greatest integer function.

w(e, v/If o g) _< w(Igle lVgllf).

Define f, the modulus of continuity on R(5), by

f(5, v/Ih(y, z)) sup

(,z),(,)R()

Ih(, 2) h(y, z)I.

satisfies (3.15)-(3.18) with I1" I! in place of I" I where appropriate. Also, if

h(y,z) g(s;y,z)ds,
(u,)

then

(3.19) F(6, lh) < Ilgll[(, la) + (, lb)] -4- lib a]lll sup (6, l(s; Y, z))ll,
a<s<b

where the modulus in the supremum is taken with respect to y, z.
Define functions

i=1,2

where (1, 2).



PERTURBED SCALE-INVARIANT INITIAL VALUE PROBLEMS 1577

LEMMA 3.2. Let u be the solution~ to (_3.8), (3.6) on R(5o). Then there is some
51 e (0, 0], depending on (1- IIAIlo) -1, IIV,llo, such that

(a) IIVull < (2 + K1()11711i for < , where K depends on (1 -I1115o) -1,

(b) Q(5, r/]Vu) <_ g2(.(r/_) + p.(r/) + ? + i.(r/)) for < ,, where K2 depends

Proof. Let p OyU, q Ozu. Imitating the method of [6, 1, Chap. 2], we can
derive integral equations for p and q. We formally differentiate the system (3.8), then
argue as in the proof of Lemma 3.1 to obtain integral equations

(3.20)

where bl q2 + pl + 2p2, b2 q2 + pl + 2ql, and

0(1))1 + 0(1)u2 ((2)/)2 -- 0(2)ual a2
1 Pl 1 p

where 0() plOz + Oy, 0(2) p20y + Oz. This formal process can be considered
valid since we can first obtain the system of integral equations satisfied by difference
quotients, integrate by parts where necessary, and then pass to a limit.

From (3.20) we can see that

for 5 _< 50, where K3 depends on (1 -IIllao) -1, IIVllo. Part (a) of the lemma then
follows.

Imitating the proof of Lemma 3.a in [6, .Chap. 1], we can use (3.9) to show that

(3.21)

for < o, where K4 depends on IIvXII,o. From (3.10) we can show that

(3.22)
1 p’1(,)(,, O1 (,))

v(,,)a(p (.);., .)
1 p2(.),(p2(.), .)

Combining (3.21), (3.22)we have

(3.23)

for 5 < 5o, where K5 depends on (1 -I111o)-, IIVllo. Now, applying (3.15)-(3.19)
to (3.20), and using (3.23), we have

(,lw) < K6(,(v) + p,(v) + + 6,() + m(6, vlW))

for < 60, where K6 depends on (1- IIXIlo) -x, IlVullo, IIVllo, IIVXIlo. Part (b)
then follows from this and part (a).
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Proof of Theorem 3.1. Choose a constant gtx > 21V(0, 0)1 and e > 0 such that

(3.24) ]A(u)] < t for ]u] _< e.

Let E(5) {u e C’(R(5))’llull < e, I]Vulle _< gt}. Define an operator Qu by
letting be the solution to

(3.25) A (u)A(u)Out + A2(u)A(u)Oz 0

with boundary conditions

(3.26) 5= onz=p(y), 52=2 ony=p2(z).

By the proof of Lemma 3.1, there is some 50 > 0 such that (3.11) is satisfied, with
(u), for any u e E(6o) (because of (3.24)) and Q" E(6) CX(R(6)) for 6 < 60.

By Lemma 3.2(a), there is some x (0,0], depending on (1
such that

(3.27)

for all u E (6), for 6 <_ 6, which implies

(3.28) IIll 6(2 + 1)11v11

for g _< g, where R depend8 on (1- I1)-,, IVI. By (3.27), (3.28) there is
some 62 e (0,6x] such that if u e E(6) then

for 5 _< 2. Hence Q E(5) ---, E(5) for 5 <_ 2.
Now, by Lemma 3.2(b), there is some 3 (0, 2] such that

(3.30) (5, r/lV <_/2(, (r/) + p, (/) + r/+ 6(6, r/IVu + 6A. (r/))

for all u G E(6), for 6 <_ 63, where A. w(e,r/]VuA) and K2 depends on (1-
]A]e)-, f,, IVuA]. Let f2(/) 22(.(r/) + p. (/) + + A.(r/)) and

r,,(e) { e r(e) (5,lw) < ()}.

Then (3.30) implies that there is some (4 e (0,3] such that Q- E.(5) E.(5) for
6_64.

We now show that Q is a contraction on some E.(6). Let u(), u(2) E G,(64) and
(i) Qu(i), 1, 2. Let u* u(2) u(), fi* (2) (). Clearly, * satisfies

(3.31) Ax (u(2) )A(u(2) )0yfi* + A2(u(2) )A(u(2) )0zfi* H(y, z),

where

and

H(y,z) (A(u())A(u()) A(u(2))A(u(2)))Oyt(1)
+ (A2(u(1))A(u(1)) A2(u(2))A(u(2)))Ozt(’)

(3.32) fi 0 on z px (y), fi=0 ony=p2(z).
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We can put (3.31), (3.32) in an integral form similar to (3.12) with A(u(2)), 0,
and with H added to the integrand. From this integral equation, we can show that

for 5 <_ 54, where Co depends on (1 -IAie) -1, ftl, IVuA]. It is not hard to show that

for 5 <_ 54, where C1 depends on ]V,AI. Combining (3.33), (3.34), we see that there
is some 5, E (0, 54] such that Q is a contraction on E,(5,). It is not hard to show that
E,(5,) is complete in the supremum norm, and so (3.5), (3.6) has a unique solution
in E,(5,).

Finally, we show this solution is unique in CI(R(5,)). Let u(1) E E,(5,), u(2)
CI(R(5,)) be solutions. Let u* u(2) -u(1), so u* satisfies (3.31)’, (3o32) with u(i), u*
in place of (i), 5,. Let _< 5, be maximal such that IIVu(2)ll$ <_ ftl. Then the above
argument shows that u* 0 on R(5). It is not hard to see from (3.20) that

(3.35) VU(2) (0, 0)__ VU(1)(0, 0)_. [0(1)1(0,0 0 ]o o)

which implies that > 0 since IVu( )(0,0)l < ’1. Hence IIVu(2)]l$ < 1 by (3.29),
and so 5 5,. This completes the proof of Theorem 3.1.

4. Solution of the free boundary problem. In this section we solve the free
boundary problem (3.3), (3.5) by means of an iterative process described as follows.
Given approximations for the free boundaries z pl (y) and y p2(z), we solve a
Goursat problem of the type in 3, using only one of the given boundary conditions on
each side. We then obtain new approxinate boundaries by correcting the boundaries
to reduce the errors in the neglected boundary conditions. We show that this process
converges to a solution. One difficulty which arises is a shrinking of the domain of the
approximate boundaries with each iteration.

By Lemma 1.1 and [5], there exist unique pO, p2
o e (0, 1) such that p (0)= pO and

p(0) p2 for any solution of (3.3), (3.5). Choose a > 0 such that a < pO, pl. Let
p Cl[0, ec) x Cl[0, c),p(0) (0,0),p’(0) (p,p2). By Theorem 3.1, there is a
unique smooth solution u(p) to (3.5), on some R(5), satisfying boundary conditions

(4.1) tl (p) u on z pl (y), u2(p) u2 on y p2(z),

where ur, u are as in (3.4). Define S(p) , where

(4.2)
u(y, fl (Y)) t2(P)(y,/1 (Y)),

(z), z) z).

Solving (3.3), (3.5) is now equivalent to finding a fixed point of S.
Remark. The free boundary problem for Case iii can be written the same way

by changing variables as in (3.1), (3.2), replacing co by 1. The arguments that follow
will also apply to Case iii, though the estimates are greatly simplified since the elastic
equations have constant coefficients (see [3]).

We claim that repeated applications of S will converge to a fixed point of S, and
offer the following motivation. By Lemma 1.1, we can find pl and p0 by solving the
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scale-invariant problem given by (0.1), (0.2) with c(a) =_ co and f,g,h =_ O. In [5]
this problem is solved by plotting possible plastic states (for P1) in the Oxv, 0xa-plane
given al (the speed of the right interface) and then doing the same given c2 (the
speed of the left interface). These wave curves have a unique point of intersection (see
Fig. 4.1) which determines al and c2. Suppose we attempt to find this solution using
the iterative scheme defined by (4.2). Since all functions involved are now linear in y
and z, (4.2) reduces to a pair of algebraic equations which can be solved for constants
tS and t52 (which represent approximate slopes of the plastic-elastic interfaces in yz-
space) in terms of constants p and p2. Figure 4.1 illustrates the relationship between
these.

It is clear from the figure that this process is a contraction in Ov, 0a-space, al-
though it may not be a contraction in p-space, since the wave curves are parameterized
differently in p and p2, and f2 depends on p and/51 on p2. However, the square of
this process is a contraction in p-space near the solution since i depends only on pi.

Returning to the general problem, we expect that, near the origin and for p near p0,
the first-order effects of S will be like the linearized version. A similar argument can
be given in Case iii; the size of the contraction differs, but the figure is qualitatively
the same (see [3]).

We now find a fixed point of S. Let F u2(p)- u,O ul(p)- Ul It is
straightforward but tedious, using (2.2), (2.6), (3.1), (3.2), (3.4), and (3.35), to verify
that OzF and OyG are nonzero at the origin, implying that t5 exists locally. From now
on we will Use R(p, 5), Ti(9, () to denote R(5), Ti(5), i= 1, 2, defined in 3. Define

M0(ti) {p G C [0, ’1 (p, 5)] x C [0, T2(p, 5)]" p(0) (0, 0),
< < 1}.p,(o)=

It can be seen from the proof of Theorem 3.1 that there exist 51, s, tl > 0 such that
u(p) exists on R(p, 5) for all p e M0(5) and

(4.3) Ilu(p)ll IIXTu(p)ll 

_
’1
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w. (/) max{w(251, ?[{Vur, Vut}), A.(), /},

where A.(r)= w(e, /IVuA). Now define

M(6) {p e Mo(6) W(Tl(p, 6),?lpl) <_ Klw.(),
W(T2(p, i), r/Ip _< K2w. (r)},

where K1, K2 are constants to be chosen later. It is not hard to show that M(5) is
complete in the supremum norm. Define

5(p, )= sup{6’ n(th, 6’) C_ R(p,.5)}

(see Fig. 4.2).
LEMMA 4.1. There are constants K1,K2, and 5. E (0,] such that S(p)

M((p, 5)) for all p G M(5),5 <_ ..
Proof. Differentiating (4.2) we have

(4.4) thl (Y) -OzF(y, (y))’ -OyG(D2(z), z)"

Setting y, z 0 and recalling Lemma 1.1, we have that th’(0) (pl, p). From the
proof of Theorem 3.1, we have

ft(ti, lVu(p)) _< K3w.(,) for all p e M(61),

where K3 depends on (1 -IA])-, Ft, IVuAI,K,K2. By (4.4), (4.5), and properties
of the gt, we can choose 52 (0, 5] and # < 1 such that

(4.6) for all p M(i2)..

Applying properties of the t to (4.4) we have

(4.7)

where i Ti(th, (p, 5)), 1, 2. Notice that u(p) satisfies (3.20) with A(u(p)),
(u[, u2). Estimating as in Lemma 3.2 (but more carefully), we can show that

(4.8)

for all p M(5), 5 <_ 52, where ., . are as in 3 with A(u(p)). K4, K5 depend on

[[Vurl151, [[Vutlll, (1 [Ale) -1, ’1, [VuA[; K5 also depends on K, K2.
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We can use (3.21), (3.22), (4.6) to show that there is some 63 e (0,62] such that

(4.9)

d
,(,())
d
,((1,)

for all p E M(6), 6 <_ 63. Combining (4.7), (4.8), and (4.9) and using properties of w,
we have

(e, nlP) _< B(6)K,(n) + C(6), (),
(, nlP)-< B2(6)Klw,(rl)+ C2(6)w,()

for all p M(6), 5 <_ 6a, where

B1 (5)
B2()
c (,) (11,11,111/11 / II1/11,)(K4 //,c,),
C.(,) (llOC]l,lll/O,all / 1/O,ClI,)(K4 //(,).

Notice that C1 (0), C2(0) do not depend on K1, K2, so we can choose C > C1 (0), C2(0)
and let

(B1 (0)+ 1)C (B2(0) + 1)C(4.11) K
1 B(0)B2(0)’ K2

1 B (0)B2(0)"

(Using (2.2), (2.6), (3.1), (3.2), (3.4), and (3.35), one can show that B(0)B2(0)
(pp2)2(1 c0)2/(1 + c0)2 < 1.)

We need to show from (4.10) that for 5 sufficiently small

(4.12) w(2, z/l,b) <_ K2w.(r/),

which can be accomplished by showing that

el (()K2 + C1 (() (_ K1, B2(5)K1 + C2(5) _( K2.

Using (4.11) we can show that this is equivalent to

(4.13)
(BI(5) BI(0))(B2(0) + 1)C < (C- C1(5))(1 B(0)B2(0)),
(B2(5) B2(0))(B1 (0) + 1)C _< (C C2(5))(1 B1 (0)B2(0)).

By (4.5) there is some 5. (0, 63] such that (4.13), and therefore (4.12), hold for all
p M(6), 6 _< 6,. This completes the proof. [:]

It is clear from the proof of Lemma 4.1 that the curves of/5 intersect the "outer"
edges of R(p, 6), i.e., those that meet the curves of p, so (p, 6) is determined by where
these intersections occur. Figure 4.2 shows an example of this.

It is not hard to show that

(4.14) 5 ((p, 6) <
2a

1, t2
[/5- p[.
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FIG. 4.2.

for all p e M(3), <_ 5,, where
Let p(O) M(5o), 5o <_ 5,, and consider the sequence

p(n) S(p(n-1)) e M(Sn), n- 1,2,...,

where . (p(n-1),Sn-1), and pln) is restricted to [O, Ti(p(n),Sn)],i 1,2.
THEOREM 4.1. There is some 55 E (0,5.] such that p(n)

_
pi M(L) as

n - oc and pi is the unique fixed point of S satisfying ’(0) (pl, p2).
We need the following lemma.
LEMMA 4.2. There is some 5* (0, 5,] and v (0, 1) such that

Ip(n+3) p(n+2)l(n+3 _< Pip(n+l) p(n)l(n+l

for all p(O) M(5o), 5o

_
5", where T(i n) Ti(p(n) n), 1, 2.

Proof. Let F(n) u2(p(n)) u, G(n) ?.ix (p(n)) ull, u* u(p(n+l)) t(p(n)).
By (4.2) we have

p(n+2) ,(n+ .(n+2)F(n) (Y, (Y)) F(n)(Y, ,1 (Y)) + ?.t (y, t.1 (y)) O,

G(n) (p(2n+2) (z), z) G(n) (p(2n+l) (z), z) -- U (p(2nW2) (Z), Z) O,

which implies that

(4.15)
(n+2)(n+2) n(n+l) (y) --t(y, "1t"i (Y) tl (Y))/OzF(n)(Y, )

pn+2),(Z)_ (n+l) (n+2) )/OyG(n)(,z(z)

,(n-t-1) (n+2) ,(n-bl) ,(n+2)where is between t-’l (Y),v (y) and is between v2 (z), v2 (z). By
(3.5), (4:1), u* satisfies (3.31)on R(p(n+l),Sn+l)with U*,U(p(n)),U(p(n+l)) in place
of* u() u() and

(4.16) u t Ul (p(n))

t t t2(p(n))

(n+l)on z tl (y),
(n+l)on y -2 (z).
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Using (4.1) we can rewrite (4.16) as

(4.17) p(n+l)u’(y, (y)) h(y), (p("+’) (z), z) k(z),

where

(4.18)

By rewriting (3.31), (4.17) in an integral form and using (4.3), we can show that

(4.19)

for 5o <_ 5., where Ii" I1. --8upR(p(-),5.)I’1 and Ao depends on 1, (1-11)-, IVmI.
By (3.34) we have

(4.20)

where A1 depends on IVAI. From (4.18) we can see that

(4.21)

for 6o <_ 6,. Equations (4.19)-(4.21) imply that there is some 6’ E (0, 6,] such that for
5o<_5’

(4.22)

for all p(O) E M(5o), where A2 depends on 1, Ao, A. Combining this with (4.15), we
have
(4.23)

r,(n+l) pn)[pn+2) ,(n+l) [( Bn)lP(2n+l) p(2n)[.r(2n+l) + cn)n[k,1. [n+)-.1 .1+)
[pn+2) (n+l) Bin) ip(-+l)pn) Gin) _(n+l) pn)
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for 60 < 6’, where

This implies that

Ip(n+3) p(n+2)l(+3) < (B1B2 + B16260 + B2C16o
-4- B1CIo + B2C20 + 2 2 p(n+l)Clo)[

C(n)for 50 < 5’, where Bi suPn>0 B}n), Ci supn>0 1, 2. Using (2.2), (2.6),.
(3.1), (3.2), (3.4), (3.35), and (4.5), one can show that

0 0 (1-co)
2

lim B1B2 pl,o2 1 + coo-’*0

Choose v such that

--co)PP l+c0
<r,< 1.

Because of (4.5), there is some 5* e (0, 5’] such that

(BIB2 + B1C2o + B2C1o + BICIo + B2C2o + 2 2Co) -<"

for all p(O) E M(50), 50 < 5*. This completes the proof.
Proof of Theorem 4.1. Notice that because of (4.14)

2

k=O

for 60 < 6*. So by Lemma 4.2

60 6, < (Ip(=) P(’)I(= + IP(’) P()l-(,)2n/(1 v)(1 n2)_
4a5o/(1 )(1 n2).

Assume a, were chosen so that 4a/(1-t)(1-a2) < 1. Then there is some 5L e (0, 50]
such that p(,0 M(hL), n > O. Now Lemma 4.2 and the completeness of M(hL) imply
that p(n) pL M(hL) as n -- cx3 and S(pL) pL. To prove uniqueness, suppose we
have another solution p. Let < 5n be maximal such that a < p, p < 1 on R(p, ).
We can slightly modify the proof of Lemma 4.2 to show that pL p on R(p, ). We
know that > 0 since p’(0) (p0, p20), so n < p, p < 1 on R(p, ) by (4.6). This
implies that 5 5L, completing the proof. [1

Remark. We now modify the methods of this section to complete the argument
for Case vi in 2. Changing variables as in (3.1), (3.2), the free boundary problem in
Case vi is equivalent to (3.5) with boundary conditions

u-ur onz=p(y), u=u ony=#(z)
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where p is unknown, ur is as in (3.4), u is the transformed solution on P1, and y #(z)
is the transformed characteristic boundary of P2, so #’= A(ut) on y-- #(z).

Let p E C [0, 5], p’(O) po, where z poy is the right-moving interface in the
scale-invariant solution. Define u(p) to be the solution to (3.5) satisfying boundary
conditions

u,(p)=u[ onz=p(y), u(p)--u ony=.#(z).

The local existence of u(p) follows from Theorem 4.3 of [3], which is proven in essen-
tiMly the same manner as Theorem 3.1. The only difference is that, since u2 is used
as the left boundary condition, it must be verified that the solution obtained satisfies
ul u on y #(z). Define S(p) where u(y, (y)) u2(p)(y, (y)). As in Case ii,
we seek a fixed point pL of ’. We can modify the argument in this section as follows.

Choose E (0, p0), define T1 (p, 5) aS before with p, # in place of pl, p2, and define
R(p, 5) by

n(, ) {(, z) (z) < < +(z- (())) + ,(),
_< z _< -(- (())) + ()}.

(This is analogous to the previous definition of R(p, 5) leaving out the portion to the
left of y #(z).) Define

Mo(5) {p e CI[O, TI(p, 5)]’p(O) 0, p’(0) P0,

_
P’ _-< 1},

w,() max{w(25l, nl(Vu, v*, ,}), ,(n),

Omit all references to p2, g2, and G. Replace pl by p and T, Ti by ’1 throughout. In
place of (4.8), we have

where K4, K5 are as in the proof of Lemma 4.1. Hence, in place of (4.10), we have
that

(e, vl’) < c(5),(v),
where C1 is as in the proof of Lemma 4.1. So, to prove Lemma 4.1 in this case, we
just choose K1 > C1 (0) and 5, such that 61(5,) <_ K1 for all p M(5,).

In (4.16), replace -2 by # and notice that h2 --- 0o Hence, in place of (4.22),
we have

[]ul[5.+ <_ Ae5llOu(p()) OzU[llb.lp(n+) P(n)I-+),
and so in place of (4.23) we have

Ip(n+) p(n+l)[,+.) _< C15nlp(n+1) p(n)[r+),
where A, C1 are as in the proof of Lemma 4.2. Now choose 5" such that C5" < ,
for all p(0) M(5*). The rest of the argument is the same.
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Abstract. This paper considers a system of coupled second-order parabolic and first-order
hyperbolic equations arising from the age-dependent diffusion population dynamics with an infectious
disease. The diffusion is assumed to be nonlinear, which leads to the parabolic equation being
degenerate. A notion of weak solutions is introduced. Under mild conditions, the authors have
proved the global existence of weak solutions. The result is further improved for the one-dimensional
case.

Key words, population model, nonlinear diffusion, coupled parabolic, hyperbolic equations
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1. Introduction. In this paper we study the population dynamics of a single
species with an infectious disease. The population is divided into two groups: sus-
ceptibles (who can catch the disease) and infectives (who can infect the disease). We
consider the problem in the whole space ]Rn (in practice, n _< 3) and whole time in-
terval [0, oc). By (x, t) E lRn [0, cx) we mean "at location x and at time t." We let
a E [0, c) be the age of the infectives since catching the disease. Next, we let p(x, t, a)
be the age distribution of the infectives. Roughly speaking, this is the number of in-
fectives who have caught the disease for time length a (time units, say days or hours)
at location x and at time t. Thus, the density of the infectives at (x, t)
is

(1.1) u(x, t) =_ p(x, t, a)da.

The density of the susceptibles at (x, t) is denoted by v(x, t). In this paper we do
not consider the birth and natural death. Such a mixed situation will be considered
in our future works. We let A(x, t, a), /(x, t, a), and ’(x, t, a) be the death rate for
the infectives from the disease, the recovery rate, and the infection rate at (x,t,a),
respectively. If there is no diffusion with respect to the space variable x lR’, then
all the functions are independent of x and we have the following equations for p and
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(+ (o, )):

t E IR+,

See [15], [2], [11], and [17] for the relevant details. Now we are interested in the case in
which the population is also subject to space diffusion. We assume that the diffusion
is a result of overcrowding. From the model introduced in [9] (also see [1], [3], [4], [8],
[10], [13]-[15]), the diffusion velocity can be taken as -V(u + v). Here we notice that
u + v is the density of the total population. It is clear that to take this diffusion effect
into account, we need to add terms V. [pV(u + v)] andV. [vV(u + v)] into the first
two equations in (1.2), respectively. This can be justified by the conservation of the
population in both of the two groups (infectives and susceptibles). Hence, we end up
with the following system:

(1.3) Pt 3
t- Pa V" [pV(It -4- V)] ,(X, t, a)p (x, t, a)p,

(x, t, a) E IR’ x IR+ x R+,

(1.4)

(/o ) /ovt V. [vV(u + v)] ")’(x, t, a)p(x, t, a)da v + Z(x, t, a)p(x, t, a)da,

(X, t) E ]Rn x ]PtA-

with the following initial conditions:

(1.5) p It:o po(x, a), (x, a) E ]Rn X ]R+,

(/o )(1.6) P la-O-- /(X, t, a)p(x, t, a)da v(x, t), (x, t) E lRn x IR+,

and

(1.7) v It=o vo(x), x E IR.
Now let us further simplify the model to catch the essence of it. To this end we let
A, fl, and 7 be independent of a. Then the density u of the infectives defined in (1.1)
and the density v of the susceptibles satisfy the following coupled system:

(1.8) ut V. [uV(u + v)] + 9/(x, t)uv [A(x, t) + (x, t)]u, (X,t) E Rn X ]R+,

(1.9) v v. [vV( + v)]- (x, t)v + (, t), (x, t) E IR’ x IR+.
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If we set

(u)p- A--
V V V

equations (1.8)-(1.9) can be written as

Pt AAp G(x, t, p, Vp)

with some nonlinear function G. This system is not parabolic since the matrix (A +
AT)/2 has a negative eigenvalue if u :/= v. To overcome this difficulty, we introduce a
new variable w u / v. This is nothing but the density of the total population. Then
system (1.8)-(1.9) can be transformed into the following form:

(1.11) wt V" (WVW) )U, (X, t) e ]Rn x ]R-{-,

(1.12) ut Vu Vw + uAw + (’rw A )u "ru, (x, t) IR x IR+

with initial conditions

(1.13) u It=o uo(x) po(x, a)da, x e IRn,

 0(x) e

For fixed u, (1.11) is an inhomogeneous porous medium equation and for fixed
w, (1.12) is a first-order nonlinear hyperbolic equation, which is not of conservation
law type. Hence (1.11)-(1.14) is a Cauchy problem for a system of a second-order
degenerate parabolic equation coupled with a first-order hyperbolic equation. For the
porous medium equation we know that, in general, there exist no classical solutions if
the initial data is not strictly positive everywhere. Thus we cannot expect to have a
classical solution for (1.11)-(1.14). In this paper, we study the weak solutions for this
system. In 2 we introduce the weak formulation of (1.11)-(1.14). Section 3 is devoted
to the study of the approximate problems. The existence of weak solutions will be
proved in 4. In 5, the age distribution function p for the infectives is recovered from
(1.3). Finally, in 6 the one-dimensional case is discussed.

2. A weak formulation. In this section we introduce a weak formulation of
(1.11)-(1.14). Let us first introduce some notation. Let t ]Rn. For any T > 0 we
denote T (0, T) x IRn, ( [0, T) x 1Rn, and T [0, T] x ]R’. For any integer
k > 0, let Ck(t) be the set of all k-time continuously differentiable functions u(x)
defined on t with all partial derivatives up to order k (inclusively) being bounded. The
norm of Ck(t) is denoted by [I-lick(a). For k >_ 0 and 0 < c < 1, we denote Ck+(Ft) as
the Banach space of all functions u(x) in Ck(t) with the kth-order partial derivatives
being a-Hblder continuous. The norm of this space is denoted by I1" [Ick+() We can
define the spaces Ck(T) and Ck+a(tT) in a similar way, treating x and t equally.
Finally, we let C() be the set of all functions { which belong to Ck(T) for any
k > 0, and satisfy {(T,x) 0 for all x E IRn and {(t,x) 0 for t > 0 and Ixl > M
(for some M > 0).

Next we need to introduce spaces which are suitable for parabolic problems. To
this end, we define the parabolic distance as follows:

(2.1) d((x,t),(x,,t,))=(Ix-x,12+lt-t,I)l/2
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For 0 < a < 1, we denote C,a((T) as the space of all functions u(x, t) in C((T) for
which

IlUlIco,=(T) IlUlIco()+
I(x, t) u(x,, t’)l

sup
(x,t),(,’t’)efir,(x,t)(x’t’) d((x, t), (x’, t’))a

is finite. We set C,(T) CO(T) with the same norm as C((T). For 0 <_ a <_ 1,
we define the space CI,(T) as the set of all C(T) functions u(x,t) in C(T)
having the first-order partial derivatives in x with

(2.3)
n

i=1

being finite, and we define C2, (tT) as the set of all functions u(x, t) in CI((T) having
the second-order partial derivatives in x for which

(2.4)
n

Ilullc=,() Ilullc,,() + Ilullco,() + Ilu, IIco,()
i,j=l

is finite.
Throughout of this paper, we make the following hypotheses:

(e.5) (x, t), Z(z, t), (x, t) e c, (a x a+),

(2.6) wo, uo e C2A-a(n),

(2.7) 0 <_ A, fl,’y _< M for some constant M,

(e.8) wo(x) > uo(x) > o Vx .
Also, either

(2.9) wo(x) >_ o > O Vx R

or wo(x) has a compact support and satisfies

(2.10) wo(x) >_ M0dist (x, F0) Vx E ]Rn with wo(x) > O,

where M0 > 0 is a constant and F0 O{wo > 0} is the boundary of the support of
W0.

The first two assumptions are for convenience, which can be slightly relaxed. The
rest of them are assumed for technical reasons; also, they are physically reasonable.

Suppose (w, u) is a classical solution of (1.11)-(1.14). Multiplying (1.11) by any
e C(t) and then integrating by parts, we obtain

(2.11) 9f { 1 } /lwt Vw2" V-u dxdt wo(O,x)dx O.
T
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On the other hand, (1.12) can be written as

(2.12) u V. [uVw] + (’w A D)u 7u2, (x, t) e IR" x IR+.

Thus, multiplying (2.12) by any r] E C(t,) and integrating by parts, we have

Let us introduce the function O(r, s) as follows:

S

O(r,s)=
r>O,

0, r_<0.

Then we can write (2.13) as follows:

(2.15)
/ {ut -l o(w, u)Vw2 V + [(Tw A l)u Tu2]} dxdt

T

f, uon(O, x)dx O.

The above analysis suggests that we introduce the following weak formulation for
(1.11)-(1.14).

DEFINITION 2.1. A triple of functions (w, u, X) defined on T is called a weak
solution of (1.11)-(1.14) in 12T if the following hold:

(2.16) w, u, X L(T), Vw2 Loc(T),

(2.17) w >_ u >_ 0, w2 >_ ) >_ u2 >_ 0,

and (w, u, X) satisfy (2.11) and

(2.18) fa {urt -l o(w,u)Vw2 V? + [(/w A )u-/X]} dxdt
T

-/Rn uo(O, x)dx 0

for all , e C(t). If (w, u, X) is defined on ]Rn (0, c) and is a weak solution
in T for any T > O, we call it a global weak solution of (1.11)-(1.14).

Note that by (2.17), 0 _< 0(w, u) _< 1. Hence (2.18) makes sense.
In the next sections, we will show that there exists a weak solution (w, u, X) of

(1.11)-(1.14). Here we point out that the u2 in (2.13) has been replaced by X in (2.18).
This is technically necessary because we will encounter the weak convergence of some
approximate sequence ue of u. It is well known that the weak limit X of u2, if it ever
exists, is not necessarily equal to u2. From the above definition of weak solutions, it
seems that the function X is not well determined. However, the following result tells
us that this X cannot be arbitrary.
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PROPOSITION 2.2. Suppose that A > 0 and / > O. Let (w, u, X). and (, ,) be
two weak solutions of (1.11)-(1.14) in the sense of Definition 2.1. Then the following
hold:

(i) If w , then u and x .
(ii) /f u , then w and X .
Proof. (i) Let w . By (2.11) we obtain u . Then by (2.18) we have X -We can similarly prove (ii) by using (2.11) and (2.18). [3

The above result implies that the function X is uniquely determined by the pair
(w, u) in the case in which A, /> 0. This, however, does not say that the weak solution
is unique. In 4 we will give another alternative way of representing the function X via
the so-called Young measure. In 6 we will further show that for the one-dimensional
case, if the initial data To(x) has a positive lower bound, then

(2.19) )/(x, t) u(x, t)2.

Hence (w, u) actually satisfy (2.11) and (2.13) in this case.

3. Approximate problem. In this section we study the following approximate
problem of (1.11)-(1.14)" Let T > 0,

wt V-(wVw) Aw + AE(w u) in

(3.2) ut Vu- Vw + (AT + "yw fl)u 7u2 in -T,

(3.3) W It-o TO(X) "3
t- E -- W(X), X e ]Rn,

(3.a) I =0  0(x) + -= x e

In the above, 0 < E, 5 < 1; E(s) is a nonnegative smooth function defined in lR non-
decreasingly converging to Eo(s) =- max{s, 0} as 5 0, and with E(s) being bounded
independent of 5 (this is possible since Eo(s) is Lipschitz continuous); and is an
E-mollifier

with
( e CX)(]Rn+l), supp C {(x,t) e ]Rn+l Ix] 2 + t2 < 1,t k 0},

(x, t) > O, /rn+l (x, t)dxdt 1.

We call problem (3.1)-(3.4) the approximate problem of (1.11)-(1.14).
We have seen that (3.2) is the same as (1.12). However, (1.11) is changed to

(3.1). The purpose of making this approximation is that if w is a solution of (3.1),
then w > 0. We do not a priori have such a property for a solution of (1.11).

The main result of this section is the following theorem.
THEOREM 3.1. There exists a unique classical solution (we,5, ue,5) of (3.1)--(3.4)

for any T > O. Moreover, this solution satisfies

(3.5) (@o + <_ <_ Ilwollco( ) + (x, t) e
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O<ue,5(x,t)<_we,e(x,t) V(x,t) eT VT>0,

where 0 infe wo(x) >_ O.
To prove the above theorem we begin with the study of equation (3.1). In what

follows we let To > 0 be fixed and 0 < T <_ To. The following lemma was proved in
[11].

LEMMA 3.2. Let w E C(T) with D2w CO(T) and (2, t-) T. Then there
exists a unique solution b(t; 2, t-) of

(.7)
d__ =-Vw( t)
dt
(; , t) =.

0<t<T,

Moreover, the solution (t; 2, t-) is differentiable with respect to all its arguments and
satisfies

(3.8) 0(t; 2, t-) DO(t; 2, tVw(2 t-) t e [0, T]Ot

(3.9)
d
DO(t; 2, t-) -D2w(O(t; 2, t-), t)DO(t; 2, t-),

D(-; 2, t-) I.

Consequently,

(3.10) ID2(t; 2, t-)l <_ eTIIDllc(aT), t e [0, T].

We refer to the solution of (3.7) as the characteristics associated with w. The
following result gives a representation of solutions to (3.2) and (3.4).

LEMMA 3.3. Let w C(T) with D2w C(tT). Let (t; 2, t-) be determined
by (3.7). Let u be a classical solution of (3.2) and (3.4) in tT. Then u can be expressed
a8

(3.11) u(2, t-)
1 + u((0; 2, t--))ffo((t;2, t-),t)ef h((;’t-)’)ddt

where h(x, t) Aw(x, t) + /(x, t)w(x, t) A(x, t) (x, t).
Proof. We fix (2, t-) T and set

u(t) ((t; , t-), t).

Then u(t) satisfies the following:

(3.12)

du(t)
dt

h((t; 2, t-), t)u(t) "u(t)2,

(0) uS(C(0; , t) > 0.
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it follows from (3.12) that u(t) > 0 for all t e [0, T]. Thus q(t) is well defined
and satisfies

(3.13)

dq(t)
-hq(t) + 9/,

dt
1

(0) (0)"

Hence,

(3.14) q(t) - fo "q(o) + ,- L "ao
We thus obtain (3.11) by taking t {. F1

Note that u can always be defined by (3.11) provided Aw E C(9tT). However, if
w has no more regularity, this function may not necessarily be a classical solution of
(.).

LEMMA 3.4. Let w C((T) with Aw CO(T). Let u be defined by (3.11).
Then

(3.15) IlUllco((T <_ (1 + I[UO[ICO(2) )eT(llAwllc(aT +MIIwllc(aT)).

Proof. It is easy to see that (note (2.7))

(3.16) efo (A+’--)dt
_

eT(IIAwlIcO(aT)+MIIwlIC((T)), - [0, T].

Hence (3.15) follows from (3.11) (since 0 < e < 1). [:]

LEMMA 3.5. If u C(T) and u(x,t) >_ 0 on fT, then (3.1) and (3.3) admit
a unique solution w C2,a(T) with c E (0, 1) only depending on > O. Moreover,
this solution satisfies (3.5).

Proof. For any a > 0, we let G(s) C be a function satisfying

(3.17) a.()
/, < /

and G(s) >_ a/2. Since E6 is C with E bounded uniformly in 6 > 0, by the standard
results for the nonlinear parabolic equations [12], for any u C(tT), the Cauchy
problem

(3.18)
t V. [G()V] -+ AE6( u),
(0, x) %(x)

is uniquely solvable in C2,a((T). On the other hand, since E6 >_ 0, we get

(3.19) t V. [G()V] +A >_ 0.

By the maximum principle we thus obtain

(3.20) (x, t) > (0 + e)e-Mr V(x, t) .
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Therefore, if we choose a < e-MT at the beginning, then z is actually the unique
solution of (3.1) and (3.3). Now we rewrite equation (3.1) as the following:

(3.21) , v. (v) + (x, t) 0,

where

(.ee) (x, t)
),E( u)

By (3.20) we know that z0 > 0. Thus, note that q u >_ 0 and E5 T Eo; we have

(3.23) 0 < Es(z0 e u) < Eo(z0 e u) < 1.

This yields that

(3.24) 0 < c(x, t) < M, (x, t) E T.
Hence, by maximum principle we obtain

(3.25) (:, t) <_ IIollco(a)+ .
Combining (3.20) and (3.25), we obtain (3.5). El

We now construct a mapping A’C2,(tT) C2,(gtT) C,(gtT) as follows:
For any w E C2,(tT), let u C(FtT) be defined by (3.11). We designate @ .Aw
as the unique solution of (3.1) and (3.3). From the above arguments A is well defined
and satisfies (3.5). We have the following lemma about this map.

LEMMA 3.6. There exists a T1 (0, T] such that the map A C2,(fT1)
C2,(T1) admits a fixed point w we, e C2,a(T).

Proof. Consider the convex and closed set

B- {w e C2,(T,) Ilwllc-.o()<_ K},

where 0 < T1 < T and K > 0 are undetermined. From (3.21) and (3.24), by maximum
principle, the Lp-estimates, and the Sobolev inequalities we get

(3.26) IIzOIIcx,(fr1) <_ C(, T).

Here, the constant C(,T) depends on because of (3.20).
Schauder estimates, we derive (note (3.15))

Then, applying the

(3.27)

We now take

(3.2s)
K C(e,T) 1 + Ilxoollc=/(a) + -1
rl Tl (e, r, Ilwollc-+,,(a), Iluollco(a)),K(1 + M)
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Then, from (3.27) we see that 4 maps B into itself. It is clear that this map is
continuous and compact. By the Schauder fixed point theorem ,4 possesses a fixed
point. [:l

LEMMA 3.7. Let w w, be a fixed point of the map A in C2,(T1) and let
u =_ u, be defined by (3.11) with =_ , being the characteristic associated with
w,. Then u e CI(T1) and (w,u) =_ (w,,u,) is a classical solution of (3.1)-(3.4)

Proof. To show that (w, u) is a classical solution of (3.1)-(3.4) on fiT1, we only
need to verify (3.2). Since w satisfies (3.1), we get

(3.29) Aw((t; 2, t-’) t)
1 dw((t; 2, t-), t)

w((t; 2, t-), t) dt + c((t; 2, t-), t),

where (-;2,t-) is the characteristic associated with w w, (see (3.7)) and c(.)
is defined by (3.22) with (, u) (w,u) =_ (w,, ue,). Hence (still let h(x,t)
Aw +w ; )

Clearly, the right-hand side of (3.30) belongs to C (as a function of (t, 2, t-)). By
(3.11), the definition of u, and (3.30), we have

u((0; 2, t-))g(; 2, t-)
1 + u((0; 2, t-)) f: 7((t; 2, t-)g(t; 2, t-)dt"

Therefore u e C (see (3.8)-(3.10)). Furthermore, by (3.8) we derive

(3.32) 0- ((0; , t-)) Vu)((0; 2, t-))Dp(0; 2, t-)Vw(2, t-)

Analogously, we have

(3.33) (t; t-) v a(t; t-). t-)0

and

(3.34)
0g

(t; 2, t-) h((t; 2, t-) t)g(t; 2, t-)Ot
(AT + 7w )g.

Then, by direct computation, we are able to show that u satisfies (3.2).
Next, from (3.11), u > 0 on 2T. Then, by Lemma 3.5 we know that (3.5) holds.

Finally, we set v w u. Then v solves

(3.35)
Vv. Vw (AT 7u)v flu + AE(w a u) > O,

It=o=wo-uo=vo >_0.
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By integrating v along the characteristics (3.7), we obtain v >_ 0. Hence u <_ w. This
completes the proof. []

Now, we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. By Lemma 3.7 we know that there exists a T1 _< T such

that (3.1)-(3.4) has a classical solution on -T1. Let us show that the classical solution
on F/T1 is unique. To this end we suppose there are two solutions (wi, Ul) and (w2, u2)
in fT- Let U u2 and w2 w2. Then

1
(Wl -- w2)A V(Wl -I- w2). V? -t- al a2(e * ,tot

(3.37) t V" VWl bl -- be,

(3.38) It=0 0,

(3.39) It=o 0,

where

1A(w +we) A + a2al--

j0 +

bl AWl -t- 7Wl A --/ --7(ul -!- u2),
b2 Vu2 Vz + (A +

Since wl,w2 E C2,a(tTt) and ul,u2 e CI(’)T,), we have

(3.41)

Integrating (3.37) along the characteristics corresponding to Wl, we.get

(,, t--) fO0 eft bl ((’r;,t-),T)dT b2dt.

Hence, for any T1 _< T1 we have

(3.43) [g(i,t-)[ <_ {CIIb2{Ico(fi <_ {CIlD2llco(() V <_ T1.

On the other hand, by Schauder estimates we get from (3.36) that

(3.44)

Substituting (3.44) into (3.43), we obtain that in

(3.45)
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Note that Ce does not depend on T1. Hence it follows that 0 in gtl if T1 <_

(2Ce) -1. Then 0 in the same region. Repeating this procedure, we can get
0 in tT1. This shows the uniqueness of the local classical solutions of

(3.1)-(3.4).
Next we prove the existence of global classical solutions. To this end we only need

to derive some a priori estimate. Suppose (w, u) is a classical solution of (3.)-(3.4)
satisfying (3.5)-(3.6). Then, for any T _< T, similar to (3.27), we have

(3.46)

IlWllc2,.(Ce <_ C(e, T)[1 + Ilwollc.+.(a) + IIpe

[ ]<_ C(e,T) 1 + ]lwollc=+(a) + -(llwollco(a) / s)

_< ’(, T)(1 +

In (3.46), we have used (3.5)-(3.6). Since the above estimate is uniform in T e [0, TI,
we can repeat the procedure given in the proof of Lemma 3.6 to extend the solution
(w, u) to tT. Since for any T > 0 there exists a unique classical solution (w, u) in tT,
the solution can be extended to f x (0, oc) to get a global solution. D

4. Existence of weak solutions. In this section we show the existence of a
weak solution to (1.11)-(1.14). From the previous section we know that for any 5, e >
0, there exists a unique classical solution (we,s, ue,e) of the approximate problem (3.1)-
(3.4). We first study the limit as 5 0.

LEMMA 4.1. For any > 0 there exists a classical solution (we, ue) of

(4.1) v. [w] -+ E0( )

and (3o2)-(3.4) such that

(4.2) We(X, t) (0 2t- )e-Mto

Proof. For fixed T > 0, from (3.5)--(3.6) we know that w5,e and ue,e are bounded
uniformly with respect to 6 > 0. By the Schauder estimates (see [12]) we have

(4.3)

It follows from (3.11) that

(4.4) Ilue,5[Ic(fir) _< C(, T).

Hence we can select a subsequence, still denoted by itself, and we E C2,a(T), ue
being Lipschitz, such that for some

(4.5) w,5

(4.6)

ms 5 --* 0o By the diagonal argument we can further select a subsequence and we
C2,.(IR+ x IR’), u being Lipschitz in IRn x ]R+, such that (4.1) and (4.2) hold in
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’T for any T > 0. It is clear that (we,u) satisfies (4.1). Since the characteristic
(3.7) depends continuously on D2wa,, we can pass to the limits through (3.11). It
follows that the limit ue has the same expression (3.11). From the proof of Lemma
3.7, u e C and (w, ue) satisfies (3.2). Finally, (4.2) follows from (3.5)-(3.6) and

Next, we look at the variational forms of the e-approximate solution (we, u). It
is easy to see that for any , /e C (c), (we, ue) satisfy the following:

(4.8)
/o{ 1

ult O(we, u)Vw2 Vr/+ [(’yw A fl)ue "yu]rl dxdt
T

where is defined by (2.14). We call (we, u) the s-approximate solution.
LEMMA 4.2. Let (we,u) be as in iemma 4.1 and T(R) BR(O) (O,T),

where BR(O) is the ball in IRn centered at the origin with radius R. Then there exists
a constant C(R), depending only on R, such that

f
(4.9) ] IVwlldxdt <_ C(R) Ve > O.

dn

Proof. In (4.7) and (4.8) we put 2T in place of T and w22 in place of with
E C(lRn x lit+), 0 <_ _< 1, 1 on fT(R), and 0 outside of fl2T(2R). It

follows that

We have

w2(we)t2dxdt -(w3)t2dxdt
2T 2T

2
tw3dxdt- g (wo + )3(x, O)dx.

3
2T

Since w and ue are uniformly bounded, (4.9) follows from (4.10).
LEMMA 4.3. Let (we, u) be the -approximate solution. Then there exist w

C,a(T), u L(fT) such that for any bounded open set Q c :n X :+,

(4.11) ue --+ u, weakly in L2(Q),
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(4.12) Vw2 Vw2, weakly in L2(Q),

we - w strongly in Co,(Q).

Proof. For fixed R > 0 and T > 0, from Lemma 4.2 and the previous section
Vw2, and ue are bounded in L2(T(R)). Hence we can select a sequence such that
(4.11), (4.12) hold in T(R). By [5] and [6], we know that there exists a subsequence
such that (4.13) holds in T(R). Then the assertion of the lemma follows from the
diagonalization argument.

We now can pass to the limits in (4.7). The limit w is a weak solution of the
porous medium equation

(4.14) wt V. [wVw] -Aw +
where G is the weak limit of Eo(we - Ue). Set

+ {(x, t) e .(, t) > 0};

FT is the boundary of tT+. Since w is continuous, gtT+ is open. Let fit {x E ]Rn
w(x, t) > 0}. To study the properties of tt, we need [10, Lem. 3.6]. For the reader’s
convenience, we state that result here.

LEMMA 4.4. Let g(x, t) be a bounded function in T; w is a weak Solution of

(4.15)
v. (w) o(x, t)

w(x, 0) o(x) > 0.

Let t and FT be defined as above. Then ft is increasing in t and the (n + 1)-
dimensional Lebesgue measure of FT is zero.

For our problem we have the following result.
LEMMA 4.5. Suppose wo(x) has a compact support and (2.10) holds. Let (w, u)

be a limit of s-approximate solutions (we, ue) in the sense of (4.11)-(4.13). Then the
region ft is increasing in t and the boundary FT of f+T has the (n + 1)-dimensional
Lebesgue measure zero.

Proof. Since 0 _< Eo(we - ue) <_ we, we have 0 _< G _< w. Let

(4.16) g _A + A
G
W

Then g is bounded and w satisfies

(4.17) wt V. (wVw) gw.

Thus the assertion follows from Lemma 4.4.
THEOREM 4.6. There exists a weak solution (w,u,x) of the problem (1.11)-

.o,(+).(1 14). Moreover, w C,(fT) and Vw "1o

Proof. From Lemma 4.3 we can select a subsequence such that (4.11)-(4.13) hold.
For any C(tr we write
(4.18)

Eo(we * ue)dxdt
T

, + [ , ,
T J]T
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Since ue u weakly in Loc(fT), it is clear that qoe ue --* u weakly in Loc(T).
Hence

f
A(we 99e * ue)dxdt --./ A(w u)dxdt.

T T

By the definition

(4.20) Eo(we 9e * ue) (we 99e * ue) { 0

(w u)

if we 99e * ue _> 0,

if we-gae*ue <0.

On the other hand, by (4.2),

It follows that for any (x, t) E T,

since we -* w in CO’a(]T) locally. Hence

A[E0(we qoe ue) (w oe ue)]dxdt --. O.
T

This yields that

(4.24) Eo(we e * ue) -- A(w u) weakly in Lloc(tT).

Thus (2.11) follows by sending e 0 in (4.7).
In gtT+, w > 0. Applying the Cl,"-estimates [7], [12] in (4.1), we find that in

any bounded open set Q with O c fT+, Ilwel[cl,,(Q) is uniformly bounded. Hence,
after extracting a subsequence, Vwe --. Vw everywhere in tT+. In the case in which
(2.9) holds, f, fT. Therefore the proof is complete. We now suppose that wo(x)
has a compact support and (2.10) holds (case (2.9) is simpler). Then, for any point
(xo, to) T+, let B2r(xo, to) C ,T \T+ be a ball centered at (xo, to) with r > 0 small
enough. We choose a smooth in (4.10) such that 1 in Br(xo, to), 0 _< _< 1 and

0 outside of B2r(xo, to). From (4.10), we get

f
(4.25) I IVw[edxdt <_ C sup Iw(x, t)l-+ 0, - 0.

JBr(XO,tO) (x,t)B2r(xo,to)

Therefore

(4.26)

By Lemma 4.5 we know that; FT has measure zero. Thus Vw ---, Vw: almost every-
where in tT. Finally, since 0 <_ ue we and we -- w, we have

(4.27) O(We, ue) O(w, u) weakly in L()T).
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Let X be the weak limit of u2. We now pass to the limit in (4.8) to obtain (2.18). The
proof is completed.

To conclude this section let us give another way of expressing X using the so-called
Young measure. The result is stated as follows.

PROPOSITION 4.7. There exists a parameterized probability measure u(x,t, dr)
supported on [0, w(x, t)] such that

(4.28) u(x,t) ru(x,t, dr)
Jo

a.e. (x,t) e (0,

(4.29) X(x,t) r2,(x,t, dr)
JO

a.e. (x, t) t (0, (x).

Proof. We choose the sequence ue such that (4.11) holds. Then, as in [16], we
can find a parameterized probability measure (x, t, dr) supported on [0, w(x, t)] such
that

(4.30) F(u2(x, t)) " F(r)u(x, t, dr) in L2(Q)
J0

for any continuous function F and any bounded open set Q c t (0, ). Thus, we
obtain (4.28)and (4.29). U

We see that the above result gives a relation between u and Xo As soon as the pa-
rameterized measure (x, t, dr) is determined, the functions u and X are automatically
determined.

5. Existence of weak infective age distributions. In the previous section
we proved the existence of weak solutions (w, u, X) of (1.11)-(1.14). In particular we
found a density u of the infectives. From our original model we also need to find an
age distribution p(x, t, a) of the infectives. The purpose of this section is to determine
such a distribution. Hereafter we let j4(0, x)) be the set of all finite Borel measures
on [0, c). The spaces LP(T;J(O, oo)), (1 _< p._< cx)) are defined in an obvious way.

For convenience let us rewrite equation (1.3) and conditions (1.5), (1.6) for p in
the present case (i.e., A, , and /are independent of a, and v w u):

pt + p, V. [pVw]- A(x, t)p- l(x, t)p, (x, t, a) e R x 1R+ x IR+,

(.:) I,=0 po(, ), (x, ) e n x n+,

(5.3) p la:=0 /(X, t)[u(x, t)W(X, t) U(X, t)2], (X, t) e ]pn x ]R+.
We observe that if all the data involved in (5.1)-(5.3) are smooth and p is a classical
solution of (5.1.)--(5.3) smooth up to the boundary {t 0}U{a 0}, then the following
compatibility condition should satisfy:

(5.4)
p0(, 0) (x, 0)[0(x)0(x) 0():]

/(x, O)vo(x) po(x, a)da, XEn
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Here, we should note that po(x, a) and vo(x) are given functions. Also, it is reasonable
to assume that

(5.5)

P0 E L (Rn R+) N C1 (]Rn X ]R+),
po(x, a) >_ 0, (x, a) E]Rn x ]R+

x)

e C ]Rn) L lRn ).po(x, a)da so(x)

.In what follows, we will keep assumptions (5.4) and (5.5). On the other hand, if an
age distribution p(x,t,a) exists on T satisfying (5.1)-(5.3) and (1.1), then for any
C(, [0, oc)) we have

(5.6)

As in 2 we may also write (5.6) as follows:

(5.7)

where (., .) is defined by (2.14). This suggests that we give the following notion
(compare with Definition 2.1).

DEFINITION 5.1. Let (w, u, X) be a weak solution of (1.11)-(1.14) on T and let
po be given satisfying (5.4)-(5.5). We call p LC(QT;jI(0, oc)) a weak infective
age distribution associated with (w, u, X) on QT x [0, oc) if p(x, t; .) is a nonnegative
measure for almost all (x, t), having the property

(5.8) p(x, t, da) u(x, t) a.e. (x, t) e T,

and for any e C ( x [0, oc)),

(5.9)

If the above holds for all T > O, we simply call p a weak infective age distribution
associated with (w, u, X).

We note (see (2.14)) that the function is nonnegative and for any bounded open
set Q c T,

O(w(x, t) p(x t, da))dxdt --/O. u(x, t)
w(x, t) dxdt <_ meas Q.
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Thus, the term involving O(w, p(x, t, da)) on the left-hand side of (5.9) makes sense.
Our main result of this section is the following theorem.
THEOREM 5.2. Let Po satisfy (5.4)-(5.5) and (wo, no) be as in previous sections.

Then there exists a weak solution (w, u, X) of (1.11)-(1.14) for which there is an as-
sociated weak infective age distribution p.

To prove the above result we let 0 < e, 5 <_ 1 and let (w,, u,) be the solution
of (3.1)-(3.4). Consider the following system:

(5.10)

Note that

(5.11) p(x, O) /(X, O)[U(X)W(X) t)(X)2] Oe,5(X, O) VX e :n.

This compatibility condition is needed to obtain a classical solution of (5.10).
We have the following lemma.
LEMMA 5.3. There exists a unique classical solution pe,5 of (5.10), which is given

by

(5.12) p,5(2, -, ) { p((0; 2, t-), t-)ergo e((t;,t-),t)dt, <_ ,
o,((- a; , t-), a)ef- ((;,,t), >_ a,

where (.; 2, t--) e,5(.; 2, t-) is the characteristic associated with w,5

(5.13)
de
dt -Vw,(,t),

and Aw,5 . Moreover, this solution satisfies

(5.14) p,5(x, t, a)da u,5(x, t), (x, t)

Proof. Suppose p is a classical solution of (5.10). We let be defined by (5.13)
and set

Z(t) ((t; , t-), t, t + a),

Then we see that

d
(5.16) -fi(t) Pt " Pa Vp" VWe,5 (t); (t p(’, t).

Hence we can obtain that p has the form (5.12). This gives the uniqueness of classical
solutions of (5.10). Next we let p,5 be given by (5.12). Then, as in the proof of
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Lemma 3.7 we are able to show, with some lengthy but straightforward computation,
that p, is a classical solution of (5.10). Now we compute

This completes the proof of the lemma.
We note that (see (3.30))

(5.18) ((0; , t-))

w,((- a; , t-), - a)

where (see (3.22))

Thus, from (5.12) we obtain that for _< a (see (3.5)--(3.6)),

(5.21) 0 _< p,5(2, , a) < / M(llwollco(n) / )

and for t _> ,
o < p,(,{,a) < M(llwollco()+ ).

This proves the following corollary.
COROLLARY 5.4. The solution p,6 satisfies

(5.23)
o _<p,(., -, a) < [lpollco(n) + M(llwollco(n) + )

V(, -, a) IR’* x IR+ x IR+.

Now we are ready to prove Theorem 5.2.
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Proof of Theorem 5.2. First we will let 6 0. By (4.5)-(4.6) we know that

(5.24) Ce,5(t; 2, t-) Ce(t; 2, t-), 5 - 0,

uniformly for (t, 2, t-) in any compact set, where Ce is the characteristic associated
with we. Thus, by (5.12) and (5.18)-(5.19),

uniformly for all (2, -, 5) in compact sets and

(.e6) p(, , a) { p5((0; ,, a o ((;’’), _< a,

0((- a; , t-), - )f- ((;’’), >_

with 0e /(uewe- u2) and /e Awe- - . By (5.14) and (5.23), using the
dominated convergence theorem, we have

(5.27) pe(x, t, a)da ue(x; t) V(x, t) e gtT.

On the other hand, using the variational forIn for pe,5 and sending 5 -- 0, we have

Next we need to send e --, 0. By (5.27) and (5.23) we see that for any A > 0, {p}e>0
is bounded in L(tT;LI(O,A)). Since

L(tT; LI(0, A))--. L2(FtT;J4(O,A)) L2(tT; C([0, A]))*,

we may let (using the diagonalization argument)

(5.30) pe -- p weakly in L2(tT; A4(0, A)) VA > 0.

Then, for any E C(T [0, c)), to obtain (5.9) we only need to prove the following:

(5.31) Vw2-V0(we, pe)dxdtda /nr [0,) Vw2.VO(w, p(x, t, da))dxdt.

It is not hard to see that {0(we, pe)} is bounded in L(T; j(0, )). Thus we may
assume that

(5.32) O(We, p) --* 0 weakly* in L(I)T; .h4(O, c)).

By (5.30) and the convergence we --* to (uniformly in any compact sets; see 4), we
can easily identify that 0 O(w(x,t), p(x, t, da)). On the other hand, from the proof
of Theorem 4.6 we have Vw2 -+ Vw2 almost everywhere and weakl in Lu(fftT). Thus,
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by Lemma 4.5 we can prove (5.31). Then, passing to the limit in (5.28), we obtain
(5.9). Finally, by (5.27) and (5.30) we immediately obtain that for any E C(T),

(5.33)
udxdt lim/ uedxdt

T T

lim (pedxdtda p(x, t, da dxdt.
T X[0,o) T

Hence (5.7) follows. E]

Remark 5.5. If there exists a a > 0 such that

(5.34) wo(x) > a Vx e ,
then (5.23) can be replaced by

(5.35)
o <_ p,(, {, a) <_ Ilpollco(n) + M(llwollco(n) +)

V(, , ,) E la’ x lP,,+ x IPC.

In this case we see that the weak infective age distribution p is actually in L(IRn
[0, c); LI (0, x)).

6. One-dimensional case. In this section we study the one-dimensional case.
We show that if (w,u, X) is a weak solution of (1.11)-(1.14), then we have X u2
near the points at which wo(x) > 0. In particular, if for some r/> 0, wo(x) >_ for all
x E lR, then X u2 everywhere.

Let us start with the following lemma.
LEMMA 6.1. Let (we, ue) be the solution of (3.2)-(3.4) and (4.1). Then, for any

> 0 with wo(x) + e > 7, we have

(6.1) II-llc,(a,,) <_ C(,T)(1 + IIVllc(,,)).
Proof. By Lemma 3.3, ue can be expressed by (3.11), where is the characteristic

(3.7) corresponding to we, and h Awe + "7we -/. Since we solves (4.1), we have

(6.2)

On the other hand, D(t; 5:, t-) solves (3.9) (as a function of t). Hence, by computation
analogous to (6.2) we get

By the maximum principle and (4.1) we have
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Thus, from (6.3) and (3.8) we obtain

IDe(t; 2, t-)l _< C(, T),

IDle(t; 2, t-)l <_ C(, T)llVwellc(fr).
By directly taking derivatives in (3.11) we can get (6.1).

THEOREM 6.2. Let r] > 0 and

(6.6) To(x) >_ rl Vx E lR.

Let (w, u, X) be a weak solution of (1.11)-(1.14). Then

x(x, t) (x, t) v(, t) e n (0,

Proof. Because of (6.6), by the Schauder-type estimates we have that for any
T > 0, there exists a constant C(T) such that

(6.8)

It follows from (6.1) that both IIwllc,() and Ilueltcl(fiT) are uniformly bounded.
Since (u, X) is the weak limit of (ue, u2), we obtain (6.7). E]

Next we would like to consider the case in which w0 does not have the uniform
positive lower bound. In this case we have the following local result.

THEOaEM 6.3. Let xo IR be such that w(xo) > 0. Then, there exists a neigh-
borhood B1 (xo) of xo in IR and a T1 > 0 such that

(6.9) X(x, t) u(x, t)2 V(x, t) e B,(xo) [0, T1].

Proof. From Lemma 4.4 we know that there exists a neighborhood B(xo) of xo
and a T > 0 such that for some r > 0,

(6.10) w(x, t) >_ , (, t)e B(xo) [0,T].

Then it follows that for e > 0 small enough,

1
(6.11) we(x, t) >_ -rl, (z,t) e B(xo) [0,T].

Hence, by the interior Cl+a-estimates we have some constant C > 0 independent of
e > 0, such that

(6.12)

Let Ce be the characteristics corresponding to we. By (3.7) and (6.12) we can find
a small neighborhood B(xo) x [0, T] C B(xo) x [0, T] such that for any. (2, t-)
BI (x0)) [0, T1], /)e(t; 2, t-) always stays in B(xo) for t [0, T1]. Therefore we have

(6.13) IDeOe(t; 2, t-)l _< C(r/, T),

(6.14) IDiOm(t; , t-)l _< c(n, T1)llVwllc((o)[O,T])
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for all t e [0, tl] and (2, t-) e B1 (x0) [0, T]. By the same argument as the one in the
proof of Theorem 6.2, we obtain (6.9). 71

COROLLARY 6.4. Let I C be a compact set such that

(6.15) To(x) > 0 Vx E I.

Then there exists a neighborhood 0 C t [0, c) of I {0} such that

(6.16) X(x, t) u(x, t)2, (x, t) eO.

The proof is immediate.
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SINGULAR PERTURBATION THEORY FOR HOMOCLINIC ORBITS
IN A CLASS OF NEAR-INTEGRABLE DISSIPATIVE SYSTEMS*

GREGOR KOVA(I(t

Abstract. This paper presents a new unified theory of orbits homoclinic to resonance bands
in a class of near-integrable dissipative systems. It describes three sets of conditions, each of which
implies the existence of homoclinic or heteroclinic orbits that connect equilibria or periodic orbits in
a resonance band. These homoclinic and heteroclinic orbits are born under a given small dissipative
perturbation out of a family of heteroclinic orbits that connect pairs of points on a circle of equilibria
in the phase space of the nearby integrable system. The result is a constructive method that may
be used to ascertain the existence of orbits homoclinic to objects in a resonance band, as well as
to determine their precise shape, asymptotic behavior, and bifurcations in a given example. The
method is a combination of the Melnikov method and geometric singular perturbation theory for
ordinary differential equations.

Key words. Melnikov method, geometric singular perturbation theory, inner and outer limits,
homoclinic orbits, resonance

AMS subject classifications. 34A26, 34A47, 34C35, 34C37, 34D15

1. Introduction. Completely integrable Hamiltonian systems are a fairly rare
occurrence. Nevertheless, since they can be solved explicitly, they are the first step
in the description of many fundamental physical phenomena, such as the motion of
rigid bodies or the circling of the earth around the sun. Knowledge of the phase-space
properties of these special idealized systems is used in conjunction with perturbation
theory to describe more realistic physical problems, for instance, problems that exhibit
irregular or chaotic behavior.

The perturbation method most commonly used to show the presence of chaotic
dynamics in near-integrable systems is the Melnikov method. First developed for time-
periodically perturbed planar systems [1]-[5], it was soon generalized to cover multi-
degree-of-freedom systems as well [6]-[17]. This method is particularly convenient
for multidimensional Hamiltonian systems, where it combines with the Kolmogorov-
Arnold-Moser theory [18]-[22] to yield the existence of Smale-horseshoe chaos and
Arnold diffusion in many problems [7]-[9], [23]-[29].

The use of the multidimensional Melnikov method for near-integrable dissipative
systems is restricted to special cases [13], [14], [16], [30], [31]. In all of these cases,
averaging or some singular perturbation method must be used together with the Mel-
nikov method to show the existence of some homoclinic or heteroclinic orbits, whose
presence causes nearby phase points to behave chaotically. The singular perturbation
aspect is most stressed in [30]. That paper shows how to construct a spiral-saddle
connection out of a circle of equilibria and a two-dimensional surface of heteroclinic
orbits connecting certain pairs of points on this circle. The spiral-saddle itself, as well
as the spiraling part of the connection, are born out of the circle of equilibria under
perturbation; hence the singular nature of the problem.

This paper presents a geometric theory of phenomena that can emerge under
perturbation out of a manifold of orbits homoclinic to a circle of equilibria, which lies
on an unstable invariant annulus in the phase space of an (n + 1)-degree-of-freedom
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integrable dynamical system. In particular, the paper discusses a number of possible
homoclinic and heteroclinic orbits connecting equilibria and periodic orbits that lie
inside a resonance band [32]-[34] created by the perturbation out of the circle of
equilibria.

The main results of this paper are presented in the three theorems in 3. These
theorems describe the various geometric situations that give rise to homoclinic or
heteroclinic orbits connecting objects in a resonance band. Theorem 1 describes orbits
that result from intersections of (n + 1)-dimensional stable and (n + 1)-dimensional
unstable manifolds; Theorem 2 describes orbits that result from intersections of (n +
2)-dimensional stable and (n + 1)-dimensional unstable manifolds; and Theorem 3
describes orbits that result from intersections of (n + 2)-dimensionM stable and n-
dimensional unstable manifolds.

The result presented in [30] is a special example of this paper’s Theorem 3. A
very similar example is given in [31]. An example of Theorem 1 is presented in [35].
This example shows how to construct orbits homoclinic to saddles in a resonance band
that have purely real eigenvalues. A similar example is studied in [36], in which an
independent proof is given for a special case of this paper’s Theorem 1, and careful
numerical calculations are performed that support the theoretical findings.

The proofs of the three main theorems of this paper that are described in 7
require a fair amount of background, which is outlined in 4-6. In particular, all
three proofs follow virtually the same geometric idea, which consists of three main
steps. The first step is outlined in 4. In this step, an unperturbed unstable invariant
annulus, which contains a circle of equilibria and is connected to itself by an (n + 2)-
dimensional homoclinic manifold, is shown to persist under perturbation, and the
Melnikov method is used to ascertain whether a two-dimensional homoclinic manifold
of orbits that are biasymptotic to this persisting annulus exists. In the second step,
rescaling is used to describe the dynamics in the resonance band that is created by the
perturbation on the persisting annulus out of the unperturbed circle of equilibria. This
step is developed in 5. In the third step, geometric singular perturbation theory [37],
[38] is used to connect the homoclinic dynamics, which are transverse to the persisting
annulus, to the dynamics along this .annulus in order to describe the precise asymptotic
behavior of the homoclinic orbits. This step is carried out in 6 and 7.

A Hamiltonian counterpart of this paper was developed in [39]-[41]. For two-
degree-of-freedom systems, the Hamiltonian result is very general, because the Mel-
nikov function used in that situation can be computed explicitly as an energy differ-
ence. The details of the Hamiltonian case have much in common with Theorem 1 of
this paper. In particular, two crucial stepping stones in its proof are Propositions 7.1
and 7.2. However, the geometry of the Hamiltonian case is very different from the
geometry described in the present paper. Namely, in the Hamiltonian case, the result
describes two-dimensionM surfaces of orbits homoclinic to nested families ofperiodic
orbits as opposed to isolated homoclinic or heteroclinic orbits described in. this pa-
per. Moreover, orbits homoclinic to objects inside a resonance band are generic in the
Hamiltonian case, but only occur on lower-dimensional submanifolds of the parameter
space in most subcases of the dissipative case presented here.

Methods for finding orbits homoclinic to resonance bands may be applied to some
of the systems that have undergone a change of variables into a frame rotating with
the same frequency as an external force and subsequent averaging. Examples of such
systems are [42] in thetheory of Josephson’s junctions; [25] in nonlinear fiber optics;
[26], [28], [29] in laser-matter interaction; [13], [23], [24], [31], [43] in the theory
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of water waves; and [27] in the theory of vibrating plates. The advantage of the
methods presented in this paper’s Theorems I-3, as well as in the main theorem of
[40], is that their hypotheses are easily verified in specific situations. In fact, their
verification requires only algebraic manipulations. This makes the method described
in this paper a potentially powerful tool for solving physical and engineering problems.

This paper is organized as follows. In 2, the problem of orbits homoclinic to
resonance bands is set up. In 3, the main results of the paper are stated. In 4, results
from persistence theory of normally hyperbolic invariant manifolds that are needed
for the understanding of this paper are discussed, and a brief review of the multi-
dimensional Melnikov method is given. In 5, an approach to analyzing resonance
bands is explained. In 6, geometric singular perturbation theory is used to calculate
local stable and unstable manifolds of objects in a resonance band. In 7, the three
main theorems ofthis paper are proven. Finally, in 8, a simple example is shown to
satisfy the conditions of the three main theorems for certain parameter values.

2. The setup. We consider systems of the form

5c JDxH(x,I) / egX(x,I,O,A),

(2.1b) / egZ (x, I, O, A),

(2.1c) 0 9t(x, I) + e9 (x, I, O, A).

Here x (Xl,... ,X2n) E IR2n, I E IR, and 0 $1; Dx denotes the partial derivatives
with respect to x; A IR is a real parameter; e << 1 is a small parameter; and

J=
Id 0

with Id being the n x n identity matrix.
When we set e O, we obtain the unperturbed system

(2.2a) JDxH(x, I),

(2.2b) i 0,

(2.2c) t) a(x, I).

We immediately note that equation (2.2a) is a one-parameter family of Hamiltonian
systems for the variable x and can be analyzed independently of 0. Equation (2.2c)
can be solved by quadrature, once equation (2.2a) has been solved.

We first make two assumptions about the system-(2.2). The first assumption
concerns its solvability.

ASSUMPTION 1. For all I with I1 < I < I2, for some I1 and I2, the system
(2.2a) is completely integrable; that is, there exists a smooth family of n integrals
of motion, K(x,I) g(x,I), K2(x,.I),...,Kn(x,I), whose gradients DxKI(X,I),
DxK2(x,I),...,DKn(x,I) are linearly independent at all points x which are not
equilibria of (2.2a) and pairwise satisfy the relationship

<JDKi(x, I), DKj(x, I)> O,
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for all i, j 1,...,n.
This assumption implies that, at least in principle, solutions to equation (2.2a)

may be obtained by quadratures; see, for instance, [17].
The second assumption introduces homoclinic orbits into the phase space of equa-

tions (2.2a).
ASSUMPTION 2. For every I with I1 < [ < I2, equation (2.2a) possesses a hyper-

bolic equilibrium x X(I), which varies smoothly with I and a manifold W(X(I)) of
homoclinic orbits, connecting the equilibrium at x X(I) to itself.

We remark that the stable and unstable manifolds Ws(x(I)) and Wu(x(I)) of
the equilibrium X(I) must both be n-dimensional, since the eigenvalues of the matrix
jD2xH(X(I),I) come in pairs a,-a. The homoclinic manifold W(X(I)) must also
be n-dimensional because of the linear independence of the gradients DxK1 (x, I),
DxKn(x,I). (See, for instance, [17, Prop. 4.1.3.])

Since the system (2.2a) is autonomous, all the solutions on the homoclinic man-
ifold W(X(I)) can be represented in the form xh(t- to, I,), where E IRn-i is a
vector of parameters. A consistent parametrization of individual orbits in the mani-
fold W(X(I)) can be obtained by setting to 0 and varying t.

In the full (2n/2)-dimensional phase space of the system (2.2), the family of equi-
libria at x X(I) forms a two-dimensional invariant annulus J4 foliated by periodic
orbits with coordinates x X(I), I, and (X(I),I)t+0o, with Ix < I < 12. The
annulus j/[ possesses (n + 2)-dimensional stable and unstable manifolds we(A/I) and
WU(jI), which are the unions over the interval I1 < I < I2 of the Cartesian prod-
ucts of the manifolds Ws(Z(I)) and Wu(x(I)) with the angle 0, respectively. The
manifolds we(A/i) and Wu(A/[) intersect along the (n + 2)-dimensional homoclinic
manifold W(A/[), which is the union over the interval I1 < I < I2 of the Cartesian
products of the homoclinic manifolds W(X(I)) with the angle , shown in Fig. 1. We
remark that the homoclinic manifold W(A/[) can be parametrized by t, I, , and O0
in the representation

(2.4) x xh (t, I, ), I I, 0 0h (t, I, ) + 00,

with

oh(t,I,) (xh(s,I,),I)ds.

It can also be represented implicitly by the set of equations

Ki(x,I) Ki(X(I),I) 0, 1,... ,n,

which hold on the annulus A/[ at x X(I) and, therefore, also on the homoclinic
manifold W(A4).

To study orbits homoclinic to resonance bands, we make the following assumption.
ASSUMPTION 3. For some Io with I1 < Io < I2 we have

=0

with

d(X(Io), Io)
dI
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M W(M)

FIG. 1. The invariant annulus J and its three-dimensional homoclinic manifold W(Jd) are
the Cartesian product of a circle with a curve segment filled with equilibria and its two-dimensional
homoclinic manifold.

This assumption implies that for I I0, the frequency of the periodic orbit on
the annulus J4 passes through a simple zero, so that this periodic orbit is really a
circle of equilibria. As will be shown in 5, this circle will break up under the given
perturbation into a resonance band, which is the main object of this study.

Any equilibrium p on the circle is determined by its value of the angle O(p).
The unstable manifold of the point p is the set parametrized by the variables t and

in the formulas x xh(t, Io, ), I Io,. h(t, I0, ) + 0(P, ) with the phase
angle Oo(p, ) defined by 0o(p, ) O(p) oh (--(X), Io, ). This set is an n-dimensional
manifold, in general foliated by heteroclinic connections between p and other equilibria
on the circle, whose 0 coordinates are given by the formula 0 O(p)+A(), in which
the expression AO() oh(c, I0, ) 0h(--OC, Io, ) depends only on the value of the
parameter vector and not on the initial equilibrium p, because of the phase symmetry
of equations (2.2) in 0. Similar statements hold for the stable manifold W(p).

As mentioned above, the circle of equilibria at I I0 breaks up under the per-
turbation into a resonance band. For this resonance band to contain only a finite
number of discrete equilibria, we assume the following.

ASSUMPTION 4. At any fixed value of the parameter A, the function gI(X(Io),
Io, , A) has only finitely many simple zeros in for 0 <_ <_ 2r.

Finally, we define the Melnikov vector, M(I, , o, ), whose n components
Mi(I, , 0o, A) are given by the formulas

(2.6) Mi(I, , 0o, A) (hi, g) dt,

where

n, (DKi(xh(t,I,),I),D,Ki(xh(t,I,),I)- ---(X(I),I),odK’ )
(DxKi(xh(t,I,),I),DIKi(xh(t,I,),I)- DIKi(X(I),I),O),

for 1,..., n, are the n normals to the homoclinic manifold W(A/I) that can be
calculated from the equation (2.5), and g (gX, gI, gO) is the (9(e) perturbation part
of the vector field (2.1), calculated at x xh(t,I,), I, and 0h(t,I,) + 00;
see [1]-[17]. The above two expressions for the normal ni are equivalent because
DxKi(X(I), I) 0. (This follows from differentiating equation (2.3) with j 1 upon
x, substituting x X(I), and remembering that x X(I) is a hyperbolic equilibrium
of the equation (2.2a), so that the matrix JD2H(X(I),I) is invertible; see [10] or [17,
p. 407].)
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For the rest of this paper, we assume the following.
ASSUMPTION 5. For I Io and some , o -o, and the following

two statements are true:
1. M(I0, , 00, ) 0,
2. D(,oo)M(Io, , 00, ) has maximal rank.

3. The main results. In this section, we state the main results of this paper.
They are described in Theorems 1-3, and follow from a series of preliminary results
which we outline next. All the proofs and further details are relegated to 4-7.

First, we observe that the results of Fenichel [44]-[46] imply that the annulus A/[

and its stable and unstable manifolds WS(j4) and Wu(AJ) persist under perturbation
as a locally invariant annulus j and its stable and unstable manifolds WS(j/[) and
WU(A4e). The precise nature of these manifolds will be discussed in Proposition 4.1.
What is important for this outline is that the perturbed annulus J4 can be written
as a graph over the I and 0 variables in the form

(3.1) x Xe(I, 0, A, ),

for some smooth function Z(I, , , ) with Xo(I, , , O) X(I).
The circle of equilibria that exists on the unperturbed annulus J4 breaks up

under perturbation into a resonance band lying on the perturbed annulus A/[. This
resonance band is best described in the following way. We restrict the dynamics of
equations (2.1) to the annulus jk4e using formula (3.1). Following [32]-[34], we then
"blow up" the region near I I0 using the transformation I I0 + v/ h, rescale time
using T v/t, and Taylor expand in x/, to obtain the equations

(3.2a) h’ g (Z(Io), Io, O, A) + O(v/),

(3.2b) O’ d
(X(Io) Io) h + O(v/)

with d Higher-order terms in these equations can be easily computed just in
terms of differentiations and algebraic operations alone, as implied by Proposition 5.

In the limit as --+ 0, we obtain the rescaled or outer system

(3.3a) h’ g(Z(Io), Io, O, ),

(3.3b) O’ d
(X(Io) Io) h.=-

The outer system (3.3) can be derived from the rescaled Hamiltonian

1 d
(X(Io) Io) h2(3.4) 7-/(h, O, A) + V(O, ),

with

V(O,A) gI(X(Io),Io, s,A)ds,

via the canonical formulas

h’ -DoT-l(h, O, A), O’ DhT-l(h, O,



SINGULAR PERTURBATION THEORY FOR HOMOCLINIC ORBITS 1617

FIG. 2. A typical phase portrait of a rescaled or outer system for 0 and e > O. All the
points whose 0 coordinates differ by a multiple of 27r must be identified.

Note that the limiting outer system (3.3) is Hamiltonian also when systems (3.2),
(2.1), and even (2.2) are not.

System (3.2) can be investigated with the help of system (3.3) by a mixture
of phase-plane and perturbation techniques. One approach to this investigation is
outlined in 5. The phase portraits of a typical outer system (3.3) and its perturbed
counterpart (3.2) are shown in Fig. 2.

To investigate orbits homoclinic or heteroclinic to possible equilibria and periodic
orbits of equations (3.2) in the full x I-/9 phase space, we simply set I I0 + vh
in equations (2.1) and let s -- 0. The resulting system is the inner system

(3.5a) 2 JDxH(x, Io),

(3.5b) h O,

(3.5c) gt (x, I0).

This system is a singular limit of equations (2.1) in the sense that the circle of equilibria
for the unperturbed equations (2.2) at I I0, x X(Io), 0 _< _< 2 has been blown
up into a cylinder of equilibria with x X(Io), 0 _< _< 2, and arbitrary h.
Equilibria on this cylinder are unstable, and the structure of each circle h constant
and the heteroclinic orbits that connect pairs of points on it is the same (including
the solutions on the heteroclinic orbits) as the structure of the circle at I I0 and its
homoclinic manifold W(Z(Io)). Thus, the h- 0 cylinder of equilibria at x X(Io)
is connected to itself by an (n + 2)-dimensional homoclinic manifold.

In what is to follow, we confine the values of h to the interval -C < h < C with
some large enough constant C. The annular portion of the h- 0 cylinder between
the circles h -C and h C will be called j4. The annulus .4 and itsstable and
unstable manifolds WS(j4) and Wu(A4) are the limits as s --, 0 of a nearby annulus
J4e and its stable and unstable manifolds, WS(jOe) and WU(A4e). In the original
x-I-0 coordinates, the annulus A/[ and its stable and unstable manifolds
and Wu(A/[) are just small pieces of the perturbed annulus j and the manifolds
Ws(M) and Wu(M), which shrink to zero like V as -. 0.

The inner and outer systems are complementary in the following way. The inner
system describes the structure of homoclinic orbits away from the annulus A)[, but
the annulus jQ itself consists of equilibria, and all the nontrivial dynamics on the
nearby annulus J4 are lost in the inner limit. On the other hand, the h- 0 cylinder
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IIx-X(Io)ll

FIG. 3. The limiting homoclinic manifold Eo(, 0o) connects equilibria that lie on the line

0 0-o AO_() to those that lie on the line 0 o + AO+() on the annulus ]O. Gray curves on

J4 represent the orbit structure on this annulus under the rescaled or outer system.

A:4 for the outer equations (3.3) possesses nontrivial dynamics due to the rescaling
of time; however, all the dynamics away from x X(Io) are lost in this system.
This situation is typical of singular perturbation problems in which we combine the
information obtained from systems (3.5) and (3.3) to obtain useful information about
the behavior of system (2.1) near the resonance band on the perturbed annulus AA
at I I0.

We mentioned above that the annulus JQ in the inner limit possesses an (n +
2)-dimensional homoclinic manifold. We will show in Proposition 4.3 that a two-
dimensional intersection surface, E}(, 0), of the manifolds WS(jO) and Wu(A4)
survives from this homoclinic manifold for nonzero . This surface corresponds to
the transverse zero of the Melnikov vector at I I0, , 00 0, and A A,
whose existence was assumed in Assumption 5. The surface E(, 00) exists for all A
close enough to A . In the inner limit, the surface E(, 00) tends to the limiting
homoclinic intersection surface E0(, 00), shown in Fig. 3. This surface consists of
those heteroclinic orbits connecting equilibria on the cylinder A4 whose and 80
parameters equal $(Io, A), Oo 0o(Io, A), where (I,A) and 0-o(I, A) .are two
smooth functions, defined for I and A near I Io and A , with (Io, ) and
0-o(Io, ) 0-o, that identically satisfy the equation M(I, (I, A), 0-o(I, A), A) 0. The
heterodonic orbits on the limiting intersection surface Eo(,0o) are thus explicitly
given by the formulas x xh(t, Io, (I0, A)), h h, 0 oh(t, Io, (Io, A)) + o(Io, A).
These orbits thus emerge from the h- cylinder A4 along the line 0 0-o(Io, A)-
A9_ ((I0, A)) and return to A along the line 9 -0(I0, A) + A9+((Io, A)), where

(3.6) A0+() D(xh(s, Io, ), Io)ds, A0_() (xh(s, Io, ), Io)ds.

We are now ready to state the three main theorems of this paper. All three concern
special orbits on the intersection surface E(, 00). These orbits are homoclinic or
heteroclinic connections between equilibria and periodic orbits in the resonance band,
and arise in three different geometric situations. Orbits described in Theorems 1 and
3 exist for discrete values of the parameter A, whereas orbits described in Theorem 2
exist on intervals of A.

The first special situation that leads to the existence of homoclinic or heteroclinic
orbits occurs when there exist two families of curves OI,(A) and O2,(A) on A/ in
the resonance region for A near A and all small enough . The curve OI,(A) can be
either a stable periodic orbit for the restricted system (3.2) on A4e or a (restricted)
unstable manifold of a saddle forthis system. The curve O2,e(A) can be either an
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e--o

FIG. 4. Here, the curve 01, (()) is the restricted unstable manifold of the saddle se () and
the curve O2,e(/k) is an unstable limit cycle on the annulus J4e, as discussed in Theorem 1. In
this case, a heteroclinic orbit connects the saddle se(/k()) to the periodic orbit O2,e(A(e)) for some

().

unstable periodic orbit for the restricted system (3.2) on jQ or a (restricted) stable
manifold of a saddle for this system.

To set up the geometry for the first theorem, shown in Fig. 4, let for ,k A
the line o- A_() intersect transversely the curve Ol,o(), and the line
o + A0+(q) intersect transversely the curve O2,0(), and let both intersections occur
at the same value of h. In this case a heteroclinic orbit on the limiting homoclinic
surface Eo(, 0o) connects the two intersection points. Assume further that, for ,k > ,
the h-coordinate of the intersection of the line o(Io, ) A6_ (q(Io, )) and the
curve Ol,o(A) is larger (smaller) than the h-coordinate of the intersection of the line

o(Io,,k) + A+((Io,)) and the curve O2,0(). Assume also that for < ,
the h-coordinate of the intersection of the line 0 o(Io, A) A0-((Io, A)) and the
curve O,o(A) is smaller (larger) than the h-coordinate of the intersection of the line
0 0o(Io, A) + A0+((Io, ,k)) and the curve O2,o(A). See Fig. 5. In other words, the
difference of these h-coordinates passes through zero transversely as A passes through
A. We will then show that for some A A(s), there exists a heteroclinic connection
between the orbits O,(A()) and O2,(A()), for all small enough .

We now proceed to formalize this .discussion. We begin by denoting the
h-coordinates of the two intersections discussed in the previous paragraph by
h (o(Io, ,k) A0-((Io, A))) and h (o(Io, A) + A0+(q(Io,,k))), respectively. Rather
than to calculate the difference of these two h-coordinates, it is more convenient to
calculate their squares, using equation (3.4). Thus,- ffo(Zo )- a_((o ))) n (O,o())- v ffo(o )- -((o, )), )

h (0o(o, ) + +($(Zo, ))) n (O,o()) v (0o(Zo, ) + zxo+($(o, )), ),

where ?-/(Ol,o(,k)) and ?-/(O2,o()) are the respective values.of the rescMed Hamilto-
nian (3.4) on the curves Ol,0(,k) and O2,o(). Then, we have the following theorem.

THEOREM 1. Let the curve 0,() be either a stable periodic orbit for the re-

stricted system (3.2) on J4 or a (restricted) unstable manifold of a saddle Sl,(A)
for this system, and let the curve O2,(,k) be either an unstable periodic orbit for the
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h

0o+A0/ 0o-A0_

Oo+,Xo+ Oo-O_

0o+A0/ 0o-A0_

FIG. 5. The transversality condition needed for Theorem 1 to be valid.

restricted system (3.2) on Ie or a (restricted) stable manifold of a saddle s2,e(A)
for this system. Moreover, let for A , the line 0 Oo A0_() intersect trans-
versely the curve 01,o() and the line 0 0o +A0+() intersect transversely the curve
O2,o(A). Finally, let

n (O,o()) v (o z0_ (), )
(3.7) In (O,o(X)) v (o + o+(), )] o,

and

(3.8)

d
d--{ (O1,0(.)) V (o(10, .) A0_ ((Yo, .,)),

-[n (O,o())- v (o(o, )+ z0+($(o, )), )] } # o.

Then, for all small enough and .for some () with (0) , there exists a
heteroclinic orbit connecting either the periodic orbit Ol,e(A()) or the saddle s,e(A)
to either the periodic orbit O2,e(A()) or the saddle s2,e(A).

We remark that a saddle of the system (3.2) must always exist near a saddle of the
outer system (3.3) by Proposition 5.3, and that a sufficient condition for the existence
of limit cycles in the phe plane of the system (3.2) and criterion for their stability
is given in Proposition 5.5.

We next turn our attention to the situation that involves a heteroclinic connection
between a saddle or a stable limit cycle on the annulus e and a sink or another
stable limit cycle on, such as the one shown in Fig. 6. This situation is described
in Theorem 2.

THEOREM 2. Let the curve 0,() be either a stable periodic orbit on the annulus, or the (restricted) unstable manifold of a saddle se(A) on the annulus for all
near , and all small enough positive . At , let the cue 0,o() and the

line o-AO_ () intersect transversely at some height h h. Furtheore, let the
point (h,O) (, o + AO+()) lie in a compact domain n that is all contained in the
open region B, the limit as 0 of the basin of attraction B of either an equilibrium,
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e=0

FIG. 6. Here, a heteroclinic orbit connects the saddle se(A()) to the periodic orbit Oe((A()),
which is a stable limit cycle on the annulus Jle, as discussed in Theorem 2.

FIG. 7. As discussed in Theorem 3, a heteroclinic orbit connects the spiral-saddle ce(A(e)) to
the periodic orbit Oe((A(e)). This periodic orbit is a stable limit cycle on the annulus J4e.

ce(A), which is a sink for the restricted system (3.2) on the perturbed annulus J4e, or
a periodic orbit, O2,e(A), which is a stable limit cycle for the restricted system (3.2)
on the perturbed annulus J4e. Then, for all small enough positive and all close
enough to , there exists a heteroclinic orbit connecting either the periodic orbit
Ol,e(A) or the saddle se(A) to either the equilibrium ce(A) or the periodic orbit O2,e(A).
Moreover, the intersection of the unstable manifolds Wu(Ol,e(A)) or WU(se(A)) with
the stable manifolds WS(ce(A)) or Ws(O2,e(A)) is transverse along that heteroclinic
orbit.

Sufficient conditions for the existence of sources, sinks, and limit cycles in the
phase plane of system (3.2) and criteria for their stability are given in Propositions
5.3 and 5.5, respectively. The existence of the limiting region B is a part of the
assumption, and needs to be checked in each practical case separately. Also, by
inverting the time, we can use this. theorem to show the existence of a heteroclinic
connection between a saddle or an unstable limit cycle on the perturbed annulus
and a source or another unstable limit cycle on that annulus.

Finally, we discuss the situation, which involves a heteroclinic connection between
two equilibria that are sinks for the restricted system (3.2), or a sink and a stable
periodic orbit for that system; see Fig. 7. This situation is described in Theorem 3.

THEOREM 3. Let co(A) be a center for the outer system (3.3), and let it be, at
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located at

(3.9) (0,
with

(3.10)
d

+ # o

at . Let the corresponding perturbed equilibrium c () be a sink for the restricted
system (3.2) for all small enough and all close enough to . Finally, let the
point (h, 9) (0, o + A0+($)) lie in a compact domain that is all contained in the
open region 1, the limit as -+ 0 of the basin of attraction Be of either an equilibrium,
d()), which is a sink for the restricted system (3.2) on the perturbed annulus j4, or
a periodic orbit, 0(), which is a stable limit cycle .for the restricted system (3.2) on
the perturbed annulus JOe. Then, for small > O, there exists a function ()
with (0) , such that there exists a heteroclinic orbit connecting the equilibrium
ce()(e)) to either the equilibrium de(A()) or the periodic orbit Oe(A(z)).

This theorem is a slight generalization of the result of [30]. We remark that, again
by inverting the time, we can use Theorem 3 to show the existence of a heteroclinic
connection between two equilibria that are sources for the restricted system (3.2), or
a source and an unstable limit cycle for (3.2).

The rest of the paper is devoted to the necessary background and the proofs of
Theorems 1-3.

4. Homoclinic intersection surfaces. In this section we first discuss the per-
sistence of the annulus j4 and its stable and unstable manifolds, Ws(A/[) and WU(j4),
for nonzero . We then review those features of the Melnikov method [1]-[17] that are
necessary for understanding the rest of this paper. In particular, we focus our atten-
tion on calculating when the stable and unstable manifolds, Ws(jA) and WU(4),
of the perturbed annulus Ad intersect transversely, and what the nature of those in-
tersections is. Alternatively, we can ask ourselves which homoclinic orbits will survive
under perturbation.

To show persistence under perturbation of the annulus j4 and its stable and
unstable manifolds, we will have to perform local analysis around the annulus j4,
and hence we now define the local stable and unstable manifold of J4. We pick a
small positive 5 and choose a neighborhood

U5 { (x, I, {) I < I < I2, [Ix x(Z)ll < o _< o _<

of the annulus j4. We define the local stable manifold, Wc(J4), of J4 to be the
component of Ws(A/[)N U5 whose points do not leave the neighborhood Ua in forward
time. Thus, the local stable manifold W (J4) consists precisely of those points in theloc
neighborhood Ua which asymptote toward the annulus A/[ in positive time without
ever leaving Us. We define Wlc(j), the local unstable manifold of the annulus A/I, in
an analogous fashion. If a is any number smaller than inf{t(I) I1 < I < I2}, where
a(I) is the smallest positive real part of the eigenvalues of the matrix jD2xH(X(I), I),
then trajectories on the local stable manifold Wi)c(J4 approach the annulus j[ in
forward time exponentially at least at the rate e-t. A similar statement is true for
trajectories On the local unstable manifold WlUo(24) in backward time.

We are now ready to state the precise result that describes how the annulus A/[
and its local stable and unstable manifolds persist under perturbation.



SINGULAR PERTURBATION THEORY FOR HOMOCLIN!C ORBITS 1623

PROPOSITION 4.1. For all small enough positive , there exist a two-dimensional,
locally invariant annular surface, J4s and (n+2)-dimensional, locally invariant man-
ifolds, Wlc(Js and Wlc(.A4s), inside the neighborhood U, possessing the following
properties:

1. The annulus .h/ls and the manifolds Wc(j/ls and WlUoc(Js) vary smoothly
with e and other parameters in the problem.

u2. For e O, the annulus JPls and the manifolds WlSoc(JAs) and Wloc(J/ls)
coincide with the annulus and the manifolds Wl,c(Jk4 and WlUoc(J/), respectively.
For nonzero e, the annulus Js and the manifolds Wl,c(A/ls and Wlc(A/ls can
be written as smooth graphs over their unperturbed counterparts. In particular, the
annulus A/ls is given by the equation x Xs(I,O,),e) for some smooth function
Xs(I,O,,e) with Xo(I,O,,O) X(I).

3. The manifolds WlSoc (Jt4s) and WIc (J/ls) intersect along the annulus
4. Let be any number smaller than inf{a(I) Ix < I < I2}, where a(I) is the

smallest positive real part of the eigenvalues of the matrix jD2H(X(I), I). Then any
trajectory that starts at t 0 inside the manifold WlSoc(J/ls) will approach the annulus
A/Is in forward time at an exponential rate at least as fast as e-t, as long as it stays
in the manifold Wl)c(A4s). Any trajectory that starts at t 0 inside the manifold
Wic(j/ls will approach the annulus .h/Is in backward time at an exponential rate at
least as fast as et, as long as it stays in the manifold W,c(Jk4s).

Proof. The proof of this proposition follows from [44]-[46]. Details are similar to
those in [17, p. 354]. l-I

We call Wc(A/ls and Wc(a4s the local stable and unstable manifolds of the
perturbed annulus J4s, respectively. The meaning of the statement that the annulus
A/Is and its local stable and unstable manifolds WlSoc(A/ls) and WlUoc(A//s) are locally
invariant is that they are spanned by orbits, but points can enter or leave them
through their boundaries.

We define the stable manifold, WS(A/ls), of the perturbed annulus A/is as the
manifold obtained by evolving points on the local stable manifold Wl)c(js in,back-
ward time. We note that trajectories can leave (but not enter) the stable manifold
WS(A/ls) through its boundary, which is enough to make the manifold WS(j//s) only
locally invariant. This fact is in contrast with the usual properties of the stable man-
ifold of an invariant manifold, which is itself invariant, and comes about because the
perturbed annulus A/Is itself is only locally invariant. An analogous definition and
comments hold for the unstable manifold, WU(jk4s), of the perturbed annulus J4s.

Gronwall-type estimates yield Proposition 4.2.
PROPOSITION 4.2. Two trajectories, one on the unperturbed stable manifold

Ws(A/[) and the other on the perturbed stable manifold WS(.h/[s), which start a dis-
tance 0() apart at t O, will stay 0() close for all finite times. The same statement
also holds for pairs of trajectories on the unperturbed unstable manifold Wu(A//) and
the perturbed unstable manifold

We now turn our attention to the question of which unperturbed homoclinic orbit
will survive under perturbation. As mentioned in 3, the answer to this question.is
determined by the transverse zeros of the Melnikov vector (2.6). In particular, the
equation M(I, , 00, ) 0 presents n constraints on (n + 2) variables, I, , 00, and
Hence, if we fix the parameter A, we expect this equation to provide a one-parameter
family of surviving homoclinic orbits or, in other words, a two-dimensional homoclinic
intersection surface. This discussion is made precise in Proposition 4.3.

PROPOSITION 4.3. Let for I i, , Oo o, and ) the following two
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statements be true:
1. M(I,,O0, A) 0.
2. The matrix D(,eo)M(I, , 0, ) is nonsingular.

Then for sujficiently small, all I sujZficiently close to i, and all sujficiently close
to , there exists a two-dimensional intersection surface E(,O0) of the manifolds
Ws(A/[) and Wu(A/[) in the x-I-0 phase space. The intersection surface E (, 0o)’
varies smoothly with and . In the limit as --, O, it tends to the surface E(, 0o)
that consists of the unperturbed homoclinic orbits parametrized by t and I, with
(I,A), and Oo 0-o(I,), for I close enough to i at the given . The manifolds
WS(je) and WU(j4e) intersect transversely at every point of the intersection surface

By Assumption 5, the hypotheses of this proposition are satisfied for I Io and
some , t?0 00, and A A.

Proof of Proposition 4.3. Let M(I, , 0, ) 0, and let the matrix of partial
derivatives D(,e)M(I, , 00, ) be nonsingular. Then, by the implicit function theo-
rem, there exist functions (I, A), 00 t?0(I, A) with (I, A) and 0(I, A) 0,
such that M(I, (I, A), 0(I, A), A) 0 and that D(,o)_M_(I, (I, A), 0(I, A), A) has
maximal rank in some small neighborhood of the point (I, A) in the I- A space. The
proof now follows from Theorems 4.1.9 and 4.1.10 in [17].

We now discuss the nature of the orbits contained in the intersections
of the manifolds Ws(A/[) and WU(j/[). We remark that even though a
trajectory on an intersection orbit is (9() close to the trajectory given by
(xh(t, I, (I, )), I, h(t, I, (I, )) + 0(I, )) for all finite t e IR, the two orbits
traced by these two trajectories are not necessarily uniformly close. Namely, by
Proposition 4.2, the two trajectories are only guaranteed to be uniformly close on
compact intervals of t. After that, they may move away from each other, since the
usual Gronwall-type estimate (see, for instance, [33]) only bounds their distance as
zCleC21tl, where C1 and C2 are some appropriate positive constants.

We also note that an intersection orbit is contained in the stable manifold WS(j)
forever in backward time and in the unstable manifold WU(j4) forever in forward
time by the very construction of those manifolds. However, in forward time, an inter-
section orbit may leave the stable manifold WS(A/Ie) through its boundary because
this manifold is only locally invariant. It can also leave the unstable manifold WU(j)
through its boundary in backward time for the same reason. Therefore., we expect
most intersection orbits not to asymptote to any invariant object in the annulus j
in either forward or backward time. However, all the orbits that do asymptote to
invariant objects in the perturbed annulus j4 in both forward and backward time
must be contained in the intersection of its stable and unstable manifolds, WS(j4)
and WU(M).

If I0, and if we set I I0 + x/h and let 0, it should be clear that
the homoclinic intersection surface E(, 0) tends, in the inner limit, to the limiting
homoclinic intersection surface E0(, 0), described in 3.

5. The resonance band. In this section we .present a way to analyze the dy-
namics in the resonance band that emerges from the breakup of the circle of equilibria
at I I0 for nonzero . We have seen in Proposition 4.1 that the x coordinates of
points on the perturbed annulus jAe are given by the equality x Xe(I, 0, A,).
Therefore, the following two equations completely describe the dynamics on the an-
nulus Me"
(5.1a) i sg(Xe (I, , A, s), I, 0, A),
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(5.1b) (X(I,O,),),I) / g(X(I,O,,k,),I,O,.).

Since we are interested in the dynamics in the resonance band near I I0, we also
substitute I I0 / vfh into equations (5.1). We remark that the scaling factor
in front of h is vf because we have assumed in Assumption 3 the generic situation
in which gt(X(Io) I0) 0 and d(X(Io),Io) O. Otherwise, this factor may be
different; see [32]-[34].

We can only extract useful information about equations (5.1) near the resonance
at I I0 if we can explicitly calculate, or at least approximate, the function X(I0 +
/h,O,/,e). This is indeed the case, as we now show. First, as a consequence
of Proposition 4.1, the function Xe(I, O, A, e) is smooth, so that it can be Taylor
expanded about -0 as follows:

Xs(I,O,A,e) X(I) + eXx(I,O,A) + e2X2(I,O,A)
+... + :-’X,_, (Z, O, ) + 0(:),

where m is at most equal to the number of continuous derivatives of the vector field
(2.1). Second, we can in fact calculate all the terms in the Taylor expansion in powers
of v/ of the function Xe(Io / vh, , ,), as is implied by the following result.

PROPOSITION 5.1. At the resonant value I Io, the terms Xi(I0, O,/) in the
Taylor expansion (5.2) and their partial derivatives DiXi(Io,O,A) can be calculated
recursively in terms of differentiations and algebraic operations alone. In particular,

( ro, O,

(5.3) [jD2H(X(Io), I0)]-1 (gI (X(I0), I0, O;)dX(Io)dI

Proof. Let X Xe(I, 0, A,) and proceed as in [37] and [30]. By equation (2.1a),
we have

Je JDxH(X, I) + egX (Xe, I, O, ).

On the other hand, we obtain by the chain rule and equations (2.1b) and (2.1c) the
equation

J( D,Xi + DoXeO
D,Xee9(Xe,I,O,,)+ DoX (F(Xe, I) + e9(X,I,O,))).

We equate the two expressions for e, Taylor expand using formula (5.2), and examine
the O(ei) term for 1,...,m- 1.

When i 1, we obtain the equation

jD2H(X(I),I)XI (I, O,.k) + gX(X(I),I, O,.k)

gI (X(I), I, O, ) dX(I)
dI + f(X(I), I)DoX1 (I, O,

Formula (5.3) now follows upon setting I I0 because (X(Io), Io) 0 by Assump-
tion 3.
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(5.4)

Similarly, for 2,..., m- 1, we obtain the equation

jD2H(X(I), I)Xi(I, O, ,k)

dX(I)
Xl (I, O, ) DIXI (I, O, ) DoXI (I, O, ))

.dI

Xi- (I, 0, A), DIXi-1 (I, O, A), DoXi-I(I, O, A), I, 0, A)
+9t(X(I), I)DoXi(I, O, ),

for some smooth function . Upon setting I I0, the expression for Xi(I0, 0,
readily follows as above.

The expressions for the derivatives DoXi(Io, O, A) can be computed by simply
differentiating the formulas for Xi(Io, 0, A) with respect to 0, and so the statement
about the derivatives DIXi(Io, O,A) follows after differentiating formula (5.4), and
setting I- Io.

In practice, the first-order corrections in the expansion about v/ 0 of equations
(5.1) with I Io / vh should suffice. Upon rescaling the time using T x/t and
setting , these equations read

(5.5b)

with

(5.6)

and

h’ gI (X(Io),Io, O, )) + v/-dFh(h, O,,) + O(e),

O’
dgt

-d--(Z(I0), Io) h + v/-dFo(h, O, )) + O(e),

d
aY  o,0,

1 d29t(X(Io), Io) h2 + DxVt(X(Io), Io)X (Io, O, ,)Fo h, O, ) - di2

(5.7)

where X (Io, 0, A) is given by formula (5.3).
As stated in 3, in the limit as e --. 0, we obtain the outer system (3.3)

h’ gI (X(Io.) Io, O, .k) O’
dgt

(X(Io) Io) h

Since the outer system has the special form of a one-degree-of-freedom Newtonian
system with the Hamiltonian function (3.4),

1 dFt
(X(Io), Io) h27-l(h, O, )) - - + V(O, ))

1 dgt
(X(Io), Io) h2 fo gI (X(Io), Io, s, ,)ds,

2 dI Jo
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it is easy to analyze and possesses certain simple general properties. (See [47].) These
properties are stated in Proposition 5.2.

PROPOSITION 5.2. Orbits of the outer system (3.3) are symmetric about the O-
axis, and its equilibria can only lie on the O-axis. Also, since the function gI (x, I, 8, A)
is periodic in , the system (3.3) can only have an even number of equilibria for in
[0,2r), provided that all the zeros of the expression gr(X(Io),Io,0, A) are simple.
Moreover, the derivative DogI(X(Io), Io, , ) must have opposite signs at two consec-
utive zeros 1 and 2. Therefore, one of any two neighboring equilibria of (3.3) must
be a center and the other, a saddle.

We notice that the potential part, V(0, A), of the Hamiltonian ?-/(h, 0, A) Can be
written in the form

where

/o [gI (X(Io), Io, s, ) IF(A)] ds

V(A)- 1/o2gr(X(io),io, s,A)ds

The expression (0, A) in formula (5.8) is periodic in 0, and the expression (A)0 is
linear in . Formula (3.4) then shows that say, if (A) and da (Z(Io) Io) have the
same sign, then every orbit on the h- phase cylinder must be bounded from the left.
In particular, the left-hand halves of the stable and unstable manifolds of a saddle
must either coincide along a homoclinic orbit or form two heteroclinic connections
to another saddle. In both cases, the homoclinic orbit, or heteroclinic connections,
encircle a center. A similar statement is true if (A) and d (X(Io) Io) have opposite-y
signs.

We also notice that the decomposition (5.8) of the potential V(0, A) implies that
the Hamiltonian 7-/(h, 0, A) is not a single-valued function on the h- cylinder.

By Assumption 4, the function gI(X(io), I0, , A) has only a finite number of
simple zeros; that is, the partial derivative DgI (X(Io), Io, , ) is nonzero at each zero
of g(X(Io), I0, , A). The implicit function theorem immediately implies Proposition
5.3.

PROPOSITION 5.3. Every equilibrium of the system (3.3) persists in the system
(3.2) a distance O(v) away (in the x- h- coordinates), and also persists for
neighboring values of the parameter . If the unperturbed equilibrium is a saddle, so
is the perturbed one. A sujficient condition for an unperturbed center to perturb into
a source or a sink is that the expression DhFh(h, 0, A) + DoFo(h,O,A) calculated at
that center be positive or negative, respectively.

The last sentence in this proposition is true because the real parts of both eigen-
values at the perturbed counterpart of a center are equal to

x/ [DhFh(h, 0 i) + DoFo(h,O A)] + 0().
2

Therefore, the center perturbs into a source on the cylinder A/e if this expression is
positive and into a sink if this expression is negative. (Recall that the expressions
Fh(h, 0, A) and Fo(h, ,) are given by formulas (5.6) and (5.7), respectively.)
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The usual stable manifold theorem and GronwM1.-type estimates imply Proposi-
tion 5.4.

PROPOSITION 5.4. Let so be a saddle for the outer system (3.3), and let se
be its perturbed counterpart for small positive . Then, a trajectory on the unstable
manifold of the restricted system (3.2) of the perturbed saddle s is O(v/) close (in
the x- h- coordinates) to a trajectory on the unstable manifold of the unperturbed
saddle so on the T-interval (--oc, T] for all finite T. A similar statement holds for the
stable manifolds of the saddles se and so on ’-intervals IT,

Periodic orbits of the outer system (3.3) may also survive in the system (3.2).
PROPOSITION 5.5. A periodic orbit of the outer system (3.3) will survive in the

system (3.2) if the subharmonic Melnikov function

M(Tl) / Fh (h, , A)dO Fo(h, , A)dh

(X(I0), Io, O(T), )OFo(h(T), O(T), tiT,

calculated around that periodic orbit, has a transverse zero as a function of , the
orbit’s energy in the system (3.3). This orbit then also persists for neighboring .
Moreover, if dM(?-l)/dT-I .is positive on the persisting orbit, then this orbit is unstable
on the perturbed annulus Nit; and if dM(7-l)/dTl is negative on the persisting orbit,
then this orbit is stable.

For a special case, a proof of this proposition is given in [47, p. 92]. The more
general case described here is proven in the same way.

6. Geometric singular perturbation theory. To study the orbit structure on
the stable and unstable manifolds WS(Ad) and Wu(AA) near the perturbed annulus
M, and near the resonance at I I0, we use the rescaling I I0 + v/ h on the full
system (2.1) to obtain the system

(6.1a) JDxH(x, Io + h) +g(x, Io + v h, O, ),

(6.1b) h vgI(x, Io + v/h, 0, A),

(6.1c) gt (x, Io + v h) + ego (x, Io + v/ h, O, ).

Setting s 0 in equations (6.1), we obtain the inner system (3.5)

ic gDxH(x, Io), /t O, f (x, Io).

The properties of its phase space are described in 3. On the other hand, if we restrict
the dynamics of equations (6.1) to the annulus A/[, and rescale the time into " v/t,
we obtain in the limit as s -- 0 the outer system (3.3)

h’ g(Z(Io), Io O, ), O’ dt(X(Io), Io)h,
dI

with d We studied this system in the previous section.
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As we have already mentioned in 3, the inner system (3.5) describes the dynamics
away from the limiting annulus at x X(/0), and the outer system (3.3) describes
the rescaled slow dynamics on the annulus 4. The work of Fenichel [37], [44]-[46]
provides a means to connect the dynamics of systems (3.5) and (3.3) to achieve a
description of the orbits in the local stable and unstable manifolds Wl,c(jQe and

UWioc(J4e) of the annulus J4e, the perturbed counterpart of the annulus j[. First,
Proposition 4.1 applies to the system (6.1), and provides for smooth dependence of
the annulus Ale and its stable and unstable manifolds WlSoc(J4e) and WlUoc(A4e) on
s up to and including 0. Second, Theorem 9.1 in [37] applies^ to systems of the
same type as (6.1) and guarantees that the local manifolds WSoc(J4e) and WlUoc(JQe)
are foliated by stable and unstable fibers. The statement of this theorem, which is
tailored to the needs of the present paper, is given in the next proposition. (See also
[40].) The estimates in this proposition are stated in the x- h- 0 coordinates. The
proposition is given for stable fibers; the proposition for unstable fibers is the same
except for obvious changes.

PROPOSITION 6.1. For all small enough , the local stable m.anifold Wc(jt}le of
the invariant annulus J4e is foliated by a family of disjoint n-dimensional manifolds
called stable fibers. These stable fibers have the following additional properties:

1. They form a locally positively invariant family; that is, the image (under the
forward-time flow) of any stable fiber is contained in a stable fiber as long as this
image is contained in the local stable manifold Woc(Jk4e)s

2. Each stable fiber pierces the annulus .h/le transversely inside the manifold
WSoc(Ale) in precisely one point, called its base point.

3. As the base points on the annulus J4e move under the dynamics of the vector
field (6.1), the stable fibers move along with their base points and contract exponentially
toward their base points in forward time as long as the base points stay in Me. The
rate of this exponential contraction is at least e-t, where is any number smaller
than the smallest positive real part a(Io) of all the eigenvalues of the equation (2.2a)
at I Io (or, equivalently, the inner equation (3.5a)) linearized around x X(Io).

4. The family o.f stable fibers varies smoothly with v, ), and any other param-
eters in the problem.

5. For O, that is, for system (3.5), the stable^fibers are precisely the local
stable manifolds of the equilibria on the h annulus

Theorems similar to Proposition 6.1 are also stated in [30], [38], [48].
Fenichel’s fibers make it possible to construct local stable and unstable manifolds

of periodic orbits and equilibria on the annulus
PROPOSITION 6.2. The local stable and unstable manifolds of objects on the

perturbed annulus J,4e are characterized by the following properties:
1. For every stable periodic orbit on the perturbed annulus .Me, its local unstable

manifold is the union of all the unstable fibers whose base points lie on that orbit. The
local part (contained in the neighborhood Us) of its stable manifold is the union of all
the stable fibers whose base points are contained in the forward-time basin of attraction,
Be, of this periodic orbit on the annulus

2. For every unstable periodic orbit on the perturbed annulus J4e, its local stable
manifold is the union of all the stable fibers whose base points lie on that orbit. The
local part (contained in the neighborhood Us) of its unstable manifold is the union of
all the unstable fibers whose base points are contained in the backward-time basin of
attraction, Be, of this periodic orbit on the annulus

3. For every equilibrium in the resonance that is a sink for the system (6.1)
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restricted to the annulus J/le, that is, equations (3.2), its local unstable manifold is
precisely the unstable fiber having this sink as its base point. The local part (contained
in the neighborhood U) of its stable manifold is the union of all the stable fibers whose
base points are contained in the forward-time basin of attraction, Be, of this sink on
the annulus J4e.

4. For every equilibrium in the resonance that is a source for the equations (3.2),
its local stable manifold is precisely the stable fiber having this source as its base point.
The local part (contained in the neighborhood Us) of its unstable manifold is the union

of all the unstable fibers whose base points are contained in the backward-time basin

of attraction, Be, of this source on the annulus J4e.
5. For every equilibrium that is a saddle for the restricted system (3.2), the

local parts (that lie in the neighborhood Us) of its stable and unstable manifolds are
the unions of the stable and unstable fibers with base points lying on the restricted
stable and unstable manifolds of this saddle on the annulus Je.

This proposition is similar to Theorems 12.1, 12.2, 13.1, and 13.2 in [37].
We obtain the full global stable and unstable manifolds of orbits and equilibria

that lie on the perturbed annulus J4e by evolving their local counterparts in forward
and backward time, respectively.

Using both systems of equations, (3.3) and (3.5),^we can obtain the limiting struc-
ture of selected objects on the perturbed annulus A/le and their stable and unstable
manifolds. In particular, let Oe be an orbit on J4e that limits, as e 0, onto a curve

O0. This curve is a level curve of the rescaled Hamiltonian T/(h,O) at some value
?-/(h, ) 7-/0. The curve O0 is an orbit for the outer equations (3.3) and a curve of
equilibria for the inner equations (3.5).

If Oe is a periodic orbit, it is clear what is meant by its local stable and unstable
manifolds. However, let Oe be a piece of the unstable manifold of a saddle for the
restricted system (3.2) on the annulus JQe, parametrized by a trajectory on a T-

interval (--cx), T] for some large positive T. In this case, we define the local unstable
manifold Wc(Oe to be the union of all the unstable fibers whose base points lie on
the curve Oe. By Proposition 5.4, there exists a piece of the stable manifold of a saddle
for the limiting outer system 3.3 on jQ that is also parametrized by a trajectory on
the T-interval (--oc, T] and is O(v/) close to Oe. This piece is the limiting curve O0.
An analogous definition can be given for the stable manifold Woc(Oe if the orbit Oe
is a piece of the stable manifold of a saddle for the restricted system (3.2).

The local stable and unstable manifolds, Wl)c(O0 and Wc(O0), of the limiting
curve O0 are the unions of the n-dimensional stable and unstable manifolds of the
equilibria (under the dynamics of the inner equations (3.5)) that make up the curve.
O0, respectively. The global stable and unstable manifolds of all the above-mentioned
objects can now be defined in the usual way by evolving trajectories on the local
stable and unstable manifolds in backward and forward time, respectively.

Propositions 6.1 and 6.2 now imply (in the x h- coordinates) the following
proposition, whose contents are illustrated in Figs. 8 and 9.

PROPOSITION 6.3. In the limit when -- O, the following limiting structures can
be constructed with the aid of stable and unstable fibers:

1. If Oe is a stable periodic orbit on J4e for the restricted system (3.2), then its
local unstable manifold, Wc(Oe), limits, as --. O, onto the local unstable manifold,
Woc (0o), of the limiting closed curve 0o.

2. If Oe is an unstable periodic orbit on J,4e for the restricted system (3.2), then
its local stable manifold, Wl)c(Oe), limits, as -- O, onto the local stable manifold,



SINGULAR PERTURBATION THEORY FOR HOMOCLINIC ORBITS 1631

e=0 s>O

 loo(O )

FIG. 8. As e 0 the local unstable manifold Wc(O of the periodic orbit Oe limits onto
the local unstable manifold Wo (0o) of the limiting curve 0o. This curve is a periodic orbit of the
outer system.

FIG. 9. When the orbit segment Oe is the restricted unstable manifold of a saddle se on the
annulus ./, then its local unstable manifold W, (0) is a part of the unstable manifoldof theloc
saddle se that is all contained in the 6-neighborhood U6 of the annulus J4. As e O, the local
unstable manifold WiUoc (Oe) limits onto the local unstable manifold Wo (0o) of the limiting curve
0o. This curve is a segment of the unstable manifold of the limiting saddle so for the outer system.

Woc (0o), of the limiting closed curve 0o.
3. If Oe is a piece of the restricted stable manifold of a saddle on JQ as dis-

cussed above, then its local stable manifold, Woc (0), limits, as --+ O, onto the local
stable manifold, Wo (O0), of the limiting curve 0o.

4. If Oe is a piece of the restricted unstable manifold of a saddle on 4 as
discussed above, then its local unstable manifold, Wc(Oe) limits, as e -+ O, onto the
local unstable manifold, Woc(Oo), of the limiting curve 0o.

5. If c is a sink on the perturbed annulus Jte for the restricted system (3.2),
then, as e --+ O, its local unstable manifoJd limits onto the local unstable manifold of
the limiting center, co, on the annulus

6. If c is a source on the perturbed annulus J4e for the restricted system (3.2),
then, as e - O, its local stable manifold limits onto the local stable manifold of the
limiting center, co, on the annulus Jt.

In all of the above cases, the local stable and unstable manifolds of the curves
and Oo and the equilibria ce and co are O(x/) apart, respectively.
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7. Proofs of the main theorems. In this section we finally couple the dynam-
ics near the resonance band in the annulus /e with the dynamics on the surviving
homoclinic orbits using the geometric singular perturbation theory discussed in the
previous section.

We recall the limiting homoclinic intersection surface Eo(, o), which consists of
those heteroclinic orbits connecting equilibria_on the h- cylinder_ jQ that emerge
from the h- 0 cylinder M along the. line 0 0o(Io, A) A0-((Io, A)) and return to
A4 along the line 0 0-o(Io, A) + A0+((Io, A)). Here, by formulas (3.6),

A0+() 2(xh(s, Io, ), Io)ds, A0_ () f(xh(s, I0, ), Io)ds.

We now proceed to prove Theorem 1. To do this, we begin by proving two
auxiliary propositions. The first proposition is a local transversality result.

PROPOSITION 7.1. Let 0 and let for A the line 0 0 A0_() intersect
transversely the curve Ol,0(A), and the line 0 00 + A0+() intersect transversely
the curve O2,0(A). Then for all A near A, the local unstable manifold Wlc(Ol,0(A))
of the curve 01,0 (A) intersects the limiting homoclinic intersection surface Eo (, 00)
transversely inside Wlc(A), and the local stable manifold W,c(O2,0(A)) of the curve

O2,0(A) intersects the limiting homoclinic intersection surface Eo(,00) transversely
inside WSoc

Proof. We prove the first part of the proposition; the proof of the second part is
almost identical. Recall that the manifold WUoc(A/) is parametrized by t, h, and 00
in the expression (xh(t, Io, ), h, oh(t, I0, b) / 00). The tangent space at any point of

Wc(.h is therefore spanned by the vectors

Io, ), 0, 0 (t, Io, )),

(Dcxh(t, Io, qb), O, DOU(t, Io, )),

(0, 1, 0),

(0,0,1).

Now, since the curve Ol,o(A) intersects the vertical line 0 0o- A0_() trans-
versely on the annulus A4, the same must be true for the intersection of the curve

Ol,o(_A) and the vertical line 0 0o(Io, A)- A0_((Io, A)) for all A close enough to
A A. Therefore, the curve O,o(A) must be expressible as a graph h h(O) near
0 0o(Io, A)- A0_((Io, A)). Thus the manifold Wc(O,o(A)) can be parametrized
by t, , and 0o in the expression (xh(t, Io, ), h(Oh(--o, Io, ) + 0o), oh(t, I0, q) + 00).
The tangent space at any point of the manifold WlUoc(O,o()) is therefore spanned by
the vectors

), 0, O (t, )),

Dcxh(t, Io, ), (0h(--C, I0, ) + O0)DOh(--cx, Io, ), DOh(t, Io, )
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0, -- (oh(--Cx, I0, ) + 0), 1

Finally, the tangent space at any point of the limiting intersection surface Zo(, o)
is spanned by the two vectors

( ))),0,

(0, 1, 0).

It is therefore easy to see that the tangent spaces of the manifold Wlc(O1,0(,)) and
the limiting intersection surface E0(, 00) add up to the tangent space of the local
unstable manifold WIc (jQ). [:]

The second auxiliary proposition uses the first proposition to prove the existence
of two special orbits.

PROPOSITION 7.2. Let the curve 01,e()) be either a stable periodic orbit for the
restricted system (3.2) on (,4e or a (restricted) unstable manifold of a saddle for this
system. Let the curve O2,e(A) be either an unstable periodic orbit for the restricted
system (3.2) on JOe or a (restricted) stable manifold of a saddle for this system.
Moreover, let for the line 0 A0_() intersect transversely the curve
O1,0(), and the line -o + AO+() intersect transversely the curve O2,o(). Then
for all near , and all small enough positive , there exists an orbit a,e(t that
is contained in both the unstable manifold Wu(Ol,e(A)) and the intersection surface
E(,Oo). Likewise, there exists an orbit a2,e(t) that is contained in both the stable

manifold Ws(O2,e(A)) and the intersection surface E(,00). Trajectories on both
these orbits are O(v) close (in the x- h- coordinates) to trajectories on the
unperturbed counterparts of these orbits for all finite times t.

Recall the definition of the local unstable manifolds of the curves Ol,e(A()) and
O2,e(A()) from 6 in the case when O,e(()) is the (restricted) unstable manifold
of a saddle on the annulus JQe or when O2,e(A()) is the (restricted) stable manifold
of a saddle on JOe. For an illustration of Proposition 7.2, see Fig. 10.

Proof of Proposition 7.2. As in the proof of the previous proposition, we again
show only the first part of this proposition. Let us choose a small enough 5 and
consider the region 5/2 <_ [Ix- X(I)[[ <_ 6. The previous proposition implies that the
local unstable manifold Wic(Oi,0(A)) and the limiting intersection surface F.0( 00)
intersect transversely inside the piece of the local unstable manifold Wc(jQ that
satisfies the inequalities 5/2 <_ I[x X(I)[[ <_ 5.

Now, for small positive , the piece of the homoclinic intersection surface (, 0o)
inside 6/2 <_ I[x- X(I)[[ <_ 6 is O(V).away from the corresponding piece of the
surface 0(,00) and is contained in the local unstable manifold uWoc(J4e ). By
persistence of transverse intersections inside the manifold uWloc(je) the pieces of
the surface (,00) and the local unstable manifold Wlc(O,e(A)) that lie inside
the region 5/2 _< [Ix- X(I)[[ _< 5 still intersect each other. By (local) invariance,
this intersection must take place along a segment of an orbit. This orbit segment is
O(v) close to the segment of the intersection orbit of the unperturbed local unstable
manifold Wlc(Oi,0(A)) and the limiting intersection surface 0(, 00) that lies in the
region 6/2 _< x X(I)[[ <_ 5.

The whole orbit, a,e(t), which we obtain from this perturbed orbit segment by
evolving it in forward and backward time, must be contained in the unstable manifold
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,,x-X(lo),,

e--0 e>0

Oo q
FIG. 10. The local unstable manifold Wc(OI,o(A)) of the curve Ol,o(A) and the limiting

homoclinic intersection surface Eo(,O0) intersect transversely inside the local unstable manifold
WiUoc(.h) of the annulus jO. Therefore, the local unstable manifold WiUoc(O,e(A)) of the orbit

segment 01,e(A) and the homoclinic intersection surface E(, 0) must intersect transversely inside
the local unstable manifold Wloc(JAe) of the annulus Jde for small positive

Wu(Ol,e(A)) by the invariance of this manifold. The O(x/) proximity for finite times
of the trajectories on this orbit and the intersection orbit of the unperturbed unstable
manifold Wu(O1,0(A)) and the limiting intersection surface E0(,00) now follows by
Proposition 4.2.

The preceding proposition now renders the following proof.

Proof of Theorem 1. By the previous proposition, there exist two particular orbits
on the homoclinic intersection surface E(, t?0), one forward asymptotic to either the
periodic orbit O2, (A) or the saddle s2, (A), and another backward asymptotic to either
the periodic orbit O,e(A) or the saddle s,(A). Also, by the previous proposition and
because of equation (3.8), for A > , the h-coordinate of any point on one of these
orbits is always larger than the h-coordinate of the corresponding point on the other
orbit at the same value of 0. For A < A, the roles are reversed. Therefore, at some
A A() near A A with A(0) A, the two orbits must pass through each other,
and thus forn a heteroclinic orbit connecting either the periodic orbit O,e(A()) or
the saddle s,e(A(z)) to either the periodic orbit O2,e(A()) or the sddle s2,e(A()),
as claimed. El

An anMogous theorem can be proven in the Hamiltonian case. There, two of the
three main ingredients of the proof are again Propositions 7.1 and 7.2. However, the
transversality condition (3.8) must be dropped, and condition (3.7) is now identical
to setting the first component of the Melnikov vector equal to zero. In the proof,
an energy argument must be used to show the existence of a heteroclinic connection
instead of the transversality argument following from the condition (3.8) used here.
Moreover, in-the Hamiltonian case, the homoclinic connection will exist for all A close
enough to A A. For details, see [40].

To prove Theorem. 2, we need to show the existence of the heteroclinic orbit in
question, as well as the fact that tile manifolds W(OI,(A)) and. Ws(jQ) intersect
transversely along this heteroclinic orbit. The argument proceeds as follows.

Proof of Theorem 2. Let A be close to A . Then Proposition 7.2 ensures that



SINGULAR PERTURBATION THEORY FOR HOMOCLINIC ORBITS 1635

there exists an orbit that is contained in both the unstable manifold Wu(Ol,e(A))
and the intersection surface E(,00). Let a,e(t be a. trajectory on this orbit, and
let a,o(t be a trajectory on its unperturbed counterpart that starts O(v) away
from a,e(t at t 0. Let T > 0 be large enough so that both a,o(t and a,e(t
return inside the neighborhood U at the time t T. By Proposition 4.2, the points
a,o(T and a,e(T are at most O(v/) apart. The stable fiber passing through the
point a,e(T is (.9(v) close to the stable fiber passing through the point a,o(T by
Proposition 6.1. Therefore, the base points of these two fibers are O(V) close, as
well. But the base point of the fiber that passes through the point a,o(T is precisely
the point (h, ) (0, 0(I0, ) + At?+((I0, ))). Thus, for all small enough , the
base point of the fiber through a,e(T must be contained in the basin of attraction
Be, which proves the existence part of the theorem.

To show the transversality of the intersection of the unstable manifold
Wu(Ol,e()) with the stable manifold WS(jQe) of the perturbed annulus e along
the orbit he(t), we first recall that Proposition 7.1 implies that the intersection of
the homoclinic surface E(, t?0) and the unstable manifold Wu(oI,e(A)) is transverse
inside the unstable manifold WU(je) of JOe. We also recall that, by Proposition 4.3,
the manifolds WS(jQe)and WU(A/e)intersect along the surface E(, 00 transversely
in the full phase space. This clearly implies that, since E(, 00) is contained in the
stable manifold WS(A/e), this stable manifold and the unstable manifold Wu(O,e(A))
must intersect transversely along the heteroclinic orbit he(t) in the full phase space.
Now, either the stable manifold WS(ce(A)) of the equilibrium ce(A) or the stable
manifold Ws(O2,e(A)) of the periodic orbit O2,e(A) are neighborhoods of the orbit

a,e(T inside the stable manifold WS(A4e) of the annulus 4e. Therefore, the above
transversality argument holds for the manifolds WS(ce(A)) or Ws(O2,(A)) in place of
the manifold WS(A4e), which concludes our proof. [:]

Finally, we prove Theorem 3. A different proof of a special case of this theorem
with x E ]R2 appeared in [30]. The present proof is included in this paper in order
to show how the result of [30] fits in the more general framework that leads at once
to all three theorems, and also to extend the proof of [30] to the case when x E IR2n
with n > 1.

Proof of Theorem 3. First recall that, in the inner limit, the unstable manifold
Wu(A/) of the annulus 2Q is parametrized by t, h, and 00 in the expression

(xh(t, Io, ), h, oh(t, Io, ) + 00).
The unstable manifold WU(c0(A)) of the point c0(A) is parametrized by t and in
the expression obtained by choosing h 0 and 00 O(co(A)) + A0_() in formula
(7.1). Likewise, the limiting homoclinic intersection surface E0(, 0o) is parametrized
by t and h in the expression obtained by choosing (I0, A) and 00 00(Io, )) in
formula (7.1).

At ) , the manifold WU(c0(A)) and the surface E0(,00) intersect along a
unique orbit given by the expression

o, +/-o, +

because, by equation (3.9), we must have 00(I0, A)- At?_ ((I0, A))= t?(co(A)). More-
over, by formula (3.10), the passage of the manifold WU(c0(A)) and the surface
E(,t?o) through each other along the orbit (7.2) as A passes through A is
transverse inside the unstable manifold Wu(A)o
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Recall now the definition of the neighborhood U5 of the annuli JQ and jQe,
whose points satisfy the formula [[x X(I)[[ < 5. Outside of a smaller neighborhood,
say U/2, of the annuli )Q and A/[, the homoclinic intersection surfaces Eff(,0o)
and E0(,00) are O(v) close to each other. Moreover, the local unstable manifold
W(ce(A)) varies smoothly with A and v down to and including 0 inside
the neighborhood U5 by Proposition 6.3. Hence, it follows from the discussion in
the previous paragraph that, in the region 5/2 < [Ix- Z(I)][ < 5, the mainfold
Wic(Ce(A)) and the homoclinic intersectionsurface Eft(C, 00) must pass through each
other transversely inside the local unstable manifold Wlc(jQe as A varies through
some A A(). The function A() varies smoothly with v, and its value at e 0
is . Moreover, the intersection of WUoc(Ce(A)) and E(, 00) at A A()inside the
region 5/2 < [Ix- X(I)[[ < 5 takes place along an orbit segment that is O(x/) close
to an appropriate segment of the orbit (7.2).

Let co(t) and a(t) be two trajectories that start O(v) away from each other
at t 0, and lie on the intersections of the unperturbed and the perturbed unstable
manifolds, WU(c0()) and WU(c(A()))with the homoclinic surfaces E0(,00) and

(,00) at A and A A(), respectively. Since A() and are at most O(v/)
apart for small , we can proceed as in the proof of Theorem 2 to show that these
trajectories are (9(v/) close to each other for all times up to and including some large
enough T > 0, and that the stable fibers passing through the respective points a(T)
and co(T) are also at most O(x/) apart. Thus, as in the proof of Theorem 2, we
conclude that the trajectory a(t) is attracted to the same object as the points in the
set Be, which proves the theorem. V1

We now make a remark about the uniqueness of the heteroclinic orbits discussed
in’Theorems 1-3. This remark is in place because the families of stable and unstable
fibers described in Proposition 6.1 that foliate the manifolds Ws(A)[) and WU(j[)
need not be unique; see [37]. However, for > 0, the equilibria and periodic orbits
that the heteroclinic orbits in question connect are by assumption hyperbolic and,
thus, unique. Their stable and unstable manifolds are therefore also unique, and so
must be the heteroclinic orbits that arise as the intersections of these manifolds.

8. An example. We consider a four-parameter family of problems in which a
Duffing oscillator is coupled to an anharmonic oscillator, described by the system of
equations

#2q(I q2) _eap,

(8.1b) O=p,

(8.1c) ] -el sin 0

1 2 2(8.1d) 0=I-1-# q -ecos0,

where #, a,/3, and /are positive parameters, and << 1 is a small positive parameter.
This system is of the form

OH(p, q, I, O) OH(p, q, I, O)
b cap, (1Oq Op
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W_(M) I W(M)

q
P

FIG. 11. The unperturbed invariant annulus, J, and its homoclinic manifolds, W+(J) and
W_(.h/[) for the Dujfing oscillator-harmonic oscillator example.

where

i= _OH(p,q,I,O) _eI_e..),p2 b=.OH(p,q,I,O)
O0 OI

H(p, q, I, O) Ho (p, q, I) + sH1 (p, q, I, O)

12122( )112 I + # q I elcos0.(8.2) p q2

It is easy to see that equations (8.1) fall into the same category as (2.1).
The unperturbed equations corresponding to (8.1) are

(8.3a) i5 #2q(I q2),

(8.3b) p,

(8.3c) ] 0,

l2q2(8.3d) b I- 1

which can be derived from the unperturbed Hamiltonian

(8.4) 12 1#2q2 ( lq2)112-1+ I-Ho(p, q, I) 5 -P - -The unstable invariant annulus A/[ is located at (p, q) (0, 0), and can be bounded
by any I1 and I2, with 0 < I1 < 1 < I2. It is foliated by periodic orbits p q 0,
I constant, and 0 (I- 1)t + 00. The orbit at I 1 is a circle of equilibria,
and clearly, the frequency I- 1 passes through zero transversely there, so that the
resonance Assumption 3 is satisfied. The annulus j is connected to itself by a
pair of three-dimensional homoclinic manifolds, W+(A/[) and W_(A/[), as is shown in
Fig. 11. The manifolds W+(A/i), and W_(A/[) are parametrized by t, I, and 00 in the
homoclinic solutions

p ph(t, I) X/#Isech(#vt) tanh(#v/it),

(8.5b) q qh (t, I) +x/sech(#v/t),
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(8.5c) I I,

(8.5d) 0 fh(t,I)+0o (I- 1)t- #v/tanh(#vt) + 00.

(In this example, the number of dimensions is too small to require the additional
parameters .) From (8.5d) we find the angle difference At? between the end points of
any heteroclinic orbit connecting pairs of equilibria on jY[ at I 1 to be AO -2tt.

Even for nonzero s, the set p q 0 is invariant. Thus, we can take the
perturbed annulus A/e to be the same as the annulus jP[. At the resonance, I 1,
the Melnikov function, M(I, Oo,a, , 7), can be computed explicitly [49]. This is
because the integrand in formula (2.6) in this case reduces to

dt
(p’ q’ 1, 0) ap2 + #2flq2 + #27p2q2

where p ph(t, 1), q qh(t, 1), and 0 h(t, 1) + 00. Thus, the Melnikov function
becomes

4 8
U(1, go, a, fl, 7) H1 (0, 0, 1, Oo + #) H1 (0, 0, 1, Oo #) a# + 2# +

4 8 a-cos( 0 + + co (00 + +

4 8
(8.6) 2sin #sin 00 xa# + 2fl# + 7#3

and is the same on both homoclinic manifolds, W+(J4) and W_(J4).
When # is not a multiple of r, this Melnikov function has transverse zeros in 0o

at o 0-0,1 and 0o -o,2 r- 0,1, provided that

(8.7) # 2

For all admissible a, fl, and ", the stable and unstable manifolds Ws(.M) and
Wu(AA) intersect transversely along two symmetric pairs of two-dimensional ho-
moclinic surfaces, +,ewa’’’Wo,xa and E’’’+, (o,2).

The restricted system, (3.2), at the resonance at I 1 for this example is

(8.8) h’- -(1 + v/h)sin 0- fl(1 + v/h), 0’= h- v/cos ,
and the limiting outer system is

(8.9) h’ sin fl, O’ h.

The rescaled Hamiltonian is

(8.10) lh27-/(h, O) cosO+ riO,

which is the Hamiltonian of the pendulum subjected to a constant torque.
The phase portrait of the rescaled h- phase cylinder Jo of the equations (8.9)

is shown in Fig. 12. There are two equilibria on this phase cylinder, a center, co,
at (h,O) (0,- arcsinfl), and a saddle, so, at (h,O)= (0,-r + arcsinfl). The two
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-+arcsin -arcsin

I Identify

n+arcsinl

FIG. 12. The phase portrait of the h- 0 cylinder J4 at the resonance. Broken lines represent
the stable and unstable manifolds, ]/V (so) and V (so), of the saddle so.

branches of the stable and unstable manifolds, l/V" (s0) and 14;u (so), to the right of
the saddle so coincide to form a separatrix that encloses a family of periodic orbits
nested around the center. The two branches of the manifolds V (so) and 4;u (so) to
the left of the saddle so wind around the cylinder jQ toward h 4-00 and h
respectively. For small positive v, the saddle so persists as a saddle, s, the center
co becomes a sink, c, and the separatrix breaks. The top branch of the unstable
manifold, )/yU(se), of the perturbed saddle s falls into the sink c. No periodic orbits
are left in this system, and all the points that lie in any compact domain that is all
contained inside the unperturbed separatrix asymptote to the sink c.

The inner system is

(8.11a) ib #2q(1 q2),

O=p,

(S.llc)

1 ;t2q2(8.11d) -5
In the phase space of this system, the two symmetric pairs of homoclinic intersection
surfaces E’’(0 1) and va’Z’(O02) (when the inequality (8.7) shows that they-I-,: z._.,
exist) collapse smoothly onto the pairs of surfaces, ]E’Z’(Oo,) and ’f’(Oo2),0 ,0
parametrized by the expressions (8.5) with I 1 00 , or 0,2, and arbitrary h.

We now demonstrate that this exanple satisfies the conditions of Theorems 1-3.
To do so, we consider the case when p < 1 We sume that 2 (1),
and let a play the role of the parameter A. We will show that, for appropriately
chosen and , orbits homoclinic to the saddle se, orbits connecting s to the sink
ce, and orbits homoclinic to the sink ce exist. In fact, due to the smmetry of the

p,problem, all such orbits always occur in pairs: one on the surface E+:e’ (0,1) and the

other one on E’’(0,2)
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e=0

e>0

FIC. 13. The three types of orbits homoclinic to the saddle se, whose existence follows from
Theorem 1.

First, we use Theorem 1 to find pairs of orbits homoclinic to the saddle s. In
fact, three different types of such homoclinic orbits exist. They are shown in Fig. 13,
and to prove their existence, we proceed as follows. From (8.6), we recall that the
equation for any zero, 0, of the Melnikov function satisfies the equation

4 8
2 sin #sin0 a# + 2/# + -’# 0.

Moreover, formula (3.7) for this example reads

1 h2 (0 + #)
1 h2 (o #) cos(0 + #) # cos(0-0 #) -/#

-2 sin # sin 0 2#
4 8~+

--0.

Thus, in order to find an orbit homoclinic to the point se, we must solve the equations

sin 0-0 -/ # - + O(#2),
sin #

and

5a- 2 0.

We thus obtain

0-0,1 arcsin/3 + 0(#2)

and

t0,2 -r + arcsin fl + 0(#2).
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e=0

e>0

FIG. 14. The two types of heteroclinic orbits connecting the saddle se and the spiral-saddle ce,
whose existence [ollows from Theorem 2.

e=0

e>0

FIG. 15. An orbit homoclinic to the spiral-saddle ce, whose existence follows from Theorem 3.

This implies that the line 0 0,1 passes an 0(#2) distance away from the center
co, and that the line 0 0-0,2 passes an 0(#2) distance away from the saddle so, so
that the desired intersections exist and are at the same height, h, whenever a 2-/5.

It can be shown that, in general, if # nr + 5, with some nonnegative integer
n and [5[ << < 1, we obtain orbits homoclinic to the saddle se that wind n times
around the cylinder j4e before returning to it. (See [35].)

If we choose a and " so that 5a-2 > 0 but sufficiently small, then the hypotheses
of Theorem 2 are satisfied, and there exist two pairs of connections between the saddle
s and the sink c, as shown in Fig. 14.

Finally, we show the existence of orbits homoclinic to the point ce, shown in
Fig. 15. One condition for a pair of such orbits to exist is that the line 0 00 + #
must pass through the unperturbed equilibrium co. This happens when cos(o + #)
V/1 _/2 and sin(0 + #) -/, hence formula (8.6) implies the equation

4 8_V/1 _/2 + V/1 _/2 cos 2# -/ sin 2# a# + 2/# + --’# 0,

which, when # <</ < 1, yields

2 3.  ,v/i +

The second condition is that the point (h, 0) (0, 0 #) be contained inside the
separatrix that encircles the equilibrium point at (h, ) (0, 00 + #), which is clearly
satisfied for # < 1. When both of these conditions are satisfied, it follows from
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Theorem 3 that a pair of orbits homoclinic to the equilibrium c exists. These orbits
are of the so-called ilnikov type [50]; the chaotic dynamics created by such a pair are
discussed, for instance in [30].

In conclusion, even this simple example shows the richness of the various ho-
moclinic orbits that may emerge under perturbation from orbits homoclinic to an
unstable circle of equilibria that breaks up into a resonance band. Furthermore, this
example also shows the ease with which Theorems 1-3 can be applied to specific situa-
tions, and thus reveals the potential power of the method for finding orbits homoclinic
to resonance bands in solving physical and engineering problems.
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A SIMPLE PROOF OF FRYANT’S THEOREM*

M. K. VEMURIf

Abstract. In [A. Fryant, SIAM J. Math. Anal., 22 (1991), pp. 268-271.], the spherical har-
monics of degree less than or equal to k in IRn-1 were used to generate the spherical harmonics of
degree k in Rn. Invariant theory was used to show that the resulting set of spherical harmonics is

orthogonal. A simple calculation for accomplishing this directly is given here.

Key words, spherical harmonics, irreducible representation
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Let En-1 denote the unit sphere in Rn and (f, g) be the usual inner product on

-1. That is,

(f g) I(x)g(x)dx.
n--1

The following theorem was proved in [1].
THEOREM 1. Let P1,...,Pd be orthonormal spherical harmonics in IRn-1 of

degree less than or equal to k. Ifx- (xl,. ,Xn) e ]Rn and t-- (tl,..., tn-1) e Fn-2,
then

(1) (Xl -- i1x2 -- -- i$n-lXn)k dkn J-j=i Yi (x)Pj(t), where Y,j 1,2,...,dk,
are homogeneous harmonic polynomials of degree k in IRn, and

(2) (Y, Y) 0 if j # I.
In [1] invariant theory was used to prove the second assertion. We give a simpler

proof which avoids invariant theory. Let Hnk denote the space of harmonic homoge-
neous polynomials of degree k in ]n. For f, g E Hn, let

(f g) f -x -’
that is, the differential operator f (bO) acting on the function y. The result is a
constant. It is easily seen that (., .) is an inner product on Hk.

LEMMA 1. There is a constant Cn such that for all f, g Hn,
(f, g) Cn

Proof. Recall [3] that H is an irreducible representation of O(n) under the action

(Af)(x) f(A-lx),
where A e O(n), f e H, and x e IRn. It is easily seen that both (., .) and (-, .) are
invariant under this action.

Let g be the compact set {f[(f, f) 1}. Let f0 K be the point at which the
(-,.) (.,-) iscontinuous function f -, (f, f) achieves its maximum c on K. Thus cn

kk (fo, fo) (fo, fo) O. So Cn("positive semidefinite, and cn .) -(., .) is degenerate. Let
g : {0} be its kernel. Then N is O(n) invariant. Since H is irreducible, N H,

k ki.e., cn (., .) -(., .) 0. It follows that (., .) cn (., .}, and the theorem is proved.

Received by the editors November 3, 1993; accepted for publication (in revised form) March, 994.
University of Chicago, Chicago, Illinois 60637.
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We now show that {Y}:I is an orthogonal set with respect to the inner product
(., .). Orthogonality with respect to (., .) will follow by the previous lemma.

LEMMA 2. Let f E Ca(In) and X, a.first order homogeneous linear differential
operator such that X2f O. Then

Proof. Note that for all j, X(Xf)J -j(Xf)J-iX2f- 0. Therefore

Xkfk xk-lxfk xk-l(kfk-lxf Xk-2X(kfk-lxf)
Xk-2(k(k_ 1)fk-2(Xf)2)

k!(Xf)k.

THEOREM 2. (Y, Yk) 0 /fj -1.
Proof.

(1) ((Xl + itlx2 +... + itn-lXn) k, (Xl + i81x2 +"" + iSn-lXn)k)

+ it- +... + it,_- (z + isz +... + is_n),
which, by the previous lemma, equals

0 0 0
(z + isz + + is x,)k! + it +... + itr_l

k(1 + slt +"" + Sn--tn--),
which, by the unk-Hecke theorem [4, p. 247], equals

j=l

On the other hand, by par (1) of Theorem 1,

(2) ((z + itz +... + it_l)k, ( + isz +... + iSn_lZn)k)

1--1

j--1 l--1

Comparing (1) and (2) and using the linear independence of {Pi d}=1, we see that

(Y, Yk) 0 when j l, completing the proof.
The generating function given by Theorem I can be used to construct the spherical

harmonics in rectangular coordinates. Also, Fryant [2] has applied this theorem to give
certain integral representations of harmonic functions in ]1(n.

Acknowledgments. I thank Professor Fryant for introducing me to his gener-
ating function and the referee for simplifying the proof of Lemma 1.
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NEW BOUNDS FOR HAHN AND KRAWTCHOUK POLYNOMIALS*
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Abstract. New identities for the sum of squares for the Hahn and Krawtchouk polynomials
orthogonal on the set (0,..., N} are derived which generalize the trigonometric identity for the
Chebyshev polynomials of the first and second kind. These results are applied to obtain conditions
(on the degree of the polynomials) such that the polynomials are bounded (on the interval [0, N]) by
their values at the points 0 and N. As special cases we obtain a discrete analogue of the trigonometric
identity and bounds for the discrete Chebyshev polynomials of the first and second kind.

Key words. Hahn polynomials, Hahn-Eberlein polynomials, Krawtchouk polynomials, dual
Hahn polynomials, discrete trigonometric identity
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1. Introduction. The Hahn polynomials may be defined in terms of a hyper-
geometric series

-n, n+a++l, -x;Q,(x, a, , N) =3 F2 a + 1, -N
n (--n)k(n + a + + 1)k(--X)k

k! (a + 1)k(--N)k
k=O

1)
(n-- 0,...,N),

where a,3 > -1, (a)0 1, (a)k a(a + 1)... (a + k 1). These polynomials are
limiting cases of some general systems of orthogonal polynomials (see Hahn (1949))
and satisfy, for n, m 0,..., N, the orthogonality relation

(1.1) -p(x,a,,N)Qm(x,a,,N)Qu(x,o,,N) rn(a,,N)’x--’O

where

(1.2) p(x,a,,N)

(N+a+3+ 11N

and

rn(a,,N) (-1)n(-N)n(a + 1)n(a +/ + 1)n
n! (N+a++2)n(+l)n

2n+a++l

For some properties and applications of the Hahn polynomials we refer the reader to
the work of Karlin and McGregor (1961), (1962), Gasper (1974), (1975), and Wilson

*Received by the editors September 14, 1993; accepted for publication March 23, 1994. This
research was supported in part by the Deutsche Forschungsgemeinschaft.

fInstitiit fiir Mathematische Stochastik, Technische Universitgt Dresden, Mommsenstrasse 13,
01062 Dresden, Germany.
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(1970). The polynomials Qn(x, a, , N) can be seen as the discrete analogue of the
Jacobi polynomials and most of the "classical" orthogonal polynomials can be obtained
as limits from the Hahn polynomials when the parameters tend to infinity (see Gasper
(1975)).

As an example we consider the Krawtchouk polynomials, which can be defined
as the limit (q 1 p,p E (0, 1))

(1.4)

kn(x,p,N) lim Qn(x, pt, qt, N) 2Fl(-n,-x,-N; l/p)

=0
k! (-N)

and are orthogonal with respect to the jump function

(1.5) INx )PX(1- p)N-z, x= 0,...,N

(see Krawtchouk (1929)).
In this paper we will discuss some new properties of the orthogonal polynomials

with respect to measures (1.2) and (1.5). After presenting some preliminary results
in 2 we present new identities for squares of Krawtchouk and Hahn polynomials in

3 and 4 which generalize the trigonometric identity for the Chebyshev polynomials
of the first and second kind. We will apply these results to obtain conditions (on the
degree of the polynomials) such that the polynomials Q(x, , , N) andk(x, p, N)
are bounded on the interval [0, N] by their values at the points 0 and N. For the
Hahn polynomials these bounds extend and improve results of Zaremba (1975), while
for the Krawtchouk polynomials it is shown that

Ik(x,p,Y)l <_ max {Ik(O,p,N)l, Ik(Y,p,N)l} mx 1, x e [0, N],

whenever the degree of the polynomial satisfies n _< - + 1. Similar results are also
given for the dual Hahn polynomials and the Hahn-Eberlein polynomials.

2. Preliminaries. In this section we will briefly discuss some general aspects of
orthogonal polynomials which will be needed in the following sections. The notation
used here is that of Karlin and Shapely (1953) and Karlin and Studden (1966). Let
denote a probability measure on the interval [0, N] with moments

N

cj xJd(x) (j O,. ..,N)

and let Pt(x), Qt(x), Re(x), St(x) denote the orthonormal polynomials with respect
to the measures d(x),x(g- x)d(x),xd(x), and (g- x)d(x), respectively. The
leading coefficients of these polynomials can be expressed by ratios of the determinants

(2.1)
D2tw1 ()

D2e I(Nc+j-x c,iq-j)i,j=l[,

D2t+I I(Nc+y ci+j+l)i,j=ol



NEW BOUNDS FOR HAHN AND KRAWTCHOUK POLYNOMIALS 1649

(see, e.g., Karlin and Studden (1966) p. 109). For a point (cl,... ,ct) in the interior
of the moment space

{(,,...,)1

xJd(x) for some probability measure on [O,N] (j 1,... ,1)},

let (Cl,..., ct-1, c-) and (Cl,..., ct-1, ct+) denote the boundary points of Jt corre-
sponding to the lower and upper principal representation associated with the point
(Cl,...,ct-1) E int (JAt_l) (see Karlin and Studden (1966), p. 55). It is well known
(see, e.g., Karlin and Shapely (1953), p. 59) that the quantities ct+ and c-[ can be
expressed in terms of the determinants (2!1), that is,

Dt() g > 1,
Dt()

ct ct D__e_2((2.2/ + D_()

where we define __D_ ({) Do({) D-l({) Do({) 1 (note that the ratios in (2.2)
are well defined because (c1,..., ct-i) int (Mt-l)).

Throughout this paper we will make use of the determinants defined in (2.1),
where the moment of highest order is replaced by c2+t +(c2t+1) in the determinants

D2t({ (D2t+l({)) and by ct (ct+i) in the determinants D2t({) (D2t+i({)). The

corresponding modified determinants are denoted by D2+t({) +D2t+i ({), D2t({) and

D2t+l ({), respectively. Using representation (2.2), it is then easy to see that

(2.3)
j=2g, 2g+l,

j=2, 2g+l.

In a recent paper Dette (1993) established new identities for the orthonormal poly-
nomials Pt(x), Qt(x),Rt(x), and St(x) with respect to the measures d(x), x(N-
x)d(x), xd(x), and (N-x)d(x), respectively. For example, it is shown that for any
arbitrary probability measure on the interval [0, N], the corresponding orthonormal
polynomials satisfy the identity

(2.4)

(note that the identities were originally stated on the interval [-1, 1] but can easily
be transferred to arbitrary intervals). If N 1 and

d(x)
dx

rV/x(1 -x)



1650 HOLGER DETTE

is the arcsin distribution, then it is straightforward to show that D2t() D2t()
(1/2)t(2t+l),2t+l () D2t+1() (1/2)(t+1)(2t+l) (see, e.g., Karlin and Studden (1966),
p. 123). The polynomials Pt(x) andQt(x) are proportional to the Chebyshev polyno-
mials of the first and second kind (on the interval [0, 1]) and the identity (2.4) reduces
to the trigonometric identity. In this sense (2.4) can be seen as an extension of the
trigonometric identity for arbitrary orthogonal polynomials on compact intervals. For
the Jacobi polynomials identities of the form (2.4) have been established in Dette
(1993). To derive similar results for the Hahn and Krawtchouk polynomials we need
explicit expressions for the determinants of the moment matrices corresponding to the
jump functions in (1.2) and (1.5), which will be derived in the following sections.

3. Identities and bounds for Hahn polynomials. It follows from (1.1) and
(1.3) that the jump function in (1.2) defines a (discrete) probability measure p on the
set {0,..., N} and the orthonormal polynomials with respect to the measure dp(x) are
given by v/r(a,/, N)Qn (x, , /, N) (n 0,..., N). Using the elementary properties
of the gamma function and (1.1), we obtain

N

EQm(x- 1,a + 1, / 1, N- 2)Qn(x- 1, a + 1, + 1, N- 2)x(N- x)p(x,a,,N)
x’--O

N-2

E Qm(x,a + 1, + 1, N- 2)Qn(x,a + 1, + 1, i- 2)
x--O

x p(x, a + 1, + 1 N 2) N(N 1)(a + 1)(/ + 1)
(a +/ + 2)(a +/ + 3)

N(N- 1)(a + 1)( + 1) m,n
(a + + 2)( +/ + 3)rn( + 1, + 1, N- 2)’

which shows that the polynomials

(3.1) N(N- 1)(a + 1)( + 1) rn(a + 1, + 1,N- 2) Qn(x-l,a+l,+l,N-2)

(n 0,... ,N- 2) are orthonormal with respect to the measure x(N- x)dp(x).
Similarly, it can be shown that the orthonormal polynomials with respect to the
measures xdCp(x) and (N- x)dp(x) are given by

+ 2)
V + 1)g 7rn(a + 1,/,N- 1) Qn(x- 1, a + 1,/,N 1)

(n O,...,N- 1) and

(3.3) -/]i 71"n((l,/ at- 1, N- 1) Qn(x,a,/ + 1, N- 1)

(n--0,... ,N- 1), respectively.
THEOREM 3.1. For 0,...,N define ht(x, a, , N) ((a + 1)e/(/ + 1)e)Qe(x,a,/,Y);

then the Hahn polynomials satisfy the following identities:
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(a) For n 0,.o.,N- 1,
n--1 2t+ a +/3 + 1

{(a +/3 + 1)(2g- N) + 2g2 }

Qn(x- 1, o/q- 1,/, N- 1)}
2

hn(x- l,a + l,/3 + l,N- 2)}
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(d) For n 0,...,N- 1,

Proof. We will only give a proof of identity (a) using the general result in (2.4).
All other cases are treated similarly, where identity (2.4) has to be replaced by the
corresponding results in Dette (1993). Observing (2.4), (3.1), (3.2), and (3.3), we
have to find the determinants D2e(p) D2t(p), D2_ (p), D2-1 (p), where p is the
probability measure corresponding to the jump function (1.2). But these determinants
can easily be calculated from the leading coefficients of the orthonormal polynomials
with respect to the measures dp(x), xdp(x), (N x)dp(x), x(N x)dp(x) (see, e.g.,
Karlin and Studden (1966), p. 110). For example, the orthonormal polynomial with
respect to the measure x(N- x)dp(x) is the Hahn polynomial given in (3.1) and the
leading coefficient is obtained from the definition of the Hahn polynomials in terms of
the hypergeometric series (see 1). Thus, for the leading coefficient of the polynomial
in (3.1) we have

(n + c +/ + 3)n
(c + 2),(-N + 2)n

or, equivalently (using (1.3)),

D2n+2(,)
D2n(p)

n! (a + 1)n+l( + 1)+(N + a + + 2)(N n 1)n+2
(c +/3 + 2)n+ (n + c +/3 + 3)n(n + c +/3 + 3)n+1

Similarly, for the ratio of D2n(,) and D2n_2(, we obtain

n! (c + 1)n(/3 + 1)n(O -b/ --b N + 2)n(N n + 1)n
(c +/3 + n + 1)n+l (c +/3 + n + 1)n(C +/3 + 2)n-

and a straightforward computation yields

(3.4) (N n)(c +/3 + n + 1) D2n_2()
n(N + + + n + 1) D2n_2()

(N n)n(C + + 2)n
n!(N + a + 13 + 2),
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In the same way we find

(3.5)
D2n_l (p) (a + 1), D2n(p) n a + 3 + N + n + 1

2n-1 (p) (/3 + 1) D2+(p) g a + 3 + 2n + 1

(3.6) (C + + 2)n(N n)n
(n 1)! (N + a +/ + 2)n-1 (a + + 2n + 1)N’

where we have used representation (2.3) and (3.4). The orthonormal polynomials
with respect to the measures (N- x)dp(x) and x(N- x)dp(x) are given by (3.3)
and (3.1), and assertion (a) of Theorem 3.1 now follows from (2.4), (3.4), (3.5), (3.6)
and straightforward but tedious algebra.

The Jacobi polynomials Pt(a’) (x), orthogonal with respect to the (continuous)
measure (1 x)(1 + x)dx and with leading coefficient 2-t (2++), can be obtained
as limits from the Hahn polynomials

(3.7) Pn(’f)(x) lim (n+a)Qn(Nl-X )N-o a 2
a, f, N

and replacing x by -x, it is straightforward to show that for the limit (3.7), Theorem
3.1 gives the corresponding formulas for the Jacobi polynomials in Dette (1993). For
these polynomials it is well known that IP(n"’f)(x)l is bounded by
IPn(’)(1)l} (n E )if max(,} > -1/2. An upper, but not necessarily sharp, bound
for arbitrary parameters is given by Erdlyi, Magnus, and Nevai (1992). For the Hahn
polynomials the situation is more complicated. Zaremba (1975) showed that

(3.8) IQn(x,a,,N)] <_ 1

for x 0,... ,N provided that a >_/3 > -1, n(n + 1) _< N, and

(3.9) a2+-a+a+ >_ O.

In the following theorem we will give an alternative bound for these polynomials,
where the restriction on the degree of the polynomials satisfying (3.8) depends on the
parameters of the weight function (1.2) and the inequality holds for all x E [0, N].

THEOREM 3.2. Let a + > -1 and

(3.10)
1

n(a, fl, N) := -:{(a + fl- 1) V/(a + fl + 1)(a + 3 + 2N + 1)};

then the nth Hahn polynomial satisfies the inequality

(+ 1)}]Q,(x,a,3,N)] <_ max 1,
(a + 1)n

max {IQ,(O,a,3, N)],

for all x e [0, N] and all n <_ n(a, , N).
Proof. The second identity follows from Karlin and McGregor (1961) and equa-

tions (1.13) and (1.14). Let fl >_ a and a+3 > -1, by (3.10) all terms on the left-hand
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side of the identity in Theorem 3.1(c) are positive, which yields (here we replace n by
n- 1 in Theorem 3.1(c))

(Z+IQ(x, a, , N)[ _<
(c +

for all x E [0, N]. If a >_/ we use the symmetry relation

Qn(X, C /, N) (-1)n (/ + 1)n
( + 1)nQn(N x,,(,N)

(see, e.g., Nikifarov, Suslov, and Uvarov (1991), eq. (2.4.18), or Karlin and McGregor
(1961), eq. (1.15), but note that both references use a different notation) and from
the first part of the proof we obtain

IQ(x,a,,N)l (Z+I)
(c + l)nQn(N- x,,a, N)

for all x E [0, N]. This completes the proof of the theorem.
Remark 3.3. Zaremba (1975) proved (3.8) for a _>/ > -1 satisfying (3.9), n(n +

1) _< N, but only for the integers x 0,..., N, while Theorem 3.2 gives the sup-norm
of the Hahn polynomials for all a + f > -1. By restricting on the set {0, 1,..., N}
and c _> > -1, Zaremba’s bound on the degree Of the polynomials (such that
(3.8) is satisfied) is comparable with (3.10). If a =/ 0, we obtain from Zaremba
(1975) that (3.8) holds for all n <_ (-1 / x/4N / 1)/2, while Theorem 3.2 establishes
the (for N >_ 13 weaker) bound (1 + v/2N + 1)/2. This can be explained by the
fact that Zaremba’s approach is directly related to the discrete Legendre polynomials
Q(x, 0, 0, N) (and to the integers {0,..., N}) and the general case is obtained using a
projection formula and results of Askey and Gasper (1971) (for this step the condition
(3.9) is used). However, in most cases Theorem 3.2 will provide a better bound on the
degree of the Hahn polynomials such that (3.8) is satisfied. Furthermore, condition
(3.9) is not needed for establishing these bounds. For example, if a + >_ 1 and
N >_ 3, then it is easy to see that (-1 / v/4g + 1)/2 <_ n(c,/, N) and, consequently,
Theorem 3.2 gives a better bound on the degree of the polynomials, compared to
the results of Zaremba (1975). Moreover, if n _< n(c,/, g), (3.8) is satisfied for all

and/(/ + 2) < 0,x [0, N]. As a further example consider the case a =/ >
then (3.9) is not satisfied and Zaremba’s results cannot be applied. However, we
readily obtain from Theorem 3.2 that (3.8) holds for all x
{-(2/- 1) / V/(2 -t- 1)(2 + 1 / 2N)}/2.

Zaremba (1975) also considered the example

1 1 n2/_ 5
(3.11) Qn 2, 2’ 2’ - (n_>2)

to show that condition (3.9) cannot be relaxed. In this case Theorem 3.2 is not
applicable and (3.11) indicates that the Hahn polynomials Qn(x, , D,N) may not be
bounded by their absolute values at the points 0 and N if +/ _< -1. Nevertheless,
the following result provides a bound for these polynomials without a restriction on
their degree.

THEOREM 3.4. Let + <_ -1 and n (0,..., N- 1}; then for all x [0, N]
the Hahn polynomials Qn (x, c, , N) satisfy the inequality
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(n- 1)!
(N n + l)n-I

Proof. Let _> a; then by the assumptions all terms in the sums of Theorem
3.1(a) are positive. Consequently, we have

(a / 3 + N + h(x,,,N)

which is equivalent to (3.12) for >_ a. The case a _< is similar to the case in the
proof of Theorem 3.2 and is therefore omitted. [:]

Remark 3.5. Note that in general the bound (3.12) cannot be improved. This
follows readily from (3.11) for N 4, n 2 ( f-- -1/2) because in this case the
right-hand side of (3.12) is also given by -53

For a -1/2 we obtain the discrete analogue of the Chebyshev polynomials,
which are of particular interest and considered in the following corollary. This result
gives a "discrete" version of the trigonometric identity (part (a)).

N) and Un(x, N) Qn(x, 2 2,COROLLARY3.6. Let Tn(x,N)=Qn(x, 2, 2,

N)denote the discrete Chebyshev polynomials of the first and second kind, respectively;
then we have the following for all x e [0, N]"

(a) For n O,... ,N 1,

(b) For n 0,...,N- 1,

[Tn(x, N)[ <_ hI(l+
j=l

n)N-n+j

(c) ForO <_ n <_ v/N + l,

IU(x,N)I _< 1.

Remark 3.7. Observing that the Jacobi polynomials can be obtained as the limit
(3.7) from the Hahn polynomials and using formula (4.17) in Szeg6 (1975), it is easy to
see that part (a) Corollary 3.6 yields (N -- cx) x --N

2 (l--z)) the trigonometric identity
(1-z2)U2(z)+T2n+ (z) 1 for the Chebyshev polynomial of the first and second kind
while, parts (b) and (c) establish the bounds ITn(z)] <_ 1, IUn(z)[ <_ n + 1 (z e [-1, 1])
for these polynomials (note that limN Un(g2 (1 z),g) U,(z)/(n + 1)).

We will conclude this section with a brief discussion of related results for the
Hahn-Eberlein and the dual Hahn polynomials. The Hahn-Eberlein polynomials are
obtained from the Hahn polynomials Q,(x,a,,N) for a < -N, < -N (see, e.g.,
Rahman (1978) or Eberlein (1964)). For this choice the mass function in (1.2) still
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defines a probability measure on (0,..., N} and, consequently, the orthogonal poly-
nomials Q,(x, , , N) with respect to this measure are well defined and called Hahn-
Eberlein polynomials. These polynomials have some applications in coding theory
(see, e.g., Sloane (1975)). Obviously, the identities of Theorem 3.1 can be extended
to the region < -N,/ < -N and as a consequence we obtain the following bound
for the Hahn-Eberlein polynomials.

THEOREM 3.8. Let a < -N, < -N, + 3 < -2N 1, and

1
(a, , N) -{(a +- 1) + V/(a + + 1)(a +/ + 1 + 2N)}.

For all x E [0, N] and n <_(t(a,,N) the Hahn-Eberlein polynomials Qn(x,a,,N)
satisfy the inequality

(/ + 1) } max{JQ(O, ,, N)I, IQ(N, , N)I}.max 1,
(c + 1)n

The dual Hahn polynomials Rk(x,a,3, N) (a,/3 > -1) are related to the Hahn
polynomials by the equation

Rk(x(x + / + 1)) Qx(k, , 1, N)

(k,x 0,... ,N) and are orthogonal on the interval [0, N(N + + + 1)]. For a
detailed discription of these polynomials including the recurrence relation and the
orthogonality relation we refer the reader to the work of Karlin and McGregor (1961).
By an analysis similar to the one in the proof of Theorem 3.2 we obtain the following
bound for these polynomials.

THEOREM 3.9. Let c, > -1, N + 1 / >_ O, and

lmin{N+2, N+l+-a}

If n <_ n*(a, , N) then for all x [0, N(N + c +/ + 1)] the dual Hahn polynomial
Rn (x, o, , N) satisfies the inequality

tRn(x,a, 13, N)] <_ (N+l+-n)
(a + 1)n IRn(N(N + + 3 + 1),c,/,N)l.

Proof. Let D denote the measure that puts masses

D(Ax) rx(a, , N)p(O)

at the points Ax x(x + a + + 1) (x 0,... ,N), where rx(a, fl, N) and p(x)
p(x, a, 13, N) are defined in (1.3) and (1.2), respectively. By the results of Karlin and
McGregor (1961) (equation (1.20)) it follows that D defines a probability measure on
the interval [0, N(N + a / fl + 1)] and the orthonormal polynomials with respect to
dD(X) are given by

(3.13) /(x) V6Rt(x,a,,N) (1 0,...,N).
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According to Theorem 3.1 in Dette (1993), it follows that the orthonormal polynomials
Pl(x), Ql(x), and S(x), with respect to the measures dD(X), x[N(N / a / 3 / 1)
x]dD(X), and [N(N + a + Z + 1.) x]dD(X), satisfy the identity
(.)

n--1 [D2(D) (D)]x[N(N + a + + 1) x] D2t+l (n) ___D2t-b2 Q2(x
=0 +()[ +()

+ x[Y(Y + + [3 + 1) x] D2----n(D) D2n+l (D) 2n+2(D) q2n(x)
,(.) :n+(.) D,+()

+ [N(N+ + + 1) x] __D2t(D) __D2-I(D) __D2-bl (D)
=0 D(.) .D_() D+(.)

1 _D+(.)D+(.) pn+1()
D+(.)D+(.)

(n 0,..., N 1). Using reasoning similar to that in the proof of Theorem 3.1, for
the ratios of the determinants in (3.14) we obtain

De(n) D2Z+2(D) l!

2(D) 2Z+2(D) (N- l-
(N- 21- 2) (t 0,...,n- 1),

D2/_l (D) D___2/+l (D) (cg -- 1)/ (N-l+/-a-2/) (/=0,...,n),
-i2/--1 (D) 2/-1 (D) (g AV- l)l+l

and
D2n+l (D)D2n-b2(D) 2Pn+l(X
n2n+l (D)D2n+2(D)

(, + )+,(+ )!
(N + 3 Tt)n+l (N Tt)n+l

(C -[- 1)n+l
Rn+l (x, a,/3, N)(N + /- n)n+I

p(n -b 1) R2
p(O) +(x, a,13, N)

where we have used (3.13) and (1.2) in the last identity. By the assumptions of the
theorem all terms on the left-hand side in (3.14) are positive and the assertion follows
from

Rn(N(N + a + 3 + 1)) =.QN(n,a 3, N) (-1)n (N + 1 +/- n)n
(a+ 1),

which can easily be proved by an induction argument.

4. Krawtchouk polynomials. In this section we will apply the results of 2
and 3 to obtain similar results for the Krawtchouk polynomials. We will mainly use the
representation (1.4) of kn(x,p, N) as the limit of the Hahn polynomials Qn(X, a, 3, N)
when a pt, qt, and t --. oc. By this relation the following results are immediate
consequences of Theorems 3.1 and 3.2.

THEOREM 4.1. For t 0,...,g define t(x,p,N) ()(q)tkt(x,p,N). The
Krawtchouk polynomials satisfy the following identities:
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(a) For n = 0,...,N- 1,

(b) For n 0,...,N- 1,

E - 1 ke(x,PN)}2-k{(Nl)kn(x -1,

p-qx N-1
p2 N e k(x- 1,p,N- 1)

=1- (1--x) N-ln kn(x,p,N-1)

(c) For n 0,...,N- 2,

p,N- 1)}
2

(d) For n 0,...,N- 1,

n n--1

E (2----I) ([c’(x’p’N)’2+ q-P(x)q2
1- - E{c(x,p,N- 1)}2

--1 --0

+ (1-x) {(x,p,N- 1)}2 1 x {n(X- i,p,N- 1)}2

THEOREM 4.2. Let n <_ - + 1, then the nth Krawtchouk polynomial kn(x,p,N)
for all x E [0, N] satisfies the inequality

q
max{Ik(O,p,N)[ Ik(N,p,N)]}.[kn(x,p,N)[ <_ max 1,

Remark 4.3. It should be noted that the bound + 1 for the degree of the
Krawtchouk polynomials in the preceeding theorem could be improved by using a
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positive linearization theorem for the Krawtchouk polynomials [see, e.g., Dunkl and
Ramirez (1974)].
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